1
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Martinovic J, Zaric Kontic M, Dragic M, Todorovic A, Gusevac Stojanovic I, Mitrovic N, Grkovic I, Drakulic D. Chronic oral d-galactose intake provokes age-related changes in the rat prefrontal cortex. Behav Brain Res 2023; 436:114072. [DOI: 10.1016/j.bbr.2022.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/01/2022]
|
3
|
The aging mouse brain: cognition, connectivity and calcium. Cell Calcium 2021; 94:102358. [PMID: 33517250 DOI: 10.1016/j.ceca.2021.102358] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Aging is a complex process that differentially impacts multiple cognitive, sensory, neuronal and molecular processes. Technological innovations now allow for parallel investigation of neuronal circuit function, structure and molecular composition in the brain of awake behaving adult mice. Thus, mice have become a critical tool to better understand how aging impacts the brain. However, a more granular systems-based approach, which considers the impact of age on key features relating to neural processing, is required. Here, we review evidence probing the impact of age on the mouse brain. We focus on a range of processes relating to neuronal function, including cognitive abilities, sensory systems, synaptic plasticity and calcium regulation. Across many systems, we find evidence for prominent age-related dysregulation even before 12 months of age, suggesting that emerging age-related alterations can manifest by late adulthood. However, we also find reports suggesting that some processes are remarkably resilient to aging. The evidence suggests that aging does not drive a parallel, linear dysregulation of all systems, but instead impacts some processes earlier, and more severely, than others. We propose that capturing the more fine-scale emerging features of age-related vulnerability and resilience may provide better opportunities for the rejuvenation of the aged brain.
Collapse
|
4
|
Ve H, Cabana VC, Gouspillou G, Lussier MP. Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and EEA1 Proteins is Altered in the Brains of Aged Mice. Neuroscience 2020; 442:100-113. [PMID: 32652177 DOI: 10.1016/j.neuroscience.2020.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 01/21/2023]
Abstract
Optimal synaptic activity is essential for cognitive function, including memory and learning. Evidence indicates that cognitive decline in elderly individuals is associated with altered synaptic function. However, the impact of aging on the expression of neurotransmitter receptors and accessory proteins in brain synapses remains unclear. To fill this knowledge gap, we investigated the effect of aging on the mouse brain by utilizing a subcellular brain tissue fractionation procedure to measure protein abundance using quantitative Western Blotting. Comparing 7-month- (control) and 22-month- (aged) old mouse tissue, no significant differences were identified in the levels of AMPA receptor subunits between the experimental groups. The abundance of GluN2B NMDA receptor subunits decreased in aged mice, whereas the levels of GluN2A did not change. The analysis of cytoskeletal proteins showed an altered level of actin and tubulin in aged mice while PSD-95 protein did not change. Vesicle protein analysis revealed that synaptophysin abundance is decreased in older brains whereas EEA1 was significantly increased. Thus, our results suggest that physiological aging profoundly impacts the abundance of molecules associated with neurotransmitter release and vesicle cycling, proteins implicated in cognitive function.
Collapse
Affiliation(s)
- Hou Ve
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Valérie C Cabana
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'Activité Physique, Groupe de Recherche en Activité Physique Adaptée, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Marc P Lussier
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Johnson S, Wozniak DF, Imai S. CA1 Nampt knockdown recapitulates hippocampal cognitive phenotypes in old mice which nicotinamide mononucleotide improves. NPJ Aging Mech Dis 2018; 4:10. [PMID: 30416740 PMCID: PMC6224504 DOI: 10.1038/s41514-018-0029-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Cognitive dysfunction is one of the most concerning outcomes in global population aging. However, the mechanisms by which cognitive functions are impaired during aging remain elusive. It has been established that NAD+ levels are reduced in multiple tissues and organs, including the brain. We found that NAD+ levels declined in the hippocampus of mice during the course of aging, and whereas we observed minimal age-related effects on spatial learning/memory capabilities in old mice, we discovered that they developed cognitive hypersensitivity in response to aversive stimulation during contextual fear conditioning tests. This cognitive hypersensitivity appears to be associated with alterations in emotionality (fear/anxiety) and sensory processing (shock sensitivity), rather than reflect genuine conditioning/retention effects, during aging. Supplementation of nicotinamide mononucleotide (NMN) improved the sensory processing aspect of the hypersensitivity and possibly other related behaviors. Specific knockdown of nicotinamide phosphoribosyltransferase (Nampt) in the CA1 region, but not in the dentate gyrus, recapitulates this cognitive hypersensitivity observed in old mice. We identified calcium/calmodulin-dependent serine protein kinase (Cask) as a potential downstream effector in response to age-associated NAD+ reduction in the hippocampus. Cask expression is responsive to NAD+ changes and also reduced in the hippocampus during aging. Short-term NMN supplementation can enhance Cask expression in the hippocampus of old mice. Its promoter activity is regulated in a Sirt1-dependent manner. Taken together, NAD+ reduction in the CA1 region contributes to development of age-associated cognitive dysfunction, aspects of which may be prevented or treated by enhancing NAD+ availability through supplementation of NAD+ intermediates, such as NMN. Cognitive dysfunction is one of the most concerning outcomes in global population aging. However, the mechanisms of cognitive impairment during aging remain elusive. We found that in old mice, levels of nicotinamide adenine dinucleotide (NAD+), an essential chemical for all living organisms, declined in the hippocampus, a critical part of the brain for memory and learning. We also found that age-associated hypersensitivity in cognitive and behavioral functions (cognitive hypersensitivity) was induced by reduced NAD+ availability in the hippocampus. Supplementation of nicotinamide mononucleotide (NMN), a critical chemical that is converted to NAD+, is able to mitigate the cognitive hypersensitivity observed in old mice. Our findings provide new insights into how NAD+ decline affects age-associated anxiety/depression and how such impairments can be prevented or treated by enhancing NAD+.
