1
|
Vakilzadeh G, Maseko BC, Bartely TD, McLennan YA, Martínez-Cerdeño V. Increased number of excitatory synapsis and decreased number of inhibitory synapsis in the prefrontal cortex in autism. Cereb Cortex 2024; 34:121-128. [PMID: 38696601 PMCID: PMC11065106 DOI: 10.1093/cercor/bhad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/16/2023] [Indexed: 05/04/2024] Open
Abstract
Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.
Collapse
Affiliation(s)
- Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
| | - Busisiwe C Maseko
- Faculty of health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, The Republic of South Africa
| | - Trevor D Bartely
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
| | - Yingratana A McLennan
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA, United States
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
2
|
Igonina TN, Voronkova OM, Ragaeva DS, Brusentsev EY, Rozhkova IN, Kolosova NG, Amstislavsky SY. Effects of the Maternal Environment on Early Postnatal Development in OXYS Rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2023. [DOI: 10.1007/s11055-023-01378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 08/04/2023]
|
3
|
Developmental Inhibitory Changes in the Primary Somatosensory Cortex of the Stargazer Mouse Model of Absence Epilepsy. Biomolecules 2023; 13:biom13010186. [PMID: 36671571 PMCID: PMC9856073 DOI: 10.3390/biom13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Childhood absence epilepsy seizures arise in the cortico-thalamocortical network due to multiple cellular and molecular mechanisms, which are still under investigation. Understanding the precise mechanisms is imperative given that treatment fails in ~30% of patients while adverse neurological sequelae remain common. Impaired GABAergic neurotransmission is commonly reported in research models investigating these mechanisms. Recently, we reported a region-specific reduction in the whole-tissue and synaptic GABAA receptor (GABAAR) α1 subunit and an increase in whole-tissue GAD65 in the primary somatosensory cortex (SoCx) of the adult epileptic stargazer mouse compared with its non-epileptic (NE) littermate. The current study investigated whether these changes occurred prior to the onset of seizures on postnatal days (PN) 17-18, suggesting a causative role. Synaptic and cytosolic fractions were biochemically isolated from primary SoCx lysates followed by semiquantitative Western blot analyses for GABAAR α1 and GAD65. We found no significant changes in synaptic GABAAR α1 and cytosolic GAD65 in the primary SoCx of the stargazer mice at the critical developmental stages of PN 7-9, 13-15, and 17-18. This indicates that altered levels of GABAAR α1 and GAD65 in adult mice do not directly contribute to the initial onset of absence seizures but are a later consequence of seizure activity.
Collapse
|
4
|
Wojciech K, Zuzanna R, Piotr S, Anna C, Marzena R, Joanna C, Krzysztof J, Zuzanna S. Ketogenic diet impairs neurological development of neonatal rats and affects biochemical composition of maternal brains: evidence of functional recovery in pups. Brain Struct Funct 2022; 227:1099-1113. [PMID: 35038032 PMCID: PMC8930886 DOI: 10.1007/s00429-021-02450-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
The ketogenic diet (KD) is a type of diet in which the intake of fats significantly increases at the cost of carbohydrates while maintaining an adequate amount of proteins. This kind of diet has been successfully used in clinical therapies of drug-resistant epilepsy, but there is still insufficient evidence on its safety when used in pregnancy. To assess KD effects on the course of gestation and fetal development, pregnant females were fed with: (i) KD during pregnancy and lactation periods (KD group), (ii) KD during pregnancy replaced with ND from the day 2 postpartum (KDND group) and (iii) normal diet alone (ND group). The body mass, ketone and glucose blood levels, and food intake were monitored. In brains of KD-fed females, FTIR biochemical analyses revealed increased concentrations of lipids and ketone groups containing molecules. In offspring of these females, significant reduction of the body mass and delays in neurological development were detected. However, replacement of KD with ND in these females at the beginning of lactation period led to regainment of the body mass in their pups as early as on the postnatal day 14. Moreover, the vast majority of our neurological tests detected functional recovery up to the normal level. It could be concluded that the ketogenic diet undoubtedly affects the brain of pregnant females and impairs the somatic and neurological development of their offspring. However, early postnatal withdrawal of this diet may initiate compensatory processes and considerable functional restitution of the nervous system based on still unrecognized mechanisms.
Collapse
Affiliation(s)
- Kosiek Wojciech
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Gronostajowa 9, 30-387, Kraków, Poland
| | - Rauk Zuzanna
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Gronostajowa 9, 30-387, Kraków, Poland
| | - Szulc Piotr
- Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387, Kraków, Poland
| | - Cichy Anna
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Gronostajowa 9, 30-387, Kraków, Poland
| | - Rugieł Marzena
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Krakow, Poland
| | - Chwiej Joanna
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Krakow, Poland
| | - Janeczko Krzysztof
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Gronostajowa 9, 30-387, Kraków, Poland
| | - Setkowicz Zuzanna
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
5
|
Balsor JL, Arbabi K, Singh D, Kwan R, Zaslavsky J, Jeyanesan E, Murphy KM. A Practical Guide to Sparse k-Means Clustering for Studying Molecular Development of the Human Brain. Front Neurosci 2021; 15:668293. [PMID: 34867140 PMCID: PMC8636820 DOI: 10.3389/fnins.2021.668293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Studying the molecular development of the human brain presents unique challenges for selecting a data analysis approach. The rare and valuable nature of human postmortem brain tissue, especially for developmental studies, means the sample sizes are small (n), but the use of high throughput genomic and proteomic methods measure the expression levels for hundreds or thousands of variables [e.g., genes or proteins (p)] for each sample. This leads to a data structure that is high dimensional (p ≫ n) and introduces the curse of dimensionality, which poses a challenge for traditional statistical approaches. In contrast, high dimensional analyses, especially cluster analyses developed for sparse data, have worked well for analyzing genomic datasets where p ≫ n. Here we explore applying a lasso-based clustering method developed for high dimensional genomic data with small sample sizes. Using protein and gene data from the developing human visual cortex, we compared clustering methods. We identified an application of sparse k-means clustering [robust sparse k-means clustering (RSKC)] that partitioned samples into age-related clusters that reflect lifespan stages from birth to aging. RSKC adaptively selects a subset of the genes or proteins contributing to partitioning samples into age-related clusters that progress across the lifespan. This approach addresses a problem in current studies that could not identify multiple postnatal clusters. Moreover, clusters encompassed a range of ages like a series of overlapping waves illustrating that chronological- and brain-age have a complex relationship. In addition, a recently developed workflow to create plasticity phenotypes (Balsor et al., 2020) was applied to the clusters and revealed neurobiologically relevant features that identified how the human visual cortex changes across the lifespan. These methods can help address the growing demand for multimodal integration, from molecular machinery to brain imaging signals, to understand the human brain’s development.
Collapse
Affiliation(s)
- Justin L Balsor
- McMaster Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Keon Arbabi
- McMaster Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Desmond Singh
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, ON, Canada
| | - Rachel Kwan
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, ON, Canada
| | - Jonathan Zaslavsky
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, ON, Canada
| | - Ewalina Jeyanesan
- McMaster Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Kathryn M Murphy
- McMaster Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Sinha R, Grimes WN, Wallin J, Ebbinghaus BN, Luu K, Cherry T, Rieke F, Rudolph U, Wong RO, Hoon M. Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function. Curr Biol 2021; 31:4314-4326.e5. [PMID: 34433078 DOI: 10.1016/j.cub.2021.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Developing neural circuits, including GABAergic circuits, switch receptor types. But the role of early GABA receptor expression for establishment of functional inhibitory circuits remains unclear. Tracking the development of GABAergic synapses across axon terminals of retinal bipolar cells (BCs), we uncovered a crucial role of early GABAA receptor expression for the formation and function of presynaptic inhibitory synapses. Specifically, early α3-subunit-containing GABAA (GABAAα3) receptors are a key developmental organizer. Before eye opening, GABAAα3 gives way to GABAAα1 at individual BC presynaptic inhibitory synapses. The developmental downregulation of GABAAα3 is independent of GABAAα1 expression. Importantly, lack of early GABAAα3 impairs clustering of GABAAα1 and formation of functional GABAA synapses across mature BC terminals. This impacts the sensitivity of visual responses transmitted through the circuit. Lack of early GABAAα3 also perturbs aggregation of LRRTM4, the organizing protein at GABAergic synapses of rod BC terminals, and their arrangement of output ribbon synapses.
