1
|
Peck S, Madden GJ. Validation of a novel effort-discounting assessment and evaluation of the effort-delay confound on effort discounting. J Exp Anal Behav 2024; 122:297-308. [PMID: 39327685 DOI: 10.1002/jeab.4214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
A vast literature highlights the prevalence of impulsive decision making in maladaptive outcomes. Most research has focused on one form-delay discounting. Less research has focused on effort discounting, possibly because of a lack of a standardized task for assessment. In published effort-discounting tasks, effort is conceptualized in many ways, making it difficult to compare findings across studies. Additionally, most effort-discounting tasks do not control for the time inherent in completing the effortful task, which makes it difficult to disentangle effort discounting from delay discounting. The current study evaluated the validity of a novel hypothetical effort-discounting task. The novel task was used to evaluate the influence of the effort-delay confound on rates of effort discounting in humans. Participants were randomly assigned to complete a confounded or a controlled version of the novel effort-discounting task. The effort-discounting data were well described by hyperbolic and exponential functions. When effort and delay were confounded, effort-discounting rates were significantly higher than when effort alone influenced discounting. The results suggest that data that are produced by effort-discounting tasks that do not control the effort-delay confound should be interpreted cautiously because they are also influenced by delay discounting. Task limitations and future directions are discussed.
Collapse
Affiliation(s)
- Sara Peck
- Department of Psychology, Western New England University
| | | |
Collapse
|
2
|
Dexter TD, Roberts BZ, Ayoub SM, Noback M, Barnes SA, Young JW. Cross-species translational paradigms for assessing positive valence system as defined by the RDoC matrix. J Neurochem 2024. [PMID: 39463161 DOI: 10.1111/jnc.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Functions associated with processing reward-related information are fundamental drivers of motivation, learning, and goal-directed behavior. Such functions have been classified as the positive valence system under the Research Domain and Criteria (RDoC) criteria and are negatively impacted across a range of psychiatric disorders and mental illnesses. The positive valence system is composed of three comprehensive categories containing related but dissociable functions that are organized into either Reward Responsiveness, Reward Learning, or Reward Valuation. The presence of overlapping behavioral dysfunction across diagnostic mental disorders is in-part what motivated the RDoC initiative, which emphasized that the study of mental illness focus on investigating relevant behavior and cognitive functions and their underlying mechanisms, rather than separating efforts on diagnostic categories (i.e., transdiagnostic). Moreover, the RDoC approach is well-suited for preclinical neuroscience research, as the rise in genetic toolboxes and associated neurotechnologies enables researchers to probe specific cellular targets with high specificity. Thus, there is an opportunity to dissect whether behaviors and cognitive functions are supported by shared or distinct neural mechanisms. For preclinical research to effectively inform our understandings of human behavior however, the cognitive and behavioral paradigms should have predictive, neurobiological, and pharmacological predictive validity to the human test. Touchscreen-based testing systems provide a further advantage for this endeavor enabling tasks to be presented to animals using the same media and task design as in humans. Here, we outline the primary categories of the positive valence system and review the work that has been done cross-species to investigate the neurobiology and neurochemistry underlying reward-related functioning. Additionally, we provide clinical tasks outlined by RDoC, along with validity and/or need for further validation for analogous rodent paradigms with a focus on implementing the touchscreen-based cognitive testing systems.
Collapse
Affiliation(s)
- Tyler D Dexter
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Michael Noback
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
3
|
Brassard SL, Liu H, Dosanjh J, MacKillop J, Balodis I. Neurobiological foundations and clinical relevance of effort-based decision-making. Brain Imaging Behav 2024; 18:1-30. [PMID: 38819540 DOI: 10.1007/s11682-024-00890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
Applying effort-based decision-making tasks provides insights into specific variables influencing choice behaviors. The current review summarizes the structural and functional neuroanatomy of effort-based decision-making. Across 39 examined studies, the review highlights the ventromedial prefrontal cortex in forming reward-based predictions, the ventral striatum encoding expected subjective values driven by reward size, the dorsal anterior cingulate cortex for monitoring choices to maximize rewards, and specific motor areas preparing for effort expenditure. Neuromodulation techniques, along with shifting environmental and internal states, are promising novel treatment interventions for altering neural alterations underlying decision-making. Our review further articulates the translational promise of this construct into the development, maintenance and treatment of psychiatric conditions, particularly those characterized by reward-, effort- and valuation-related deficits.
