1
|
Park S, Cardinaux A, Crozier D, Russo M, Bond S, Kjelgaard M, Sinha P, Sternad D. Interceptive abilities in autism spectrum disorder: Comparing naturalistic and virtual visuomotor tasks. Autism Res 2024; 17:2514-2534. [PMID: 39411921 PMCID: PMC11638935 DOI: 10.1002/aur.3246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2024] [Indexed: 12/14/2024]
Abstract
A growing body of research reveals that autistic individuals exhibit motor coordination challenges. Multiple theoretical frameworks propose that the seemingly disparate features of autism may arise from a common underlying process: a diminished ability to make predictions. Sensorimotor skills, such as catching a ball, critically rely on predicting the ball's trajectory as well as anticipatory coordination of the entire body. Here, we assessed four different naturalistic and virtual interception tasks with 31 neurotypical and 23 autistic children (ages 7-12). In a naturalistic setting, participants caught the ball either with their hands or a hand-held funnel with an enlarged catch area that also prevented the ball from bouncing off. A virtual setup reduced whole-body demands, as children only moved a paddle to catch or bounce a ball on a screen. Control tasks, involving rapid reaching to grasp a static object and quiet standing, which largely eliminated the requirements for prediction, were also tested. Results from all task variations demonstrated that autistic children completed fewer successful interceptions, suggesting that predictive requirements, inherent to all interception tasks, played a critical role. Effect sizes in the virtual tasks were smaller. Correlations of the task metrics with behavioral assessments rendered the strongest correlations with Praxis scores. The control tasks showed no differences between autistic and neurotypical children. These findings lend support to the emerging hypothesis that predictive challenges are present in autism. Further research with larger sample sizes will help identify to what extent these visuomotor differences may inform core domains of autism.
Collapse
Affiliation(s)
- Se‐Woong Park
- Department of KinesiologyUniversity of Texas at San AntonioSan AntonioTexasUSA
- Department of BiologyNortheastern UniversityBostonMassachusettsUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Annie Cardinaux
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Dena Crozier
- Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
- Department of PhysicsNortheastern UniversityBostonMassachusettsUSA
| | - Marta Russo
- Department of Neurology, Tor Vergata Polyclinic & Laboratory of Neuromotor PhysiologyFondazione Santa LuciaRomeItaly
| | - Sabrina Bond
- Department of BiologyNortheastern UniversityBostonMassachusettsUSA
- Department of Anesthesiology, Perioperative and Pain MedicineStanford School of MedicinePalo AltoCaliforniaUSA
| | - Margaret Kjelgaard
- Department of Communication Sciences and DisordersBridgewater State UniversityBridgewaterMassachusettsUSA
| | - Pawan Sinha
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Dagmar Sternad
- Department of BiologyNortheastern UniversityBostonMassachusettsUSA
- Department of PhysicsNortheastern UniversityBostonMassachusettsUSA
- Department of Electrical & Computer EngineeringNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
2
|
Sapey-Triomphe LA, Sanchez G, Hénaff MA, Sonié S, Schmitz C, Mattout J. Disentangling sensory precision and prior expectation of change in autism during tactile discrimination. NPJ SCIENCE OF LEARNING 2023; 8:54. [PMID: 38057355 DOI: 10.1038/s41539-023-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Predictive coding theories suggest that core symptoms in autism spectrum disorders (ASD) may stem from atypical mechanisms of perceptual inference (i.e., inferring the hidden causes of sensations). Specifically, there would be an imbalance in the precision or weight ascribed to sensory inputs relative to prior expectations. Using three tactile behavioral tasks and computational modeling, we specifically targeted the implicit dynamics of sensory adaptation and perceptual learning in ASD. Participants were neurotypical and autistic adults without intellectual disability. In Experiment I, tactile detection thresholds and adaptation effects were measured to assess sensory precision. Experiments II and III relied on two-alternative forced choice tasks designed to elicit a time-order effect, where prior knowledge biases perceptual decisions. Our results suggest a subtler explanation than a simple imbalance in the prior/sensory weights, having to do with the dynamic nature of perception, that is the adjustment of precision weights to context. Compared to neurotypicals, autistic adults showed no difference in average performance and sensory sensitivity. Both groups managed to implicitly learn and adjust a prior that biased their perception. However, depending on the context, autistic participants showed no, normal or slower adaptation, a phenomenon that computational modeling of trial-to-trial responses helped us to associate with a higher expectation for sameness in ASD, and to dissociate from another observed robust difference in terms of response bias. These results point to atypical perceptual learning rather than altered perceptual inference per se, calling for further empirical and computational studies to refine the current predictive coding theories of ASD.
