1
|
Yang WFZ, Chowdhury A, Sparby T, Sacchet MD. Deconstructing the self and reshaping perceptions: An intensive whole-brain 7T MRI case study of the stages of insight during advanced investigative insight meditation. Neuroimage 2024; 305:120968. [PMID: 39653180 DOI: 10.1016/j.neuroimage.2024.120968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024] Open
Abstract
The stages of insight (SoI) are a series of psychological realizations experienced through advanced investigative insight meditation (AIIM). SoI provide a powerful structured framework of AIIM for understanding and evaluating insight-based meditative development through changes in perception, experiences of self, cognition, and emotional processing. Yet, the neurophenomenology of SoI remains unstudied due to methodological difficulties, rarity of suitable advanced meditation practitioners, and dominant research emphasis on attention-based meditative practices. We investigated the neurophenomenology of SoI in an intensively sampled adept meditator case study (4 hr 7T fMRI collected in 26 runs with concurrent phenomenology) who performed SoI and rated specific aspects of experience immediately thereafter. Linear mixed models and correlations were used to examine relations among the cortex, subcortex, brainstem, and cerebellum, and SoI phenomenology. We identified distinctive whole-brain activity patterns associated with specific SoI, and that were different from two non-meditative control states. SoI consistently deactivated regions implicated in self-related processing, including the medial prefrontal cortex and temporal poles, while activating regions associated with awareness and perception, including the parietal and visual cortices, caudate, several brainstem nuclei, and cerebellum. Patterns of brain activity related to affective processing and SoI phenomenology were also identified. Our study presents the first neurophenomenological evidence that SoI shifts and deconstructs self-related perception and conceptualization, and increases general awareness and perceptual sensitivity and acuity. Our study provides SoI as a foundation for investigative, and advanced meditation in particular.
Collapse
Affiliation(s)
- Winson F Z Yang
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Avijit Chowdhury
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Terje Sparby
- Steiner University College, 0260 Oslo, Norway; Department of Psychology and Psychotherapy, Witten/Herdecke University, 58455 Witten, Germany; Integrated Curriculum for Anthroposophic Psychology, Witten/Herdecke University, 58455 Witten, Germany
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
2
|
Neacsiu AD, Gerlus N, Graner JL, Beynel L, Smoski MJ, LaBar KS. Characterization of neural networks involved in transdiagnostic emotion dysregulation from a pilot randomized controlled trial of a neurostimulation-enhanced behavioral intervention. Psychiatry Res Neuroimaging 2024; 345:111891. [PMID: 39278196 PMCID: PMC11611631 DOI: 10.1016/j.pscychresns.2024.111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Emotional dysregulation is a serious and impairing mental health problem. We examined functional activity and connectivity of neural networks involved in emotional dysregulation at baseline and following a pilot neurostimulation-enhanced cognitive restructuring intervention in a transdiagnostic clinical adult sample. METHODS Neuroimaging data were analyzed from adults who scored 89 or higher on the Difficulties with Emotion Regulation (DERS) scale and had at least one DSM-5 diagnosis. These participants were part of a pilot randomized, double-blind, placebo-controlled trial combining a single therapeutic session of cognitive restructuring with active or sham transcranial magnetic stimulation over the dorsolateral prefrontal cortex. During the study, participants engaged in an emotional regulation task using personalized autobiographical stressors while undergoing functional magnetic resonance imaging (fMRI) before and after the pilot intervention. The fMRI task required participants to either experience the emotions associated with the memories or apply cognitive restructuring strategies to reduce their distress. RESULTS Whole-brain fMRI results during regulation at baseline revealed increased activation in the dorsal frontoparietal network but decreased activation in the supplementary motor area, cingulate cortex, insula, and ventrolateral prefrontal cortex (vlPFC). Emotion dysregulation was associated with greater vmPFC and amygdala activation and functional connectivity between these regions. The strength of functional connectivity between the dlPFC and other frontal regions was also a marker of emotional dysregulation. Preliminary findings from a subset of participants who completed the follow-up fMRI scan showed that active neurostimulation improved behavioral indices of emotion regulation more than sham stimulation. A whole-brain generalized psychophysiological interaction analysis indicated that active neurostimulation selectively increased occipital cortex connectivity with both the insula and the dlPFC. Region-of-interest functional connectivity analyses showed that active neurostimulation selectively increased dlPFC connectivity with the insula and orbitofrontal cortex (OFC). CONCLUSION Insufficient neural specificity during the emotion regulation process and over-involvement of frontal regions may be a marker of emotional dysregulation across disorders. OFC, vlPFC, insula activity, and connectivity are associated with improved emotion regulation in transdiagnostic adults. In this pilot study, active neurostimulation led to neural changes in the emotion regulation network after a single session; however, the intervention findings are preliminary, given the small sample size. These functional network properties can inform future neuroscience-driven interventions and larger-scale studies.
Collapse
Affiliation(s)
- Andrada D Neacsiu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Brain Stimulation Research Center, Duke University, Durham, NC, USA.