Collapse
Affiliation(s)
- Sean Johnson
- 1Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Present Address: Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - David F Wozniak
- 2Department of Psychiatry, The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - S Imai
- 1Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
6
|
Strong C, Kabbaj M. On the safety of repeated ketamine infusions for the treatment of depression: Effects of sex and developmental periods. Neurobiol Stress 2018; 9:166-175. [PMID: 30450382 PMCID: PMC6236511 DOI: 10.1016/j.ynstr.2018.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
In this review, we will discuss the safety of repeated treatments with ketamine for patients with treatment-resistant depression (TRD), a condition in which patients with major depression do not show any clinical improvements following treatments with at least two antidepressant drugs. We will discuss the effects of these treatments in both sexes at different developmental periods. Numerous small clinical studies have shown that a single, low-dose ketamine infusion can rapidly alleviate depressive symptoms and thoughts of suicidality in patients with TRD, and these effects can last for about one week. Interestingly, the antidepressant effects of ketamine can be prolonged with intermittent, repeated infusion regimens and produce more robust therapeutic effects when compared to a single infusion. The safety of such repeated treatments with ketamine has not been thoroughly investigated. Although more studies are needed, some clinical and preclinical reports indicated that repeated infusions of low doses of ketamine may have addictive properties, and suggested that adolescent and adult female subjects may be more sensitive to ketamine's addictive effects. Additionally, during ketamine infusions, many TRD patients report hallucinations and feelings of dissociation and depersonalization, and therefore the effects of repeated treatments of ketamine on cognition must be further examined. Some clinical reports indicated that, compared to women, men are more sensitive to the psychomimetic effects of ketamine. Preclinical studies extended these findings to both adolescent and adult male rodents and showed that male rodents at both developmental periods are more sensitive to ketamine's cognitive-altering effects. Accordingly, in this review we shall focus our discussion on the potential addictive and cognitive-impairing effects of repeated ketamine infusions in both sexes at two important developmental periods: adolescence and adulthood. Although more work about the safety of ketamine is warranted, we hope this review will bring some answers about the safety of treating TRD with repeated ketamine infusions.
Collapse
Affiliation(s)
| | - Mohamed Kabbaj
- Corresponding author. Florida State University, 3300-H, 1115 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
7
|
Kumar A. NMDA Receptor Function During Senescence: Implication on Cognitive Performance. Front Neurosci 2015; 9:473. [PMID: 26732087 PMCID: PMC4679982 DOI: 10.3389/fnins.2015.00473] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
8
|
Probing NMDA receptor GluN2A and GluN2B subunit expression and distribution in cortical neurons. Neuropharmacology 2014; 79:542-9. [PMID: 24440368 DOI: 10.1016/j.neuropharm.2014.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/09/2013] [Accepted: 01/06/2014] [Indexed: 11/20/2022]
Abstract
The spatial distribution of N-methyl-d-aspartate receptor (NMDAR) subunits in layer 5 (L5) neurons of the medial prefrontal cortex (mPFC) is important for integrating input-output signals involved in cognitive functions and motor behavior. In this study, focal laser scanning photostimulation of caged glutamate, slice electrophysiology, and small peptide pharmacology, were used to map the distribution of functional GluN2A and GluN2B subunits of the NMDAR from L5 neurons of wild-type (WT) and GluN2A(-/-) mice. Focal uncaging of glutamate evoked spatially-restricted glutamatergic responses on various dendritic locations of pyramidal neurons in the mPFC. Analyses of the spatial arrangements of the GluN2A and GluN2B subunits were performed by comparing inhibition of glutamatergic responses in the presence of the GluN2A-selective pharmacological antagonist, NVP-AAM077 (NVP), and the GluN2B-selective peptidic antagonist, conantokin-G (con-G). We found that apical and basal expression and distribution of GluN2A and GluN2B were similar in L5 mPFC neurons of WT mice. However, the inhibition of glutamatergic responses by NVP in brain slices of GluN2A(-/-) mice were dramatically decreased, while con-G inhibition remained similar to that observed in WT brain slices. The data obtained show that expression and spatial arrangement of GluN2B subunits is independent of GluN2A in L5 neurons of the mPFC. These findings have important ramifications for NMDAR organization and function in L5 pyramidal neurons of the mPFC, and show that specific populations of NMDARs can be antagonized, while sparing other subgroups of NMDARs, thus preserving selective NMDAR functions, an important therapeutic advantage.