Collapse
Affiliation(s)
- Laurie-Anne Sapey-Triomphe
- Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France.
| | - Gaëtan Sanchez
- Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France
| | - Marie-Anne Hénaff
- Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France
| | - Sandrine Sonié
- Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France
- Centre de Ressource Autisme Rhône-Alpes, Centre Hospitalier Le Vinatier, Bron, France
- Hôpital Saint-Jean-de-Dieu, Lyon, France
| | - Christina Schmitz
- Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France
| | - Jérémie Mattout
- Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France
| |
Collapse
|
3
|
Arthur T, Vine S, Buckingham G, Brosnan M, Wilson M, Harris D. Testing predictive coding theories of autism spectrum disorder using models of active inference. PLoS Comput Biol 2023; 19:e1011473. [PMID: 37695796 PMCID: PMC10529610 DOI: 10.1371/journal.pcbi.1011473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Several competing neuro-computational theories of autism have emerged from predictive coding models of the brain. To disentangle their subtly different predictions about the nature of atypicalities in autistic perception, we performed computational modelling of two sensorimotor tasks: the predictive use of manual gripping forces during object lifting and anticipatory eye movements during a naturalistic interception task. In contrast to some accounts, we found no evidence of chronic atypicalities in the use of priors or weighting of sensory information during object lifting. Differences in prior beliefs, rates of belief updating, and the precision weighting of prediction errors were, however, observed for anticipatory eye movements. Most notably, we observed autism-related difficulties in flexibly adapting learning rates in response to environmental change (i.e., volatility). These findings suggest that atypical encoding of precision and context-sensitive adjustments provide a better explanation of autistic perception than generic attenuation of priors or persistently high precision prediction errors. Our results did not, however, support previous suggestions that autistic people perceive their environment to be persistently volatile.
Collapse
Affiliation(s)
- Tom Arthur
- School of Public Health and Sport Sciences, Medical School, University of Exeter, Exeter, United Kingdom
- Centre for Applied Autism Research, Department of Psychology, University of Bath, Bath, United Kingdom
| | - Sam Vine
- School of Public Health and Sport Sciences, Medical School, University of Exeter, Exeter, United Kingdom
| | - Gavin Buckingham
- School of Public Health and Sport Sciences, Medical School, University of Exeter, Exeter, United Kingdom
| | - Mark Brosnan
- Centre for Applied Autism Research, Department of Psychology, University of Bath, Bath, United Kingdom
| | - Mark Wilson
- School of Public Health and Sport Sciences, Medical School, University of Exeter, Exeter, United Kingdom
| | - David Harris
- School of Public Health and Sport Sciences, Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Sapey-Triomphe LA, Pattyn L, Weilnhammer V, Sterzer P, Wagemans J. Neural correlates of hierarchical predictive processes in autistic adults. Nat Commun 2023; 14:3640. [PMID: 37336874 DOI: 10.1038/s41467-023-38580-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/08/2023] [Indexed: 06/21/2023] Open
Abstract
Bayesian theories of autism spectrum disorders (ASD) suggest that atypical predictive mechanisms could underlie the autistic symptomatology, but little is known about their neural correlates. Twenty-six neurotypical (NT) and 26 autistic adults participated in an fMRI study where they performed an associative learning task in a volatile environment. By inverting a model of perceptual inference, we characterized the neural correlates of hierarchically structured predictions and prediction errors in ASD. Behaviorally, the predictive abilities of autistic adults were intact. Neurally, predictions were encoded hierarchically in both NT and ASD participants and biased their percepts. High-level predictions were following activity levels in a set of regions more closely in ASD than NT. Prediction errors yielded activation in shared regions in NT and ASD, but group differences were found in the anterior cingulate cortex and putamen. This study sheds light on the neural specificities of ASD that might underlie atypical predictive processing.