| | - Nimesha Gerlus
- Department of Psychology, Duke University, Durham, NC, USA
| | - John L Graner
- Department of Psychology, Duke University, Durham, NC, USA
| | - Lysianne Beynel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Noninvasive Neuromodulation Unit, Bethesda, MD, USA
| | - Moria J Smoski
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Psychology, Duke University, Durham, NC, USA
| | - Kevin S LaBar
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Psychology, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Grey DK, Purcell JB, Buford KN, Schuster MA, Elliott MN, Emery ST, Mrug S, Knight DC. Discrimination Exposure, Neural Reactivity to Stress, and Psychological Distress. Am J Psychiatry 2024; 181:1112-1126. [PMID: 39473266 DOI: 10.1176/appi.ajp.20220884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
OBJECTIVE Discrimination exposure has a detrimental impact on mental health, increasing the risk of depression, anxiety, and posttraumatic stress. The impact discrimination exposure has on mental health is likely mediated by neural processes associated with emotion expression and regulation. However, the specific neural processes that mediate the relationship between discrimination exposure and mental health remain to be determined. The present study investigated the relationship adolescent discrimination exposure has with stress-elicited brain activity and mental health symptoms in young adulthood. METHODS A total of 301 participants completed the Montreal Imaging Stress Task while functional MRI data were collected. Discrimination exposure was measured four times from ages 11 to 19, and stress-elicited brain activity and psychological distress (depression, anxiety, posttraumatic stress) were assessed in young adulthood (age 20). RESULTS Stress-elicited dorsolateral and dorsomedial prefrontal cortex (PFC), inferior parietal lobule (IPL), and hippocampal activity varied with discrimination exposure. Activity within these brain regions varied with the cumulative amount and trajectory of discrimination exposure across adolescence (initial exposure, change in exposure, and acceleration of exposure). Depression, anxiety, and posttraumatic stress symptoms varied with discrimination exposure. Stress-elicited activity within the dorsolateral PFC and the IPL statistically mediated the relationship between discrimination exposure and psychological distress. CONCLUSIONS The findings suggest that adolescent discrimination exposure may alter the neural response to future stressors (i.e., within regions associated with emotion expression and regulation), which may in turn modify susceptibility and resilience to psychological distress. Thus, differences in stress-elicited neural reactivity may represent an important neurobiological mechanism underlying discrimination-related mental health disparities.
Collapse
Affiliation(s)
- Devon K Grey
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Juliann B Purcell
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Kristen N Buford
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Mark A Schuster
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Marc N Elliott
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Susan Tortolero Emery
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - David C Knight
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| |
Collapse
|
4
|
Gupta RS, Light GA, Simmons AN, Harlé KM, Stout DM. Sex moderates the effect of anhedonia on parietal alpha asymmetry. J Psychiatr Res 2024; 177:97-101. [PMID: 39002532 DOI: 10.1016/j.jpsychires.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Anhedonia, a transdiagnostic symptom present in many neuropsychiatric disorders, differs in males and females. Parietal EEG alpha asymmetry is associated with reduced arousal and low positive emotionality, and is, therefore, a promising neurophysiologic biomarker of anhedonia. To date, however, no prior studies have determined whether this measure captures sex differences in anhedonic expression. This preliminary study (N = 36) investigated whether anhedonia severity is associated with EEG resting-state parietal alpha asymmetry in adults and whether sex moderates this relationship. Results showed that there was a significant moderating effect of sex such that, only for females, higher levels of anhedonia were associated with increased parietal alpha asymmetry. These findings suggest that parietal alpha asymmetry is a promising biomarker of anhedonia severity in female adults and reinforces the need to account for sex differences in future research.
Collapse
Affiliation(s)
- Resh S Gupta
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA; Desert Pacific Mental Illness Research Education and Clinical Center, La Jolla, CA, USA
| | - Alan N Simmons
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Katia M Harlé
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Daniel M Stout
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| |
Collapse
|
5
|
Ahmadi Ghomroudi P, Siugzdaite R, Messina I, Grecucci A. Decoding acceptance and reappraisal strategies from resting state macro networks. Sci Rep 2024; 14:19232. [PMID: 39164353 PMCID: PMC11336109 DOI: 10.1038/s41598-024-68490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Acceptance and reappraisal are considered adaptive emotion regulation strategies. While previous studies have explored the neural underpinnings of these strategies using task-based fMRI and sMRI, a gap exists in the literature concerning resting-state functional brain networks' contributions to these abilities, especially regarding acceptance. Another intriguing question is whether these strategies rely on similar or different neural mechanisms. Building on the well-known improved emotion regulation and increased cognitive flexibility of individuals who rely on acceptance, we expected to find decreased activity inside the affective network and increased activity inside the executive and sensorimotor networks to be predictive of acceptance. We also expect that these networks may be associated at least in part with reappraisal, indicating a common mechanism behind different strategies. To test these hypotheses, we conducted a functional connectivity analysis of resting-state data from 134 individuals (95 females; mean age: 30.09 ± 12.87 years, mean education: 12.62 ± 1.41 years). To assess acceptance and reappraisal abilities, we used the Cognitive Emotion Regulation Questionnaire (CERQ) and a group-ICA unsupervised machine learning approach to identify resting-state networks. Subsequently, we conducted backward regression to predict acceptance and reappraisal abilities. As expected, results indicated that acceptance was predicted by decreased affective, and executive, and increased sensorimotor networks, while reappraisal was predicted by an increase in the sensorimotor network only. Notably, these findings suggest both distinct and overlapping brain contributions to acceptance and reappraisal strategies, with the sensorimotor network potentially serving as a core common mechanism. These results not only align with previous findings but also expand upon them, illustrating the complex interplay of cognitive, affective, and sensory abilities in emotion regulation.
Collapse
Affiliation(s)
- Parisa Ahmadi Ghomroudi
- DiPSCo-Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini, 84, 38068, Rovereto, Italy.
