1
|
Yu X, Yang H, Lv H, Lu H, Zhao H, Xu Z. Age-Dependent Phenomena of 6-Hz Corneal Kindling Model in Mice. Mol Neurobiol 2024; 61:5601-5613. [PMID: 38214837 DOI: 10.1007/s12035-024-03934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Although numerous studies have acknowledged disparities in epilepsy-related disease processes between young and aged animals, little is known about how epilepsy changes from young adulthood to middle age. This study investigates the impact of aging on 6-Hz corneal kindling in young-adult mice and middle-aged mice. We found that the kindling acquisition of the 6-Hz corneal kindling model was delayed in middle-aged mice when compared to young-adult mice. While the seizure stage and incidence of generalized seizures (GS) were similar between the two age groups, the duration of GS in the kindled middle-aged mice was shorter than that in the kindled young-adult mice. Besides, all kindled mice, regardless of age, were resistant to phenytoin sodium (PHT), valproate sodium (VPA), and lamotrigine (LGT), whereas middle-aged mice exhibited higher levetiracetam (LEV) resistance compared to young-adult mice. Both age groups of kindled mice displayed hyperactivity and impaired memory, which are common behavioral characteristics associated with epilepsy. Furthermore, middle-aged mice displayed more pronounced astrogliosis in the hippocampus. Additionally, the expression of Brain-Derived Neurotrophic Factor (BDNF) was lower in middle-aged mice than in young-adult mice prior to kindling. These data demonstrate that both the acquisition and expression of 6-Hz corneal kindling are attenuated in middle-aged mice, while hippocampal astrogliosis and pharmacological resistance are more pronounced in this age group. These results underscore the importance of considering age-related factors when utilizing the 6-Hz corneal kindling model in mice of varying age groups.
Collapse
Affiliation(s)
- Xiu Yu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Han Yang
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - HongJie Lv
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haimei Lu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huawei Zhao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Zhenghao Xu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
AlRuwaili R, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GES. The Possible Role of Brain-derived Neurotrophic Factor in Epilepsy. Neurochem Res 2024; 49:533-547. [PMID: 38006577 PMCID: PMC10884085 DOI: 10.1007/s11064-023-04064-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Epilepsy is a neurological disease characterized by repeated seizures. Despite of that the brain-derived neurotrophic factor (BDNF) is implicated in the pathogenesis of epileptogenesis and epilepsy, BDNF may have a neuroprotective effect against epilepsy. Thus, the goal of the present review was to highlight the protective and detrimental roles of BDNF in epilepsy. In this review, we also try to find the relation of BDNF with other signaling pathways and cellular processes including autophagy, mTOR pathway, progranulin (PGN), and α-Synuclein (α-Syn) which negatively and positively regulate BDNF/tyrosine kinase receptor B (TrkB) signaling pathway. Therefore, the assessment of BDNF levels in epilepsy should be related to other neuronal signaling pathways and types of epilepsy in both preclinical and clinical studies. In conclusion, there is a strong controversy concerning the potential role of BDNF in epilepsy. Therefore, preclinical, molecular, and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
3
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
4
|
Biomarkers of Drug Resistance in Temporal Lobe Epilepsy in Adults. Metabolites 2023; 13:metabo13010083. [PMID: 36677008 PMCID: PMC9866293 DOI: 10.3390/metabo13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in adults. Experimental and clinical data indicate that neuroinflammation and neurodegeneration accompanying epileptogenesis make a significant contribution to the chronicity of epilepsy and the development of drug resistance in TLE cases. Changes in plasma and serum concentrations of proteins associated with neuroinflammation and neurodegeneration can be predictive biomarkers of the course of the disease. This study used an enzyme-linked immunosorbent assay of the following plasma proteins: brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNFa), and high-mobility group protein B1 (HMGB1) in patients with mesial TLE to search for biomarkers of the disease. The objective of the study was to examine biomarkers of the neuroinflammation and neurodegeneration of plasma: BDNF, TNFa, and HMGB1. The aim of the study was to identify changes in the concentration of circulating pro-inflammatory and neurotrophic factors that are prognostically significant for the development of drug resistance and the course of TLE. A decrease in the concentration of BDNF, TNFa, and HMGB1 was registered in the group of patients with TLE compared with the control group. A significant decrease in the concentration of HMGB1 in patients with drug-resistant TLE was observed. Aberrations in plasma concentrations of BDNF, TNFa, and HMGB1 in patients with TLE compared with the controls have been confirmed by earlier studies. A decrease in the expression of the three biomarkers may be the result of neurodegenerative processes caused by the long course of the disease. The results of the study may indicate the acceptability of using HMGB1 and TNFa as prognostic biological markers to indicate the severity of the disease course and the risk of developing drug resistance.
Collapse
|
5
|
Patel DC, Thompson EG, Sontheimer H. Brain-Derived Neurotrophic Factor Inhibits the Function of Cation-Chloride Cotransporter in a Mouse Model of Viral Infection-Induced Epilepsy. Front Cell Dev Biol 2022; 10:961292. [PMID: 35874836 PMCID: PMC9304572 DOI: 10.3389/fcell.2022.961292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Well over 100 different viruses can infect the brain and cause brain inflammation. In the developing world, brain inflammation is a leading cause for epilepsy and often refractory to established anti-seizure drugs. Epilepsy generally results from an imbalance in excitatory glutamatergic and inhibitory GABAergic neurotransmission. GABAergic inhibition is determined by the intracellular Cl− concentration which is established through the opposing action of two cation chloride cotransporters namely NKCC1 and KCC2. Brain-derived neurotrophic factor (BDNF) signaling is known to regulate expression of KCC2. Hence we hypothesized that viral induced epilepsy may result from aberrant BDNF signaling. We tested this hypothesis using a mouse model of Theiler’s murine encephalomyelitis virus (TMEV) infection-induced epilepsy. We found that BDNF levels in the hippocampus from TMEV-infected mice with seizures was increased at the onset of acute seizures and continued to increase during the peak of acute seizure as well as in latent and chronic phases of epilepsy. During the acute phase of epilepsy, we found significant reduction in the expression of KCC2 in hippocampus, whereas the level of NKCC1 was unaltered. Importantly, inhibiting BDNF using scavenging bodies of BDNF in live brain slices from TMEV-infected mice with seizures normalized the level of KCC2 in hippocampus. Our results suggest that BDNF can directly decrease the relative expression of NKCC1 and KCC2 such as to favor accumulation of chloride intracellularly which in turn causes hyperexcitability by reversing GABA-mediated inhibition. Although our attempt to inhibit the BDNF signaling mediated through tyrosine kinase B–phospholipase Cγ1 (TrkB-PLCγ1) using a small peptide did not change the course of seizure development following TMEV infection, alternative strategies for controlling the BDNF signaling could be useful in preventing seizure generation and development of epilepsy in this model.
Collapse
Affiliation(s)
- Dipan C. Patel
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
| | - Emily G. Thompson
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Harald Sontheimer,
| |
Collapse
|
6
|
Jiang YP, Jin Y, Bao J, Wang S, Lai WD, Wen CP, Xu ZH, Yu J. Inconsistent Time-Dependent Effects of Tetramethylpyrazine on Primary Neurological Disorders and Psychiatric Comorbidities. Front Pharmacol 2021; 12:708517. [PMID: 34489702 PMCID: PMC8417558 DOI: 10.3389/fphar.2021.708517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the time dependent effects of tetramethylpyrazine (TMP, main activity compound of Ligusticum chuanxiong Hort) on two neurological disorders and their neuropsychiatric comorbidities. 6 Hz corneal rapid kindling was used to induce epileptogenesis and the inflammatory pain was induced by intra-articular Complete Freund's adjuvant (CFA) injection. The mechanical pain thresholds were measured using von Frey hair (D4, D11, D18, D25 after CFA first injection), and the vertical rearings of the mice was observed. To test the neuropsychiatric comorbidities, anxiety-like behaviors of mice were examined by open field and elevated plus maze tests. Two behavioral despair models, tail suspension test and forced swimming test were also used to evaluate the depressive like behaviors. The results showed that TMP administered from the initial day (D1-D35 in kindling model, D0-D14 and D0-D28 in CFA model) of modeling retarded both the developments of 6 Hz corneal rapid kindling epileptogenesis and the CFA induced inflammatory pain. In comparison, late periods administration of TMP (D21-D35 in kindling and D14-D28 in CFA model) showed no effect on the epileptogenesis and the generalized seizures (GS) of kindling, but alleviated maintenance of CFA induced inflammatory pain. Furthermore, we also found all TMP treatments from the initial day of modeling alleviated the co-morbid depressive and anxiety-like behaviors in both models; however, late periods treatments did not, either in kindling or the CFA induced inflammatory pain. BDNF/ERK signaling impairment was also tested by western blot, and the results showed that TMP administered from the initial day of modeling increased the hippocampal BDNF/ERK expression, whereas late period administration showed no effects. Overall, our findings reveal the inconsistent time dependent effects of Tetramethylpyrazine on neurological disorders and their relative neuropsychiatric comorbidities, and provide novel insight into the early application of TMP that might enhance hippocampal BDNF/ERK signaling to alleviate neuropsychiatric comorbidities in neurological diseases.