Collapse
Affiliation(s)
- Sarah L Brassard
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Hanson Liu
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jadyn Dosanjh
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - James MacKillop
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, Hamilton, ON, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Iris Balodis
- Peter Boris Center for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
- Michael G. DeGroote Centre for Medicinal Cannabis Research, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Wei JM, Xia LX. Neural Correlates of Positive Outcome Expectancy for Aggression: Evidence from Voxel-Based Morphometry and Resting-State Functional Connectivity Analysis. Brain Sci 2023; 14:43. [PMID: 38248258 PMCID: PMC10813425 DOI: 10.3390/brainsci14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Positive outcome expectancy is a crucial cognitive factor influencing aggression, yet its neural basis remains unclear. Therefore, the present study combined voxel-based morphometry (VBM) with a resting-state functional connectivity (RSFC) analysis to investigate the brain correlates of positive outcome expectancy in aggression in young people. In the VBM analysis, multiple linear regression was conducted to explore the relationship between individual differences in aggressive positive outcome expectancy and regional gray matter volume (GMV) among 325 undergraduate students. For the RSFC analysis, seed regions were selected based on the results of the VBM analysis. Subsequently, multiple linear regression was employed to examine whether a significant correlation existed between individual differences in aggressive positive outcome expectancy and the RSFC of seed regions with other brain regions in 304 undergraduate students. The findings indicated that aggressive positive outcome expectancy was positively correlated with GMV in the posterior cingulate cortex (PCC), right temporoparietal junction (TPJ), and medial prefrontal cortex (MPFC). Moreover, it was also positively associated with RSFC between the PCC and the left dorsolateral prefrontal cortex (DLPFC). The prediction analysis indicated robust relationships between aggressive positive outcome expectancy and the GMV in the PCC, right TPJ, as well as the RSFC between the PCC and the left DLPFC. Our research provides the initial evidence for the neural basis of positive outcome expectancy in aggression, suggesting the potential role of the PCC as a hub in its neural network.
Collapse
Affiliation(s)
- Jia-Ming Wei
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Ling-Xiang Xia
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| |
Collapse
|
5
|
Rezaei M, Shariat Bagheri MM, Khazaei S, Garavand H. tDCS efficacy and utility of anhedonia and rumination as clinical predictors of response to tDCS in major depressive disorder (MDD). J Affect Disord 2023; 339:756-762. [PMID: 37481126 DOI: 10.1016/j.jad.2023.07.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Anhedonia and rumination are mental disorders' transdiagnostic features but remain difficult to treat. Transcranial direct current stimulation (tDCS) is a proven treatment for depression, but its effects on anhedonia and rumination and whether anhedonia and rumination can be used as a predictive biomarker of treatment response is not well known. This study aimed to investigate the tDCS efficacy and identify the predictive role of anhedonia and rumination in response to tDCS in patients with MDD. METHODS 182 patients received 10 tDCS sessions delivered at 2 mA to left (anode) dorsolateral prefrontal cortex (DLPFC). Hamilton Rating Scale for Depression (HRSD-17), Snaith-Hamilton Pleasure Scale (SHAPS), and the 10-item Ruminative Response Scale (RRS-10) was administered to patients with MDD before treatment, following it, and after two weeks of tDCS. RESULTS There was an overall significant improvement in anhedonia from pre- to post-treatment. Regression analyses revealed that responders had higher baseline anhedonia and rumination (reflective pondering) scores. We found that the reduction in HRSD scores after tDCS was significantly associated with anhedonia's baseline values while no relation was found between baseline rumination and tDCS treatment response. CONCLUSION These results provide new evidence that pronounced anhedonia may be a significant clinical predictor of response to tDCS. Patients with severe or low baseline rumination had an equal chance of achieving clinical response. Prospective tDCS studies are necessary to validate the predictive value of the derived model.