| | - Roma Siugzdaite
- Department of Experimental Psychology, Faculty of Psychology and Pedagogical Sciences, Ghent University, Ghent, Belgium
| | | | - Alessandro Grecucci
- DiPSCo-Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini, 84, 38068, Rovereto, Italy
- CISMed-Center for Medical Sciences, University of Trento, Trento, Italy
| |
Collapse
|
6
|
Kato K, Tomiyama H, Murayama K, Mizobe T, Matsuo A, Nishida N, Matukuma K, Kang M, Sashikata K, Kikuchi K, Togao O, Nakao T. Reduced resting-state functional connectivity between insula and inferior frontal gyrus and superior temporal gyrus in hoarding disorder. Front Psychiatry 2024; 15:1399062. [PMID: 38966185 PMCID: PMC11223522 DOI: 10.3389/fpsyt.2024.1399062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Background Hoarding disorder (HD) is characterized by cognitive control impairments and abnormal brain activity in the insula and anterior cingulate cortex (ACC) during disposal of personal items or certain executive function tasks. However, whether there are any changes in resting-state functional connectivity of the insula and ACC remains unclear. Methods A total of 55 subjects, including 24 patients with HD and 31 healthy controls (HCs), participated in the study. We acquired resting-state functional magnetic resonance imaging data and examined group differences in functional connectivity from the insula and ACC in whole-brain voxels. Results In patients with HD, functional connectivity was significantly lower between the right insula and right inferior frontal gyrus (IFG) and left superior temporal gyrus (STG) compared to HCs. There was no correlation between these connectivities and HD symptoms. Conclusions Although the clinical implication is uncertain, our results suggest that patients with HD have resting-state functional alterations between the insula and IFG and STG, corresponding with the results of previous fMRI studies. These findings provide new insight into the neurobiological basis of HD.
Collapse
Affiliation(s)
- Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Kyushu University Hospital, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Matsuo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nami Nishida
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kou Matukuma
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mingi Kang
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Kenta Sashikata
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Sugawara A, Katsunuma R, Terasawa Y, Sekiguchi A. Interoceptive training impacts the neural circuit of the anterior insula cortex. Transl Psychiatry 2024; 14:206. [PMID: 38782961 PMCID: PMC11116496 DOI: 10.1038/s41398-024-02933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Interoception is the perception of afferent information that arises from anywhere and everywhere within the body. Recently, interoceptive accuracy could be enhanced by cognitive training. Given that the anterior insula cortex (AIC) is a key node of interoception, we hypothesized that resting functional connectivity (RSFC) from AIC was involved in an effect of interoceptive training. To address this issue, we conducted a longitudinal intervention study using interoceptive training and obtained RSFC using fMRI before and after the intervention. A heartbeat perception task evaluated interoceptive accuracy. Twenty-two healthy volunteers (15 females, age 19.9 ± 2.0 years) participated. After the intervention, interoceptive accuracy was enhanced, and anxiety levels and somatic symptoms were reduced. Also, RSFC from AIC to the dorsolateral prefrontal cortex (DLPFC), superior marginal gyrus (SMG), anterior cingulate cortex (ACC), and brain stem, including nucleus tractus solitarius (NTS) were enhanced, and those from AIC to the visual cortex (VC) were decreased according to enhanced interoceptive accuracy. The neural circuit of AIC, ACC, and NTS is involved in the bottom-up process of interoception. The neural circuit of AIC, DLPFC, and SMG is involved in the top-down process of interoception, which was thought to represent the cognitive control of emotion. The findings provided a better understanding of neural underpinnings of the effect of interoceptive training on somatic symptoms and anxiety levels by enhancing both bottom-up and top-down processes of interoception, which has a potential contribution to the structure of psychotherapies based on the neural mechanism of psychosomatics.
Collapse
Affiliation(s)
- Ayako Sugawara
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ruri Katsunuma
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- School of Psychology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yuri Terasawa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychology, Keio University, Minato-ku, Tokyo, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
8
|
Balducci T, Garza-Villarreal EA, Valencia A, Aleman A, van Tol MJ. Abnormal functional neurocircuitry underpinning emotional processing in fibromyalgia. Eur Arch Psychiatry Clin Neurosci 2024; 274:151-164. [PMID: 36961564 PMCID: PMC10786973 DOI: 10.1007/s00406-023-01578-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
Fibromyalgia, a condition characterized by chronic pain, is frequently accompanied by emotional disturbances. Here we aimed to study brain activation and functional connectivity (FC) during processing of emotional stimuli in fibromyalgia. Thirty female patients with fibromyalgia and 31 female healthy controls (HC) were included. Psychometric tests were administered to measure alexithymia, affective state, and severity of depressive and anxiety symptoms. Next, participants performed an emotion processing and regulation task during functional magnetic resonance imaging (fMRI). We performed a 2 × 2 ANCOVA to analyze main effects and interactions of the stimuli valence (positive or negative) and group (fibromyalgia or HC) on brain activation. Generalized psychophysiological interaction analysis was used to assess task-dependent FC of brain regions previously associated with emotion processing and fibromyalgia (i.e., hippocampus, amygdala, anterior insula, and pregenual anterior cingulate cortex [pACC]). The left superior lateral occipital cortex showed more activation in fibromyalgia during emotion processing than in HC, irrespective of valence. Moreover, we found an interaction effect (valence x group) in the FC between the left pACC and the precentral and postcentral cortex, and central operculum, and premotor cortex. These results suggest abnormal brain activation and connectivity underlying emotion processing in fibromyalgia, which could help explain the high prevalence of psychopathological symptoms in this condition.
Collapse
Affiliation(s)
- Thania Balducci
- Postgraduate Studies Division of the School of Medicine, Medical, Dental and Health Sciences Program, National Autonomous University of Mexico, Mexico city, Mexico
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76230, Querétaro, QRO, Mexico.