Collapse
Affiliation(s)
- Raunak Sinha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD, USA
| | - Julie Wallin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Briana N Ebbinghaus
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelsey Luu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Timothy Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington-Seattle and the Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Paraouty N, Mowery TM. Early Sensory Deprivation Leads to Differential Inhibitory Changes in the Striatum During Learning. Front Neural Circuits 2021; 15:670858. [PMID: 34122017 PMCID: PMC8194259 DOI: 10.3389/fncir.2021.670858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
The corticostriatal circuit has been identified as a vital pathway for associative learning. However, how learning is implemented when the sensory striatum is permanently impaired remains unclear. Using chemogenetic techniques to suppress layer five auditory cortex (AC) input to the auditory striatum, learning of a sound discrimination task was significantly impacted in freely moving Mongolian gerbils, in particular when this suppression occurs early on during learning. Whole-cell recordings sampled throughout learning revealed a transient reduction in postsynaptic (GABAA) inhibition in both striatal D1 and D2 cells in normal-hearing gerbils during task acquisition. In contrast, when the baseline striatal inhibitory strengths and firing rates were permanently reduced by a transient period of developmental sensory deprivation, learning was accompanied by augmented inhibition and increased firing rates. Direct manipulation of striatal inhibition in vivo and in vitro revealed a key role of the transient inhibitory changes in task acquisition. Together, these results reveal a flexible corticostriatal inhibitory synaptic plasticity mechanism that accompanies associative auditory learning.
Collapse
Affiliation(s)
- Nihaad Paraouty
- Center for Neural Science, New York University, New York, NY, United States
| | - Todd M Mowery
- Department of Otolaryngology, Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.,Rutgers Brain Health Institute, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
8
|
Cao JW, Guan W, Yu YC, Fu Y. Synaptic Transmission from Somatostatin-expressing Interneurons to Excitatory Neurons Mediated by α5-subunit-containing GABA A Receptors in the Developing Visual Cortex. Neuroscience 2020; 449:147-156. [PMID: 32926954 DOI: 10.1016/j.neuroscience.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Dendrite-targeting somatostatin-expressing interneurons (SST-INs) powerfully control signal integration and synaptic plasticity in pyramidal dendrites during cortical development. We previously showed that synaptic transmission from SST-INs to pyramidal cells (PCs) (SST-IN → PC) in the mouse visual cortex suddenly declined at around the second postnatal week. However, it is unclear what specific postsynaptic mechanisms underlie this developmental change. Using multiple whole-cell patch-clamp recordings, we found that application of an α5-GABAA receptor-selective inverse agonist, alpha5IA, significantly weakened SST-IN → PC unitary inhibitory postsynaptic currents (uIPSCs) in layer 2/3 of the mouse visual cortex, but had no effect on uIPSCs from SST-INs to other types of interneurons. The extent of alpha5IA-induced reduction of SST-IN → PC synaptic transmission was significantly larger at postnatal days 11-13 (P11-13) than P14-17. Moreover, α5-subunit-containing GABAA receptors (α5-GABAARs)-mediated uIPSCs had slow rise and decay kinetics. Apart from pharmacological test, we observed that SST-IN → PC synapses did indeed contain α5-GABAARs by immunogold labeling for electron microscopy. More importantly, coinciding with the weakening of SST-IN → PC synaptic transmission, the number of α5-GABAAR particles in SST-IN → PC synapses significantly decreased at around the second postnatal week. Together, these data indicate that α5-GABAARs are involved in synaptic transmission from SST-INs to PCs in the neocortex, and are significantly diminished around the second postnatal week.
Collapse
Affiliation(s)
- Jun-Wei Cao
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wuqiang Guan
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Chun Yu
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yinghui Fu
- Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Hamdy N, Eide S, Sun HS, Feng ZP. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 2020; 334:113457. [PMID: 32889009 DOI: 10.1016/j.expneurol.2020.113457] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia and resulting encephalopathies are of significant concern. Intrapartum asphyxia is a leading cause of neonatal death globally. Among surviving infants, there remains a high incidence of hypoxic-ischemic encephalopathy due to neonatal hypoxic-ischemic brain injury, manifesting as mild conditions including attention deficit hyperactivity disorder, and debilitating disorders such as cerebral palsy. Various animal models of neonatal hypoxic brain injury have been implemented to explore cellular and molecular mechanisms, assess the potential of novel therapeutic strategies, and characterize the functional and behavioural correlates of injury. Each of the animal models has individual advantages and limitations. The present review looks at several widely-used and alternative rodent models of neonatal hypoxia and hypoxia-ischemia; it highlights their strengths and limitations, and their potential for continued and improved use.
Collapse
Affiliation(s)
- Nancy Hamdy
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sarah Eide
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
10
|
Kalish BT, Barkat TR, Diel EE, Zhang EJ, Greenberg ME, Hensch TK. Single-nucleus RNA sequencing of mouse auditory cortex reveals critical period triggers and brakes. Proc Natl Acad Sci U S A 2020; 117:11744-11752. [PMID: 32404418 PMCID: PMC7261058 DOI: 10.1073/pnas.1920433117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Auditory experience drives neural circuit refinement during windows of heightened brain plasticity, but little is known about the genetic regulation of this developmental process. The primary auditory cortex (A1) of mice exhibits a critical period for thalamocortical connectivity between postnatal days P12 and P15, during which tone exposure alters the tonotopic topography of A1. We hypothesized that a coordinated, multicellular transcriptional program governs this window for patterning of the auditory cortex. To generate a robust multicellular map of gene expression, we performed droplet-based, single-nucleus RNA sequencing (snRNA-seq) of A1 across three developmental time points (P10, P15, and P20) spanning the tonotopic critical period. We also tone-reared mice (7 kHz pips) during the 3-d critical period and collected A1 at P15 and P20. We identified and profiled both neuronal (glutamatergic and GABAergic) and nonneuronal (oligodendrocytes, microglia, astrocytes, and endothelial) cell types. By comparing normal- and tone-reared mice, we found hundreds of genes across cell types showing altered expression as a result of sensory manipulation during the critical period. Functional voltage-sensitive dye imaging confirmed GABA circuit function determines critical period onset, while Nogo receptor signaling is required for its closure. We further uncovered previously unknown effects of developmental tone exposure on trajectories of gene expression in interneurons, as well as candidate genes that might execute tonotopic plasticity. Our single-nucleus transcriptomic resource of developing auditory cortex is thus a powerful discovery platform with which to identify mediators of tonotopic plasticity.
Collapse
Affiliation(s)
- Brian T Kalish
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Tania R Barkat
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Erin E Diel
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Center for Brain Science, Harvard University, Cambridge, MA 02138
| | | | | | - Takao K Hensch
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138;
- Center for Brain Science, Harvard University, Cambridge, MA 02138
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Child Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
11
|
Di J, Li J, O’Hara B, Alberts I, Xiong L, Li J, Li X. The role of GABAergic neural circuits in the pathogenesis of autism spectrum disorder. Int J Dev Neurosci 2020; 80:73-85. [DOI: 10.1002/jdn.10005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jing Di
- Department of Neurology David Geffen School of Medicine at UCLA Los Angeles CA USA
| | - Jian Li
- Department of Pediatrics the Second Xiangya HospitalCentral South University Changsha P.R. China
| | - Bruce O’Hara
- Department of Biology University of Kentucky Lexington KY USA
| | - Ian Alberts
- Department of Natural Sciences LaGuardia CCCUNY New York NY USA
| | - Lei Xiong
- Department of Clinical Medicine Yunnan University of Chinese Medicine Kunming P.R. China
| | - Jijun Li
- Department of Integrative Medicine on Pediatrics Shanghai Children’s Medical Center Shanghai Jiao Tong University School of Medicine Shanghai P.R. China
| | - Xiaohong Li
- Department of Neurochemistry New York State Institute for Basic Research in Developmental Disabilities New York NY USA
| |
Collapse
|
12
|
Developmental Changes in Serotonergic Modulation of GABAergic Synaptic Transmission and Postsynaptic GABA A Receptor Composition in the Cerebellar Nuclei. THE CEREBELLUM 2019; 17:346-358. [PMID: 29349630 DOI: 10.1007/s12311-018-0922-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Outputs from the cerebellar nuclei (CN) are important for generating and controlling movement. The activity of CN neurons is controlled not only by excitatory inputs from mossy and climbing fibers and by γ-aminobutyric acid (GABA)-based inhibitory transmission from Purkinje cells in the cerebellar cortex but is also modulated by inputs from other brain regions, including serotonergic fibers that originate in the dorsal raphe nuclei. We examined the modulatory effects of serotonin (5-HT) on GABAergic synapses during development, using rat cerebellar slices. As previously reported, 5-HT presynaptically decreased the amplitudes of stimulation-evoked inhibitory postsynaptic currents (IPSCs) in CN neurons, with this effect being stronger in slices from younger animals (postnatal days [P] 11-13) than in slices from older animals (P19-21). GABA release probabilities accordingly exhibited significant decreases from P11-13 to P19-21. Although there was a strong correlation between the GABA release probability and the magnitude of 5-HT-induced inhibition, manipulating the release probability by changing extracellular Ca2+ concentrations failed to control the extent of 5-HT-induced inhibition. We also found that the IPSCs exhibited slower kinetics at P11-13 than at P19-21. Pharmacological and molecular biological tests revealed that IPSC kinetics were largely determined by the prevalence of α1 subunits within GABAA receptors. In summary, pre- and postsynaptic developmental changes in serotonergic modulation and GABAergic synaptic transmission occur during the second to third postnatal weeks and may significantly contribute to the formation of normal adult cerebellar function.