Collapse
Affiliation(s)
- Mehdi Rezaei
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Birjand, Birjand, Iran.
| | | | - Samaneh Khazaei
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Birjand, Birjand, Iran
| | - Houshang Garavand
- Psychology Department, Faculty of Literature and Humanities, Lorestan University, Khorramabad, Iran
| |
Collapse
|
6
|
Ohmann HA, Kuper N, Wacker J. Examining the reliability and validity of two versions of the Effort-Expenditure for Rewards Task (EEfRT). PLoS One 2022; 17:e0262902. [PMID: 35089948 PMCID: PMC8797221 DOI: 10.1371/journal.pone.0262902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/08/2022] [Indexed: 01/09/2023] Open
Abstract
The Effort-Expenditure for Rewards Task (EEfRT) has gained validity evidence from several studies. However, various modifications have been applied to the original version, which have never been compared systematically. In Study 1, we tested 120 healthy participants to directly compare two versions of the EEfRT. In Study 2, we tested a larger sample of 394 healthy participants to further examine the original EEfRT. We replicated the split-half reliability of both task versions. However, self-reported personality traits (e.g., trait BAS) correlated with only some task performance parameters in Study 1, which did not replicate for the original EEfRT in Study 2. Our results indicate complex and sometimes inconsistent relations between different personality traits, task properties, and reward attributes.
Collapse
Affiliation(s)
- Hanno Andreas Ohmann
- Faculty of Psychology and Human Movement Science, Universität Hamburg, Hamburg, Germany
| | - Niclas Kuper
- Faculty of Psychology and Sports Science, Universität Bielefeld, Bielefeld, Germany
| | - Jan Wacker
- Faculty of Psychology and Human Movement Science, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Bowman-Smart, Hilary, Savulescu, Julian. The Ethics of Motivational Neuro-Doping in Sport: Praiseworthiness and Prizeworthiness. NEUROETHICS-NETH 2021; 14:205-215. [PMID: 34790275 PMCID: PMC8590656 DOI: 10.1007/s12152-020-09445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
Motivational enhancement in sport – a form of ‘neuro-doping’ – can help athletes attain greater achievements in sport. A key question is whether or not that athlete deserves that achievement. We distinguish three concepts – praiseworthiness (whether the athlete deserves praise), prizeworthiness (whether the athlete deserves the prize), and admiration (pure admiration at the performance) – which are closely related. However, in sport, they can come apart. The most praiseworthy athlete may not be the most prizeworthy, and so on. Using a model of praiseworthiness as costly commitment to a valuable end, and situating prizeworthiness within the boundaries of the sport, we argue that motivational enhancement in some cases can be compatible with desert.