Collapse
|
9
|
Brim BL, Haskell R, Awedikian R, Ellinwood N, Jin L, Kumar A, Foster T, Magnusson K. Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor. Behav Brain Res 2013; 238:211-26. [PMID: 23103326 PMCID: PMC3540206 DOI: 10.1016/j.bbr.2012.10.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 11/26/2022]
Abstract
The GluN2B subunit of the N-methyl-d-aspartate (NMDA) receptor shows age-related declines in expression across the frontal cortex and hippocampus. This decline is strongly correlated to age-related memory declines. This study was designed to determine if increasing GluN2B subunit expression in the frontal lobe or hippocampus would improve memory in aged mice. Mice were injected bilaterally with either the GluN2B vector, containing cDNA specific for the GluN2B subunit and enhanced green fluorescent protein (eGFP); a control vector or vehicle. Spatial memory, cognitive flexibility, and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression, exhibited improved long-term spatial memory, comparable to young mice. However, memory was rescued on different days in the Morris water maze; early for hippocampal GluN2B subunit enrichment and later for the frontal lobe. A higher concentration of the GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B expression, as compared to aged controls, suggesting there was an increase in the number of GluN2B-containing NMDA receptors. In addition, hippocampal slices from aged mice with increased GluN2B subunit expression exhibited enhanced NMDA receptor-mediated excitatory post-synaptic potentials (EPSP). Treatment with Ro 25-6981 showed that a greater proportion of the NMDA receptor-mediated EPSP was due to the GluN2B subunit in these animals, as compared to aged controls. These results suggest that increasing the production of the GluN2B subunit in aged animals enhances memory and synaptic transmission. Therapies that enhance GluN2B subunit expression within the aged brain may be useful for ameliorating age-related memory declines.
Collapse
Affiliation(s)
- B. L. Brim
- Molecular and Cellular Biosciences Program, Oregon State University, Corvallis, OR, 97331, U.S.A
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, U.S.A
- Healthy Aging Program, Linus Pauling Institute, Oregon State University, Corvallis, OR; 97331, U.S.A
| | - R. Haskell
- ViraQuest, Inc., North Liberty, IA; 52317, U.S.A
| | - R. Awedikian
- Department of Animal Sciences, Iowa State University, Ames, IA, 50011, U.S.A
| | - N.M. Ellinwood
- Department of Animal Sciences, Iowa State University, Ames, IA, 50011, U.S.A
| | - L. Jin
- Molecular and Cellular Biosciences Program, Oregon State University, Corvallis, OR, 97331, U.S.A
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, U.S.A
| | - A. Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, U.S.A
| | - T.C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, U.S.A
| | - K. Magnusson
- Molecular and Cellular Biosciences Program, Oregon State University, Corvallis, OR, 97331, U.S.A
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, U.S.A
- Healthy Aging Program, Linus Pauling Institute, Oregon State University, Corvallis, OR; 97331, U.S.A
| |
Collapse
|
10
|
Abstract
Our elderly population is growing and declines in cognitive abilities, such as memory, can be costly, because it can interfere with a person's ability to live independently. The NMDA receptor is very important for many different forms of memory and this receptor is negatively affected by aging. This review examines the progress that has been made recently in characterizing selective vulnerabilities of different subunits and splice variants of the NMDA receptor to normal aging in C57BL/6 mice. Evidence is also presented for changes in the relationships of NMDA receptors to plasticity across aging. Recent interventions show that enhancing NMDA receptors in aged individuals is associated with improvements in memory, but mouse models of neurodegenerative diseases suggest that finding the right balance between too little and too much NMDA receptor activity will be the key to enhancing memory without inducing pathology.
Collapse
Affiliation(s)
- Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Healthy Aging Program, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA ■ Tel.: +1 541 737 6923 ■ ■
| |
Collapse
|
11
|
Zhao J, Xin X, Xie GX, Palmer PP, Huang YG. Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance. Mol Pain 2012; 8:38. [PMID: 22612909 PMCID: PMC3517334 DOI: 10.1186/1744-8069-8-38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/09/2012] [Indexed: 01/17/2023] Open
Abstract
The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and tolerance are actually age-dependent. For example, the expression and functions of endogenous opioid peptides, multiple types of opioid receptors, G protein subunits that couple to opioid receptors, and regulators of G protein signaling (RGS proteins) change with development and age. Other signaling systems that are critical to opioid tolerance development, such as N-methyl-D-aspartic acid (NMDA) receptors, also undergo age-related changes. It is plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance development.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Anesthesia, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | | | | | | |
Collapse
|
12
|
Das SR, Magnusson KR. Changes in expression of splice cassettes of NMDA receptor GluN1 subunits within the frontal lobe and memory in mice during aging. Behav Brain Res 2011; 222:122-33. [PMID: 21443909 DOI: 10.1016/j.bbr.2011.03.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 03/12/2011] [Accepted: 03/18/2011] [Indexed: 11/25/2022]
Abstract
Age-related decline in memory has been associated with changes in mRNA and protein expression of different NMDA receptor subunits. The NMDA receptor GluN1 subunit appears to be necessary and sufficient for receptor function. There is evidence that the mRNA expressions of some splice forms of the subunit are influenced by aging and/or behavioral testing experience in old mice. The present study explored the relationships between behavioral testing experience and protein expression of different GluN1 subunit isoforms in the prefrontal/frontal cortex of the brain during aging. Aged C57BL/6 mice with behavioral testing experience showed declines in performance in both spatial working and reference memory tasks. Protein expression of GluN1 C-terminal cassettes C2 and C2', but not the C1 or N1 cassettes, was observed to decline with increasing age, regardless of experience. In middle-age animals, higher expressions of the GluN1 subunit and C2' cassette proteins were associated with good reference memory on initial search. Aged animals with a higher protein expression of GluN1 subunits containing C1 cassettes and the whole population of GluN1 subunits exhibited a closer proximity to the former platform location within the final phase of probe trials. However, the old mice with high expression of the C1 cassette did not show an accurate search during this phase. The old mice with lower expression of the C1 cassette protein more closely mimicked the performances of the young and middle-aged mice. These results indicate that there was heterogeneity in the effect of aging on the expression of the GluN1 subunits containing different splice cassettes. It also suggests that the GluN1 subunit might be most important for good reference memory during middle age, but this relationship may not be maintained into old age.