Collapse
|
13
|
Neurobehavioral and oxidative stress alterations following methylmercury and retinyl palmitate co-administration in pregnant and lactating rats and their offspring. Neurotoxicology 2018; 69:164-180. [DOI: 10.1016/j.neuro.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022]
|
14
|
Skilbeck KJ, Johnston GA, Hinton T. Long-lasting effects of early-life intervention in mice on adulthood behaviour, GABA A receptor subunit expression and synaptic clustering. Pharmacol Res 2018; 128:179-189. [DOI: 10.1016/j.phrs.2017.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/21/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023]
|
15
|
Layer-specific Developmental Changes in Excitation and Inhibition in Rat Primary Visual Cortex. eNeuro 2017; 4:eN-CFN-0402-17. [PMID: 29379869 PMCID: PMC5779119 DOI: 10.1523/eneuro.0402-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Cortical circuits are profoundly shaped by experience during postnatal development. The consequences of altered vision during the critical period for ocular dominance plasticity have been extensively studied in rodent primary visual cortex (V1). However, little is known about how eye opening, a naturally occurring event, influences the maturation of cortical microcircuits. Here we used a combination of slice electrophysiology and immunohistochemistry in rat V1 to ask whether manipulating the time of eye opening for 3 or 7 d affects cortical excitatory and inhibitory synaptic transmission onto excitatory neurons uniformly across layers or induces laminar-specific effects. We report that binocular delayed eye opening for 3 d showed similar reductions of excitatory and inhibitory synaptic transmission in layers 2/3, 4, and 5. Synaptic transmission recovered to age-matched control levels if the delay was prolonged to 7 d, suggesting that these changes were dependent on binocular delay duration. Conversely, laminar-specific and long-lasting effects were observed if eye opening was delayed unilaterally. Our data indicate that pyramidal neurons located in different cortical laminae have distinct sensitivity to altered sensory drive; our data also strongly suggest that experience plays a fundamental role in not only the maturation of synaptic transmission, but also its coordination across cortical layers.
Collapse
|
16
|
Guan W, Cao JW, Liu LY, Zhao ZH, Fu Y, Yu YC. Eye opening differentially modulates inhibitory synaptic transmission in the developing visual cortex. eLife 2017; 6:32337. [PMID: 29227249 PMCID: PMC5746341 DOI: 10.7554/elife.32337] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022] Open
Abstract
Eye opening, a natural and timed event during animal development, influences cortical circuit assembly and maturation; yet, little is known about its precise effect on inhibitory synaptic connections. Here, we show that coinciding with eye opening, the strength of unitary inhibitory postsynaptic currents (uIPSCs) from somatostatin-expressing interneurons (Sst-INs) to nearby excitatory neurons, but not interneurons, sharply decreases in layer 2/3 of the mouse visual cortex. In contrast, the strength of uIPSCs from fast-spiking interneurons (FS-INs) to excitatory neurons significantly increases during eye opening. More importantly, these developmental changes can be prevented by dark rearing or binocular lid suture, and reproduced by the artificial opening of sutured lids. Mechanistically, this differential maturation of synaptic transmission is accompanied by a significant change in the postsynaptic quantal size. Together, our study reveals a differential regulation in GABAergic circuits in the cortex driven by eye opening may be crucial for cortical maturation and function.
Collapse
Affiliation(s)
- Wuqiang Guan
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Jun-Wei Cao
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lin-Yun Liu
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhi-Hao Zhao
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yinghui Fu
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yong-Chun Yu
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Nguyen AT, Armstrong EA, Yager JY. Neurodevelopmental Reflex Testing in Neonatal Rat Pups. J Vis Exp 2017. [PMID: 28518104 DOI: 10.3791/55261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neurodevelopmental reflex testing is commonly used in clinical practice to assess the maturation of the nervous system. Neurodevelopmental reflexes are also referred to as primitive reflexes. They are sensitive and consistent with later outcomes. Abnormal reflexes are described as an absence, persistence, reappearance, or latency of reflexes, which are predictive indices of infants that are at high risk for neurodevelopmental disorders. Animal models of neurodevelopmental disabilities, such as cerebral palsy, often display aberrant developmental reflexes, as would be observed in human infants. The techniques described assess a variety of neurodevelopmental reflexes in neonatal rats. Neurodevelopmental reflex testing offers the investigator a testing method that is not otherwise available in such young animals. The methodology presented here aims to assist investigators in examining developmental milestones in neonatal rats as a method of detecting early-onset brain injury and/or determining the effectiveness of therapeutic interventions. The methodology presented here aims to provide a general guideline for investigators.
Collapse
|
18
|
GABAergic Function as a Limiting Factor for Prefrontal Maturation during Adolescence. Trends Neurosci 2016; 39:441-448. [PMID: 27233681 DOI: 10.1016/j.tins.2016.04.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022]
Abstract
Adolescence is a vulnerable period for the onset of mental illnesses including schizophrenia and affective disorders, yet the neurodevelopmental processes underlying this vulnerability remain poorly understood. The prefrontal cortex (PFC) and its local GABAergic system are thought to contribute to the core of cognitive deficits associated with such disorders. However, clinical and preclinical end-point analyses performed in adults are likely to give limited insight into the cellular mechanisms that are altered during adolescence but are only manifested in adulthood. This perspective summarizes work regarding the developmental trajectories of the GABAergic system in the PFC during adolescence to provide an insight into the increased susceptibility to psychiatric disorders during this critical developmental period.
Collapse
|
19
|
Regional Specificity of GABAergic Regulation of Cross-Modal Plasticity in Mouse Visual Cortex after Unilateral Enucleation. J Neurosci 2015; 35:11174-89. [PMID: 26269628 DOI: 10.1523/jneurosci.3808-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED In adult mice, monocular enucleation (ME) results in an immediate deactivation of the contralateral medial monocular visual cortex. An early restricted reactivation by open eye potentiation is followed by a late overt cross-modal reactivation by whiskers (Van Brussel et al., 2011). In adolescence (P45), extensive recovery of cortical activity after ME fails as a result of suppression or functional immaturity of the cross-modal mechanisms (Nys et al., 2014). Here, we show that dark exposure before ME in adulthood also prevents the late cross-modal reactivation component, thereby converting the outcome of long-term ME into a more P45-like response. Because dark exposure affects GABAergic synaptic transmission in binocular V1 and the plastic immunity observed at P45 is reminiscent of the refractory period for inhibitory plasticity reported by Huang et al. (2010), we molecularly examined whether GABAergic inhibition also regulates ME-induced cross-modal plasticity. Comparison of the adaptation of the medial monocular and binocular cortices to long-term ME or dark exposure or a combinatorial deprivation revealed striking differences. In the medial monocular cortex, cortical inhibition via the GABAA receptor α1 subunit restricts cross-modal plasticity in P45 mice but is relaxed in adults to allow the whisker-mediated reactivation. In line, in vivo pharmacological activation of α1 subunit-containing GABAA receptors in adult ME mice specifically reduces the cross-modal aspect of reactivation. Together with region-specific changes in glutamate acid decarboxylase (GAD) and vesicular GABA transporter expression, these findings put intracortical inhibition forward as an important regulator of the age-, experience-, and cortical region-dependent cross-modal response to unilateral visual deprivation. SIGNIFICANCE STATEMENT In adult mice, vision loss through one eye instantly reduces neuronal activity in the visual cortex. Strengthening of remaining eye inputs in the binocular cortex is followed by cross-modal adaptations in the monocular cortex, in which whiskers become a dominant nonvisual input source to attain extensive cortical reactivation. We show that the cross-modal component does not occur in adolescence because of increased intracortical inhibition, a phenotype that was mimicked in adult enucleated mice when treated with indiplon, a GABAA receptor α1 agonist. The cross-modal versus unimodal responses of the adult monocular and binocular cortices also mirror regional specificity in inhibitory alterations after visual deprivation. Understanding cross-modal plasticity in response to sensory loss is essential to maximize patient susceptibility to sensory prosthetics.