Collapse
Affiliation(s)
- Bowman-Smart
- Biomedical Ethics Research Group, Murdoch Children's Research Institute 50, Rd Parkville VIC 3052, Flemington, Victoria 3052 Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010 Australia.,Uehiro Centre for Practical Ethics, University of Oxford, St Ebbes St, Oxford, OX1 1PT UK
| | - Hilary
- Biomedical Ethics Research Group, Murdoch Children's Research Institute 50, Rd Parkville VIC 3052, Flemington, Victoria 3052 Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Savulescu
- Biomedical Ethics Research Group, Murdoch Children's Research Institute 50, Rd Parkville VIC 3052, Flemington, Victoria 3052 Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010 Australia.,Uehiro Centre for Practical Ethics, University of Oxford, St Ebbes St, Oxford, OX1 1PT UK
| | - Julian
- Biomedical Ethics Research Group, Murdoch Children's Research Institute 50, Rd Parkville VIC 3052, Flemington, Victoria 3052 Australia.,Uehiro Centre for Practical Ethics, University of Oxford, St Ebbes St, Oxford, OX1 1PT UK
| |
Collapse
|
8
|
Wang H, Zhang H. High-Definition Transcranial Direct Current Stimulation Over the Right Lateral Prefrontal Cortex Increases Maximization Tendencies. Front Behav Neurosci 2021; 15:653987. [PMID: 34349627 PMCID: PMC8326452 DOI: 10.3389/fnbeh.2021.653987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
People seek the best in every aspect of life. However, little is known about the neurobiological mechanisms supporting this process of maximization. In this study, maximization tendencies were increased by using high-definition transcranial direct current stimulation (HD-tDCS) over the right dorsolateral prefrontal cortex (DLPFC). Participants (n = 64) received 2 mA anodal 4 × 1 HD-tDCS or sham stimulation over the right DLPFC in two sessions and subsequently completed an N-back working memory task and a maximization scale (MS). We observed that maximization tendency scores increased during anodal stimulation. Furthermore, the results indicate that this increase in maximization tendency was driven by motivational changes. On the MS, alternative search subscale scores were significantly increased, demonstrating an increase in motivation to evaluate more alternatives; however, the results did not indicate that the increase in maximization tendencies was due to working memory improvement. These results demonstrated that maximization tendencies can be strengthened through noninvasive interventions and that the right DLPFC has a causal relationship with maximization tendencies.
Collapse
Affiliation(s)
- Haixia Wang
- School of Journalism and Communication and National Media Experimental Teaching Demonstration Center, Jinan University, Guangzhou, China
| | - Hanqi Zhang
- School of Economics and Management, South China Normal University, Guangzhou, China.,Key Lab for Behavioral Economic Science & Technology, South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Gable PA, Paul K, Pourtois G, Burgdorf J. Utilizing electroencephalography (EEG) to investigate positive affect. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Wang X, Li Y, Li X, Duan H, Li Y, Hu W. Role of Avoidance-Motivation Intensity in Creative Thinking: Similar and Differential Effects across Creative Idea Generation and Evaluation. CREATIVITY RESEARCH JOURNAL 2021. [DOI: 10.1080/10400419.2020.1856595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | | | | | | | - Weiping Hu
- Shaanxi Normal University
- Collaborative Innovation Center of Assessment Towards Basic Education Quality at Beijing Normal University
| |
Collapse
|
11
|
Jeong H, Oh JK, Choi EK, Im JJ, Yoon S, Knotkova H, Bikson M, Song IU, Lee SH, Chung YA. Effects of transcranial direct current stimulation on addictive behavior and brain glucose metabolism in problematic online gamers. J Behav Addict 2020; 9:1011-1021. [PMID: 33361487 PMCID: PMC8969730 DOI: 10.1556/2006.2020.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/11/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND AIMS Some online gamers may encounter difficulties in controlling their gaming behavior. Previous studies have demonstrated beneficial effects of transcranial direct current stimulation (tDCS) on various kinds of addiction. This study investigated the effects of tDCS on addictive behavior and regional cerebral metabolic rate of glucose (rCMRglu) in problematic online gamers. METHODS Problematic online gamers were randomized and received 12 sessions of either active (n = 13) or sham tDCS (n = 13) to the dorsolateral prefrontal cortex over 4 weeks (anode F3/cathode F4, 2 mA for 30 min, 3 sessions per week). Participants underwent brain 18F-fluoro-2-deoxyglucose positron emission tomography scans and completed questionnaires including the Internet Addiction Test (IAT), Brief Self-Control Scale (BSCS), and Behavioral Inhibition System/Behavioral Activation System scales (BIS/BAS) at the baseline and 4-week follow-up. RESULTS Significant decreases in time spent on gaming (P = 0.005), BIS (P = 0.03), BAS-fun seeking (P = 0.04), and BAS-reward responsiveness (P = 0.01), and increases in BSCS (P = 0.03) were found in the active tDCS group, while decreases in IAT were shown in both groups (P < 0.001). Group-by-time interaction effects were not significant for these measures. Increases in BSCS scores were correlated with decreases in IAT scores in the active group (β = -0.85, P < 0.001). rCMRglu in the left putamen, pallidum, and insula was increased in the active group compared to the sham group (P for interaction < 0.001). DISCUSSION AND CONCLUSIONS tDCS may be beneficial for problematic online gaming potentially through changes in self-control, motivation, and striatal/insular metabolism. Further larger studies with longer follow-up period are warranted to confirm our findings.