| | - Alely Valencia
- Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Marie-José van Tol
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Zhang H, Yang X, Yao L, Liu Q, Lu Y, Chen X, Wang T. EEG microstates analysis after TMS in patients with subacute stroke during the resting state. Cereb Cortex 2024; 34:bhad480. [PMID: 38112223 PMCID: PMC10793572 DOI: 10.1093/cercor/bhad480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
To investigate whether intermittent theta burst stimulation over the cerebellum induces changes in resting-state electroencephalography microstates in patients with subacute stroke and its correlation with cognitive and emotional function. Twenty-four stroke patients and 17 healthy controls were included in this study. Patients and healthy controls were assessed at baseline, including resting-state electroencephalography and neuropsychological scales. Fifteen patients received lateral cerebellar intermittent theta burst stimulation as well as routine rehabilitation training (intermittent theta burst stimulation-RRT group), whereas 9 patients received only conventional rehabilitation training (routine rehabilitation training group). After 2 wk, baseline data were recorded again in both groups. Stroke patients exhibited reduced parameters in microstate D and increased parameters in microstate C compared with healthy controls. However, after the administration of intermittent theta burst stimulation over the lateral cerebellum, significant alterations were observed in the majority of metrics for both microstates D and C. Lateral cerebellar intermittent theta burst stimulation combined with conventional rehabilitation has a stronger tendency to improve emotional and cognitive function in patients with subacute stroke than conventional rehabilitation. The improvement of mood and cognitive function was significantly associated with microstates C and D. We identified electroencephalography microstate spatiotemporal dynamics associated with clinical improvement following a course of intermittent theta burst stimulation therapy.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Xue Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Liqing Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Qian Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Yihuan Lu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Xueting Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Tianling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| |
Collapse
|
10
|
Li LL, Wu JJ, Ma J, Li YL, Xue X, Li KP, Jin J, Hua XY, Zheng MX, Xu JG. White matter fiber integrity and structural brain network topology: implications for balance function in postischemic stroke patients. Cereb Cortex 2024; 34:bhad452. [PMID: 38037387 DOI: 10.1093/cercor/bhad452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Previous studies have suggested that ischemic stroke can result in white matter fiber injury and modifications in the structural brain network. However, the relationship with balance function scores remains insufficiently explored. Therefore, this study aims to explore the alterations in the microstructural properties of brain white matter and the topological characteristics of the structural brain network in postischemic stroke patients and their potential correlations with balance function. We enrolled 21 postischemic stroke patients and 21 age, sex, and education-matched healthy controls (HC). All participants underwent balance function assessment and brain diffusion tensor imaging. Tract-based spatial statistics (TBSS) were used to compare the fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity of white matter fibers between the two groups. The white matter structural brain network was constructed based on the automated anatomical labeling atlas, and we conducted a graph theory-based analysis of its topological properties, including global network properties and local node properties. Additionally, the correlation between the significant structural differences and balance function score was analyzed. The TBSS results showed that in comparison to the HC, postischemic stroke patients exhibited extensive damage to their whole-brain white matter fiber tracts (P < 0.05). Graph theory analysis showed that in comparison to the HC, postischemic stroke patients exhibited statistically significant reductions in the values of global efficiency, local efficiency, and clustering coefficient, as well as an increase in characteristic path length (P < 0.05). In addition, the degree centrality and nodal efficiency of some nodes in postischemic stroke patients were significantly reduced (P < 0.05). The white matter fibers of the entire brain in postischemic stroke patients are extensively damaged, and the topological properties of the structural brain network are altered, which are closely related to balance function. This study is helpful in further understanding the neural mechanism of balance function after ischemic stroke from the white matter fiber and structural brain network topological properties.
Collapse
Affiliation(s)
- Ling-Ling Li
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu-Lin Li
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xin Xue
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Jin
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
| |
Collapse
|
11
|
Cen YS, Li W, Xia LX. Resting-state neural correlates of individual differences in ignored experience and its deleterious effect. Cereb Cortex 2024; 34:bhad433. [PMID: 37991321 DOI: 10.1093/cercor/bhad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Uncovering the neural mechanisms of ostracism experience (including its subclasses of excluded and ignored experiences) is important. However, the resting-state functional brain substrates responsible for individual differences in ostracism experience and its negative effects remain largely undefined. This study explored these issues in a sample of 198 Chinese college students by assessing the amplitude of low-frequency fluctuations and functional connectivity. The findings indicated a positive correlation between ignored experience and the amplitude of low-frequency fluctuations in the right superior frontal gyrus and the functional connectivity between the right superior frontal gyrus and left cerebellum posterior lobe. Additionally, a negative correlation was found between ignored experience and the functional connectivity between the right superior frontal gyrus and the bilateral insula as well as the bilateral inferior parietal lobule. Moreover, the mediation analysis demonstrated that the effects of the functional connectivities of right superior frontal gyrus-left cerebellum posterior lobe and right superior frontal gyrus-right inferior parietal lobule on revenge intention were mediated by ignored experience. Our study offers novel insights into the neural correlates of both individual variations in ignored experience and its typical deleterious effect. These results could deepen our understanding of individual differences in negative experiences and inspire the development of targeted interventions for social stress from the perspective of the brain.
Collapse
Affiliation(s)
- Yu-Shan Cen
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Wei Li
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Ling-Xiang Xia
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| |
Collapse
|
12
|
Li S, Chen J, Gao K, Xu F, Zhang D. Excitatory brain stimulation over the left dorsolateral prefrontal cortex enhances voluntary distraction in depressed patients. Psychol Med 2023; 53:6646-6655. [PMID: 36852634 PMCID: PMC10600932 DOI: 10.1017/s0033291723000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/22/2022] [Accepted: 01/03/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND While implicit distraction could ameliorate negative feelings in patients with major depressive disorders (MDD), it remains unclear whether patients could benefit from explicit, voluntary distraction. Meanwhile, though the dorsolateral prefrontal cortex (DLPFC) is established as a crucial brain region involved in attentional control, the causal relationship between the DLPFC and voluntary distraction is unexplored in patients. METHODS Combing explicit distraction and transcranial magnetic stimulation (TMS), this study investigated whether TMS-activated DLPFC facilitates voluntary distraction in MDD patients. Eighty patients diagnosed with current MDD underwent either active (n = 40) or sham (n = 40) TMS sessions, followed by receiving negative social feedback from other patients, during which they were requied to use distraction strategy to down-regulate their painful feelings. Electroencephalogram was recorded during the task. RESULTS Both the subjective emotional rating and the amplitude of late positive potential showed that depressed patients successfully down-regulate their negative emotions via voluntary distraction, and the TMS-activated left DLPFC produced a larger benefit of emotion regulation compared to the sham TMS group. Results also revealed that while emotion regulation effect was negatively associated with depressive symptoms in the sham TMS group, this correlation was largely diminished when patients' left DLPFC was activated by TMS during the voluntary distraction. CONCLUSIONS These findings demonstrated that distraction is valuable for emotion regulation in MDD patients and they could be beneficial in voluntary distraction by activating their left DLPFC using neural modulation techniques. This study has valuable implications for clinical treatement of emotional dysregulation in MDD patients.