Collapse
|
20
|
Kirmse K, Kummer M, Kovalchuk Y, Witte OW, Garaschuk O, Holthoff K. GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nat Commun 2015; 6:7750. [PMID: 26177896 DOI: 10.1038/ncomms8750] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022] Open
Abstract
A large body of evidence from in vitro studies suggests that GABA is depolarizing during early postnatal development. However, the mode of GABA action in the intact developing brain is unknown. Here we examine the in vivo effects of GABA in cells of the upper cortical plate using a combination of electrophysiological and Ca(2+)-imaging techniques. We report that at postnatal days (P) 3-4, GABA depolarizes the majority of immature neurons in the occipital cortex of anaesthetized mice. At the same time, GABA does not efficiently activate voltage-gated Ca(2+) channels and fails to induce action potential firing. Blocking GABA(A) receptors disinhibits spontaneous network activity, whereas allosteric activation of GABA(A) receptors has the opposite effect. In summary, our data provide evidence that in vivo GABA acts as a depolarizing neurotransmitter imposing an inhibitory control on network activity in the neonatal (P3-4) neocortex.
Collapse
Affiliation(s)
- Knut Kirmse
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Michael Kummer
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Yury Kovalchuk
- Institute of Physiology II, Eberhard-Karls University Tübingen, D-72074 Tübingen, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Olga Garaschuk
- Institute of Physiology II, Eberhard-Karls University Tübingen, D-72074 Tübingen, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| |
Collapse
|
21
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Moran LM, Fitting S, Booze RM, Webb KM, Mactutus CF. Neonatal intrahippocampal HIV-1 protein Tat(1-86) injection: neurobehavioral alterations in the absence of increased inflammatory cytokine activation. Int J Dev Neurosci 2014; 38:195-203. [PMID: 25285887 DOI: 10.1016/j.ijdevneu.2014.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 01/05/2023] Open
Abstract
Pediatric AIDS caused by human immunodeficiency virus type 1 (HIV-1) remains one of the leading worldwide causes of childhood morbidity and mortality. HIV-1 proteins, such as Tat and gp120, are believed to play a crucial role in the neurotoxicity of pediatric HIV-1 infection. Detrimental effects on development, behavior, and neuroanatomy follow neonatal exposure to the HIV-1 viral toxins Tat1-72 and gp120. The present study investigated the neurobehavioral effects induced by the HIV-1 neurotoxic protein Tat1-86, which encodes the first and second exons of the Tat protein. In addition, the potential effects of HIV-1 toxic proteins Tat1-86 and gp120 on inflammatory pathways were examined in neonatal brains. Vehicle, 25 μg Tat1-86 or 100 ng gp120 was injected into the hippocampus of male Sprague-Dawley pups on postnatal day 1 (PD1). Tat1-86 induced developmental neurotoxic effects, as witnessed by delays in eye opening, delays in early reflex development and alterations in prepulse inhibition (PPI) and between-session habituation of locomotor activity. Overall, the neurotoxic profile of Tat1-86 appeared more profound in the developing nervous system in vivo relative to that seen with the first exon encoded Tat1-72 (Fitting et al., 2008b), as noted on measures of eye opening, righting reflex, and PPI. Neither the direct PD1 CNS injection of the viral HIV-1 protein variant Tat1-86, nor the HIV-1 envelope protein gp120, at doses sufficient to induce neurotoxicity, necessarily induced significant expression of the inflammatory cytokine IL-1β or inflammatory factors NF-κβ and I-κβ. The findings agree well with clinical observations that indicate delays in developmental milestones of pediatric HIV-1 patients, and suggest that activation of inflammatory pathways is not an obligatory response to viral protein-induced neurotoxicity that is detectable with behavioral assessments. Moreover, the amino acids encoded by the second tat exon may have unique actions on the developing hippocampus.
Collapse
Affiliation(s)
- Landhing M Moran
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Sylvia Fitting
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Rosemarie M Booze
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Katy M Webb
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Charles F Mactutus
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA.
| |
Collapse
|
23
|
Effects of prenatal propofol exposure on postnatal development in rats. Neurotoxicol Teratol 2014; 43:51-8. [DOI: 10.1016/j.ntt.2014.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 11/20/2022]
|
24
|
Griffen TC, Maffei A. GABAergic synapses: their plasticity and role in sensory cortex. Front Cell Neurosci 2014; 8:91. [PMID: 24723851 PMCID: PMC3972456 DOI: 10.3389/fncel.2014.00091] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022] Open
Abstract
The mammalian neocortex is composed of a variety of cell types organized in a highly interconnected circuit. GABAergic neurons account for only about 20% of cortical neurons. However, they show widespread connectivity and a high degree of diversity in morphology, location, electrophysiological properties and gene expression. In addition, distinct populations of inhibitory neurons have different sensory response properties, capacities for plasticity and sensitivities to changes in sensory experience. In this review we summarize experimental evidence regarding the properties of GABAergic neurons in primary sensory cortex. We will discuss how distinct GABAergic neurons and different forms of GABAergic inhibitory plasticity may contribute to shaping sensory cortical circuit activity and function.
Collapse
Affiliation(s)
- Trevor C Griffen
- SUNY Eye Research Consortium Buffalo, NY, USA ; Program in Neuroscience, SUNY - Stony Brook Stony Brook, NY, USA ; Medical Scientist Training Program, SUNY - Stony Brook Stony Brook, NY, USA
| | - Arianna Maffei
- SUNY Eye Research Consortium Buffalo, NY, USA ; Department of Neurobiology and Behavior, SUNY - Stony Brook Stony Brook, NY, USA
| |
Collapse
|
25
|
Gutzmann A, Ergül N, Grossmann R, Schultz C, Wahle P, Engelhardt M. A period of structural plasticity at the axon initial segment in developing visual cortex. Front Neuroanat 2014; 8:11. [PMID: 24653680 PMCID: PMC3949221 DOI: 10.3389/fnana.2014.00011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/20/2014] [Indexed: 01/09/2023] Open
Abstract
Cortical networks are shaped by sensory experience and are most susceptible to modifications during critical periods characterized by enhanced plasticity at the structural and functional level. A system particularly well-studied in this context is the mammalian visual system. Plasticity has been documented for the somatodendritic compartment of neurons in detail. A neuronal microdomain not yet studied in this context is the axon initial segment (AIS) located at the proximal axon segment. It is a specific electrogenic axonal domain and the site of action potential (AP) generation. Recent studies showed that structure and function of the AIS can be dynamically regulated. Here we hypothesize that the AIS shows a dynamic regulation during maturation of the visual cortex. We therefore analyzed AIS length development from embryonic day (E) 12.5 to adulthood in mice. A tri-phasic time course of AIS length remodeling during development was observed. AIS first appeared at E14.5 and increased in length throughout the postnatal period to a peak between postnatal day (P) 10 to P15 (eyes open P13–14). Then, AIS length was reduced significantly around the beginning of the critical period for ocular dominance plasticity (CP, P21). Shortest AIS were observed at the peak of the CP (P28), followed by a moderate elongation toward the end of the CP (P35). To test if the dynamic maturation of the AIS is influenced by eye opening (onset of activity), animals were deprived of visual input before and during the CP. Deprivation for 1 week prior to eye opening did not affect AIS length development. However, deprivation from P0 to 28 and P14 to 28 resulted in AIS length distribution similar to the peak at P15. In other words, deprivation from birth prevents the transient shortening of the AIS and maintains an immature AIS length. These results are the first to suggest a dynamic maturation of the AIS in cortical neurons and point to novel mechanisms in the development of neuronal excitability.