Collapse
Affiliation(s)
- Hyeonseok Jeong
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin Kyoung Oh
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun Kyoung Choi
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jooyeon Jamie Im
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sujung Yoon
- Department of Brain and Cognitive Sciences and Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA,Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - In-Uk Song
- Department of Neurology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang Hoon Lee
- Department of Radiology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Corresponding author.
| | - Yong-An Chung
- Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Corresponding author.
| |
Collapse
|
12
|
Bornheim S, Croisier J, Leclercq V, Baude C, Kaux J. Les effets de la stimulation transcrânienne à courant continu (STCC) sur les performances physiques : une revue systématique de la littérature. Sci Sports 2020. [DOI: 10.1016/j.scispo.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Exploring approach motivation: Correlating self-report, frontal asymmetry, and performance in the Effort Expenditure for Rewards Task. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1234-1247. [PMID: 32929696 DOI: 10.3758/s13415-020-00829-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 01/29/2023]
Abstract
Frontal EEG asymmetry has been investigated as a physiological metric of approach motivation, with higher left frontal activity (LFA) suggested to reflect approach motivation. However, correlations between LFA and traditional metrics of approach motivation (e.g., scores from the behavioral inhibition system/behavioral approach system [BIS/BAS] survey) are inconsistent. It is also not clear how LFA correlates to approach motivation on an observable, behavioral level. Here, we tested correlations between BIS/BAS scores, LFA, and performance in the Effort Expenditure for Rewards Task (EEfRT). In our sample (n = 49), BIS/BAS results did not correlate to LFA values (resting or task states), and were also unrelated to EEfRT performance variables. We found evidence of significant and distinct correlations between LFA and EEfRT performance. Resting-state LFA positively correlated to effort expenditure on lower utility trials, where reward size and/or probability were suboptimal. Task-onset LFA captured in the first 5 min of the task was related to overall behavioral performance in the EEfRT. High task-onset LFA correlated to high trial completion rates, high-effort trial selection percentages, and overall monetary earnings. One interpretation of these initial findings is that resting-state LFA reflects approach tendencies to expend effort, but that this extends to suboptimal situations, whereas task-state LFA better reflects effortful approach toward high-utility goals. Given the relatively small sample size and the risk of Type I/II errors, we present the study as exploratory and the results as preliminary. However, the findings highlight interesting initial links between LFA and EEfRT performance. The need for larger replication studies is discussed.
Collapse
|
14
|
Ohmann HA, Kuper N, Wacker J. A low dosage of the dopamine D2-receptor antagonist sulpiride affects effort allocation for reward regardless of trait extraversion. PERSONALITY NEUROSCIENCE 2020; 3:e7. [PMID: 32656492 PMCID: PMC7327436 DOI: 10.1017/pen.2020.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
Abstract
Dopamine (DA) is known to be involved in various aspects of reward processing and goal-directed behavior. The present preregistered study aims at directly accessing the causal influence of DA activity on reward motivation in humans, while also accounting for trait extraversion. Therefore, we examined the effect of a single dose of the DA D2 receptor antagonist sulpiride (200 mg) on effort allocation in a modified version of the Effort-Expenditure for Reward Task (EEfRT). Based on its presumably DA increasing action, we expected the low dose of sulpiride to increase participants' willingness to allocate effort during the modified EEfRT relative to placebo, especially in trials with low probability of reward attainment. Further, we expected a moderating effect of trait extraversion on the effects of sulpiride. Two hundred and three healthy male participants were tested in a randomized, double-blind between-subjects design. Contrary to our expectations, sulpiride reduced the average number of clicks within the modified EEfRT and did not interact with reward attributes, suggesting a more global and not reward-specific effect of sulpiride. Furthermore, trait extraversion did not moderate the effect of sulpiride. Our results provide initial support for the validity of the modified version of the EEfRT, suggesting a possible inhibiting effect of a low dose of sulpiride on approach motivation regardless of trait extraversion. However, given the mixed pattern of findings and the possible confounding role of motoric abilities, further studies examining these effects are clearly warranted.