Collapse
Affiliation(s)
- Sijin Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Jingxu Chen
- Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, 100096, China
| | - Kexiang Gao
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Feng Xu
- Shenzhen Yingchi Technology Co., Ltd., Shenzhen 518057, China
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518060, China
- Magnetic Resonance Imaging (MRI) Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Lukic S, Kosik EL, Roy ARK, Morris N, Sible IJ, Datta S, Chow T, Veziris CR, Holley SR, Kramer JH, Miller BL, Keltner D, Gorno-Tempini ML, Sturm VE. Higher emotional granularity relates to greater inferior frontal cortex cortical thickness in healthy, older adults. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1401-1413. [PMID: 37442860 PMCID: PMC10545583 DOI: 10.3758/s13415-023-01119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Individuals with high emotional granularity make fine-grained distinctions between their emotional experiences. To have greater emotional granularity, one must acquire rich conceptual knowledge of emotions and use this knowledge in a controlled and nuanced way. In the brain, the neural correlates of emotional granularity are not well understood. While the anterior temporal lobes, angular gyri, and connected systems represent conceptual knowledge of emotions, inhibitory networks with hubs in the inferior frontal cortex (i.e., posterior inferior frontal gyrus, lateral orbitofrontal cortex, and dorsal anterior insula) guide the selection of this knowledge during emotions. We investigated the structural neuroanatomical correlates of emotional granularity in 58 healthy, older adults (ages 62-84 years), who have had a lifetime to accrue and deploy their conceptual knowledge of emotions. Participants reported on their daily experience of 13 emotions for 8 weeks and underwent structural magnetic resonance imaging. We computed intraclass correlation coefficients across daily emotional experience surveys (45 surveys on average per participant) to quantify each participant's overall emotional granularity. Surface-based morphometry analyses revealed higher overall emotional granularity related to greater cortical thickness in inferior frontal cortex (pFWE < 0.05) in bilateral clusters in the lateral orbitofrontal cortex and extending into the left dorsal anterior insula. Overall emotional granularity was not associated with cortical thickness in the anterior temporal lobes or angular gyri. These findings suggest individual differences in emotional granularity relate to variability in the structural neuroanatomy of the inferior frontal cortex, an area that supports the controlled selection of conceptual knowledge during emotional experiences.
Collapse
Affiliation(s)
- Sladjana Lukic
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
- Adelphi University, Hy Weinberg Center, Suite 136, Garden City, NY, 11530-0701, USA.
| | - Eena L Kosik
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ashlin R K Roy
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Nathaniel Morris
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Isabel J Sible
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Samir Datta
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Tiffany Chow
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Christina R Veziris
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Sarah R Holley
- Psychology Department, San Francisco State University, San Francisco, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Dacher Keltner
- Department of Psychology, University of California, Berkeley, CA, USA
| | | | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
He Z, Li S, Mo L, Zheng Z, Li Y, Li H, Zhang D. The VLPFC-Engaged Voluntary Emotion Regulation: Combined TMS-fMRI Evidence for the Neural Circuit of Cognitive Reappraisal. J Neurosci 2023; 43:6046-6060. [PMID: 37507228 PMCID: PMC10451149 DOI: 10.1523/jneurosci.1337-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
A clear understanding of the neural circuit underlying emotion regulation (ER) is important for both basic and translational research. However, a lack of evidence based on combined neuroimaging and neuromodulation techniques calls into question (1) whether the change of prefrontal-subcortical activity intrinsically and causally contributes to the ER effect; and (2) whether the prefrontal control system directly modulates the subcortical affective system. Accordingly, we combined fMRI recordings with transcranial magnetic stimulation (TMS) to map the causal connections between the PFC and subcortical affective structures (amygdala and insula). A total of 117 human adult participants (57 males and 60 females) were included in the study. The results revealed that TMS-induced ventrolateral PFC (VLPFC) facilitation led to enhanced activity in the VLPFC and ventromedial PFC (VMPFC) as well as attenuated activity in the amygdala and insula during reappraisal but not during nonreappraisal (i.e., baseline). Moreover, the activated VLPFC intensified the prefrontal-subcortical couplings via the VMPFC during reappraisal only. This study provides combined TMS-fMRI evidence that downregulating negative emotion involves the prefrontal control system suppressing the subcortical affective system, with the VMPFC serving as a crucial hub within the VLPFC-subcortical network, suggesting an indirect pathway model of the ER circuit. Our findings outline potential protocols for improving ER ability by intensifying the VLPFC-VMPFC coupling in patients with mood and anxiety disorders.SIGNIFICANCE STATEMENT Using fMRI to examine the TMS effect, we uncovered that the opposite neural changes in prefrontal (enhanced) and subcortical (attenuated) regions are not a byproduct of emotion regulation (ER); instead, this prefrontal-subcortical activity per se causally contributes to the ER effect. Furthermore, using TMS to amplify the neural changes within the ER circuit, the "bridge" role of the VMPFC is highlighted under the reappraisal versus nonreappraisal contrast. This "perturb-and-measure" approach overcomes the correlational nature of fMRI data, helping us to identify brain regions that causally support reappraisal (the VLPFC and VMPFC) and those that are modulated by reappraisal (the amygdala and insula). The uncovered ER circuit is important for understanding the neural systems underlying reappraisal and valuable for translational research.