Collapse
Affiliation(s)
- Laurie-Anne Sapey-Triomphe
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
- Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium.
| | - Lauren Pattyn
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Veith Weilnhammer
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Philipp Sterzer
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Johan Wagemans
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
5
|
Arthur T, Harris D, Buckingham G, Brosnan M, Wilson M, Williams G, Vine S. An examination of active inference in autistic adults using immersive virtual reality. Sci Rep 2021; 11:20377. [PMID: 34645899 PMCID: PMC8514518 DOI: 10.1038/s41598-021-99864-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
The integration of prior expectations, sensory information, and environmental volatility is proposed to be atypical in Autism Spectrum Disorder, yet few studies have tested these predictive processes in active movement tasks. To address this gap in the research, we used an immersive virtual-reality racquetball paradigm to explore how visual sampling behaviours and movement kinematics are adjusted in relation to unexpected, uncertain, and volatile changes in environmental statistics. We found that prior expectations concerning ball 'bounciness' affected sensorimotor control in both autistic and neurotypical participants, with all individuals using prediction-driven gaze strategies to track the virtual ball. However, autistic participants showed substantial differences in visuomotor behaviour when environmental conditions were more volatile. Specifically, uncertainty-related performance difficulties in these conditions were accompanied by atypical movement kinematics and visual sampling responses. Results support proposals that autistic people overestimate the volatility of sensory environments, and suggest that context-sensitive differences in active inference could explain a range of movement-related difficulties in autism.
Collapse
Affiliation(s)
- Tom Arthur
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK.
- Centre for Applied Autism Research, Department of Psychology, University of Bath, Bath, BA2 7AY, UK.
| | - David Harris
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Gavin Buckingham
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Mark Brosnan
- Centre for Applied Autism Research, Department of Psychology, University of Bath, Bath, BA2 7AY, UK
| | - Mark Wilson
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Genevieve Williams
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Sam Vine
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK.
| |
Collapse
|
6
|
Sapey-Triomphe LA, Weilnhammer VA, Wagemans J. Associative learning under uncertainty in adults with autism: Intact learning of the cue-outcome contingency, but slower updating of priors. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 26:1216-1228. [PMID: 34533061 DOI: 10.1177/13623613211045026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LAY ABSTRACT We have an internal representation of the world that guides our behavior, helps us predicting what comes next and therefore, reducing uncertainty. For instance, after hearing the noise of a door opening, we usually expect to see a person appearing, whose features differ depending on the context. In this example of associative learning, predictions need to be adjusted if there is a change in the environment (e.g. different person depending on the location). Recent theories suggest that the symptoms encountered in autism could be due to an atypical learning of predictions or to a decreased influence of these expectations on perception. Here, we conducted an experiment assessing whether adults with autism could learn and adjust their predictions in a changing environment. Throughout a behavioral task, participants learned to associate a sound with a visual outcome, but this association could sometimes reverse. Results showed that autistic adults could learn to make predictions that fitted the main sound-vision association, but were slower to adapt their expectations when there was an unannounced change in the environment. We also observed that both adults with and without autism tended to be biased by their expectations, as they reported seeing what they expected to see rather than what was actually shown. Altogether, our results indicate that autistic adults can learn predictions but are more inflexible to adjust these predictions in a changing environment. These results help refining recent theories of autism (called "predictive coding" theories), which intend to identify the core mechanisms underlying the autistic symptomatology.
Collapse
Affiliation(s)
- Laurie-Anne Sapey-Triomphe
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Veith A Weilnhammer
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johan Wagemans
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Park WJ, Schauder KB, Kwon OS, Bennetto L, Tadin D. Atypical visual motion prediction abilities in autism spectrum disorder. Clin Psychol Sci 2021; 9:944-960. [PMID: 34721951 DOI: 10.1177/2167702621991803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A recent theory posits that prediction deficits may underlie the core symptoms in autism spectrum disorder (ASD). However, empirical evidence for this hypothesis is minimal. Using a visual extrapolation task, we tested motion prediction abilities in children and adolescents with and without ASD. We examined the factors known to be important for motion prediction: the central-tendency response bias and smooth pursuit eye movements. In ASD, response biases followed an atypical trajectory that was dominated by early responses. This differed from controls who exhibited response biases that reflected a gradual accumulation of knowledge about stimulus statistics. Moreover, while better smooth pursuit eye movements for the moving object were linked to more accurate motion prediction in controls, in ASD, better smooth pursuit was counterintuitively linked to a more pronounced early response bias. Together, these results demonstrate atypical visual prediction abilities in ASD and offer insights into possible mechanisms underlying the observed differences.