Collapse
Affiliation(s)
- Siba R Das
- Molecular and Cellular Biology Program & Dept. of Biomedical Science, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
13
|
Magnusson KR, Das SR, Kronemann D, Bartke A, Patrylo PR. The effects of aging and genotype on NMDA receptor expression in growth hormone receptor knockout (GHRKO) mice. J Gerontol A Biol Sci Med Sci 2011; 66:607-19. [PMID: 21459761 DOI: 10.1093/gerona/glr024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction enhances N-methyl-D-aspartate (NMDA) receptor binding and upregulates messenger RNA expression of the GluN1 subunit during aging. Old growth hormone receptor knockout mice resemble old calorically restricted rodents in enhanced life span and brain function, as compared with aged controls. This study examined whether aged growth hormone receptor knockout mice also show enhanced expression of NMDA receptors. Six or 23- to 24-month-old male normal-sized control or dwarf growth hormone receptor knockout mice were assayed for NMDA-displaceable [(3)H]glutamate binding (autoradiography) and GluN1 subunit messenger RNA (in situ hybridization). There was slight sparing of NMDA receptor binding densities within aged medial prefrontal and motor cortices, similar to caloric restriction, but there were greater age-related declines in GluN1 messenger RNA in growth hormone receptor knockout versus control mice. These results suggest that some of the functional improvements in aged mice with altered growth hormone signaling may be due to enhancement of NMDA receptors, but not through the upregulation of messenger RNA for the GluN1 subunit.
Collapse
Affiliation(s)
- Kathy Ruth Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
14
|
Magnusson KR, Brim BL, Das SR. Selective Vulnerabilities of N-methyl-D-aspartate (NMDA) Receptors During Brain Aging. Front Aging Neurosci 2010; 2:11. [PMID: 20552049 PMCID: PMC2874396 DOI: 10.3389/fnagi.2010.00011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/02/2010] [Indexed: 01/07/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different subunits that comprise the complex, and the expression and functions of the receptor within different brain regions. Spatial reference, passive avoidance, and working memory, as well as place field stability and expansion all involve NMDA receptors. Aged animals show deficiencies in these functions, as compared to young, and some studies have identified an association between age-associated changes in the expression of NMDA receptors and poor memory performance. A number of diet and drug interventions have shown potential for reversing or slowing the effects of aging on the NMDA receptor. On the other hand, there is mounting evidence that the NMDA receptors that remain within aged individuals are not always associated with good cognitive functioning. This may be due to a compensatory response of neurons to the decline in NMDA receptor expression or a change in the subunit composition of the remaining receptors. These studies suggest that developing treatments that are aimed at preventing or reversing the effects of aging on the NMDA receptor may aid in ameliorating the memory declines that are associated with aging. However, we need to be mindful of the possibility that there may also be negative consequences in aged individuals.
Collapse
Affiliation(s)
- Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA
| | | | | |
Collapse
|
15
|
Fallgatter AJ, Ehlis AC, Herrmann MJ, Hohoff C, Reif A, Freitag CM, Deckert J. DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in schizophrenic patients--support for the glutamate hypothesis of schizophrenias. GENES BRAIN AND BEHAVIOR 2010; 9:489-97. [PMID: 20180862 DOI: 10.1111/j.1601-183x.2010.00574.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dysbindin (DTNBP1) is a recently characterized protein that seems to be involved in the modulation of glutamatergic neurotransmission in the human brain, thereby influencing prefrontal cortex function and associated cognitive processes. While association, neuroanatomical and cellular studies indicate that DTNBP1 might be one of several susceptibility genes for schizophrenia, the effect of dysbindin on prefrontal brain function at an underlying neurophysiological level has not yet been explored for these patients. The NoGo-anteriorization (NGA) is a topographical event-related potential measure, which has been established as a valid neurophysiological marker of prefrontal brain function. In the present study, we investigated the influence of seven dysbindin gene variants on the NGA in a group of 44 schizophrenic patients. In line with our a priori hypothesis, one DTNBP1 polymorphism previously linked to schizophrenia (rs2619528) was found to be associated with changes in the NGA; however, the direction of this association directly contrasts with our previous findings in a healthy control sample. This differential impact of DTNBP1 gene variation on prefrontal functioning in schizophrenic patients vs. healthy controls is discussed in terms of abnormal glutamatergic baseline levels in patients suffering from schizophrenic illnesses. This is the first report on a role of DTNBP1 gene variation for prefrontal functioning at a basic neurophysiological level in schizophrenic patients. An impact on fundamental processes of cognitive response control may be one mechanism by which DTNBP1 gene variants via glutamatergic transmission contribute to the pathophysiology underlying schizophrenic illnesses.