Collapse
Affiliation(s)
- Zhenhong He
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Sijin Li
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Licheng Mo
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Zixin Zheng
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China
| | - Yiwei Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China
| | - Hong Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| |
Collapse
|
15
|
Monachesi B, Grecucci A, Ahmadi Ghomroudi P, Messina I. Comparing reappraisal and acceptance strategies to understand the neural architecture of emotion regulation: a meta-analytic approach. Front Psychol 2023; 14:1187092. [PMID: 37546477 PMCID: PMC10403290 DOI: 10.3389/fpsyg.2023.1187092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction In the emotion regulation literature, the amount of neuroimaging studies on cognitive reappraisal led the impression that the same top-down, control-related neural mechanisms characterize all emotion regulation strategies. However, top-down processes may coexist with more bottom-up and emotion-focused processes that partially bypass the recruitment of executive functions. A case in point is acceptance-based strategies. Method To better understand neural commonalities and differences behind different emotion regulation processes, in the present study, we applied the Activation Likelihood Estimation (ALE) method to perform a meta-analysis on fMRI studies investigating task-related activity of reappraisal and acceptance. Both increased and decreased brain activity was taken into account in the contrast and conjunction analysis between the two strategies. Results Results showed increased activity in left-inferior frontal gyrus and insula for both strategies, and decreased activity in the basal ganglia for reappraisal, and decreased activity in limbic regions for acceptance. Discussion These findings are discussed in the context of a model of common and specific neural mechanisms of emotion regulation that support and expand the previous dual-routes models. We suggest that emotion regulation may rely on a core inhibitory circuit, and on strategy-specific top-down and bottom-up processes distinct for different strategies.
Collapse
Affiliation(s)
- Bianca Monachesi
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences—DiPSCo, University of Trento, Rovereto, Italy
| | - Alessandro Grecucci
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences—DiPSCo, University of Trento, Rovereto, Italy
- Center for Medical Sciences—CISMed, University of Trento, Trento, Italy
| | - Parisa Ahmadi Ghomroudi
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences—DiPSCo, University of Trento, Rovereto, Italy
| | | |
Collapse
|
16
|
Kondo F, Whitehead JC, Corbalán F, Beaulieu S, Armony JL. Emotion regulation in bipolar disorder type-I: multivariate analysis of fMRI data. Int J Bipolar Disord 2023; 11:12. [PMID: 36964848 PMCID: PMC10039967 DOI: 10.1186/s40345-023-00292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Bipolar disorder type-I (BD-I) patients are known to show emotion regulation abnormalities. In a previous fMRI study using an explicit emotion regulation paradigm, we compared responses from 19 BD-I patients and 17 matched healthy controls (HC). A standard general linear model-based univariate analysis revealed that BD patients showed increased activations in inferior frontal gyrus when instructed to decrease their emotional response as elicited by neutral images. We implemented multivariate pattern recognition analyses on the same data to examine if we could classify conditions within-group as well as HC versus BD. METHODS We reanalyzed explicit emotion regulation data using a multivariate pattern recognition approach, as implemented in PRONTO software. The original experimental paradigm consisted of a full 2 × 2 factorial design, with valence (Negative/Neutral) and instruction (Look/Decrease) as within subject factors. RESULTS The multivariate models were able to accurately classify different task conditions when HC and BD were analyzed separately (63.24%-75.00%, p = 0.001-0.012). In addition, the models were able to correctly classify HC versus BD with significant accuracy in conditions where subjects were instructed to downregulate their felt emotion (59.60%-60.84%, p = 0.014-0.018). The results for HC versus BD classification demonstrated contributions from the salience network, several occipital and frontal regions, inferior parietal lobes, as well as other cortical regions, to achieve above-chance classifications. CONCLUSIONS Our multivariate analysis successfully reproduced some of the main results obtained in the previous univariate analysis, confirming that these findings are not dependent on the analysis approach. In particular, both types of analyses suggest that there is a significant difference of neural patterns between conditions within each subject group. The multivariate approach also revealed that reappraisal conditions provide the most informative activity for differentiating HC versus BD, irrespective of emotional valence (negative or neutral). The current results illustrate the importance of investigating the cognitive control of emotion in BD. We also propose a set of candidate regions for further study of emotional control in BD.
Collapse
Affiliation(s)
- Fumika Kondo
- Douglas Mental Health University Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jocelyne C Whitehead
- Douglas Mental Health University Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | | | - Serge Beaulieu
- Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jorge L Armony
- Douglas Mental Health University Institute, Verdun, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Psychology, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
17
|
He H, Lin W, Yang J, Chen Y, Tan S, Guan Q. Age-related intrinsic functional connectivity underlying emotion utilization. Cereb Cortex 2023:7033308. [PMID: 36758953 DOI: 10.1093/cercor/bhad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Previous studies investigated the age-related positivity effect in terms of emotion perception and management, whereas little is known about whether the positivity effect is shown in emotion utilization (EU). If yes, the EU-related intrinsic functional connectivity and its age-associated alterations remain to be elucidated. In this study, we collected resting-state functional magnetic resonance imaging data from 62 healthy older adults and 72 undergraduates as well as their self-ratings of EU. By using the connectome-based predictive modeling (CPM) method, we constructed a predictive model of the positive relationship between EU self-ratings and resting-state functional connectivity. Lesion simulation analyses revealed that the medial-frontal network, default mode network, frontoparietal network, and subcortical regions played key roles in the EU-related CPM. Older subjects showed significantly higher EU self-ratings than undergraduates, which was associated with strengthened connectivity between the left dorsolateral prefrontal cortex and bilateral frontal poles, and between the left frontal pole and thalamus. A mediation analysis indicated that the age-related EU network mediated the age effect on EU self-ratings. Our findings extend previous research on the age-related "positivity effect" to the EU domain, suggesting that the positivity effect on the self-evaluation of EU is probably associated with emotion knowledge which accumulates with age.