Collapse
Affiliation(s)
- Annika Gutzmann
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Nursah Ergül
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Rebecca Grossmann
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Christian Schultz
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Petra Wahle
- AG Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Germany
| | - Maren Engelhardt
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| |
Collapse
|
26
|
Avolio E, Facciolo RM, Alò R, Mele M, Carelli A, Canonaco A, Mosciaro L, Talani G, Biggio G, Sanna E, Mahata SK, Canonaco M. Expression variations of chromogranin A and α1,2,4 GABA(A)Rs in discrete limbic and brainstem areas rescue cardiovascular alterations. Neurosci Res 2013; 77:8-15. [PMID: 23916832 DOI: 10.1016/j.neures.2013.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 12/21/2022]
Abstract
Recent interferences of hemodynamic functions via modified brain neuronal mechanisms have proven to be major causes of dementia and sleeping disorders. In this work, cerebral expression differences of the neuroactive vesicular chromogranin A (CgA) and distinct α GABA(A)R subunits were detected in the facultative hibernating hamster. In particular, damaged neuronal fields of hypotensive torpor (TORP) state were correlated to elevated CgA and GABA(A)R α1, α4 mRNA levels in the paraventricular hypothalamic nucleus (PVN), central amygdalar nucleus (CeA) plus solitary tractus nucleus (NTS). Conversely, few neurodegeneration signals of hypertensive arousal (AROU) state, accounted for mostly lower CgA levels in the same areas. This state also provided increased α2-containing sites in amygdala, hippocampal and NTS neurons together with elevated α4-containing receptors in the periventricular hypothalamic nucleus (Pe). Interestingly in our hibernating model, CgA appeared to preferentially feature inhibitory neurosignals as indicated by preliminary perfusion of amygdalar sites with its highly specific antihypertensive derived peptide (catestatin) promoting GABA-dependent sIPSCs. Overall, evident neuronal damages plus altered expression capacities of CgA and α1-, α2-, α4-GABA(A)Rs in CeA, Pe, PVN as well as NTS during both hibernating states corroborate for the first time key molecular switching events guaranteeing useful cardiovascular rescuing abilities of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ennio Avolio
- Comparative Neuroanatomy Laboratory, University of Calabria, Ponte P. Bucci 4B, 87030 Arcavacata di Rende, Cosenza, Italy; Health Center srl, via Alimena 6, 87100 Cosenza, Italy; VA San Diego Healthcare System/Department of Medicine, University of California-San Diego, La Jolla, CA 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jang HJ, Cho KH, Kim MJ, Yoon SH, Rhie DJ. Layer- and cell-type-specific tonic GABAergic inhibition of pyramidal neurons in the rat visual cortex. Pflugers Arch 2013; 465:1797-810. [DOI: 10.1007/s00424-013-1313-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
|
28
|
Liu Y, Shi X, Li Y, Zhao K. The influences of dark rearing on the transmission characteristics of layer II/III pyramidal cells during the critical period. Brain Res 2012; 1457:26-32. [PMID: 22534484 DOI: 10.1016/j.brainres.2012.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/19/2012] [Accepted: 03/27/2012] [Indexed: 11/25/2022]
Abstract
The characteristics of synaptic plasticity on layer II/III pyramidal cells in different ages of rats have been studied extensively, and dark rearing is one of the important impact factors. To systematically analyze the influence of dark rearing on synaptic plasticity during the critical period of visual development, we studied the characteristics of short-term and long-term synaptic plasticities of layer II/III pyramidal cells of rats in three rearing conditions during P14 to P37. The paired-pulse ratio (PPR) of inhibitory postsynaptic currents (IPSCs) of layer II/III pyramidal cells was effected by both ages and rearing conditions, but the PPR of excitatory postsynaptic currents (EPSCs) did not change obviously. Moreover, long-term synaptic plasticity of rats in the dark rearing condition did not significantly change with age, while it was elevated during P16 and P21 for rats in the normal rearing condition. These results suggest that visual experience can affect the characteristics of short-term and long-term synaptic plasticities. The IPSC/EPSC ratio increased gradually with aging for NR rats, but the ratio slightly decreased for DR rats, which indicates the relative increase of inhibitory components during the critical period of visual development. The characteristics during P35 and P37 of the 30-day dark-reared (30D×N) group had similar trends with the normal-reared rats during P16 and P21, which emphasizes that dark rearing can postpone the timing of the critical period.
Collapse
Affiliation(s)
- Yuyan Liu
- Tianjin Medical University, Tianjin, 300070, China
| | | | | | | |
Collapse
|
29
|
Guo F, Zhang J, Zhu X, Cai R, Zhou X, Sun X. Auditory discrimination training rescues developmentally degraded directional selectivity and restores mature expression of GABA(A) and AMPA receptor subunits in rat auditory cortex. Behav Brain Res 2012; 229:301-7. [PMID: 22306199 DOI: 10.1016/j.bbr.2011.12.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 11/25/2022]
Abstract
Auditory frequency discrimination training can remediate deteriorated frequency representations and temporal information processing in the adult primary auditory cortex induced by early post-natal pulsed noise exposure. In this study, we investigated the neural mechanisms underlying the restoration of directional selectivity by auditory spatial discrimination training. Rats exposed to pulsed noise during a post-natal critical period demonstrated reduced auditory directional selectivity but could be successfully trained to identify a target sound stimulus at a specific azimuth angle using a reward-contingent auditory discrimination task (EXP rats). In contrast, rats passively exposed to the training procedure but no reward for correct identification of the azimuth angle (PNR rats) showed no improvement and behavioral performance remained significantly below EXP rats and control (CON) rats reared under a normal sonic environment. The expression levels of GABA(A) receptor subunits α1, α3, β2, and β3, and the AMPA GluR2 subunit were significantly altered in the auditory cortex of untrained noise-raised (NR and PNR) rats compared to age-matched CON rats, while trained noise-raised (EXP) rats exhibited levels of expression not significantly different from CON rats. Thus, reward-contingent sound-azimuth discrimination training may remediate directional selectivity by restoring the proper expression profile of neurotransmitter receptor subunits in the auditory cortex, allowing for normal spatial selectivity by cortical neurons. The development of auditory directional selectivity depends on the regulated expression of these excitatory and inhibitory neurotransmitter receptor subunits; early pulsed noise may disrupt the normal development of directional selectivity by interfering with receptor expression.
Collapse
Affiliation(s)
- Fei Guo
- School of Life Science, Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | | | | | | | | | | |
Collapse
|
30
|
Paluszkiewicz SM, Martin BS, Huntsman MM. Fragile X syndrome: the GABAergic system and circuit dysfunction. Dev Neurosci 2011; 33:349-64. [PMID: 21934270 DOI: 10.1159/000329420] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/10/2011] [Indexed: 12/18/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disability, sensory hypersensitivity, and high incidences of autism spectrum disorders and epilepsy. These phenotypes are suggestive of defects in neural circuit development and imbalances in excitatory glutamatergic and inhibitory GABAergic neurotransmission. While alterations in excitatory synapse function and plasticity are well-established in Fmr1 knockout (KO) mouse models of FXS, a number of recent electrophysiological and molecular studies now identify prominent defects in inhibitory GABAergic transmission in behaviorally relevant forebrain regions such as the amygdala, cortex, and hippocampus. In this review, we summarize evidence for GABAergic system dysfunction in FXS patients and Fmr1 KO mouse models alike. We then discuss some of the known developmental roles of GABAergic signaling, as well as the development and refinement of GABAergic synapses as a framework for understanding potential causes of mature circuit dysfunction. Finally, we highlight the GABAergic system as a relevant target for the treatment of FXS.
Collapse
Affiliation(s)
- Scott M Paluszkiewicz
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | |
Collapse
|
31
|
Lazarus MS, Huang ZJ. Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity. J Neurophysiol 2011; 106:775-87. [PMID: 21613595 DOI: 10.1152/jn.00729.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the rodent primary visual cortex, maturation of GABA inhibitory circuitry is regulated by visual input and contributes to the onset and progression of ocular dominance (OD) plasticity. Cortical inhibitory circuitry consists of diverse groups of GABAergic interneurons, which display distinct physiological properties and connectivity patterns. Whether different classes of interneurons mature with similar or distinct trajectories and how their maturation profiles relate to experience dependent development are not well understood. We used green fluorescent protein reporter lines to study the maturation of two broad classes of cortical interneurons: parvalbumin-expressing (PV) cells, which are fast spiking and innervate the soma and proximal dendrites, and somatostatin-expressing (SOM) cells, which are regular spiking and target more distal dendrites. Both cell types demonstrate extensive physiological maturation, but with distinct trajectories, from eye opening to the peak of OD plasticity. Typical fast-spiking characteristics of PV cells became enhanced, and synaptic signaling from PV to pyramidal neurons became faster. SOM cells demonstrated a large increase in input resistance and a depolarization of resting membrane potential, resulting in increased excitability. While the substantial maturation of PV cells is consistent with the importance of this source of inhibition in triggering OD plasticity, the significant increase in SOM cell excitability suggests that dendrite-targeted inhibition may also play a role in OD plasticity. More generally, these results underscore the necessity of cell type-based analysis and demonstrate that distinct classes of cortical interneurons have markedly different developmental profiles, which may contribute to the progressive emergence of distinct functional properties of cortical circuits.