Collapse
Affiliation(s)
- Yue-Peng Jiang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Song Wang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Dong Lai
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng-Ping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng-Hao Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
8
|
Yu Y, Jiang J. COX-2/PGE 2 axis regulates hippocampal BDNF/TrkB signaling via EP2 receptor after prolonged seizures. Epilepsia Open 2020; 5:418-431. [PMID: 32913950 PMCID: PMC7469770 DOI: 10.1002/epi4.12409] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The objective of this study was to identify the signaling pathway that is immediately triggered by status epilepticus (SE) and in turn contributes to the excessive brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase receptor B (TrkB) signaling within the hippocampus. METHODS We used quantitative PCR, enzyme-linked immunosorbent assay, and Western blot analysis to examine gene expression at both mRNA and protein levels in the hippocampus following prolonged SE in mice and rats. Three classical animal models of SE were utilized in the present study to avoid any model- or species-specific findings. RESULTS We showed that both cyclooxygenase-2 (COX-2) and BDNF in the hippocampus were rapidly upregulated after SE onset; however, the induction of COX-2 temporally preceded that of BDNF. Blocking COX-2 activity by selective inhibitor SC-58125 prevented BDNF elevation in the hippocampus following SE; prostaglandin E2 (PGE2), a major product of COX-2 in the brain, was sufficient to stimulate hippocampal cells to secrete BDNF, suggesting that a PGE2 signaling pathway might be directly involved in hippocampal BDNF production. Inhibiting the Gαs-coupled PGE2 receptor EP2 by our recently developed selective antagonist TG6-10-1 decreased the SE-triggered phosphorylation of the cAMP response element-binding protein (CREB) and activation of the BDNF/TrkB signaling in the hippocampus. SIGNIFICANCE The molecular mechanisms whereby BDNF/TrkB signaling is upregulated in the hippocampus by SE largely remain unknown. Our findings suggest that COX-2 via the PGE2/EP2 pathway regulates hippocampal BDNF/TrkB activity following prolonged seizures. EP2 inhibition by our bioavailable and brain-permeable antagonists such as TG6-10-1 might therefore provide a novel strategy to suppress the abnormal TrkB activity, an event that can sufficiently trigger pathogenic processes within the brain including acquired epileptogenesis.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Jianxiong Jiang
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
9
|
Wu YJ, Chien ME, Huang CH, Chiang CC, Lin CC, Huang CW, Durand DM, Hsu KS. Transcranial direct current stimulation alleviates seizure severity in kainic acid-induced status epilepticus rats. Exp Neurol 2020; 328:113264. [DOI: 10.1016/j.expneurol.2020.113264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
|
10
|
Sharma P, Kumar A, Singh D. Dietary Flavonoids Interaction with CREB-BDNF Pathway: An Unconventional Approach for Comprehensive Management of Epilepsy. Curr Neuropharmacol 2020; 17:1158-1175. [PMID: 31400269 PMCID: PMC7057203 DOI: 10.2174/1570159x17666190809165549] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/26/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
cAMP response element binding protein (CREB) is a key transcriptional regulator that regulates the transcription of genes related with neuronal differentiation, synaptic plasticity, learning and memory. Brain derived neurotrophic factor (BDNF), is a CREB dependent gene which plays a pivotal role in the pathogenesis of epilepsy and central comorbid conditions associated with epilepsy. However, the beneficial or detrimental consequences of CREB-BDNF activation on the induction and/or progression of seizures depend specifically on the region of brain involved and the time of activation. The bioactive molecules that alter the activity of CREB in a way to have specialized effects in different brain regions and neural circuits involved could potentially be utilized for therapeutic purposes. Flavonoids are the polyphenolic compounds which lead to phosphorylation of CREB in the hippocampus, followed by increase in extracellular signal regulated kinase (ERK) and BDNF. Several members of flavonoid family have also showed suppression of epileptic seizures via interaction with CREB/BDNF pathway. Moreover, epilepsy is often accompanied by a number of behavioural and psychological comorbid conditions that further gets aggravated by the use of conventional antiepileptic drug therapy. Multiple studies have also supported the beneficial effects of flavonoids in cognitive and memory impairments by upregulation of CREB-BDNF pathway. The current review is an attempt to collate the available preclinical and clinical studies to establish the therapeutic potential of various dietary flavonoids in comprehensive management of epilepsy with relation to CREB-BDNF pathway.
Collapse
Affiliation(s)
- Pallavi Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Amit Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| |
Collapse
|
11
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
12
|
Montagud-Romero S, Cantacorps L, Valverde O. Histone deacetylases inhibitor trichostatin A reverses anxiety-like symptoms and memory impairments induced by maternal binge alcohol drinking in mice. J Psychopharmacol 2019; 33:1573-1587. [PMID: 31294671 DOI: 10.1177/0269881119857208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alcohol exposure during development has detrimental effects, including a wide range of physical, cognitive and neurobehavioural anomalies known as foetal alcohol spectrum disorders. However, alcohol consumption among pregnant woman is an ongoing latent health problem. AIM In the present study, the effects of trichostatin A (TSA) on emotional and cognitive impairments caused by prenatal and lactational alcohol exposure were assessed. TSA is an inhibitor of class I and II histone deacetylases enzymes (HDAC), and for that, HDAC4 activity was determined. We also evaluated mechanisms underlying the behavioural effects observed, including the expression of brain-derived neurotrophic factor (BDNF) in discrete brain regions and newly differentiated neurons in the dentate gyrus (DG). METHODS C57BL/6 female pregnant mice were used, with limited access to a 20% v/v alcohol solution as a procedure to model binge alcohol drinking during gestation and lactation. Male offspring were treated with TSA during the postnatal days (PD28-35) and behaviourally evaluated (PD36-55). RESULTS Early alcohol exposure mice presented increased anxiogenic-like responses and memory deterioration - effects that were partially reversed with TSA. Early alcohol exposure produces a decrease in BDNF levels in the hippocampus (HPC) and prefrontal cortex, a reduction of neurogenesis in the DG and increased activity levels of the HDAC4 in the HPC. CONCLUSIONS Such findings support the participation of HDAC enzymes in cognitive and emotional alterations induced by binge alcohol consumption during gestation and lactation and would indicate potential benefits of HDAC inhibitors for some aspects of foetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM-Hospital del Mar Medical Research Institute, Neurosciences Programme, Barcelona, Spain
| |
Collapse
|
13
|
Leterme G, Guigou C, Oudot A, Collin B, Boudon J, Millot N, Geissler A, Belharet K, Bozorg Grayeli A. Superparamagnetic Nanoparticle Delivery to the Cochlea Through Round Window by External Magnetic Field: Feasibility and Toxicity. Surg Innov 2019; 26:646-655. [PMID: 31478462 DOI: 10.1177/1553350619867217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Introduction. The objective of this study was to evaluate the feasibility and toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) administered into the cochlea through the round window (RW) by an external magnetic field. Materials and Methods. In 5 Wistar rats, the left RW was punctured. SPIONs suspended in hyaluronic gel (5 mg/mL) were applied in the RW niche and covered by a muscle graft. The nanoparticles were mobilized using a rare earth magnet (0.54 T) held in 4 consecutive positions around the head. The right ear served as control. Hearing function was monitored by auditory brainstem responses (4-32 kHz tone bursts). Results. The auditory thresholds remained unchanged 1 month after the administration. The histological study of the cochleae showed that SPIONs were driven into the scala tympani in the basal turn, the second turn, and the apex. Conclusion. Superparamagnetic nanoparticles can be driven inside the cochlea toward the apex with a preserved hearing up to 1 month in rats.