Collapse
Affiliation(s)
- Woon Ju Park
- Department of Psychology, University of Washington, Seattle, WA, 98195
| | - Kimberly B Schauder
- Center for Autism Spectrum Disorders, Children's National Hospital, Rockville, MD, 20850
| | - Oh-Sang Kwon
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Loisa Bennetto
- Department of Psychology, University of Rochester, Rochester, NY, 14627.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642
| | - Duje Tadin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642.,Center for Visual Science, University of Rochester, Rochester, NY, 14627.,Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, 14642
| |
Collapse
|
8
|
Cannon J, O’Brien AM, Bungert L, Sinha P. Prediction in Autism Spectrum Disorder: A Systematic Review of Empirical Evidence. Autism Res 2021; 14:604-630. [PMID: 33570249 PMCID: PMC8043993 DOI: 10.1002/aur.2482] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
According to a recent influential proposal, several phenotypic features of autism spectrum disorder (ASD) may be accounted for by differences in predictive skills between individuals with ASD and neurotypical individuals. In this systematic review, we describe results from 47 studies that have empirically tested this hypothesis. We assess the results based on two observable aspects of prediction: learning a pairing between an antecedent and a consequence and responding to an antecedent in a predictive manner. Taken together, these studies suggest distinct differences in both predictive learning and predictive response. Studies documenting differences in learning predictive pairings indicate challenges in detecting such relationships especially when predictive features of an antecedent have low salience or consistency, and studies showing differences in habituation and perceptual adaptation suggest low-level predictive processing differences in ASD. These challenges may account for the observed differences in the influence of predictive priors, in spontaneous predictive movement or gaze, and in social prediction. An important goal for future research will be to better define and constrain the broad domain-general hypothesis by testing multiple types of prediction within the same individuals. Additional promising avenues include studying prediction within naturalistic contexts and assessing the effect of prediction-based intervention on supporting functional outcomes for individuals with ASD. LAY SUMMARY: Researchers have suggested that many features of autism spectrum disorder (ASD) may be explained by differences in the prediction skills of people with ASD. We review results from 47 studies. These studies suggest that ASD may be associated with differences in the learning of predictive pairings (e.g., learning cause and effect) and in low-level predictive processing in the brain (e.g., processing repeated sounds). These findings lay the groundwork for research that can improve our understanding of ASD and inform interventions. Autism Res 2021, 14: 604-630. © 2021 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jonathan Cannon
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Amanda M. O’Brien
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
- Program in Speech and Hearing Bioscience and Technology, Harvard University
| | - Lindsay Bungert
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Pawan Sinha
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| |
Collapse
|
9
|
Sapey-Triomphe LA, Timmermans L, Wagemans J. Priors Bias Perceptual Decisions in Autism, But Are Less Flexibly Adjusted to the Context. Autism Res 2020; 14:1134-1146. [PMID: 33283970 DOI: 10.1002/aur.2452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 11/07/2022]
Abstract
According to the predictive coding framework, percepts emerge from combinations of sensory input and prior knowledge, whose relative contributions depend on their reliability. Recent predictive coding theories suggest that Autism Spectrum Disorder (ASD) could be characterized by an atypical weighting of priors. Here, we assessed whether individuals with ASD can flexibly adjust the weight (precision) of the prior to the context. Thirty-one neurotypical adults (NT) and 26 adults with ASD participated in a visual discrimination task designed to elicit a time-order effect (TOE). The TOE reflects the integration of priors with sensory estimates. We used two experimental contexts: a narrow stimulus range (Narrow condition) and a broader range (Broad condition) in order to induce a prior with a higher and lower precision, respectively. Both groups learned a prior that biased their perception, as shown with the TOE. As expected, the NT group had a larger TOE in the Narrow condition than in the Broad condition, revealing a contextual adjustment of the prior precision. In contrast, ASD participants were more inflexible: the extent of the TOE was not modulated by the context. In addition, the accuracy increased when the stimulus range decreased in both group, which may be interpreted as a contextual adjustment of the sensory precision. To conclude, adults with and without ASD implicitly learned a prior mean, but ASD participants failed to flexibly adjust the prior precision to the context. This increased inflexibility in ASD could account for many symptoms, such as their intolerance of uncertainty. LAY SUMMARY: Based on our experience, we have expectations about our environment. Theories suggest that the symptoms encountered in autism could be due to atypical expectations, leading to an impression of an unpredictable world. Using a visual discrimination task, we showed that adults with and without autism were biased by their expectations. Yet, the extent to which expectations biased perception did not depend on the context in autism. This higher inflexibility found in autism may explain symptoms such as resistance to change.