Collapse
Affiliation(s)
- Matthew S Lazarus
- Cold Spring Harbor Laboratory, One Bungtown Rd., Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
32
|
Laminar-specific maturation of GABAergic transmission and susceptibility to visual deprivation are related to endocannabinoid sensitivity in mouse visual cortex. J Neurosci 2010; 30:14261-72. [PMID: 20962247 DOI: 10.1523/jneurosci.2979-10.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The developmental period when neuronal responses are modified by visual experience is reported to start and end earlier in layer 4 than in layer 2/3 of the visual cortex, and the maturation of GABAergic inhibitory circuits is suggested to determine the timing of this period. Here, we examine whether the laminar difference in such timing corresponds to a difference in the time course of the functional maturation of GABAergic synaptic transmission to star pyramidal and pyramidal cells in layers 4 and 2/3, respectively, of the mouse visual cortex and whether the development of the strength of GABAergic transmission is affected by visual deprivation in a laminar-specific manner. Our analysis of developmental changes in inhibitory postsynaptic currents of star pyramidal and pyramidal cells evoked by electrical stimulation of afferents or action potentials of fast-spiking GABAergic neurons revealed that there was a sequential maturation of GABAergic function from layers 4 to 2/3. The maturation of inhibition in layer 4 occurred at postnatal week 3, which preceded by 1 week that of layer 2/3. Visual deprivation by dark rearing arrested the functional development of GABAergic transmission in layer 2/3, whereas dark rearing was not so effective in layer 4. GABAergic synapses in layer 2/3 were sensitive to an agonist for cannabinoid type 1 receptors and not normally matured in receptor knock-out mice, whereas those in layer 4 were not so. These results suggest laminar-specific maturation of inhibition and susceptibility to visual deprivation, which may be related to the laminar difference in sensitivity to endocannabinoids.
Collapse
|
33
|
Beston BR, Jones DG, Murphy KM. Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. Front Synaptic Neurosci 2010; 2:138. [PMID: 21423524 PMCID: PMC3059668 DOI: 10.3389/fnsyn.2010.00138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/06/2010] [Indexed: 02/01/2023] Open
Abstract
Experience-dependent development of visual cortex depends on the balance between excitatory and inhibitory activity. This activity is regulated by key excitatory (NMDA, AMPA) and inhibitory (GABAA) receptors. The composition of these receptors changes developmentally, affecting the excitatory–inhibitory (E/I) balance and synaptic plasticity. Until now, it has been unclear how abnormal visual experience affects this balance. To examine this question, we measured developmental changes in excitatory and inhibitory receptor subunits in visual cortex following normal visual experience and monocular deprivation. We used Western blot analysis to quantify expression of excitatory (NR1, NR2A, NR2B, GluR2) and inhibitory (GABAAα1, GABAAα3) receptor subunits. Monocular deprivation promoted a complex pattern of changes in receptor subunit expression that varied with age and was most severe in the region of visual cortex representing the central visual field. To characterize the multidimensional pattern of experience-dependent change in these synaptic mechanisms, we applied a neuroinformatics approach using principal component analysis. We found that monocular deprivation (i) causes a large portion of the normal developmental trajectory to be bypassed, (ii) shifts the E/I balance in favor of more inhibition, and (iii) accelerates the maturation of receptor subunits. Taken together, these results show that monocularly deprived animals have an abnormal balance of the synaptic machinery needed for functional maturation of cortical circuits and for developmental plasticity. This raises the possibility that interventions intended to treat amblyopia may need to address multiple synaptic mechanisms to produce optimal recovery.
Collapse
Affiliation(s)
- Brett R Beston
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
34
|
Pinto JGA, Hornby KR, Jones DG, Murphy KM. Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan. Front Cell Neurosci 2010; 4:16. [PMID: 20592950 PMCID: PMC2893712 DOI: 10.3389/fncel.2010.00016] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/26/2010] [Indexed: 12/18/2022] Open
Abstract
Functional maturation of visual cortex is linked with dynamic changes in synaptic expression of GABAergic mechanisms. These include setting the excitation-inhibition balance required for experience-dependent plasticity, as well as, intracortical inhibition underlying development and aging of receptive field properties. Animal studies have shown that there is developmental regulation of GABAergic mechanisms in visual cortex. In this study, we show for the first time how these mechanisms develop in the human visual cortex across the lifespan. We used Western blot analysis of postmortem tissue from human primary visual cortex (n = 30, range: 20 days to 80 years) to quantify expression of eight pre- and post-synaptic GABAergic markers. We quantified the inhibitory modulating cannabinoid receptor (CB1), GABA vesicular transporter (VGAT), GABA synthesizing enzymes (GAD65/GAD67), GABA(A) receptor anchoring protein (Gephyrin), and GABA(A) receptor subunits (GABA(A)alpha1, GABA(A)alpha2, GABA(A)alpha3). We found a complex pattern of different developmental trajectories, many of which were prolonged and continued well into the teen, young adult, and even older adult years. These included a monotonic increase or decrease (GABA(A)alpha1, GABA(A)alpha2), a biphasic increase then decrease (GAD65, Gephyrin), or multiple increases and decreases (VGAT, CB1) across the lifespan. Comparing the balances between the pre- and post-synaptic markers we found three main transition stages (early childhood, early teen years, aging) when there were rapid switches in the composition of the GABAergic signaling system, indicating that functioning of the GABAergic system must change as the visual cortex develops and ages. Furthermore, these results provide key information for translating therapies developed in animal models into effective treatments for amblyopia in humans.
Collapse
Affiliation(s)
- Joshua G A Pinto
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada
| | | | | | | |
Collapse
|
35
|
Jiang B, Huang S, de Pasquale R, Millman D, Song L, Lee HK, Tsumoto T, Kirkwood A. The maturation of GABAergic transmission in visual cortex requires endocannabinoid-mediated LTD of inhibitory inputs during a critical period. Neuron 2010; 66:248-59. [PMID: 20435001 DOI: 10.1016/j.neuron.2010.03.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2010] [Indexed: 11/24/2022]
Abstract
Endocannabinoids are widely regarded as negative modulators of presynaptic release. Here, we present evidence that in visual cortex endocannabinoids are crucial for the maturation of GABAergic release. We found that between eye opening and puberty, release changes from an immature state with high release probability, short-term depression (STD), and high release variability during irregular patterned activity, to a mature state with reduced release probability, STD, and variability. This transition requires visual experience and stimulation of CB1 cannabinoid receptors as it is mimicked by administration of CB1 agonists, blocked by antagonists, and is absent in CB1R KO mice. In immature slices, activation of CB1 receptors induces long-term depression of inhibitory responses (iLTD) and a reduction in STD and response variability. Based on these findings, we propose that visually induced endocannabinoid-dependent iLTD mediates the developmental decrease in release probability, STD, and response variability, which are characteristic of maturation of cortical GABAergic inhibition.
Collapse
Affiliation(s)
- Bin Jiang
- The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Salgado H, Garcia-Oscos F, Patel A, Martinolich L, Nichols JA, Dinh L, Roychowdhury S, Tseng KY, Atzori M. Layer-specific noradrenergic modulation of inhibition in cortical layer II/III. Cereb Cortex 2010; 21:212-21. [PMID: 20466749 DOI: 10.1093/cercor/bhq081] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Norepinephrine (NE) is released in the neocortex after activation of the locus coeruleus of the brain stem in response to novel, salient, or fight-or-flight stimuli. The role of adrenergic modulation in sensory cortices is not completely understood. We investigated the possibility that NE modifies the balance of inhibition acting on 2 different γ-aminobutyric acid (GABA)ergic pathways. Using patch-clamp recordings, we found that the application of NE induces an α(1) adrenergic receptor-mediated decrease of the amplitude of inhibitory postsynaptic currents (IPSCs) evoked by stimulation of layer I (LI-eIPSCs) and a β and α(2) receptor-mediated increase in the amplitude of IPSCs evoked by stimulation of layer II/III (LII/III-eIPSCs). Analysis of minimal stimulation IPSCs, IPSC kinetics, and sensitivity to the GABA(A) receptor subunit-selective enhancer zolpidem corroborated the functional difference between LI- and LII/III-eIPSCs, suggestive of a distal versus somatic origin of LI- and LII/III-eIPSCs, respectively. These findings suggest that NE shifts the balance between distal and somatic inhibition to the advantage of the latter. We speculate that such shift modifies the balance of sensory-specific and emotional information in the integration of neural input to the upper layers of the auditory cortex.