Collapse
Affiliation(s)
- Gaëlle Leterme
- Otolaryngology Department, Dijon University Hospital, Dijon, France.,Laboratoire Imvia, Université Bourgogne-Franche-Comté, Dijon, France
| | - Caroline Guigou
- Otolaryngology Department, Dijon University Hospital, Dijon, France.,Laboratoire Imvia, Université Bourgogne-Franche-Comté, Dijon, France
| | | | - Bertrand Collin
- Centre Georges François Leclerc, Dijon, France.,ICMUB, UMR 6302 CNRS/Université Bourgogne Franche-Comté, Dijon, France
| | - Julien Boudon
- Laboratoire ICB, UMR 6303 CNRS/Université Bourgogne Franche-Comté, Dijon, France
| | - Nadine Millot
- Laboratoire ICB, UMR 6303 CNRS/Université Bourgogne Franche-Comté, Dijon, France
| | - Audrey Geissler
- Plateforme d'imagerie cellulaire CellImaP, Université Bourgogne-Franche-Comté, Dijon, France
| | - Karim Belharet
- Laboratoire PRISME, HEI Campus Centre, Châteauroux, France
| | - Alexis Bozorg Grayeli
- Otolaryngology Department, Dijon University Hospital, Dijon, France.,Laboratoire Imvia, Université Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
14
|
Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology 2019; 167:107734. [PMID: 31377199 DOI: 10.1016/j.neuropharm.2019.107734] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) and status epilepticus (SE) have both been linked to development of human epilepsy. Although distinct etiologies, current research has suggested the convergence of molecular mechanisms underlying epileptogenesis following these insults. One such mechanism involves the neurotrophin brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin related kinase B (TrkB). In this review, we focus on currently available data regarding the pathophysiologic role of BDNF/TrkB signaling in epilepsy development. We specifically examine the axonal injury and SE epilepsy models, two animal models that recapitulate many aspects of TBI- and SE-induced epilepsy in humans respectively. Thereafter, we discuss aspiring strategies for targeting BDNF/TrkB signaling so as to prevent epilepsy following an insult or suppress its expression once developed. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
|
15
|
Effects of enalapril and losartan alone and in combination with sodium valproate on seizures, memory, and cardiac changes in rats. Epilepsy Behav 2019; 92:345-352. [PMID: 30658894 DOI: 10.1016/j.yebeh.2018.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Cardiac changes accompanying seizures may be responsible for sudden unexpected death in epilepsy (SUDEP), and drugs with antiseizure and favorable cardiovascular profile could be beneficial. The effect of losartan and enalapril alone and in combination with sodium valproate on seizures, cognition, cardiac histopathology, and serum brain-derived neurotropic factor (BDNF) levels were determined. METHODS Male "Wistar" rats (200-250 g) were administered enalapril (20 mg/kg, intraperitoneally (i.p.)) and losartan (10 mg/kg, i.p.) daily and simultaneously subjected to pentylenetetrazole (PTZ)-kindling (PTZ 30 mg/kg, i.p., every alternate day). Enalapril and losartan were injected 45 & 120 min before seizure stimuli. In another set of experiments, sodium valproate (150 mg/kg, i.p.) alone or in combination with enalapril (20 mg/kg, i.p.) and losartan (10 mg/kg, i.p.) were administered daily during induction of kindling. The effect on seizures and behavior were noted; rats were sacrificed, and blood and hearts were collected for further analysis, i.e., BDNF levels, heart weight-body weight (HWBW) ratio, and cardiac histopathology. RESULTS Losartan, but not enalapril, suppressed the seizure score in PTZ kindling. Sodium valproate alone or in combination with losartan or enalapril prevented kindled seizures. Sodium valproate per se caused cognitive impairment, which was prevented on combining with losartan or enalapril. A decrease in HWBW ratio was observed only in enalapril group (p value = 0.02). Kindling led to cardiac ischemic changes, which could be prevented by losartan and sodium valproate. Serum BDNF level was decreased in PTZ (p value = 0.02) and sodium valproate per se group (p value = 0.04), but sodium valproate could reverse the PTZ-induced decrease in serum BDNF level. CONCLUSION The use of losartan with sodium valproate in epilepsy may prevent the cognitive and cardiac sequelae of seizures. The BDNF levels as a marker for cardiovascular risk in persons with epilepsy (PWE) needs to be explored further.
Collapse
|
16
|
Montroull LE, Danelon V, Cragnolini AB, Mascó DH. Loss of TrkB Signaling Due to Status Epilepticus Induces a proBDNF-Dependent Cell Death. Front Cell Neurosci 2019; 13:4. [PMID: 30800056 PMCID: PMC6375841 DOI: 10.3389/fncel.2019.00004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/08/2019] [Indexed: 01/25/2023] Open
Abstract
Neurotrophins (NTs) are secretory proteins that bind to target receptors and influence many cellular functions, such as cell survival and cell death in neurons. The mammalian NT brain-derived neurotrophic factor (matBDNF) is the C-terminal mature form released by cleavage from the proBDNF precursor. The binding of matBDNF to the tyrosine kinase receptor B (TrkB) activates different signaling cascades and leads to neuron survival and plasticity, while the interaction of proBDNF with the p75 NT receptor (p75NTR)/sortilin receptor complex has been highly involved in apoptosis. Many studies have demonstrated that prolonged seizures such as status epilepticus (SE) induce changes in the expression of NT, pro-NT, and their receptors. We have previously described that the blockage of both matBDNF and proBDNF signaling reduces neuronal death after SE in vivo (Unsain et al., 2008). We used an in vitro model as well as an in vivo model of SE to determine the specific role of TrkB and proBDNF signaling during neuronal cell death. We found that the matBDNF sequestering molecule TrkB-Fc induced an increase in neuronal death in both models of SE, and it also prevented a decrease in TrkB levels. Moreover, SE triggered the interaction between proBDNF and p75NTR, which was not altered by sequestering matBDNF. The intra-hippocampal administration of TrkB-Fc, combined with an antibody against proBDNF, prevented neuronal degeneration. In addition, we demonstrated that proBDNF binding to p75NTR exacerbates neuronal death when matBDNF signaling is impaired through TrkB. Our results indicated that both the mature and the precursor forms of BDNF may have opposite effects depending on the scenario in which they function and the signaling pathways they activate.
Collapse
Affiliation(s)
- Laura Ester Montroull
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Víctor Danelon
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Beatriz Cragnolini
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel Hugo Mascó
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
17
|
Jin M, Sheng W, Han L, He Q, Ji X, Liu K. Activation of BDNF-TrkB signaling pathway-regulated brain inflammation in pentylenetetrazole-induced seizures in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 83:26-36. [PMID: 30195910 DOI: 10.1016/j.fsi.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Seizures are sustained neuronal hyperexcitability in brain that result in loss of consciousness and injury. Understanding how the brain responds to seizures is critical to help developing new therapeutic strategies for epilepsy, a neurological disorder characterized by recurrent and unprovoked seizures. However, the mechanisms underlying seizure-dependent alterations of biological properties are poorly understood. In this study, we analyzed gene expression profiles of the zebrafish heads that were undergoing seizures and identified 1776 differentially expressed genes. Gene-regulatory network analysis revealed that BDNF-TrkB signaling pathway positively regulated brain inflammation in zebrafish during seizures. Using K252a, a TrkB inhibitor to block BDNF-TrkB signaling pathway, attenuated pentylenetetrazole (PTZ)-induced seizures, which also confirmed BDNF-TrkB mediated inflammatory responses including regulation of il1β and nfκb, and neutrophil and macrophage infiltration of brain. Our results have provided novel insights into seizure-induced brain inflammation in zebrafish and anti-inflammatory related therapy for epilepsy.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China.
| |
Collapse
|
18
|
Sharma P, Sharma S, Singh D. Apigenin reverses behavioural impairments and cognitive decline in kindled mice via CREB-BDNF upregulation in the hippocampus. Nutr Neurosci 2018; 23:118-127. [DOI: 10.1080/1028415x.2018.1478653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Pallavi Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Supriya Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
19
|
Enomoto S, Shimizu K, Nibuya M, Suzuki E, Nagata K, Kondo T. Activated brain-derived neurotrophic factor/TrkB signaling in rat dorsal and ventral hippocampi following 10-day electroconvulsive seizure treatment. Neurosci Lett 2017; 660:45-50. [DOI: 10.1016/j.neulet.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022]
|
20
|
Naghshvarian M, Zarrindast MR, Mehr SE, Ommati MM, Sajjadi SF. Effect of exercise and morphine on psychological and physical dependencies, BDNF and TrkB gene expression in rat's hippocampus. Pak J Med Sci 2017; 33:603-609. [PMID: 28811779 PMCID: PMC5510111 DOI: 10.12669/pjms.333.12342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To compare the effect of exercise and morphine on abstinence syndrome and hippocampal gene expression in rat model. Methods: Thirty adult male rats were exposed to voluntary wheel exercise (low, medium, high) for 28 days. The subjects entered Conditioned Place Preference (CPP) apparatus and experienced morphine (low, medium, high) CPP and followed by naloxone test. Correlation between exercise level, morphine injection, concurrent morphine administration and exercise with morphine CPP, BDNF and TrkB genes was determined. Rats were euthanized, decapitated and the hippocampus was removed. The expression of BDNF and TrkB genes were evaluated by real time PCR. Results: Active rats ran an average of 839.18 m/d. A significant (P<0.001) correlation between exercise level, morphine injection, concurrent morphine administration and exercise with morphine CPP and BDNFand TrKB gene expressions was found. Conclusion: Voluntary exercise in different levels potentiates the brain rewarding system, CPP scale, and hippocampal BDNF and TrKB expressions. High range of voluntary exercise demonstrated an increase in the likelihood of developing addictive and drug-seeking behavior.