Collapse
Affiliation(s)
- A J Fallgatter
- Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany. Fallgatter
| | | | | | | | | | | | | |
Collapse
|
16
|
van Albada SJ, Kerr CC, Chiang AKI, Rennie CJ, Robinson PA. Neurophysiological changes with age probed by inverse modeling of EEG spectra. Clin Neurophysiol 2009; 121:21-38. [PMID: 19854102 DOI: 10.1016/j.clinph.2009.09.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/19/2009] [Accepted: 09/22/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate age-associated changes in physiologically-based EEG spectral parameters in the healthy population. METHODS Eyes-closed EEG spectra of 1498 healthy subjects aged 6-86 years were fitted to a mean-field model of thalamocortical dynamics in a cross-sectional study. Parameters were synaptodendritic rates, cortical wave decay rates, connection strengths (gains), axonal delays for thalamocortical loops, and power normalizations. Age trends were approximated using smooth asymptotically linear functions with a single turning point. We also considered sex differences and relationships between model parameters and traditional quantitative EEG measures. RESULTS The cross-sectional data suggest that changes tend to be most rapid in childhood, generally leveling off at age 15-20 years. Most gains decrease in magnitude with age, as does power normalization. Axonal and dendritic delays decrease in childhood and then increase. Axonal delays and gains show small but significant sex differences. CONCLUSIONS Mean-field brain modeling allows interpretation of age-associated EEG trends in terms of physiological processes, including the growth and regression of white matter, influencing axonal delays, and the establishment and pruning of synaptic connections, influencing gains. SIGNIFICANCE This study demonstrates the feasibility of inverse modeling of EEG spectra as a noninvasive method for investigating large-scale corticothalamic dynamics, and provides a basis for future comparisons.
Collapse
Affiliation(s)
- S J van Albada
- School of Physics, The University of Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
17
|
Harris LW, Lockstone HE, Khaitovich P, Weickert CS, Webster MJ, Bahn S. Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia. BMC Med Genomics 2009; 2:28. [PMID: 19457239 PMCID: PMC2694209 DOI: 10.1186/1755-8794-2-28] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 05/20/2009] [Indexed: 12/25/2022] Open
Abstract
Background Many critical maturational processes take place in the human brain during postnatal development. In particular, the prefrontal cortex does not reach maturation until late adolescence and this stage is associated with substantial white matter volume increases. Patients with schizophrenia and other major psychiatric disorders tend to first present with overt symptoms during late adolescence/early adulthood and it has been proposed that this developmental stage represents a "window of vulnerability". Methods In this study we used whole genome microarrays to measure gene expression in post mortem prefrontal cortex tissue from human individuals ranging in age from 0 to 49 years. To identify genes specifically altered in the late adolescent period, we applied a template matching procedure. Genes were identified which showed a significant correlation to a template showing a peak of expression between ages 15 and 25. Results Approximately 2000 genes displayed an expression pattern that was significantly correlated (positively or negatively) with the template. In the majority of cases, these genes in fact reached a plateau during adolescence with only subtle changes thereafter. These include a number of genes previously associated with schizophrenia including the susceptibility gene neuregulin 1 (NRG1). Functional profiling revealed peak expression in late adolescence for genes associated with energy metabolism and protein and lipid synthesis, together with decreases for genes involved in glutamate and neuropeptide signalling and neuronal development/plasticity. Strikingly, eight myelin-related genes previously found decreased in schizophrenia brain tissue showed a peak in their expression levels in late adolescence, while the single myelin gene reported increased in patients with schizophrenia was decreased in late adolescence. Conclusion The observed changes imply that molecular mechanisms critical for adolescent brain development are disturbed in schizophrenia patients.
Collapse
Affiliation(s)
- Laura W Harris
- Institute of Biotechnology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
18
|
The effects of aging on N-methyl-D-aspartate receptor subunits in the synaptic membrane and relationships to long-term spatial memory. Neuroscience 2009; 162:933-45. [PMID: 19446010 DOI: 10.1016/j.neuroscience.2009.05.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/22/2009] [Accepted: 05/08/2009] [Indexed: 11/23/2022]
Abstract
There are declines in the protein expression of the NR2B (mouse epsilon2) and NR1 (mouse zeta1) subunits of the N-methyl-D-aspartate (NMDA) receptor in the cerebral cortex and hippocampus during aging in C57BL/6 mice. This study was designed to determine if there is a greater effect of aging on subunit expression and a stronger relationship between long-term spatial memory and subunit expression within the synaptic membrane than in the cell as a whole. Male, C57BL/6JNIA mice (4, 11 and 26 months old) were tested for long-term spatial memory in the Morris water maze. Frontal cortex, including prefrontal regions, and hippocampus were homogenized and fractionated into light and synaptosomal membrane fractions. Western blots were used to analyze protein expression of NR2B and NR1 subunits of the NMDA receptor. Old mice performed significantly worse than other ages in the spatial task. In the frontal cortex, the protein levels of the NR2B subunit showed a greater decline with aging in the synaptic membrane fraction than in the whole homogenate, while in the hippocampus a similar age-related decline was observed in both fractions. There were no significant effects of aging on the expression of the NR1 subunit. Within the middle-aged mouse group, higher expression of both NR2B and NR1 subunits in the synaptic membrane of the hippocampus was associated with better memory. In the aged mice, however, higher expression of both subunits was associated with poorer memory. These results indicate that aging could be altering the localization of the NR2B subunit to the synaptic membrane within the frontal cortex. The correlational results suggest that NMDA receptor functions, receptor subunit composition, and/or the environment in which the receptor interacted in the hippocampus were not the same in the old animals as in younger mice and this may have contributed to memory declines during aging.
