1
|
Talty CE, Murphy S, VandeVord P. Mild traumatic brain injury gives rise to chronic depression-like behavior and associated alterations in glutamatergic protein expression. Neuroscience 2024; 560:198-210. [PMID: 39357641 DOI: 10.1016/j.neuroscience.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Mild traumatic brain injury (mTBI) is known to result in chronic somatic, cognitive, and emotional symptoms. Depression is commonly reported among individuals suffering from persistent concussion symptoms; however, the underlying mechanisms are not understood. The glutamatergic system has recently been linked with mTBI and depression due to reports of similar changes in expression of glutamatergic proteins. Using a closed-head controlled cortical impact (cCCI) model in adult male rats (n = 8/group), this study investigated the emergence of self-care deficits and changes in social interaction behaviors at four, eight and twelve weeks post-injury. Western blotting was used to assess associated changes in expression of glutamate transporters and N-methyl-D-aspartate (NMDA) receptor subunits at twelve weeks. Splash test results revealed deficits in self-care behaviors beginning at eight weeks, which continued through twelve weeks in the injury group. Injured animals also exhibited decreased preference for social novelty at four weeks and loss of desire for social interaction as a whole by twelve weeks. GluN1 was increased in injured animals compared to shams in the frontal cortex and amygdala, while decreased GLT-1 was observed in the hippocampus. Linear regression was performed to evaluate relationships between behavioral and molecular variables; the results suggested that injury affects these relationships in a region-dependent manner. Together, these results suggest that the development of chronic depression-like behavior was associated with changes in glutamatergic protein expression. Deeper investigations into how injury influences glutamatergic synaptic protein expression are needed, as this has the potential to affect circuit-level neurotransmission that drives depression-like behavior following mTBI.
Collapse
Affiliation(s)
- Caiti-Erin Talty
- Graduate Program in Translational Biology, Medicine & Health, Virginia Tech, 325 Stanger St, Blacksburg, VA 24061, USA
| | - Susan Murphy
- Department of Biomedical Engineering & Mechanics, Virginia Tech, 325 Stanger St, Blacksburg, VA 24061, USA
| | - Pamela VandeVord
- Department of Biomedical Engineering & Mechanics, Virginia Tech, 325 Stanger St, Blacksburg, VA 24061, USA; Veterans Affairs Medical Center, 1970 Roanoke Blvd, Salem, VA 24153, USA.
| |
Collapse
|
2
|
Boucher ML, Conley G, Morriss NJ, Ospina-Mora S, Qiu J, Mannix R, Meehan WP. Time-Dependent Long-Term Effect of Memantine following Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:e1736-e1758. [PMID: 38666723 DOI: 10.1089/neu.2023.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI, e.g., sports concussions) may be associated with both acute and chronic symptoms and neurological changes. Despite the common occurrence of these injuries, therapeutic strategies are limited. One potentially promising approach is N-methyl-D-aspartate receptor (NMDAR) blockade to alleviate the effects of post-injury glutamatergic excitotoxicity. Initial pre-clinical work using the NMDAR antagonist, memantine, suggests that immediate treatment following rmTBI improves a variety of acute outcomes. It remains unclear (1) whether acute memantine treatment has long-term benefits and (2) whether delayed treatment following rmTBI is beneficial, which are both clinically relevant concerns. To test this, animals were subjected to rmTBI via a weight drop model with rotational acceleration (five hits in 5 days) and randomized to memantine treatment immediately, 3 months, or 6 months post-injury, with a treatment duration of one month. Behavioral outcomes were assessed at 1, 4, and 7 months post-injury. Neuropathological outcomes were characterized at 7 months post-injury. We observed chronic changes in behavior (anxiety-like behavior, motor coordination, spatial learning, and memory), as well as neuroinflammation (microglia, astrocytes) and tau phosphorylation (T231). Memantine treatment, either immediately or 6 months post-injury, appears to confer greater rescue of neuroinflammatory changes (microglia) than vehicle or treatment at the 3-month time point. Although memantine is already being prescribed chronically to address persistent symptoms associated with rmTBI, this study represents the first evidence of which we are aware to suggest a small but durable effect of memantine treatment in mild, concussive injuries. This effect suggests that memantine, although potentially beneficial, is insufficient to treat all aspects of rmTBI alone and should be combined with other therapeutic agents in a multi-therapy approach, with attention given to the timing of treatment.