Collapse
Affiliation(s)
- Mojtaba Naghshvarian
- Mojtaba Naghshvarian, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Mohammad-Reza Zarrindast, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei Mehr
- Shahram Ejtemaei Mehr, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Ommati
- Mohammad Mehdi Ommati, Department of Animal Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Seyedeh Fatemeh Sajjadi
- Seyedeh Fatemeh Sajjadi, Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Martínez-Levy GA, Rocha L, Rodríguez-Pineda F, Alonso-Vanegas MA, Nani A, Buentello-García RM, Briones-Velasco M, San-Juan D, Cienfuegos J, Cruz-Fuentes CS. Increased Expression of Brain-Derived Neurotrophic Factor Transcripts I and VI, cAMP Response Element Binding, and Glucocorticoid Receptor in the Cortex of Patients with Temporal Lobe Epilepsy. Mol Neurobiol 2017; 55:3698-3708. [PMID: 28527108 DOI: 10.1007/s12035-017-0597-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022]
Abstract
A body of evidence supports a relevant role of brain-derived neurotrophic factor (BDNF) in temporal lobe epilepsy (TLE). Magnetic resonance data reveal that the cerebral atrophy extends to regions that are functionally and anatomically connected with the hippocampus, especially the temporal cortex. We previously reported an increased expression of BDNF messenger for the exon VI in the hippocampus of temporal lobe epilepsy patients compared to an autopsy control group. Altered levels of this particular transcript were also associated with pre-surgical use of certain psychotropic. We extended here our analysis of transcripts I, II, IV, and VI to the temporal cortex since this cerebral region holds intrinsic communication with the hippocampus and is structurally affected in patients with TLE. We also assayed the cyclic adenosine monophosphate response element-binding (CREB) and glucocorticoid receptor (GR) genes as there is experimental evidence of changes in their expression associated with BDNF and epilepsy. TLE and pre-surgical pharmacological treatment were considered as the primary clinical independent variables. Transcripts BDNF I and BDNF VI increased in the temporal cortex of patients with pharmacoresistant TLE. The expression of CREB and GR expression follow the same direction. Pre-surgical use of selective serotonin reuptake inhibitors, carbamazepine (CBZ) and valproate (VPA), was associated with the differential expression of specific BDNF transcripts and CREB and GR genes. These changes could have functional implication in the plasticity mechanisms related to temporal lobe epilepsy.
Collapse
Affiliation(s)
- G A Martínez-Levy
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - L Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, CINVESTAV, Mexico City, Mexico
| | - F Rodríguez-Pineda
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - M A Alonso-Vanegas
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - A Nani
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - R M Buentello-García
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - M Briones-Velasco
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - D San-Juan
- Clinical Research Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - J Cienfuegos
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - C S Cruz-Fuentes
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico.
| |
Collapse
|
22
|
PROneurotrophins and CONSequences. Mol Neurobiol 2017; 55:2934-2951. [DOI: 10.1007/s12035-017-0505-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
|
23
|
Control of seizures by ketogenic diet-induced modulation of metabolic pathways. Amino Acids 2016; 49:1-20. [PMID: 27683025 DOI: 10.1007/s00726-016-2336-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Abstract
Epilepsy is too complex to be considered as a disease; it is more of a syndrome, characterized by seizures, which can be caused by a diverse array of afflictions. As such, drug interventions that target a single biological pathway will only help the specific individuals where that drug's mechanism of action is relevant to their disorder. Most likely, this will not alleviate all forms of epilepsy nor the potential biological pathways causing the seizures, such as glucose/amino acid transport, mitochondrial dysfunction, or neuronal myelination. Considering our current inability to test every individual effectively for the true causes of their epilepsy and the alarming number of misdiagnoses observed, we propose the use of the ketogenic diet (KD) as an effective and efficient preliminary/long-term treatment. The KD mimics fasting by altering substrate metabolism from carbohydrates to fatty acids and ketone bodies (KBs). Here, we underscore the need to understand the underlying cellular mechanisms governing the KD's modulation of various forms of epilepsy and how a diverse array of metabolites including soluble fibers, specific fatty acids, and functional amino acids (e.g., leucine, D-serine, glycine, arginine metabolites, and N-acetyl-cysteine) may potentially enhance the KD's ability to treat and reverse, not mask, these neurological disorders that lead to epilepsy.
Collapse
|
24
|
Chen NC, Chuang YC, Huang CW, Lui CC, Lee CC, Hsu SW, Lin PH, Lu YT, Chang YT, Hsu CW, Chang CC. Interictal serum brain-derived neurotrophic factor level reflects white matter integrity, epilepsy severity, and cognitive dysfunction in chronic temporal lobe epilepsy. Epilepsy Behav 2016; 59:147-54. [PMID: 27152461 DOI: 10.1016/j.yebeh.2016.02.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/07/2016] [Accepted: 02/21/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Most patients with temporal lobe epilepsy (TLE) have epileptic foci originating from the medial temporal lobe, particularly the hippocampus. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin growth factor mainly expressed in the hippocampus, though it is not known whether the circulating level of BDNF reflects cognitive performance or white matter structural changes in chronic TLE. METHODS Thirty-four patients with TLE and 22 healthy controls were enrolled for standardized cognitive tests, diffusion tensor imaging, and serum BDNF measurement. The patients were further divided into a subgroup with unilateral TLE (n=23) and a subgroup with bilateral TLE (n=11) for clinical and neuroimaging comparisons. RESULTS There were significantly lower BDNF levels in the patients with TLE compared with the controls, with significance contributed mainly from the subgroup with bilateral TLE, which also had more frequent seizures. The BDNF levels correlated with epilepsy duration (σ=-0.355; p=0.040) and fractional anisotropy (FA) in the left temporal lobe, left thalamus, and right hippocampus. Using a regression model, BDNF level predicted verbal memory score. Further, design fluency scores were predicted by serum BDNF level via the interactions with left temporal FA. CONCLUSIONS Serum BDNF levels reflected longer epilepsy duration, impaired white matter integrity, and poor cognitive function in patients with chronic TLE.
Collapse
Affiliation(s)
- Nai-Ching Chen
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Health and Beauty, Shu-Zen College of Medicine and Management, Taiwan
| | - Yao-Chung Chuang
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Wei Huang
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Health and Beauty, Shu-Zen College of Medicine and Management, Taiwan
| | - Chun-Chung Lui
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pin-Hsuan Lin
- Department of Health and Beauty, Shu-Zen College of Medicine and Management, Taiwan
| | - Yan-Ting Lu
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Ting Chang
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Health and Beauty, Shu-Zen College of Medicine and Management, Taiwan
| | - Che-Wei Hsu
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
25
|
Martínez-Levy GA, Rocha L, Lubin FD, Alonso-Vanegas MA, Nani A, Buentello-García RM, Pérez-Molina R, Briones-Velasco M, Recillas-Targa F, Pérez-Molina A, San-Juan D, Cienfuegos J, Cruz-Fuentes CS. Increased expression of BDNF transcript with exon VI in hippocampi of patients with pharmaco-resistant temporal lobe epilepsy. Neuroscience 2015; 314:12-21. [PMID: 26621122 DOI: 10.1016/j.neuroscience.2015.11.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022]
Abstract
A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p<0.05) was observed in TLE patients compared to the autopsy control group (n=8). BDNFVI was also increased in anxiety/depression TLE (N=4) when compared to autopsies or to the remaining group of patients (p<0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs.