Collapse
|
19
|
Fear memory impairing effects of systemic treatment with the NMDA NR2B subunit antagonist, Ro 25-6981, in mice: attenuation with ageing. Pharmacol Biochem Behav 2008; 91:453-60. [PMID: 18809426 DOI: 10.1016/j.pbb.2008.08.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 12/22/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are mediators of synaptic plasticity and learning and are implicated in the pathophysiology of neuropsychiatric disease and age-related cognitive dysfunction. NMDARs are heteromers, but the relative contribution of specific subunits to NMDAR-mediated learning is not fully understood. We characterized pre-conditioning systemic treatment of the NR2B subunit-selective antagonist Ro 25-6981 for effects on multi-trial, one-trial and low-shock Pavlovian fear conditioning in C57BL/6J mice. Ro 25-6981 was also profiled for effects on novel open field exploration, elevated plus-maze anxiety-like behavior, startle reactivity, prepulse inhibition of startle, and nociception. Three-month (adult) and 12-month old C57BL/6Tac mice were compared for Ro 25-6981 effects on multi-trial fear conditioning, and corticolimbic NR2B protein levels. Ro 25-6981 moderately impaired fear learning in the multi-trial and one-trial (but not low-shock) conditioning paradigms, but did not affect exploratory or anxiety-related behaviors or sensory functions. Memory impairing effects of Ro 25-6981 were absent in 12-month old mice, although NR2B protein levels were not significantly altered. Present data provide further evidence of the memory impairing effects of selective blockade of NR2B-containing NMDARs, and show loss of these effects with ageing. This work could ultimately have implications for elucidating the pathophysiology of learning dysfunction in neuropsychiatric disorders and ageing.
Collapse
|
20
|
Das SR, Magnusson KR. Relationship between mRNA expression of splice forms of the zeta1 subunit of the N-methyl-D-aspartate receptor and spatial memory in aged mice. Brain Res 2008; 1207:142-54. [PMID: 18374315 DOI: 10.1016/j.brainres.2008.02.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 02/05/2008] [Accepted: 02/17/2008] [Indexed: 10/22/2022]
Abstract
Age-related changes in the protein and mRNA expression of some of the splice forms of the zeta1 (NR1) subunit of the NMDA receptor have been seen in mice and rats. The present study was designed to determine whether individual splice forms of the zeta1 subunit of the NMDA receptor within prefrontal/frontal cortical regions contribute to memory deficits during aging and whether experience in learning tasks can influence the expression of the splice forms. mRNA expression of 4 splice forms (zeta1-1, zeta1-3, zeta1-a and zeta1-b) and mRNA for all known splice forms (zeta1-pan) were examined by in situ hybridization. mRNA for C-terminal splice forms, zeta1-1 (+ C1 and + C2 cassettes) and zeta1-3 (+ C1 and + C2'), showed significant declines during aging in several brain regions even though overall zeta1-pan mRNA expression was not significantly affected by aging. This suggests that these splice forms are more influenced by aging than the subunit as a whole. There was an increase in the expression of zeta1-a (-N1 cassette) splice form in the behaviorally-experienced old mice relative to the younger groups. Old mice with high levels of mRNA expression for the zeta1-a splice form in orbital cortex showed the best performances in the working memory task, but the poorest performances in the cued, associative learning task. These results suggest that there is a complex interaction between zeta1 splice form expression and performance of memory tasks during aging.
Collapse
Affiliation(s)
- Siba R Das
- Molecular and Cellular Biology Program and Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
21
|
Henson MA, Roberts AC, Salimi K, Vadlamudi S, Hamer RM, Gilmore JH, Jarskog LF, Philpot BD. Developmental regulation of the NMDA receptor subunits, NR3A and NR1, in human prefrontal cortex. ACTA ACUST UNITED AC 2008; 18:2560-73. [PMID: 18296432 DOI: 10.1093/cercor/bhn017] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subunit composition of N-methyl-D-aspartate-type glutamate receptors (NMDARs) dictates their function, yet the ontogenic profiles of human NMDAR subunits from gestation to adulthood have not been determined. We examined NMDAR mRNA and protein development in human dorsolateral prefrontal cortex (DLPFC), an area in which NMDARs are critical for higher cognitive processing and NMDAR hypofunction is hypothesized in schizophrenia. Using quantitative reverse transcriptase-polymerase chain reaction and western blotting, we found NR1 expression begins low prenatally, peaks in adolescence, yet remains high throughout life, suggesting lifelong importance of NMDAR function. In contrast, NR3A levels are low during gestation, surge soon after birth, and decline progressively through adolescence and into adulthood. Because NR3A subunits uniquely attenuate NMDAR-mediated currents, limit calcium influx, and suppress dendritic spine formation, high levels during early childhood may be important for regulating neuroprotection and activity-dependent sculpting of synapses. We also examined whether subunit changes underlie reduced NMDAR activity in schizophrenia. Our results reveal normal NR1 and NR3A protein levels in DLPFC from schizophrenic patients, indicating that NMDAR hypofunction is unlikely to be maintained by gross changes in NR3A-containing NMDARs or overall NMDAR numbers. These data provide insights into NMDAR functions in the developing CNS and will contribute to designing pharmacotherapies for neurological disorders.