Collapse
Affiliation(s)
- Hanno Andreas Ohmann
- Faculty of Psychology and Human Movement Science, Universität Hamburg, Hamburg, Germany
| | - Niclas Kuper
- Faculty of Psychology and Human Movement Science, Universität Hamburg, Hamburg, Germany
- Faculty of Psychology and Sports Science, Universität Bielefeld, Bielefeld, Germany
| | - Jan Wacker
- Faculty of Psychology and Human Movement Science, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
15
|
Chang CC, Kao YC, Chao CY, Tzeng NS, Chang HA. Examining bi-anodal transcranial direct current stimulation (tDCS) over bilateral dorsolateral prefrontal cortex coupled with bilateral extracephalic references as a treatment for negative symptoms in non-acute schizophrenia patients: A randomized, double-blind, sham-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109715. [PMID: 31362034 DOI: 10.1016/j.pnpbp.2019.109715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
No studies have examined the efficacy of bi-anodal transcranial direct current stimulation (tDCS) over bilateral dorsolateral prefrontal cortex (DLPFC) coupled with bilateral extracephalic references in treating negative symptoms of non-acute schizophrenia patients. This study aimed to investigate the therapeutic effects of the new approach of tDCS on negative symptoms, other schizophrenia symptoms, cognitive deficits and psychosocial functioning in a double-blind, randomized, sham-controlled trial. Patients with non-acute schizophrenia (N = 60) in randomized order received sham treatment or bilaterally provided tDCS (2 mA, twice-daily sessions for five consecutive days) with the anode over the DLPFC and the reference (cathode) over the ipsilateral forearm. The negative symptoms as measured by a dimensional approach of Positive and Negative Syndrome Scale (PANSS) were rapidly reduced by bimodal tDCS relative to sham stimulation (F = 24.86, Cohen's d = 0.661, p = 6.11 × 10-6). The beneficial effect on negative symptoms lasted for up to 3 months. The authors also observed improvement with tDCS of psychosocial functioning as measured by the global score of Personal and Social Performance scale (PSP) and psychopathological symptoms especially for disorganization and cognitive symptoms as measured by the PANSS. No effects were observed on other schizophrenia symptom dimensions and the performance on a series of neurocognitive tests. Our results show promise for bi-anodal tDCS over bilateral DLPFC using bilateral extracephalic references in treating negative symptoms and other selected manifestations of schizophrenia. Further studies with electrophysiological or imaging evaluation help unravel the exact mechanism of action of this novel stimulation parameter of tDCS in schizophrenia patients. (ClinicalTrials.gov ID:NCT03701100).