Collapse
Affiliation(s)
- G A Martínez-Levy
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - L Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - F D Lubin
- Department of Neurobiology, Lubin Lab, University at Birmingham in Alabama, USA
| | - M A Alonso-Vanegas
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - A Nani
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - R M Buentello-García
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - R Pérez-Molina
- Institute of Cell Physiology, National University of Mexico, UNAM, Mexico City, Mexico
| | - M Briones-Velasco
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - F Recillas-Targa
- Institute of Cell Physiology, National University of Mexico, UNAM, Mexico City, Mexico
| | - A Pérez-Molina
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - D San-Juan
- Clinical Research Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - J Cienfuegos
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - C S Cruz-Fuentes
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico.
| |
Collapse
|
26
|
Tamijani SMS, Karimi B, Amini E, Golpich M, Dargahi L, Ali RA, Ibrahim NM, Mohamed Z, Ghasemi R, Ahmadiani A. Thyroid hormones: Possible roles in epilepsy pathology. Seizure 2015; 31:155-64. [PMID: 26362394 DOI: 10.1016/j.seizure.2015.07.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs) L-thyroxine and L-triiodothyronine, primarily known as metabolism regulators, are tyrosine-derived hormones produced by the thyroid gland. They play an essential role in normal central nervous system development and physiological function. By binding to nuclear receptors and modulating gene expression, THs influence neuronal migration, differentiation, myelination, synaptogenesis and neurogenesis in developing and adult brains. Any uncorrected THs supply deficiency in early life may result in irreversible neurological and motor deficits. The development and function of GABAergic neurons as well as glutamatergic transmission are also affected by THs. Though the underlying molecular mechanisms still remain unknown, the effects of THs on inhibitory and excitatory neurons may affect brain seizure activity. The enduring predisposition of the brain to generate epileptic seizures leads to a complex chronic brain disorder known as epilepsy. Pathologically, epilepsy may be accompanied by mitochondrial dysfunction, oxidative stress and eventually dysregulation of excitatory glutamatergic and inhibitory GABAergic neurotransmission. Based on the latest evidence on the association between THs and epilepsy, we hypothesize that THs abnormalities may contribute to the pathogenesis of epilepsy. We also review gender differences and the presumed underlying mechanisms through which TH abnormalities may affect epilepsy here.
Collapse
Affiliation(s)
| | - Benyamin Karimi
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mojtaba Golpich
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raymond Azman Ali
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Environmental enrichment modulates intrinsic cellular excitability of hippocampal CA1 pyramidal cells in a housing duration and anatomical location-dependent manner. Behav Brain Res 2015; 292:209-18. [PMID: 26048427 DOI: 10.1016/j.bbr.2015.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/10/2015] [Accepted: 05/16/2015] [Indexed: 12/26/2022]
Abstract
Housing animals in enriched environments (EEs) results in improved learning and memory (L&M) performance. While increased intrinsic cellular excitability in the hippocampal neurons might underlie the environmental enrichment-dependent L&M enhancement, literature in respect to this remains scarce and controversial. In this study, we explore whether intrinsic cellular excitability in hippocampal CA1 pyramidal cells is modulated differently, depending on housing duration and anatomical location of cells. Using in vitro patch clamp recordings in mice, we first demonstrate that cellular excitability of hippocampal CA1 pyramidal cells is significantly increased only in animals housed in an EE for a relatively short (<40 days) duration. Second, anatomical analysis shows that increased excitability is mainly restricted to the dorsal and proximal sections of the CA1 region. Further analysis reveals that the input resistance and the spike threshold, which are differently modulated by anatomical location and housing duration, respectively, may underlie the increased excitability. These results indicate that housing duration and anatomical location are crucial factors for environmental enrichment-dependent modulations of intrinsic excitability. While the dorsally restricted increase in excitability is in agreement with the specific up-regulation of L&M supported by the dorsal hippocampus, the selective modulation of the proximal area is in line with enhanced spatial abilities often observed after environmental enrichment. The housing duration specificity we observed here, together with previous findings, suggests that the modulation of some physiological properties by an environmental enrichment is transient. Finally, these results could coherently account for earlier controversial reports.
Collapse
|
28
|
Zhu X, Dong J, Shen K, Bai Y, Zhang Y, Lv X, Chao J, Yao H. NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress. Brain Res Bull 2015; 114:70-8. [DOI: 10.1016/j.brainresbull.2015.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/29/2022]
|
29
|
Liu L, Mao D, Liu L, Huang Y, Bo T. Effects of progesterone on glutamate transporter 2 and gamma-aminobutyric acid transporter 1 expression in the developing rat brain after recurrent seizures. Neural Regen Res 2015; 7:2036-42. [PMID: 25624835 PMCID: PMC4296423 DOI: 10.3969/j.issn.1673-5374.2012.26.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022] Open
Abstract
Seizures were induced by flurothyl inhalation. Rats were intramuscularly treated with progesterone after each seizure. Results demonstrated that glutamate transporter 2 and γ-aminobutyric acid transporter 1 expression levels were significantly increased in the cerebral cortex and hippocampus of the developing rat brain following recurrent seizures. After progesterone treatment, glutamate transporter 2 protein expression was upregulated, but γ-aminobutyric acid transporter 1 levels decreased. These results suggest that glutamate transporter 2 and γ-aminobutyric acid transporter 1 are involved in the pathological processes of epilepsy. Progesterone can help maintain a balance between excitatory and inhibitory systems by modulating the amino acid transporter system, and protect the developing brain after recurrent seizures.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Dingan Mao
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Liqun Liu
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Huang
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Tao Bo
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
30
|
Isgor C, Pare C, McDole B, Coombs P, Guthrie K. Expansion of the dentate mossy fiber-CA3 projection in the brain-derived neurotrophic factor-enriched mouse hippocampus. Neuroscience 2014; 288:10-23. [PMID: 25555929 DOI: 10.1016/j.neuroscience.2014.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
Structural changes that alter hippocampal functional circuitry are implicated in learning impairments, mood disorders and epilepsy. Reorganization of mossy fiber (MF) axons from dentate granule cells is one such form of plasticity. Increased neurotrophin signaling is proposed to underlie MF plasticity, and there is evidence to support a mechanistic role for brain-derived neurotrophic factor (BDNF) in this process. Transgenic mice overexpressing BDNF in the forebrain under the α-calcium/calmodulin-dependent protein kinase II promoter (TgBDNF mice) exhibit spatial learning deficits at 2-3months of age, followed by the emergence of spontaneous seizures at ∼6months. These behavioral changes suggest that chronic increases in BDNF progressively disrupt hippocampal functional organization. To determine if the dentate MF pathway is structurally altered in this strain, the present study employed Timm staining and design-based stereology to compare MF distribution and projection volumes in transgenic and wild-type mice at 2-3months, and at 6-7months. Mice in the latter age group were assessed for seizure vulnerability with a low dose of pilocarpine given 2h before euthanasia. At 2-3months, TgBDNF mice showed moderate expansion of CA3-projecting MFs (∼20%), with increased volumes measured in the suprapyramidal (SP-MF) and intra/infrapyramidal (IIP-MF) compartments. At 6-7months, a subset of transgenic mice exhibited increased seizure susceptibility, along with an increase in IIP-MF volume (∼30%). No evidence of MF sprouting was seen in the inner molecular layer. Additional stereological analyses demonstrated significant increases in molecular layer (ML) volume in TgBDNF mice at both ages, as well as an increase in granule cell number by 8months of age. Collectively, these results indicate that sustained increases in endogenous BDNF modify dentate structural organization over time, and may thereby contribute to the development of pro-epileptic circuitry.
Collapse
Affiliation(s)
- C Isgor
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - C Pare
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - B McDole
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - P Coombs
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - K Guthrie
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States.
| |
Collapse
|
31
|
Varvel NH, Jiang J, Dingledine R. Candidate drug targets for prevention or modification of epilepsy. Annu Rev Pharmacol Toxicol 2014; 55:229-47. [PMID: 25196047 DOI: 10.1146/annurev-pharmtox-010814-124607] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epilepsy is a prevalent neurological disorder afflicting nearly 50 million people worldwide. The disorder is characterized clinically by recurrent spontaneous seizures attributed to abnormal synchrony of brain neurons. Despite advances in the treatment of epilepsy, nearly one-third of patients are resistant to current therapies, and the underlying mechanisms whereby a healthy brain becomes epileptic remain unresolved. Therefore, researchers have a major impetus to identify and exploit new drug targets. Here we distinguish between epileptic effectors, or proteins that set the seizure threshold, and epileptogenic mediators, which control the expression or functional state of the effector proteins. Under this framework, we then discuss attempts to regulate the mediators to control epilepsy. Further insights into the complex processes that render the brain susceptible to seizures and the identification of novel mediators of these processes will lead the way to the development of drugs to modify disease outcome and, potentially, to prevent epileptogenesis.