Collapse
Affiliation(s)
- Humberto Salgado
- Laboratory of Cell and Synaptic Physiology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Postnatal cortical circuit development is characterized by windows of heightened plasticity that contribute to the acquisition of mature connectivity and function. What drives the transition between different critical plasticity windows is not known. Here we show that a switch in sign of inhibitory plasticity correlates with the reported transition between the precritical period (pre-CP) and the critical period (CP) for ocular dominance plasticity (ODP). In layer 4 of binocular visual cortex (V1b), depression of inhibitory synapses onto pyramidal neurons is induced when rats are monocularly deprived for 2 d at the end of the third postnatal week (pre-CP), whereas potentiation is induced if the monocular deprivation is started in the fourth postnatal week (CP). The magnitude of potentiation increases with deprivations started close to the peak of the CP for ODP. The direction of inhibitory plasticity depends on the differential manipulation of circuits activated by the two eyes. During development, these two forms of plasticity shift the balance between excitation and inhibition of the circuit in opposite directions, whereas the excitatory synaptic drive remains unaffected. Inhibitory plasticity is thus fundamental in modulating cortical circuit refinement and might be one of the mechanisms promoting ocular dominance shifts.
Collapse
|
38
|
Heistek TS, Lodder JC, Brussaard AB, Bosman LW, Mansvelder HD. GABAergic inhibition shapes frequency adaptation of cortical activity in a frequency-dependent manner. Brain Res 2010; 1321:31-9. [DOI: 10.1016/j.brainres.2010.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/05/2010] [Accepted: 01/18/2010] [Indexed: 11/26/2022]
|
39
|
Abstract
GABA(A) receptors are sensitive to subtle changes in the environment in both early-life and adulthood. These neurochemical responses to stress in adulthood are sex-dependent. Acute stress induces rapid changes in GABA(A) receptors in experimental animals, with the direction of the changes varying according to the sex of the animals and the stress-paradigm studied. These rapid alterations are of particular interest as they provide an example of fast neurotransmitter system plasticity that may be mediated by stress-induced increases in neurosteroids, perhaps via effects on phosphorylation and/or receptor trafficking. Interestingly, some studies have also provided evidence for long-lasting changes in GABA(A) receptors as a result of exposure to stressors in early-life. The short- and long-term stress sensitivity of the GABAergic system implicates GABA(A) receptors in the non-genetic etiology of psychiatric illnesses such as depression and schizophrenia in which stress may be an important factor.
Collapse
Affiliation(s)
- Kelly J Skilbeck
- Department of Pharmacology, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
40
|
van Elburb RAJ, Bosman LWJ, Ridder MC, Brussaard AB, van Ooyen A. GABAA receptor plasticity provides homeostasis of neuronal activity in a neocortical microcircuit model. BMC Neurosci 2009. [DOI: 10.1186/1471-2202-10-s1-p218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Zhang H, Cai R, Zhang J, Pan Y, Sun X. Environmental enrichment enhances directional selectivity of primary auditory cortical neurons in rats. Neurosci Lett 2009; 463:162-5. [PMID: 19631723 DOI: 10.1016/j.neulet.2009.07.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/14/2009] [Accepted: 07/17/2009] [Indexed: 11/25/2022]
Abstract
Environment enrichment (EE) has an important role in brain plasticity. Previous research has shown that EE increases the response strength of auditory cortical neurons, but it remains unknown whether EE can affect the directional selectivity of auditory neurons. In this study, rats were exposed to EE conditions during the developmental critical period (EE1) or after the critical period (EE2). By in vivo extracellular recording, we found that EE enhanced the directional selectivity of primary auditory cortical neurons in EE1 rats, which showed a sharper azimuth selectivity curve of auditory cortical neurons compared with normal rats. However, there was no significant difference in directional selectivity between the EE2 rats and age-matched control rats. Our findings indicate that early exposure to EE enhances the directional sensitivity of primary auditory cortical neurons. These results provide an insight into developmental plasticity in the auditory system.
Collapse
Affiliation(s)
- Hao Zhang
- School of Life Science, Institute of Cognitive Neuroscience, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | | | | | | | | |
Collapse
|
42
|
Jones DL, Baraban SC. Inhibitory inputs to hippocampal interneurons are reorganized in Lis1 mutant mice. J Neurophysiol 2009; 102:648-58. [PMID: 19515951 DOI: 10.1152/jn.00392.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Epilepsy and brain malformation are commonly associated with excessive synaptic excitation and decreased synaptic inhibition of principal neurons. However, few studies have examined the state of synaptic inhibition of interneurons in an epileptic, malformed brain. We analyzed inhibitory inputs, mediated by gamma-aminobutyric acid (GABA), to hippocampal interneurons in a mouse model of type 1 lissencephaly, a neurological disorder linked with severe seizures and brain malformation. In the disorganized hippocampal area CA1 of Lis1(+/-) mice, we initially observed a selective displacement of fast-spiking, parvalbumin-positive basket-type interneurons from stratum oriens (SO) locations to s. radiatum and s. lacunosum-moleculare (R/LM). Next, we recorded spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) onto visually identified interneurons located in SO or R/LM of Lis1(+/-) mice and age-matched littermate controls. We observed significant, layer-specific reorganizations in GABAergic inhibition of interneurons in Lis1 mutant mice. Spontaneous IPSC frequency onto SO interneurons was significantly increased in hippocampal slices from Lis1(+/-) mice, whereas mIPSC mean amplitude onto these interneurons was significantly decreased. In addition, the weighted decay times of sIPSCs and mIPSCs were significantly increased in R/LM interneurons. Taken together, these findings illustrate the extensive redistribution and reorganization of inhibitory connections between interneurons that can take place in a malformed brain.
Collapse
Affiliation(s)
- Daniel L Jones
- Graduate Program in Neuroscience and Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, USA.
| | | |
Collapse
|
43
|
Wong-Riley MTT, Liu Q. Neurochemical and physiological correlates of a critical period of respiratory development in the rat. Respir Physiol Neurobiol 2009; 164:28-37. [PMID: 18524695 DOI: 10.1016/j.resp.2008.04.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 01/27/2023]
Abstract
Despite its vital importance to life, respiration is not mature at birth in mammals, but rather, it undergoes a great deal of growth, refinement, and adjustments postnatally. Many adjustments do not follow smooth paths, but assume abrupt changes during certain postnatal periods that may render the animal less capable of responding to respiratory stressors. The present review focuses on neurochemical and physiological correlates of a critical period of respiratory development in the rat. In addition to an imbalanced expression of reduced excitatory and enhanced inhibitory neurotransmitters, a switch in the expressions of gamma-aminobutyric acid (GABA)A receptor subunits from alpha3 to alpha1 occurs around postnatal day (P)12 in the pre-Bötzinger nucleus and the ventrolateral subnucleus of the solitary tract nucleus. Possible subunit switches in a number of other neurotransmitter receptors are discussed. These neurochemical changes are paralleled by ventilatory adjustments at the end of the second postnatal week. At P13 and under normoxia, respiratory frequency reaches its peak before assuming a gradual fall, and both tidal volume and minute ventilation exhibit a significant rise prior to a plateau or a gradual decline until P21. The response to acute hypoxia is markedly reduced between P12 and P16, being lowest at P13. Thus, the end of the second postnatal week can be considered as a critical period of respiratory development, during which multiple neurochemical and physiological adjustments and switches are orchestrated at the same time, rendering the system extremely dynamic but, at the same time, vulnerable to externally imposed perturbations and insults. The critical period embodies a time of multi-system, multifaceted growth and adjustments. It is a plastic, transitional period that is also a part of the normal development of the respiratory system.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
44
|
Bosman LWJ, Konnerth A. Activity-dependent plasticity of developing climbing fiber-Purkinje cell synapses. Neuroscience 2009; 162:612-23. [PMID: 19302832 DOI: 10.1016/j.neuroscience.2009.01.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/09/2009] [Accepted: 01/11/2009] [Indexed: 10/21/2022]
Abstract
Elimination of redundant synapses and strengthening of the surviving ones are crucial steps in the development of the nervous system. Both processes can be readily followed at the climbing fiber to Purkinje cell synapse in the cerebellum. Shortly after birth, around five equally strong climbing fiber synapses are established. Subsequently, one of these five synaptic connections starts to grow in size and synaptic strength, while the others degenerate and eventually disappear. Both the elimination of the redundant climbing fiber synapses and the strengthening of the surviving one depend on a combination of a genetically coded blueprint and synaptic activity. Recently, it has been shown that synaptic activity affects the synaptic strength of developing climbing fibers. Remarkably, the same pattern of paired activity of the presynaptic climbing fiber and the postsynaptic Purkinje cell resulted in strengthening of already "large" climbing fibers and weakening of already "weak" climbing fibers. In this review, we will integrate the current knowledge of synaptic plasticity of climbing fibers with that of other processes affecting climbing fiber development.