Collapse
Affiliation(s)
- Laurie-Anne Sapey-Triomphe
- Laboratory of Experimental Psychology, Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Laura Timmermans
- Laboratory of Experimental Psychology, Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Johan Wagemans
- Laboratory of Experimental Psychology, Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Bianco V, Finisguerra A, Betti S, D’Argenio G, Urgesi C. Autistic Traits Differently Account for Context-Based Predictions of Physical and Social Events. Brain Sci 2020; 10:E418. [PMID: 32630346 PMCID: PMC7407668 DOI: 10.3390/brainsci10070418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
Autism is associated with difficulties in making predictions based on contextual cues. Here, we investigated whether the distribution of autistic traits in the general population, as measured through the Autistic Quotient (AQ), is associated with alterations of context-based predictions of social and non-social stimuli. Seventy-eight healthy participants performed a social task, requiring the prediction of the unfolding of an action as interpersonal (e.g., to give) or individual (e.g., to eat), and a non-social task, requiring the prediction of the appearance of a moving shape as a short (e.g., square) or a long (e.g., rectangle) figure. Both tasks consisted of (i) a familiarization phase, in which the association between each stimulus type and a contextual cue was manipulated with different probabilities of co-occurrence, and (ii) a testing phase, in which visual information was impoverished by early occlusion of video display, thus forcing participants to rely on previously learned context-based associations. Findings showed that the prediction of both social and non-social stimuli was facilitated when embedded in high-probability contexts. However, only the contextual modulation of non-social predictions was reduced in individuals with lower 'Attention switching' abilities. The results provide evidence for an association between weaker context-based expectations of non-social events and higher autistic traits.
Collapse
Affiliation(s)
- Valentina Bianco
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy; (V.B.); (S.B.); GIULIA.D' (G.D.)
| | | | - Sonia Betti
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy; (V.B.); (S.B.); GIULIA.D' (G.D.)
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Giulia D’Argenio
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy; (V.B.); (S.B.); GIULIA.D' (G.D.)
- PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, 34128 Trieste, Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy; (V.B.); (S.B.); GIULIA.D' (G.D.)
- Scientific Institute, IRCCS E. Medea, Pasian di Prato, 33037 Udine, Italy;
| |
Collapse
|
11
|
Coll MP, Whelan E, Catmur C, Bird G. Autistic traits are associated with atypical precision-weighted integration of top-down and bottom-up neural signals. Cognition 2020; 199:104236. [DOI: 10.1016/j.cognition.2020.104236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022]
|
12
|
Cutaneous and stick rabbit illusions in individuals with autism spectrum disorder. Sci Rep 2020; 10:1665. [PMID: 32020035 PMCID: PMC7000771 DOI: 10.1038/s41598-020-58536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Prediction is the process by which future events are anticipated based on past events; in contrast, postdiction is the retrospective interpretation of past events based on latter, more recent events. The prediction and postdiction are suggested to be similar based on theoretical models. Previous studies suggest that prediction is impaired in individuals with autism spectrum disorder (ASD). However, it is unclear whether postdiction is also impaired in individuals with ASD. In this study, we evaluated postdiction in individuals with ASD using the cutaneous and stick rabbit illusion paradigms in which the perceived location of a touch shifts postdictively in response to a subsequent touch stimulus. We observed significant cutaneous and stick rabbit illusion in both typically developing (TD) and ASD groups; therefore, postdiction was functional in individuals with ASD. Our present results suggest that postdiction involves a different neuronal process than prediction. We also observed that the ASD group exhibited significantly larger individual difference compared with the TD group in the stick rabbit illusion, which is considered to reflect extension of body schema to external objects. We discuss implications of the individual difference among the ASD participants in the context of sports requiring interactions between the body and external objects.