Collapse
Affiliation(s)
- Nicholas H Varvel
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322;
| | | | | |
Collapse
|
32
|
Pollock E, Everest M, Brown A, Poulter MO. Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis. Neurobiol Dis 2014; 70:21-31. [PMID: 24946277 DOI: 10.1016/j.nbd.2014.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/15/2014] [Accepted: 06/07/2014] [Indexed: 12/31/2022] Open
Abstract
The integrity and stability of interneurons in a cortical network are essential for proper network function. Loss of interneuron synaptic stability and precise organization can lead to disruptions in the excitation/inhibition balance, a characteristic of epilepsy. This study aimed to identify alterations to the GABAergic interneuron network in the piriform cortex (PC: a cortical area believed to be involved in the development of seizures) after kindling-induced seizures. Immunohistochemistry was used to mark perineuronal nets (PNNs: structures in the extracellular matrix that provide synaptic stability and restrict reorganization of inhibitory interneurons) and interneuron nerve terminals in control and kindled tissues. We found that PNNs were significantly decreased around parvalbumin-positive interneurons after the induction of experimental epilepsy. Additionally, we found layer-specific increases in GABA release sites originating from calbindin, calretinin, and parvalbumin interneurons, implying that there is a re-wiring of the interneuronal network. This increase in release sites was matched by an increase in GABAergic post-synaptic densities. We hypothesized that the breakdown of the PNN could be due to the activity of matrix metalloproteinases (MMP) and that the prevention of PNN breakdown may reduce the rewiring of interneuronal circuits and suppress seizures. To test this hypothesis we employed doxycycline, a broad spectrum MMP inhibitor, to stabilize PNNs in kindled rats. We found that doxycycline prevented PNN breakdown, re-organization of the inhibitory innervation, and seizure genesis. Our observations indicate that PNN degradation may be necessary for the development of seizures by facilitating interneuron plasticity and increased GABAergic activity.
Collapse
Affiliation(s)
- Emily Pollock
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Michelle Everest
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Arthur Brown
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Michael O Poulter
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
33
|
Abstract
In humans, genomic DNA is organized in 23 chromosome pairs coding for roughly 25,000 genes. Not all of them are active at all times. During development, a broad range of different cell types needs to be generated in a highly ordered and reproducible manner, requiring selective gene expression programs. Epigenetics can be regarded as the information management system that is able to index or bookmark distinct regions in our genome to regulate the readout of DNA. It further comprises the molecular memory of any given cell, allowing it to store information of previously experienced external (e.g., environmental) or internal (e.g., developmental) stimuli, to learn from this experience and to respond. The underlying epigenetic mechanisms can be synergistic, antagonistic, or mutually exclusive and their large variety combined with the variability and interdependence is thought to provide the molecular basis for any phenotypic variation in physiological and pathological conditions. Thus, widespread reconfiguration of the epigenome is not only a key feature of neurodevelopment, brain maturation, and adult brain function but also disease.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage, Erlangen, Germany.
| |
Collapse
|
34
|
Pérez-Gómez A, Tasker RA. Enhanced Mossy Fiber Sprouting and Synapse Formation in Organotypic Hippocampal Cultures Following Transient Domoic Acid Excitotoxicity. Neurotox Res 2013; 25:402-10. [DOI: 10.1007/s12640-013-9450-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
35
|
Ashraf MN, Gavrilovici C, Shah SUA, Shaheen F, Choudhary MI, Rahman AU, Fahnestock M, Simjee SU, Poulter MO. A novel anticonvulsant modulates voltage-gated sodium channel inactivation and prevents kindling-induced seizures. J Neurochem 2013; 126:651-61. [PMID: 23796540 DOI: 10.1111/jnc.12352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023]
Abstract
Here, we explore the mechanism of action of isoxylitone (ISOX), a molecule discovered in the plant Delphinium denudatum, which has been shown to have anticonvulsant properties. Patch-clamp electrophysiology assayed the activity of ISOX on voltage-gated sodium channels (VGSCs) in both cultured neurons and brain slices isolated from controls and rats with experimental epilepsy(kindling model). Quantitative transcription polymerase chain reaction (qRT-PCR) (QPCR) assessed brain-derived neurotrophic factor (BDNF) mRNA expression in kindled rats, and kindled rats treated with ISOX. ISOX suppressed sodium current (I(Na)) showing an IC50 value of 185 nM in cultured neurons. ISOX significantly slowed the recovery from inactivation (ISOX τ = 18.7 ms; Control τ = 9.4 ms; p < 0.001). ISOX also enhanced the development of inactivation by shifting the Boltzmann curve to more hyperpolarized potentials by -11.2 mV (p < 0.05). In naive and electrically kindled cortical neurons, the IC50 for sodium current block was identical to that found in cultured neurons. ISOX prevented kindled stage 5 seizures and decreased the enhanced BDNF mRNA expression that is normally associated with kindling (p < 0.05). Overall, our data show that ISOX is a potent inhibitor of VGSCs that stabilizes steady-state inactivation while slowing recovery and enhancing inactivation development. Like many other sodium channel blocker anti-epileptic drugs, the suppression of BDNF mRNA expression that usually occurs with kindling is likely a secondary outcome that nevertheless would suppress epileptogenesis. These data show a new class of anti-seizure compound that inhibits sodium channel function and prevents the development of epileptic seizures.
Collapse
Affiliation(s)
- Muhammad N Ashraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li YJ, Wang ZH, Zhang B, Zhe X, Wang MJ, Shi ST, Bai J, Lin T, Guo CJ, Zhang SJ, Kong XL, Zuo X, Zhao H. Disruption of the blood-brain barrier after generalized tonic-clonic seizures correlates with cerebrospinal fluid MMP-9 levels. J Neuroinflammation 2013; 10:80. [PMID: 23829879 PMCID: PMC3706217 DOI: 10.1186/1742-2094-10-80] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 06/24/2013] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence suggests seizures cause blood–brain barrier (BBB) dysfunction including decreased seizure threshold and higher onset potential of future seizures. However, the mechanisms underlying BBB damage in seizures remains poorly understood. Evidence in human and animal models shows BBB disruption is associated with activation of matrix metalloproteinase-9 (MMP-9) after cerebral ischemia and inflammation. The objective of this study was to determine whether MMP-9 concentrations in cerebral spinal fluid (CSF) are associated with BBB disruption in patients after epileptic seizures. Methods Thirty-one patients with generalized tonic-clonic (GTC) seizures were included in the study: 20 had recurrent GTC seizures (RS), and 11 had a single GTC seizure (SS) episode. Twenty-five adult non-seizure patients were used as controls. CSF samples were collected by lumbar puncture within 24 h after seizure cessation (range: 3–15 h, mean 6.2 h). CSF MMP-9 levels were determined by an enzyme-linked immunosorbent assay (ELISA). MMP enzyme activity was measured by gelatin zymography. The CSF/serum albumin ratio (albumin quotient, QAlb) was used as a measure of blood–brain barrier permeability. Results We found significantly higher CSF MMP-9 concentrations in seizure patients compared with controls (P < 0.001). CSF MMP-9 levels and QAlb values were higher in RS patients compared with SS and controls. Moreover, CSF MMP-9 concentration showed strong correlation between QAlb values (r = 0.76, P < 0.0001) and between CSF leukocyte counts (r = 0.77, P < 0.0001) in patients after seizures. Gelatin zymography showed MMP-9 proteolytic activity only in GTC seizure patients. Conclusions Our results suggest MMP-9 plays a role in BBB dysfunction, characterized by invasion of leukocytes into the CSF during seizures.