Collapse
Affiliation(s)
- Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Chao
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
16
|
Angius L, Santarnecchi E, Pascual-Leone A, Marcora SM. Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex Improves Inhibitory Control and Endurance Performance in Healthy Individuals. Neuroscience 2019; 419:34-45. [PMID: 31493549 DOI: 10.1016/j.neuroscience.2019.08.052] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/25/2023]
Abstract
The dorsolateral prefrontal cortex (DLPFC) is a crucial brain region for inhibitory control, an executive function essential for behavioral self-regulation. Recently, inhibitory control has been shown to be important for endurance performance. Improvement in inhibitory control was found following transcranial direct current stimulation (tDCS) applied over the left DLPFC (L-DLPFC). This study examined the effect tDCS on both an inhibitory control and endurance performance in a group of healthy individuals. Twelve participants received either real tDCS (Real-tDCS) or placebo tDCS (Sham-tDCS) in randomized order. The anodal electrode was placed over the L-DLPFC while the cathodal electrode was placed above Fp2. Stimulation lasted 30min with current intensity set at 2mA. A Stroop test was administered to assess inhibitory control. Heart rate (HR), ratings of perceived exertion (RPE), and leg muscle pain (PAIN) were monitored during the cycling time to exhaustion (TTE) test, while blood lactate accumulation (∆B[La-]) was measured at exhaustion. Stroop task performance was improved after Real-tDCS as demonstrated by a lower number of errors for incongruent stimuli (p=0.012). TTE was significantly longer following Real-tDCS compared to Sham-tDCS (p=0.029, 17±8 vs 15±8min), with significantly lower HR (p=0.002) and RPE (p<0.001), while no significant difference was found for PAIN (p>0.224). ∆B[La-] was significantly higher at exhaustion in Real-tDCS (p=0.040). Our findings provide preliminary evidence that tDCS with the anodal electrode over the L-DLPFC can improve both inhibitory control and endurance cycling performance in healthy individuals.
Collapse
Affiliation(s)
- L Angius
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, United Kingdom; Faculty of Health and Life Sciences, Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom.
| | - E Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - A Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Institut Universitari de Neurorehabilitacio Guttmann, Badalona, Barcelona, Spain
| | - S M Marcora
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, United Kingdom; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Di Rosa E, Brigadoi S, Cutini S, Tarantino V, Dell'Acqua R, Mapelli D, Braver TS, Vallesi A. Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. Neuroimage 2019; 202:116062. [PMID: 31369810 DOI: 10.1016/j.neuroimage.2019.116062] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 01/12/2023] Open
Abstract
Several studies have evaluated the effect of anodal transcranial direct current stimulation (tDCS) over the prefrontal cortex (PFC) for the enhancement of working memory (WM) performance in healthy older adults. However, the mixed results obtained so far suggest the need for concurrent brain imaging, in order to more directly examine tDCS effects. The present study adopted a continuous multimodal approach utilizing functional near-infrared spectroscopy (fNIRS) to examine the interactive effects of tDCS combined with manipulations of reward motivation. Twenty-one older adults (mean age = 69.7 years; SD = 5.05) performed an experimental visuo-spatial WM task before, during and after the delivery of 1.5 mA anodal tDCS/sham over the left prefrontal cortex (PFC). During stimulation, participants received performance-contingent reward for every fast and correct response during the WM task. In both sessions, hemodynamic activity of the bilateral frontal, motor and parietal areas was recorded across the entire duration of the WM task. Cognitive functions and reward sensitivity were also assessed with standard measures. Results demonstrated a significant impact of tDCS on both WM performance and hemodynamic activity. Specifically, faster responses in the WM task were observed both during and after anodal tDCS, while no differences were found under sham control conditions. However, these effects emerged only when taking into account individual visuo-spatial WM capacity. Additionally, during and after the anodal tDCS, increased hemodynamic activity relative to sham was observed in the bilateral PFC, while no effects of tDCS were detected in the motor and parietal areas. These results provide the first evidence of tDCS-dependent functional changes in PFC activity in healthy older adults during the execution of a WM task. Moreover, they highlight the utility of combining reward motivation with prefrontal anodal tDCS, as a potential strategy to improve WM efficiency in low performing healthy older adults.
Collapse
Affiliation(s)
- Elisa Di Rosa
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, USA.
| | - Sabrina Brigadoi
- Department of Developmental Psychology, University of Padova, Padova, Italy; Department of Information Engineering, University of Padova, Padova, Italy
| | - Simone Cutini
- Department of Developmental Psychology, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Vincenza Tarantino
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Roberto Dell'Acqua
- Department of Developmental Psychology, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Daniela Mapelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Todd S Braver
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, USA
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|