Collapse
Affiliation(s)
- L W J Bosman
- Department of Neuroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
45
|
Kobayashi M, Hamada T, Kogo M, Yanagawa Y, Obata K, Kang Y. Developmental profile of GABAA-mediated synaptic transmission in pyramidal cells of the somatosensory cortex. Eur J Neurosci 2008; 28:849-61. [DOI: 10.1111/j.1460-9568.2008.06401.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Corner MA. Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: a review of activity-dependent studies in live 'model' systems for the development of intrinsically generated bioelectric slow-wave sleep patterns. ACTA ACUST UNITED AC 2008; 59:221-44. [PMID: 18722470 DOI: 10.1016/j.brainresrev.2008.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
A survey is presented of recent experiments which utilize spontaneous neuronal spike trains as dependent and/or independent variables in developing cerebral cortex cultures when synaptic transmission is interfered with for varying periods of time. Special attention is given to current difficulties in selecting suitable preparations for carrying out biologically relevant developmental studies, and in applying spike-train analysis methods with sufficient resolution to detect activity-dependent age and treatment effects. A hierarchy of synchronized nested burst discharges which approximate early slow-wave sleep patterns in the intact organism is established as a stable basis for isolated cortex function. The complexity of reported long- and short-term homeostatic responses to experimental interference with synaptic transmission is reviewed, and the crucial role played by intrinsically generated bioelectric activity in the maturation of cortical networks is emphasized.
Collapse
Affiliation(s)
- Michael A Corner
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Galanopoulou AS. GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol 2008; 6:1-20. [PMID: 19305785 PMCID: PMC2645547 DOI: 10.2174/157015908783769653] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/24/2007] [Accepted: 08/05/2007] [Indexed: 12/26/2022] Open
Abstract
GABA(A) receptors have an age-adapted function in the brain. During early development, they mediate excitatory effects resulting in activation of calcium sensitive signaling processes that are important for the differentiation of the brain. In more mature stages of development and in adults, GABA(A) receptors transmit inhibitory signals. The maturation of GABA(A) signaling follows sex-specific patterns, which appear to also be important for the sexual differentiation of the brain. The inhibitory effects of GABA(A) receptor activation have been widely exploited in the treatment of conditions where neuronal silencing is necessary. For instance, drugs that target GABA(A) receptors are the mainstay of treatment of seizures. Recent evidence suggests however that the physiology and function of GABA(A) receptors changes in the brain of a subject that has epilepsy or status epilepticus.This review will summarize the physiology of and the developmental factors regulating the signaling and function of GABA(A) receptors; how these may change in the brain that has experienced prior seizures; what are the implications for the age and sex specific treatment of seizures and status epilepticus. Finally, the implications of these changes for the treatment of certain forms of medically refractory epilepsies and status epilepticus will be discussed.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Albert Einstein College of Medicine, Saul R Korey Department of Neurology & Dominick P Purpura, Department of Neuroscience, Bronx NY, USA.
| |
Collapse
|
48
|
Maffei A, Turrigiano G. The age of plasticity: developmental regulation of synaptic plasticity in neocortical microcircuits. PROGRESS IN BRAIN RESEARCH 2008; 169:211-23. [PMID: 18394476 DOI: 10.1016/s0079-6123(07)00012-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proper wiring of neural circuits during development depends on both molecular cues that guide connectivity and activity-dependent mechanisms that use patterned activation to adjust the strength and number of synaptic connections. In this chapter, we discuss some of the plasticity mechanisms underlying the experience-dependent rewiring of visual cortical microcircuits focusing on layer 4 of rat primary visual cortex. The microcircuit in layer 4 has the ability to regulate its excitability by shifting the balance between excitatory and inhibitory synaptic transmission in an experience-dependent manner. Early in postnatal development (shortly after eye opening), visual deprivation activates several forms of homeostatic plasticity that cooperate to adjust layer 4 excitability to compensate for reduced sensory drive. In contrast, during the classical sensitive period for rodent visual system plasticity, this homeostatic response is replaced by mechanisms that reduce the responsiveness of deprived cortex. We discuss this developmentally regulated switch in plasticity within layer 4 and how this might depend on the maturation of excitatory and inhibitory monosynaptic connections. Based on our published data, we propose inhibitory plasticity as an important player in circuit refinement that can contribute both to the compensatory forms of circuit plasticity in the early stages of development and to the pathological loss of function induced by visual deprivation during the critical period.
Collapse
Affiliation(s)
- Arianna Maffei
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
49
|
Sun QQ. The missing piece in the 'use it or lose it' puzzle: is inhibition regulated by activity or does it act on its own accord? Rev Neurosci 2007; 18:295-310. [PMID: 18019611 DOI: 10.1515/revneuro.2007.18.3-4.295] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have gained enormous insight into the mechanisms underlying both activity-dependent and (to a lesser degree) -independent plasticity of excitatory synapses. Recently, cortical inhibition has been shown to play a vital role in the formation of critical periods for sensory plasticity. As such, sculpting of neuronal circuits by inhibition may be a common mechanism by which activity organizes or reorganizes brain circuits. Disturbances in the balance of excitation and inhibition in the neocortex provoke abnormal activities, such as epileptic seizures and abnormal cortical development. However, both the process of experience-dependent postnatal maturation of neocortical inhibitory networks and its underlying mechanisms remain elusive. Mechanisms that match excitation and inhibition are central to achieving balanced function at the level of individual circuits. The goal of this review is to reinforce our understanding of the mechanisms by which developing inhibitory networks are able to adapt to sensory inputs, and to maintain their balance with developing excitatory networks. Discussion is centered on the following questions related to experience-dependent plasticity of neocortical inhibitory networks: 1) What are the roles of GABAergic inhibition in the postnatal maturation of neocortical circuits? 2) Does the maturation of neocortical inhibitory circuits proceed in an activity-dependent manner or do they develop independently of sensory inputs? 3) Does activity regulate inhibitory networks in the same way it regulates excitatory networks? 4) What are the molecular and cellular mechanisms that underlie the activity-dependent maturation of inhibitory networks? 5) What are the functional advantages of experience-dependent plasticity of inhibitory networks to network processing in sensory cortices?
Collapse
Affiliation(s)
- Qian-Quan Sun
- Laboratory of Neural Development and Learning, Department of Zoology and Physiology and Neuroscience Program, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
50
|
Epsztein J, Ben-Ari Y, Represa A, Crépel V. Late-onset epileptogenesis and seizure genesis: lessons from models of cerebral ischemia. Neuroscientist 2007; 14:78-90. [PMID: 17914086 DOI: 10.1177/1073858407301681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients surviving ischemic stroke often express delayed epileptic syndromes. Late poststroke seizures occur after a latency period lasting from several months to years after the insult. These seizures might result from ischemia-induced neuronal death and associated morphological and physiological changes that are only partly elucidated. This review summarizes the long-term morphofunctional alterations observed in animal models of both focal and global ischemia that could explain late-onset seizures and epileptogenesis. In particular, this review emphasizes the change in GABAergic and glutamatergic signaling leading to hyperexcitability and seizure genesis.
Collapse
Affiliation(s)
- Jérôme Epsztein
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 29, and Université de La Méditerranée, Marseille Cedex, France
| | | | | | | |
Collapse
|