Collapse
|
13
|
Amoruso L, Narzisi A, Pinzino M, Finisguerra A, Billeci L, Calderoni S, Fabbro F, Muratori F, Volzone A, Urgesi C. Contextual priors do not modulate action prediction in children with autism. Proc Biol Sci 2019; 286:20191319. [PMID: 31409253 DOI: 10.1098/rspb.2019.1319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bayesian accounts of autism suggest that this disorder may be rooted in an impaired ability to estimate the probability of future events, possibly owing to reduced priors. Here, we tested this hypothesis within the action domain in children with and without autism using a behavioural paradigm comprising a familiarization and a testing phase. During familiarization, children observed videos depicting a child model performing actions in diverse contexts. Crucially, within this phase, we implicitly biased action-context associations in terms of their probability of co-occurrence. During testing, children observed the same videos but drastically shortened (i.e. reduced amount of kinematics information) and were asked to infer action unfolding. Since during the testing phase movement kinematics became ambiguous, we expected children's responses to be biased to contextual priors, thus compensating for perceptual uncertainty. While this probabilistic effect was present in controls, no such modulation was observed in autistic children, overall suggesting an impairment in using contextual priors when predicting other peoples' actions in uncertain environments.
Collapse
Affiliation(s)
- Lucia Amoruso
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy.,Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | | | | | | | - Lucia Billeci
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Sara Calderoni
- IRCCS Stella Maris Foundation, Pisa (Calambrone), Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Franco Fabbro
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, Pisa (Calambrone), Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Anna Volzone
- Scientific Institute, IRCCS E. Medea, Pasian di Prato, Udine, Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy.,Scientific Institute, IRCCS E. Medea, Pasian di Prato, Udine, Italy
| |
Collapse
|
14
|
Arthur T, Vine S, Brosnan M, Buckingham G. Exploring how material cues drive sensorimotor prediction across different levels of autistic-like traits. Exp Brain Res 2019; 237:2255-2267. [PMID: 31250036 PMCID: PMC6675774 DOI: 10.1007/s00221-019-05586-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/15/2019] [Indexed: 12/25/2022]
Abstract
Recent research proposes that sensorimotor difficulties, such as those experienced by many autistic people, may arise from atypicalities in prediction. Accordingly, we examined the relationship between non-clinical autistic-like traits and sensorimotor prediction in the material-weight illusion, where prior expectations derived from material cues typically bias one’s perception and action. Specifically, prediction-related tendencies in perception of weight, gaze patterns, and lifting actions were probed using a combination of self-report, eye-tracking, motion-capture, and force-based measures. No prediction-related associations between autistic-like traits and sensorimotor control emerged for any of these variables. Follow-up analyses, however, revealed that greater autistic-like traits were correlated with reduced adaptation of gaze with changes in environmental uncertainty. These findings challenge proposals of gross predictive atypicalities in autistic people, but suggest that the dynamic integration of prior information and environmental statistics may be related to autistic-like traits. Further research into this relationship is warranted in autistic populations, to assist the development of future movement-based coaching methods.