Collapse
Affiliation(s)
- Maile A Henson
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27705, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Brigman JL, Feyder M, Saksida LM, Bussey TJ, Mishina M, Holmes A. Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn Mem 2008; 15:50-4. [PMID: 18230672 PMCID: PMC3575092 DOI: 10.1101/lm.777308] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice exhibited significantly retarded discrimination learning. Performance on reversal was impaired in NR2A KO mice during the learning phase of the task; with no evidence of heightened perseverative responses. Acquisition and extinction of an instrumental behavior requiring no pairwise discrimination was normal in NR2A KO mice. The present findings demonstrate a significant and selective deficit in discrimination learning following loss of NR2A.
Collapse
Affiliation(s)
- Jonathan L Brigman
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Rockville, Maryland 20852, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Magnusson KR, Scruggs B, Zhao X, Hammersmark R. Age-related declines in a two-day reference memory task are associated with changes in NMDA receptor subunits in mice. BMC Neurosci 2007; 8:43. [PMID: 17587455 PMCID: PMC1919384 DOI: 10.1186/1471-2202-8-43] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 06/22/2007] [Indexed: 11/23/2022] Open
Abstract
Background C57BL/6 mice show a relationship during aging between NMDA receptor expression and spatial reference memory performance in a 12-day task. The present study was designed to determine if age-related deficits could be detected with a shorter testing protocol and whether these deficits showed a relationship with NMDA receptors. Mice were trained in a reference memory task for two days in a Morris water maze. Cued testing was performed either after or prior to reference memory testing. Crude synaptosomes were prepared from prefrontal/frontal cortex and hippocampus of the mice that underwent reference memory testing first. NMDA receptor subunit and syntaxin proteins were analyzed with Western blotting. Results Young mice showed significant improvement in probe and place learning when reference memory testing was done prior to cued testing. A significant decrease in performance was seen between 3 and 26 months of age with the two-day reference task, regardless of whether cued testing was performed before or after reference memory testing. There was a significant decline in the protein expression of the ε2 and ζ1 subunits of the NMDA receptor and syntaxin in prefrontal/frontal cortex. The subunit changes showed a significant correlation with both place and probe trial performance. Conclusion The presence of an age-related decline in performance of the reference memory task regardless of when the cued trials were performed suggests that the deficits were due to factors that were unique to the spatial reference memory task. These results also suggest that declines in specific NMDA receptor subunits in the synaptic pool of prefrontal/frontal brain regions contributed to these age-related problems with performing a spatial reference memory task.
Collapse
Affiliation(s)
- Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
- Department of Biological Sciences, University of Idaho, College of Science, Moscow, ID, 83844, USA
- Behavioral testing performed at: Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Program in Molecular, Cellular, and Integrative Neurosciences and Department of Psychology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brandi Scruggs
- Behavioral testing performed at: Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Program in Molecular, Cellular, and Integrative Neurosciences and Department of Psychology, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Psychology, Worcester State College, Worcester, MA 01602-2597, USA
| | - Xue Zhao
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
- Department of Biological Sciences, University of Idaho, College of Science, Moscow, ID, 83844, USA
| | - Rebecca Hammersmark
- Department of Biological Sciences, University of Idaho, College of Science, Moscow, ID, 83844, USA
| |
Collapse
|
24
|
Cao X, Cui Z, Feng R, Tang YP, Qin Z, Mei B, Tsien JZ. Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. Eur J Neurosci 2007; 25:1815-22. [PMID: 17432968 DOI: 10.1111/j.1460-9568.2007.05431.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain ageing represents a general and evolutionarily conserved phenomenon and is marked by gradual declines in cognitive functions such as learning and memory. As a synaptic coincidence detector, the N-methyl-d-aspartate (NMDA) receptor is known to be essential for the induction of synaptic plasticity and memory formation. Here, we test the hypothesis that up-regulation of NR2B expression is beneficial for learning and memory in the aged animals. Our in vitro recordings show that the aged transgenic mice with the forebrain-specific overexpression of the NR2B subunit indeed exhibit more robust hippocampal long-term potentiation (LTP) induced by either high-frequency stimulation or theta-stimulation protocol. Furthermore, those aged NR2B transgenic mice consistently outperform their wild-type littermates in five different learning and memory tests, namely, novel object recognition, contextual and cued fear conditioning, spatial reference memory, and spatial working memory T-maze task. Thus, we conclude that increased expression of NR2B in the forebrain improves learning and memory function in the aged brain.