Collapse
Affiliation(s)
- Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Nicholas J Morriss
- University of Rochester School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jianhua Qiu
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - William P Meehan
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
| |
Collapse
|
3
|
Tian Z, Cao Z, Yang E, Li J, Liao D, Wang F, Wang T, Zhang Z, Zhang H, Jiang X, Li X, Luo P. Quantitative proteomic and phosphoproteomic analyses of the hippocampus reveal the involvement of NMDAR1 signaling in repetitive mild traumatic brain injury. Neural Regen Res 2023; 18:2711-2719. [PMID: 37449635 DOI: 10.4103/1673-5374.374654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The cumulative damage caused by repetitive mild traumatic brain injury can cause long-term neurodegeneration leading to cognitive impairment. This cognitive impairment is thought to result specifically from damage to the hippocampus. In this study, we detected cognitive impairment in mice 6 weeks after repetitive mild traumatic brain injury using the novel object recognition test and the Morris water maze test. Immunofluorescence staining showed that p-tau expression was increased in the hippocampus after repetitive mild traumatic brain injury. Golgi staining showed a significant decrease in the total density of neuronal dendritic spines in the hippocampus, as well as in the density of mature dendritic spines. To investigate the specific molecular mechanisms underlying cognitive impairment due to hippocampal damage, we performed proteomic and phosphoproteomic analyses of the hippocampus with and without repetitive mild traumatic brain injury. The differentially expressed proteins were mainly enriched in inflammation, immunity, and coagulation, suggesting that non-neuronal cells are involved in the pathological changes that occur in the hippocampus in the chronic stage after repetitive mild traumatic brain injury. In contrast, differentially expressed phosphorylated proteins were mainly enriched in pathways related to neuronal function and structure, which is more consistent with neurodegeneration. We identified N-methyl-D-aspartate receptor 1 as a hub molecule involved in the response to repetitive mild traumatic brain injury , and western blotting showed that, while N-methyl-D-aspartate receptor 1 expression was not altered in the hippocampus after repetitive mild traumatic brain injury, its phosphorylation level was significantly increased, which is consistent with the omics results. Administration of GRP78608, an N-methyl-D-aspartate receptor 1 antagonist, to the hippocampus markedly improved repetitive mild traumatic brain injury-induced cognitive impairment. In conclusion, our findings suggest that N-methyl-D-aspartate receptor 1 signaling in the hippocampus is involved in cognitive impairment in the chronic stage after repetitive mild traumatic brain injury and may be a potential target for intervention and treatment.
Collapse
Affiliation(s)
- Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zixuan Cao
- The Sixth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Erwan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an; Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Taozhi Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province; Department of Anesthesiology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University; School of Life Science, Northwest University, Xi'an, Shaanxi Province, China
| | - Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
4
|
Hoffman AN, Watson S, Chavda N, Lam J, Hovda DA, Giza CC, Fanselow MS. Increased Fear Generalization and Amygdala AMPA Receptor Proteins in Chronic Traumatic Brain Injury. J Neurotrauma 2022; 39:1561-1574. [PMID: 35722903 PMCID: PMC9689770 DOI: 10.1089/neu.2022.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairments and emotional lability are common long-term consequences of traumatic brain injury (TBI). How TBI affects interactions between sensory, cognitive, and emotional systems may reveal mechanisms that underlie chronic mental health comorbidities. Previously, we reported changes in auditory-emotional network activity and enhanced fear learning early after TBI. In the current study, we asked whether TBI has long-term effects on fear learning and responses to novel stimuli. Four weeks following lateral fluid percussion injury (FPI) or sham surgery, adult male rats were fear conditioned to either white noise-shock or tone-shock pairing, or shock-only control and subsequently were tested for freezing to context and to the trained or novel auditory cues in a new context. FPI groups showed greater freezing to their trained auditory cue, indicating long-term TBI enhanced fear. Interestingly, FPI-Noise Shock animals displayed robust fear to the novel, untrained tone compared with Sham-Noise Shock across both experiments. Shock Only groups did not differ in freezing to either auditory stimulus. These findings suggest that TBI precipitates maladaptive associative fear generalization rather than non-associative sensitization. Basolateral amygdala (BLA) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAr) subunits GluA1 and GluA2 levels were analyzed and the FPI-Noise Shock group had increased GluA1 (but not GluA2) levels that correlated with the level of tone fear generalization. This study illustrates a unique chronic TBI phenotype with both a cognitive impairment and increased fear and possibly altered synaptic transmission in the amygdala long after TBI, where stimulus generalization may underlie maladaptive fear and hyperarousal.
Collapse
Affiliation(s)
- Ann N. Hoffman
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, California, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Sonya Watson
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Nishtha Chavda
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jamie Lam
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - David A. Hovda
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA
- Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, California, USA
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA
- Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, California, USA
- Mattel Children's Hospital, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael S. Fanselow
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Outcome following traumatic brain injury (TBI) remains variable, and derangements in cerebral metabolism are a common finding in patients with poor outcome. This review compares our understanding of cerebral metabolism in health with derangements seen following TBI. RECENT FINDINGS Ischemia is common within the first 24 h of injury and inconsistently detected by bedside monitoring. Metabolic derangements can also result from tissue hypoxia in the absence of ischemic reductions in blood flow due to microvascular ischemia and mitochondrial dysfunction. Glucose delivery across the injured brain is dependent on blood glucose and regional cerebral blood flow, and is an important contributor to derangements in glucose metabolism. Alternative energy substrates such as lactate, ketone bodies and succinate that may support mitochondrial function, and can be utilized when glucose availability is low, have been studied following TBI but require further investigation. SUMMARY Mitochondrial dysfunction and the use of alternative energy substrates are potential therapeutic targets, but improved understanding of the causes, impact and significance of metabolic derangements in clinical TBI are needed. Maintaining adequate oxygen and glucose delivery across the injured brain may accelerate the recovery of mitochondrial function and cerebral energy metabolism and remain important management targets.