Collapse
Affiliation(s)
- Tom Arthur
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Sam Vine
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK
| | - Mark Brosnan
- Department of Psychology, University of Bath, Bath, BA2 7AY, UK
| | - Gavin Buckingham
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, Devon, UK.
| |
Collapse
|
15
|
Król M, Król M. The world as we know it and the world as it is: Eye‐movement patterns reveal decreased use of prior knowledge in individuals with autism. Autism Res 2019; 12:1386-1398. [DOI: 10.1002/aur.2133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 05/07/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Magdalena Król
- Wrocław Faculty of PsychologySWPS University of Social Sciences and Humanities in Wrocław Wrocław Poland
| | - Michał Król
- Department of Economics, School of Social SciencesUniversity of Manchester Manchester UK
| |
Collapse
|
16
|
Takamuku S, Forbes PAG, Hamilton AFDC, Gomi H. Typical use of inverse dynamics in perceiving motion in autistic adults: Exploring computational principles of perception and action. Autism Res 2018; 11:1062-1075. [PMID: 29734504 DOI: 10.1002/aur.1961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/19/2018] [Accepted: 04/11/2018] [Indexed: 11/11/2022]
Abstract
There is increasing evidence for motor difficulties in many people with autism spectrum condition (ASC). These difficulties could be linked to differences in the use of internal models which represent relations between motions and forces/efforts. The use of these internal models may be dependent on the cerebellum which has been shown to be abnormal in autism. Several studies have examined internal computations of forward dynamics (motion from force information) in autism, but few have tested the inverse dynamics computation, that is, the determination of force-related information from motion information. Here, we examined this ability in autistic adults by measuring two perceptual biases which depend on the inverse computation. First, we asked participants whether they experienced a feeling of resistance when moving a delayed cursor, which corresponds to the inertial force of the cursor implied by its motion-both typical and ASC participants reported similar feelings of resistance. Second, participants completed a psychophysical task in which they judged the velocity of a moving hand with or without a visual cue implying inertial force. Both typical and ASC participants perceived the hand moving with the inertial cue to be slower than the hand without it. In both cases, the magnitude of the effects did not differ between the two groups. Our results suggest that the neural systems engaged in the inverse dynamics computation are preserved in ASC, at least in the observed conditions. Autism Res 2018, 11: 1062-1075. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY We tested the ability to estimate force information from motion information, which arises from a specific "inverse dynamics" computation. Autistic adults and a matched control group reported feeling a resistive sensation when moving a delayed cursor and also judged a moving hand to be slower when it was pulling a load. These findings both suggest that the ability to estimate force information from motion information is intact in autism.
Collapse
Affiliation(s)
- Shinya Takamuku
- NTT Communication Science Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Paul A G Forbes
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AZ, UK
| | - Antonia F de C Hamilton
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AZ, UK
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| |
Collapse
|
17
|
Tewolde FG, Bishop DVM, Manning C. Visual Motion Prediction and Verbal False Memory Performance in Autistic Children. Autism Res 2018; 11:509-518. [PMID: 29271070 PMCID: PMC5901411 DOI: 10.1002/aur.1915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/13/2017] [Accepted: 12/06/2017] [Indexed: 11/07/2022]
Abstract
Recent theoretical accounts propose that atypical predictive processing can explain the diverse cognitive and behavioral features associated with autism, and that difficulties in making predictions may be related to reduced contextual processing. In this pre-registered study, 30 autistic children aged 6-14 years and 30 typically developing children matched in age and non-verbal IQ completed visual extrapolation and false memory tasks to assess predictive abilities and contextual processing, respectively. In the visual extrapolation tasks, children were asked to predict when an occluded car would reach the end of a road and when an occluded set of lights would fill up a grid. Autistic children made predictions that were just as precise as those made by typically developing children, across a range of occlusion durations. In the false memory task, autistic and typically developing children did not differ significantly in their discrimination between items presented in a list and semantically related, non-presented items, although the data were insensitive, suggesting the need for larger samples. Our findings help to refine theoretical accounts by challenging the notion that autism is caused by pervasively disordered prediction abilities. Further studies will be required to assess the relationship between predictive processing and context use in autism, and to establish the conditions under which predictive processing may be impaired. Autism Res 2018, 11: 509-518. © 2017 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. LAY SUMMARY It has been suggested that autistic individuals have difficulties making predictions and perceiving the overall gist of things. Yet, here we found that autistic children made similar predictions about hidden objects as non-autistic children. In a memory task, autistic children were slightly less confused about whether they had heard a word before, when words were closely related in meaning. We conclude that autistic children do not show difficulties with this type of prediction.
Collapse
|