Collapse
Affiliation(s)
- Xiaohua Cao
- Shanghai Institute of Brain Functional Genomics, The Key laboratories of MOE and SSTC, East China Normal University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Comparison of NMDA modulation of breathing and NR1 expression in medullary nuclei of weanling male and female rats. Respir Physiol Neurobiol 2007; 155:203-12. [DOI: 10.1016/j.resp.2006.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 11/20/2022]
|
26
|
Sanganahalli BG, Joshi PG, Joshi NB. NMDA and non-NMDA receptors stimulation causes differential oxidative stress in rat cortical slices. Neurochem Int 2006; 49:475-80. [PMID: 16860439 DOI: 10.1016/j.neuint.2006.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
Glutamate receptor activated neuronal cell death is attributed to a massive influx of Ca(2+) and subsequent formation of reactive oxygen species (ROS) but the relative contribution of NMDA and non-NMDA sub-types of glutamate receptors in excitotoxicity is not known. In the present study, we have examined the role of NMDA and non-NMDA receptors in glutamate-induced neuronal injury in cortical slices from young (20+/-2 day) and adult (80+/-5 day) rats. Treatment of slices with glutamate receptor agonists NMDA, AMPA and KA elicited the formation of reactive oxygen species (ROS) and neuronal cell death. In young slices, NMDA receptor stimulation caused a higher ROS formation and neurotoxicity, but KA was more effective in producing ROS and cell death in adult slices. AMPA exhibited an intermediate effect on ROS formation and toxicity in both the age groups. A significant protection in glutamate mediated ROS formation and neurotoxicity was observed in presence of NMDA or/and non-NMDA receptors antagonists APV and NBQX, respectively. This further confirms the involvement of both NMDA and non-NMDA receptors in glutamate mediated neurotoxicity. In adult slices, we did not find positive correlation between ligand induced neurotoxicity and mitochondrial depolarization. Though, NMDA and KA stimulation produced differential effect on ROS formation and neurotoxicity in young and adult slices, the mitochondrial depolarization was higher and comparable on NMDA stimulation in both the age groups as compared to KA, suggesting that the mitochondrial depolarization may not be a good indicator for neurotoxicity. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors are involved in glutamate mediated neurotoxicity but their relative contribution is highly dependent on the age of the animal.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Department of Biophysics, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| | | | | |
Collapse
|
27
|
Fanous AM, Machaalani R, Waters KA. N-methyl-d-aspartate receptor 1 changes in the piglet braintem after nicotine and/or intermittent hypercapnic-hypoxia. Neuroscience 2006; 142:401-9. [PMID: 16890364 DOI: 10.1016/j.neuroscience.2006.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 05/28/2006] [Accepted: 06/20/2006] [Indexed: 11/18/2022]
Abstract
Prone sleeping and cigarette smoke exposure are two major risk factors for the sudden infant death syndrome (SIDS). Utilizing piglet models of early postnatal nicotine and/or intermittent hypercapnic-hypoxia (IHH) exposure, we tested the hypothesis that these exposures, separately or combined, increase N-methyl-D-aspartate (NMDA) receptor 1 (NR1) expression in the brainstem medulla. We also tested for gender-specific effects. Three piglet exposure groups were compared against 14 controls; 1, nicotine [n = 14], 2, IHH [n = 10], and 3, nicotine+IHH [n = 14], with equal gender proportions in each group. Non-radioactive in situ hybridization and immunohistochemistry were performed for NR1 mRNA and protein expression, respectively, and were quantified in seven nuclei of the brainstem medulla. NR1 mRNA was significantly increased in the gracile and inferior olivary nucleus (ION) after nicotine exposure, in five of seven nuclei after IHH exposure, and in three of seven nuclei after nicotine+IHH. The increased mRNA changes were accompanied by increased protein only in the ION after IHH and nicotine+IHH (P = 0.019, and P = 0.008 respectively). By gender, control females had greater NR1 mRNA than males in the dorsal motor nucleus of vagus (P = 0.05) and for protein in the ION (P = 0.02). This gender difference was maintained after nicotine exposure in the ION with additional gender differences observed including greater mRNA in the cuneate nucleus (P = 0.04) and nucleus of the spinal trigeminal tract (P = 0.03) of males compared with females. Overall, more changes occurred at the mRNA level than protein, and IHH exposure induced more changes than nicotine or nicotine+IHH exposures. Together, these findings suggest that hypercapnic-hypoxic exposures (modeling prone sleeping or sleep apnea) are more likely to induce NMDA receptor changes in the developing brainstem than nicotine exposure alone.
Collapse
Affiliation(s)
- A M Fanous
- Department of Anatomy and Histology, University of Sydney, NSW 2006, Sydney, Australia
| | | | | |
Collapse
|
28
|
Magnusson KR, Bai L, Zhao X. The effects of aging on different C-terminal splice forms of the zeta1(NR1) subunit of the N-methyl-d-aspartate receptor in mice. ACTA ACUST UNITED AC 2005; 135:141-9. [PMID: 15857677 DOI: 10.1016/j.molbrainres.2004.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 12/07/2004] [Accepted: 12/13/2004] [Indexed: 11/15/2022]
Abstract
Changes in NMDA receptors in the prefrontal/frontal cortex and hippocampus of C57BL/6 mice during aging show a relationship to declines in spatial learning. The present study was designed to determine whether aging influences the mRNA expression of different splice forms of the zeta1 subunit of the NMDA receptor. We examined the mRNA of 4 C-terminal splice forms with the use of in situ hybridization. The zeta1-1 splice form (+C1 and +C2 cassettes) overall showed a maintenance of mRNA density from 3 to 10 months of age, followed by a significant decline by 26 months of age. In contrast, the mRNA for the zeta1-3 splice form [+C1 and +C2'(-C2)] showed significant declines between 3- and 10-month-old mice. These declines were maintained in the old mice. The zeta1-2 splice form (-C1 and +C2) showed a near-significant decrease in expression during aging across all brain regions. The zeta1-4 subunit mRNA [-C1 and +C2' (-C2)] showed no significant changes with increased age. These results indicate that there is a differential effect of aging on different splice variants of the zeta1 subunit of the NMDA receptor and those that are affected show a different temporal pattern of aging. This heterogeneity has implications for producing imbalances in the modulation of the remaining receptors.
Collapse
Affiliation(s)
- Kathy R Magnusson
- Department of Biological Sciences, WWAMI Medical Program, University of Idaho, Moscow, ID 83844-3051, USA.
| | | | | |
Collapse
|