Collapse
Affiliation(s)
- Ya-Jun Li
- Department of Neurology, The Affiliated Hospital of Xi'an Medical University, No, 48, West Fenghao Road, Xi'an 710077, Shaanxi Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Helgager J, Liu G, McNamara JO. The cellular and synaptic location of activated TrkB in mouse hippocampus during limbic epileptogenesis. J Comp Neurol 2013; 521:499-521, Spc1. [PMID: 22987780 DOI: 10.1002/cne.23225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/18/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
Abstract
Understanding the mechanisms of limbic epileptogenesis in cellular and molecular terms may provide novel therapeutic targets for its prevention. The neurotrophin receptor tropomyosin-related kinase B (TrkB) is thought to be critical for limbic epileptogenesis. Enhanced activation of TrkB, revealed by immunodetection of enhanced phosphorylated TrkB (pTrkB), a surrogate measure of its activation, has been identified within the hippocampus in multiple animal models. Knowledge of the cellular locale of activated TrkB is necessary to elucidate its functional consequences. Using an antibody selective to pTrkB in conjunction with confocal microscopy and cellular markers, we determined the cellular and subcellular locale of enhanced pTrkB induced by status epilepticus (SE) evoked by infusion of kainic acid into the amygdala of adult mice. SE induced enhanced pTrkB immunoreactivity in two distinct populations of principal neurons within the hippocampus-the dentate granule cells and CA1 pyramidal cells. Enhanced immunoreactivity within granule cells was found within mossy fiber axons and giant synaptic boutons. By contrast, enhanced immunoreactivity was found within apical dendritic shafts and spines of CA1 pyramidal cells. A common feature of this enhanced pTrkB at these cellular locales is its localization to excitatory synapses between excitatory neurons, presynaptically in the granule cells and postsynaptically in CA1 pyramidal cells. Long-term potentiation (LTP) is one cellular consequence of TrkB activation at these excitatory synapses that may promote epileptogenesis.
Collapse
Affiliation(s)
- Jeffrey Helgager
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
38
|
Scharfman HE, MacLusky NJ. Differential regulation of BDNF, synaptic plasticity and sprouting in the hippocampal mossy fiber pathway of male and female rats. Neuropharmacology 2013; 76 Pt C:696-708. [PMID: 23660230 DOI: 10.1016/j.neuropharm.2013.04.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Many studies have described potent effects of BDNF, 17β-estradiol or androgen on hippocampal synapses and their plasticity. Far less information is available about the interactions between 17β-estradiol and BDNF in hippocampus, or interactions between androgen and BDNF in hippocampus. Here we review the regulation of BDNF in the mossy fiber pathway, a critical part of hippocampal circuitry. We discuss the emerging view that 17β-estradiol upregulates mossy fiber BDNF synthesis in the adult female rat, while testosterone exerts a tonic suppression of mossy fiber BDNF levels in the adult male rat. The consequences are interesting to consider: in females, increased excitability associated with high levels of BDNF in mossy fibers could improve normal functions of area CA3, such as the ability to perform pattern completion. However, memory retrieval may lead to anxiety if stressful events are recalled. Therefore, the actions of 17β-estradiol on the mossy fiber pathway in females may provide a potential explanation for the greater incidence of anxiety-related disorders and post-traumatic stress syndrome (PTSD) in women relative to men. In males, suppression of BDNF-dependent plasticity in the mossy fibers may be protective, but at the 'price' of reduced synaptic plasticity in CA3. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| | | |
Collapse
|
39
|
Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 2012; 239:46-66. [PMID: 23276673 DOI: 10.1016/j.neuroscience.2012.12.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in the hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences the hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction.
Collapse
|
40
|
Runge EM, Hoshino N, Biehl MJ, Ton S, Rochlin MW. Neurotrophin-4 is more potent than brain-derived neurotrophic factor in promoting, attracting and suppressing geniculate ganglion neurite outgrowth. Dev Neurosci 2012; 34:389-401. [PMID: 23151843 DOI: 10.1159/000342996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/23/2012] [Indexed: 12/23/2022] Open
Abstract
The geniculate ganglion, which provides innervation to taste buds in the anterior tongue and palate, is unique among sensory ganglia in that its neurons depend on both neurotrophin-4 (NT4) and brain-derived neurotrophic factor (BDNF) for survival. Whereas BDNF is additionally implicated in taste axon guidance at targeting stages, much less is known about the guidance role of NT4 during targeting, or about either neurotrophin during initial pathfinding. NT4 and BDNF have distinct expression patterns in vivo, raising the possibility of distinct roles. We characterized the influence of NT4 and BDNF on geniculate neurites in collagen I gels at early embryonic through postnatal stages. During early pathfinding to the tongue (embryonic days 12-13; E12-13), NT4 and BDNF promote significantly longer outgrowth than during intralingual targeting (E15-18). NT4 is more potent than BDNF at stimulating neurite outgrowth and both factors exhibit concentration optima, i.e. intermediate concentrations (0.25 ng/ml NT4 or 25 ng/ml BDNF) promote maximal neurite extension and high concentrations (10 ng/ml NT4 or 200 ng/ml BDNF) suppress it. Only partial suppression was seen at E12 (when axons first emerge from the ganglion in vivo) and postnatally, but nearly complete suppression occurred from E13 to E18. We show that cell death is not responsible for suppression. Although blocking the p75 receptor reduces outgrowth at the optimum concentrations of NT4 and BDNF, it did not reduce suppression of outgrowth. We also report that NT4, like BDNF, can act as a chemoattractant for geniculate neurites, and that the tropic influence is strongest during intralingual targeting (E15-18). NT4 does not appear to act as an attractant in vivo, but it may prevent premature invasion of the epithelium by suppressing axon growth.
Collapse
Affiliation(s)
- Elizabeth M Runge
- Biology Department, Loyola University Chicago, Chicago, IL 60660, USA
| | | | | | | | | |
Collapse
|
41
|
Abidin I, Yildirim M, Aydin-Abidin S, Kalay E, Cansu A, Akca M, Mittmann T. Penicillin induced epileptiform activity and EEG spectrum analysis of BDNF heterozygous mice: An in vivo electrophysiological study. Brain Res Bull 2011; 86:159-64. [DOI: 10.1016/j.brainresbull.2011.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/01/2011] [Accepted: 06/25/2011] [Indexed: 11/29/2022]
|
42
|
Kuramoto S, Yasuhara T, Agari T, Kondo A, Jing M, Kikuchi Y, Shinko A, Wakamori T, Kameda M, Wang F, Kin K, Edahiro S, Miyoshi Y, Date I. BDNF-secreting capsule exerts neuroprotective effects on epilepsy model of rats. Brain Res 2010; 1368:281-9. [PMID: 20971090 DOI: 10.1016/j.brainres.2010.10.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/10/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a well neurotrophic factor with neuroprotective potentials for various diseases in the central nervous system. However several previous studies demonstrated that BDNF might deteriorate symptoms for epilepsy model of animals by progression of abnormal neurogenesis. We hypothesized that continuous administration of BDNF at low dose might be more effective for epilepsy model of animals because high dose of BDNF was used in many studies. BDNF-secreting cells were genetically made and encapsulated for transplantation. Rats receiving BDNF capsule showed significant amelioration of seizure stage and reduction of the number of abnormal spikes at 7 days after kainic acid administration, compared to those of control group. The number of BrdU and BrdU/doublecortin positive cells in the hippocampus of BDNF group significantly increased, compared to that of control group. NeuN positive cells in the CA1 and CA3 of BDNF group were significantly preserved, compared to control group. In conclusion, low dose administration using encapsulated BDNF-secreting cells exerted neuroprotective effects with enhanced neurogenesis on epilepsy model of rats. These results might suggest the importance of the dose and administrative way of this neurotrophic factor to the epilepsy model of animals.
Collapse
Affiliation(s)
- Satoshi Kuramoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Saylor AJ, McGinty JF. An intrastriatal brain-derived neurotrophic factor infusion restores striatal gene expression in Bdnf heterozygous mice. Brain Struct Funct 2010; 215:97-104. [PMID: 20938680 DOI: 10.1007/s00429-010-0282-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/24/2010] [Indexed: 11/24/2022]
Abstract
Reduction in the amount of brain-derived neurotrophic factor (BDNF) in corticostriatal afferents is thought to contribute to the vulnerability of medium spiny striatal neurons in Huntington's disease. In young Bdnf heterozygous ((+/-)) mice, striatal medium spiny neurons (MSNs) express less preprodynorphin (PPD), preproenkephalin (PPE), and D(3) receptor mRNA than wildtype mice. Further, in aged Bdnf (+/-) mice, opioid, trkB receptor, and glutamic acid decarboxylase gene expression, and the number of dendritic spines on MSNs are more affected than in wildtype or younger Bdnf (+/-) mice. In this study, the possibility that intrastriatal infusions of BDNF would elevate gene expression in the striatum of Bdnf (+/-) mice was investigated. Wildtype and Bdnf (+/-) mice received a single, bilateral microinjection of BDNF or PBS into the dorsal striatum. Mice were killed 24 h later and semi-quantitative in situ hybridization histochemical analysis confirmed that PPD, PPE, and D(3) receptor mRNA was less in the caudate-putamen (CPu) and nucleus accumbens (NAc) core of Bdnf (+/-) mice than in wildtype mice. A BDNF infusion increased PPD mRNA in the CPu and NAc core of wildtype mice and restored PPD mRNA levels in the NAc core of Bdnf (+/-) mice. BDNF also restored the gene expression of PPE in the CPu of Bdnf (+/-) mice to wildtype levels; however, PPE mRNA in the NAc did not differ among groups. Furthermore, BDNF increased D(3) receptor mRNA in the NAc core of wildtype and Bdnf (+/-) mice. These results demonstrate that exogenous BDNF restores striatal opioid and D(3)R gene expression in mice with genetically reduced levels of endogenous BDNF.