Collapse
Affiliation(s)
- Hao He
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Magnetic Resonance Imaging Center, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Wenyi Lin
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Magnetic Resonance Imaging Center, Shenzhen University, Shenzhen, China
| | - Jiawang Yang
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Magnetic Resonance Imaging Center, Shenzhen University, Shenzhen, China
| | - Yiqi Chen
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Magnetic Resonance Imaging Center, Shenzhen University, Shenzhen, China.,Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Siping Tan
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qing Guan
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Magnetic Resonance Imaging Center, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
18
|
Gunther KE, Petrie D, Pérez-Edgar K, Geier C. Relations Between Executive Functioning and Internalizing Symptoms Vary as a Function of Frontoparietal-amygdala Resting State Connectivity. Res Child Adolesc Psychopathol 2023; 51:775-788. [PMID: 36662346 DOI: 10.1007/s10802-023-01025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
The prefrontal cortex and the frontoparietal network are associated with a variety of regulatory behaviors. Functional connections between these brain regions and the amygdala are implicated in risk for anxiety disorders. The prefrontal cortex and frontoparietal network are also linked to executive functioning, or behaviors that help orient action towards higher order goals. Where much research has been focused on deleterious effects of under-controlled behavior, a body of work suggests that over-controlled behavior may also pose a risk for internalizing problems. Indeed, while work suggests that high levels of attention shifting may still be protective against internalizing problems, there is evidence that high levels of inhibitory control may be a risk factor for socioemotional difficulties. In the ABCD sample, which offers large sample sizes as well as sociodemographic diversity, we test the interaction between frontoparietal network-amygdala resting state functional connectivity and executive functioning behaviors on longitudinal changes in internalizing symptoms from approximately 10 to 12 years of age. We found that higher proficiency in attention shifting indeed predicts fewer internalizing behaviors over time. In addition, higher proficiency in inhibitory control predicts fewer internalizing symptoms over time, but only for children showing resting state connectivity moderately above the sample average between the frontoparietal network and amygdala. This finding supports the idea that top-down control may not be adaptive for all children, and relations between executive functioning and anxiety risk may vary as a function of trait-level regulation.
Collapse
|
19
|
Anticipatory cues in emotional processing shift the activation of a combined salience sensorimotor functional network in drug-naïve depressed patients. J Affect Disord 2023; 320:509-516. [PMID: 36206887 DOI: 10.1016/j.jad.2022.09.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Major depressive disorder is characterized by a large-scale brain network dysfunction, contributing to impairments in cognitive and affective functioning. Core regions of default mode, limbic and salience networks are also impaired in emotional processing and anticipation. This study aimed to explore default mode, salience, and limbic networks modulation during the processing of emotional stimuli with and without anticipatory cues in depression, and further investigate how these networks were functionally coupled with the rest of the brain. METHODS Twenty-one drug-naïve depressed patients and 15 matched controls were included in the study. All participants completed a psychological assessment and the affective pictures paradigm during an fMRI acquisition. Group independent component analysis and psychophysiological interactions analyses were performed. RESULTS A significant interaction between Cue, Valence and Group was found for the salience/sensorimotor network. When processing uncued emotional stimuli, patients showed increased activation of this network for negative vs. neutral pictures, whereas when anticipatory cues were displayed previously to the picture presentation, they invert this pattern of activation (hyperactivating the salience/sensorimotor network for positive vs. neutral pictures). Patients showed increased functional connectivity between the salience/sensorimotor network and the left amygdala as well as the right inferior parietal lobule compared to controls when processing uncued negative pictures. LIMITATIONS The sample size was modest, and the salience/sensorimotor network included regions not typically identified as part of salience network. Thus, this study should be replicated to further interpret the results. CONCLUSIONS Anticipatory cues shift the pattern of activation of the salience/sensorimotor network in drug-naïve depressed patients.
Collapse
|
20
|
Chen X, Li W, Qin J, Gao X, Liu Y, Song S, Huang Y, Chen H. Gray matter volume and functional connectivity underlying binge eating in healthy children. Eat Weight Disord 2022; 27:3469-3478. [PMID: 36223059 DOI: 10.1007/s40519-022-01483-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE As a maladaptive disordered eating behavior, binge eating (BE) onset has been reported in children as young as eight years old and is linked with a range of negative psychological consequences. However, previous neuroimaging research of BE has mainly focused on adults in clinical conditions, and little is known about the potential neurostructural and neurofunctional bases of BE in healthy children. METHODS In this study, we examined these issues in 76 primary school students (mean age = 9.86 years) using voxel-based morphometry and resting-state functional connectivity (rsFC) approaches. RESULTS After controlling for age, sex, and total intracranial volume/head motion, we observed that higher levels of BE were correlated with greater gray matter volumes (GMV) in the left fusiform and right insula and weaker rsFC between the right insula and following three regions: right orbital frontal cortex, left cingulate gyrus, and left superior frontal gyrus. No significant associations were observed between BE and regional white matter volume. Significant sex differences were found only in the relationship between BE and GMV in the left fusiform. Furthermore, the GMV- and rsFC-based predictive models (a machine-learning method) achieved significant correlations between the actual and predicted BE values, demonstrating the robustness of our findings. CONCLUSION The present study provides novel evidence for the brain structural and functional substrates of children's BE, and further reveals that the weakened communication between core regions associated with negative affectivity, reward responsivity, and executive function is strongly related to dysregulated eating. LEVEL OF EVIDENCE Level V, descriptive study.