Collapse
Affiliation(s)
- Alicia J Saylor
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
44
|
Kotloski R, McNamara JO. Reduction of TrkB expression de novo in the adult mouse impairs epileptogenesis in the kindling model. Hippocampus 2010; 20:713-23. [PMID: 19603519 DOI: 10.1002/hipo.20673] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elucidating the mechanisms of epileptogenesis in molecular terms can identify targets for therapies aimed at preventing epileptogenesis or limiting its progression. Genetic perturbations have implicated signaling by the neurotrophin, BDNF, and its receptor, TrkB, in limbic epileptogenesis. Whether this signaling is critical to epileptogenesis in the adult brain is unclear. We sought to determine whether reduced expression of TrkB de novo in the mature brain is sufficient to impair epileptogenesis in the kindling model. Treatment of adult Act-CreER TrkB(flox/flox) mice with tamoxifen resulted in modest reductions of TrkB protein expression de novo in the adult that were detected in hippocampus but not other brain regions. Modest reduction of hippocampal TrkB content inhibited epileptogenesis induced by stimulation of hippocampus or amygdala. The data support the conclusion that reduction of TrkB expression in hippocampus de novo in the mature brain impairs epileptogenesis in the kindling model. These findings advance TrkB and its downstream signaling pathways as attractive targets for limiting the progression of epileptogenesis.
Collapse
Affiliation(s)
- Robert Kotloski
- Department of Neurology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
45
|
Hoshino N, Vatterott P, Egwiekhor A, Rochlin MW. Brain-derived neurotrophic factor attracts geniculate ganglion neurites during embryonic targeting. Dev Neurosci 2010; 32:184-96. [PMID: 20639634 DOI: 10.1159/000313902] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 04/15/2010] [Indexed: 11/19/2022] Open
Abstract
Geniculate axons are initially guided to discrete epithelial placodes in the lingual and palatal epithelium that subsequently differentiate into taste buds. In vivo approaches show that brain-derived neurotrophic factor (BDNF) mRNA is concentrated in these placodes, that BDNF is necessary for targeting taste afferents to these placodes, and that BDNF misexpression disrupts guidance. We used an in vitro approach to determine whether BDNF may act directly on geniculate axons as a trophic factor and as an attractant, and whether there is a critical period for responsiveness to BDNF. We show that BDNF promotes neurite outgrowth from geniculate ganglion explants dissected from embryonic day (E) 15, E18, infant, and adult rats cultured in collagen gels, and that there is a concentration optimum for neurite extension. Gradients of BDNF derived from slow-release beads caused the greatest bias in neurite outgrowth at E15, when axons approach the immature gustatory papillae. Further, neurites advanced faster toward the BDNF bead than away from it, even if the average amount of neurotrophic factor encountered was the same. We also found that neurites that contact BDNF beads did not advance beyond them. At E18, when axons would be penetrating pregustatory epithelium in vivo, BDNF continued to exert a tropic effect on geniculate neurites. However, at postnatal and adult stages, the influence of BDNF was predominantly trophic. Our data support a role for BDNF acting as an attractant for geniculate axons during a critical period that encompasses initial targeting but not at later stages.
Collapse
Affiliation(s)
- Natalia Hoshino
- Biology Department, Loyola University Chicago, Chicago, IL 60660, USA
| | | | | | | |
Collapse
|
46
|
Simonato M, Zucchini S. Are the neurotrophic factors a suitable therapeutic target for the prevention of epileptogenesis? Epilepsia 2010; 51 Suppl 3:48-51. [DOI: 10.1111/j.1528-1167.2010.02609.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Abstract
It has been known for some time that brain-derived neurotrophic factor (BDNF) is critical to normal development of the CNS, and more recently, studies also have documented the ability of BDNF to modify adult CNS structure and function. Therefore, it is no surprise that BDNF has been linked to diseases, such as epilepsy, which may involve abnormal cortical development or altered brain structure and function after maturity. This review evaluates the evidence, particularly from recent studies, that BDNF contributes to the development of temporal lobe epilepsy (TLE).
Collapse
|
48
|
Disruption of TrkB-mediated phospholipase Cgamma signaling inhibits limbic epileptogenesis. J Neurosci 2010; 30:6188-96. [PMID: 20445044 DOI: 10.1523/jneurosci.5821-09.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The BDNF receptor, TrkB, is critical to limbic epileptogenesis, but the responsible downstream signaling pathways are unknown. We hypothesized that TrkB-dependent activation of phospholipase Cgamma1 (PLCgamma1) signaling is the key pathway and tested this in trkB(PLC/PLC) mice carrying a mutation (Y816F) that uncouples TrkB from PLCgamma1. Biochemical measures revealed activation of both TrkB and PLCgamma1 in hippocampi in the pilocarpine and kindling models in wild-type mice. PLCgamma1 activation was decreased in hippocampi isolated from trkB(PLC/PLC) compared with control mice. Epileptogenesis assessed by development of kindling was inhibited in trkB(PLC/PLC) compared with control mice. Long-term potentiation of the mossy fiber-CA3 pyramid synapse was impaired in slices of trkB(PLC/PLC) mice. We conclude that TrkB-dependent activation of PLCgamma1 signaling is an important molecular mechanism of limbic epileptogenesis. Elucidating signaling pathways activated by a cell membrane receptor in animal models of CNS disorders promises to reveal novel targets for specific and effective therapeutic intervention.
Collapse
|
49
|
Abstract
Neurons respond to numerous factors in their environment that influence their survival and function during development and in the mature brain. Among these factors, the neurotrophins have been shown to support neuronal survival and function, acting primarily through the Trk family of receptor tyrosine kinases. However, recent studies have established that the uncleaved neurotrophin precursors, the proneurotrophins, can be secreted and induce apoptosis via the p75 neurotrophin receptor, suggesting that the balance of secreted mature and proneurotrophins has a critical impact on neuronal survival or death. Epileptic seizures elicit increases in both proneurotrophin secretion and p75(NTR) expression, shifting the balance of these factors toward signaling cell death. This review will discuss the evidence that this ligand-receptor system plays an important role in neuronal loss following seizures.
Collapse
Affiliation(s)
- Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA.
| |
Collapse
|
50
|
Sirianni RW, Olausson P, Chiu AS, Taylor JR, Saltzman WM. The behavioral and biochemical effects of BDNF containing polymers implanted in the hippocampus of rats. Brain Res 2010; 1321:40-50. [PMID: 20096671 DOI: 10.1016/j.brainres.2010.01.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/25/2009] [Accepted: 01/14/2010] [Indexed: 01/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is closely linked with neuronal survival and plasticity in psychiatric disorders. In this work, we engineered degradable, injectable alginate microspheres and non-degradable, implantable poly(ethylene vinyl acetate) matrices to continuously deliver BDNF to the dorsal hippocampus of rats for two days or more than a week, respectively. The antidepressant-like behavioral effects of BDNF delivery were examined in the Porsolt forced swim test. Rats were sacrificed 10days after surgery and tissue samples were analyzed by western blot. A small dose of BDNF delivered in a single infusion, or from a two-day sustained-release alginate implant, produced an antidepressant-like behavior, whereas the same dose delivered over a longer period of time to a larger tissue region did not produce antidepressant-like effects. Prolonged delivery of BDNF resulted in a dysregulation of plasticity-related functions: increased dose and duration of BDNF delivery produced increased levels of TrkB, ERK, CREB, and phosphorylated ERK, while also producing decreased phosphorylated CREB. It is evident from this work that both duration and magnitude of BDNF dosing are of critical importance in achieving functional outcome.
Collapse
Affiliation(s)
- Rachael W Sirianni
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|