Collapse
Affiliation(s)
- Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Wei Li
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Jingmin Qin
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Shiqing Song
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Yufei Huang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, China.
| |
Collapse
|
21
|
Zhang X, Yang Y, Kuai H, Chen J, Huang J, Liang P, Zhong N. Systematic Fusion of Multi-Source Cognitive Networks With Graph Learning - A Study on Fronto-Parietal Network. Front Neurosci 2022; 16:866734. [PMID: 35968385 PMCID: PMC9372497 DOI: 10.3389/fnins.2022.866734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive tasks induce fluctuations in the functional connectivity between brain regions which constitute cognitive networks in the human brain. Although several cognitive networks have been identified, consensus still cannot be achieved on the precise borders and distribution of involved brain regions for each network, due to the multifarious use of diverse brain atlases in different studies. To address the problem, the current study proposed a novel approach to generate a fused cognitive network with the optimal performance in discriminating cognitive states by using graph learning, following the synthesization of one cognitive network defined by different brain atlases, and the construction of a hierarchical framework comprised of one main version and other supplementary versions of the specific cognitive network. As a result, the proposed method demonstrated better results compared with other machine learning methods for recognizing cognitive states, which was revealed by analyzing an fMRI dataset related to the mental arithmetic task. Our findings suggest that the fused cognitive network provides the potential to develop new mind decoding approaches.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- School of Computer, Jiangsu University of Science and Technology, Zhenjiang, China
- International WIC Institute, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
| | - Yang Yang
- Department of Psychology, Beijing Forest University, Beijing, China
| | - Hongzhi Kuai
- International WIC Institute, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Japan
| | - Jianhui Chen
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- International WIC Institute, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
| | - Jiajin Huang
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- International WIC Institute, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
| | - Peipeng Liang
- School of Psychology and Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
- *Correspondence: Peipeng Liang
| | - Ning Zhong
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- International WIC Institute, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Japan
- Ning Zhong
| |
Collapse
|
22
|
Sikka P, Stenberg J, Vorobyev V, Gross JJ. The neural bases of expressive suppression: A systematic review of functional neuroimaging studies. Neurosci Biobehav Rev 2022; 138:104708. [PMID: 35636561 DOI: 10.1016/j.neubiorev.2022.104708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Expressive suppression refers to the inhibition of emotion-expressive behavior (e.g., facial expressions of emotion). Although it is a commonly used emotion regulation strategy with well-documented consequences for well-being, little is known about its underlying mechanisms. In this systematic review, we for the first time synthesize functional neuroimaging studies on the neural bases of expressive suppression in non-clinical populations. The 12 studies included in this review contrasted the use of expressive suppression to simply watching emotional stimuli. Results showed that expressive suppression consistently increased activation of frontoparietal regions, especially the dorsolateral and ventrolateral prefrontal cortices and inferior parietal cortex, but decreased activation in temporo-occipital areas. Results regarding the involvement of the insula and amygdala were inconsistent with studies showing increased, decreased, or no changes in activation. These mixed findings underscore the importance of distinguishing expressive suppression from other forms of suppression and highlight the need to pay more attention to experimental design and neuroimaging data analysis procedures. We discuss these conceptual and methodological issues and provide suggestions for future research.
Collapse
Affiliation(s)
- Pilleriin Sikka
- Department of Psychology, Stanford University, 94305, USA; Department of Psychology, University of Turku, 20014, Finland; Department of Cognitive Neuroscience and Philosophy, University of Skövde, 541 28, Sweden.
| | - Jonathan Stenberg
- Department of Cognitive Neuroscience and Philosophy, University of Skövde, 541 28, Sweden
| | - Victor Vorobyev
- Turku University Hospital, 20521, Finland; Department of Radiology, University of Turku, 20520, Finland
| | - James J Gross
- Department of Psychology, Stanford University, 94305, USA
| |
Collapse
|
23
|
Ebisch SJH, Scalabrini A, Northoff G, Mucci C, Sergi MR, Saggino A, Aquino A, Alparone FR, Perrucci MG, Gallese V, Di Plinio S. Intrinsic Shapes of Empathy: Functional Brain Network Topology Encodes Intersubjective Experience and Awareness Traits. Brain Sci 2022; 12:brainsci12040477. [PMID: 35448008 PMCID: PMC9024660 DOI: 10.3390/brainsci12040477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Trait empathy is an essential personality feature in the intricacy of typical social inclinations of individuals. Empathy is likely supported by multilevel neuronal network functioning, whereas local topological properties determine network integrity. In the present functional MRI study (N = 116), we aimed to trace empathic traits to the intrinsic brain network architecture. Empathy was conceived as composed of two dimensions within the concept of pre-reflective, intersubjective understanding. Vicarious experience consists of the tendency to resonate with the feelings of other individuals, whereas intuitive understanding refers to a natural awareness of others’ emotional states. Analyses of graph theoretical measures of centrality showed a relationship between the fronto-parietal network and psychometric measures of vicarious experience, whereas intuitive understanding was associated with sensorimotor and subcortical networks. Salience network regions could constitute hubs for information processing underlying both dimensions. The network properties related to empathy dimensions mainly concern inter-network information flow. Moreover, interaction effects implied several sex differences in the relationship between functional network organization and trait empathy. These results reveal that distinct intrinsic topological network features explain individual differences in separate dimensions of intersubjective understanding. The findings could help understand the impact of brain damage or stimulation through alterations of empathy-related network integrity.
Collapse
Affiliation(s)
- Sjoerd J. H. Ebisch
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (F.R.A.); (M.G.P.); (S.D.P.)
- Institute of Advanced Biomedical Technologies (ITAB), G. d’Annunzio University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
- Correspondence:
| | - Andrea Scalabrini
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Georg Northoff
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou 310030, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310030, China
- TMU Research Centre for Brain and Consciousness, Shuang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Clara Mucci
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy;
| | - Maria Rita Sergi
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (M.R.S.); (A.S.)
| | - Aristide Saggino
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (M.R.S.); (A.S.)
| | - Antonio Aquino
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (F.R.A.); (M.G.P.); (S.D.P.)
| | - Francesca R. Alparone
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (F.R.A.); (M.G.P.); (S.D.P.)
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (F.R.A.); (M.G.P.); (S.D.P.)
- Institute of Advanced Biomedical Technologies (ITAB), G. d’Annunzio University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Vittorio Gallese
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Simone Di Plinio
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (F.R.A.); (M.G.P.); (S.D.P.)
| |
Collapse
|