Collapse
Affiliation(s)
- Simon Demers-Marcil
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Department of Anesthesiology and Critical Care, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Jonathan P. Coles
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
6
|
Hermanides J, Hong YT, Trivedi M, Outtrim J, Aigbirhio F, Nestor PJ, Guilfoyle M, Winzeck S, Newcombe VFJ, Das T, Correia MM, Carpenter KLH, Hutchinson PJA, Gupta AK, Fryer TD, Pickard JD, Menon DK, Coles JP. Metabolic derangements are associated with impaired glucose delivery following traumatic brain injury. Brain 2021; 144:3492-3504. [PMID: 34240124 PMCID: PMC8677561 DOI: 10.1093/brain/awab255] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic derangements following traumatic brain injury are poorly characterized. In this single-centre observational cohort study we combined 18F-FDG and multi-tracer oxygen-15 PET to comprehensively characterize the extent and spatial pattern of metabolic derangements. Twenty-six patients requiring sedation and ventilation with intracranial pressure monitoring following head injury within a Neurosciences Critical Care Unit, and 47 healthy volunteers were recruited. Eighteen volunteers were excluded for age over 60 years (n = 11), movement-related artefact (n = 3) or physiological instability during imaging (n = 4). We measured cerebral blood flow, blood volume, oxygen extraction fraction, and 18F-FDG transport into the brain (K1) and its phosphorylation (k3). We calculated oxygen metabolism, 18F-FDG influx rate constant (Ki), glucose metabolism and the oxygen/glucose metabolic ratio. Lesion core, penumbra and peri-penumbra, and normal-appearing brain, ischaemic brain volume and k3 hotspot regions were compared with plasma and microdialysis glucose in patients. Twenty-six head injury patients, median age 40 years (22 male, four female) underwent 34 combined 18F-FDG and oxygen-15 PET at early, intermediate, and late time points (within 24 h, Days 2-5, and Days 6-12 post-injury; n = 12, 8, and 14, respectively), and were compared with 20 volunteers, median age 43 years (15 male, five female) who underwent oxygen-15, and nine volunteers, median age 56 years (three male, six female) who underwent 18F-FDG PET. Higher plasma glucose was associated with higher microdialysate glucose. Blood flow and K1 were decreased in the vicinity of lesions, and closely related when blood flow was <25 ml/100 ml/min. Within normal-appearing brain, K1 was maintained despite lower blood flow than volunteers. Glucose utilization was globally reduced in comparison with volunteers (P < 0.001). k3 was variable; highest within lesions with some patients showing increases with blood flow <25 ml/100 ml/min, but falling steeply with blood flow lower than 12 ml/100 ml/min. k3 hotspots were found distant from lesions, with k3 increases associated with lower plasma glucose (Rho -0.33, P < 0.001) and microdialysis glucose (Rho -0.73, P = 0.02). k3 hotspots showed similar K1 and glucose metabolism to volunteers despite lower blood flow and oxygen metabolism (P < 0.001, both comparisons); oxygen extraction fraction increases consistent with ischaemia were uncommon. We show that glucose delivery was dependent on plasma glucose and cerebral blood flow. Overall glucose utilization was low, but regional increases were associated with reductions in glucose availability, blood flow and oxygen metabolism in the absence of ischaemia. Clinical management should optimize blood flow and glucose delivery and could explore the use of alternative energy substrates.
Collapse
Affiliation(s)
- Jeroen Hermanides
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Monica Trivedi
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Joanne Outtrim
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Nestor
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Matthew Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefan Winzeck
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
- BioMedIA Group, Department of Computing, Imperial College, London, UK
| | | | - Tilak Das
- Department of Radiology, Addenbrooke’s Hospital, Cambridge, UK
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Arun K Gupta
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Jonathan P Coles
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Sun L, Shan W, Yang H, Liu R, Wu J, Wang Q. The Role of Neuroinflammation in Post-traumatic Epilepsy. Front Neurol 2021; 12:646152. [PMID: 34122298 PMCID: PMC8194282 DOI: 10.3389/fneur.2021.646152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the consequences after traumatic brain injury (TBI), which increases the morbidity and mortality of survivors. About 20% of patients with TBI will develop PTE, and at least one-third of them are resistant to conventional antiepileptic drugs (AEDs). Therefore, it is of utmost importance to explore the mechanisms underlying PTE from a new perspective. More recently, neuroinflammation has been proposed to play a significant role in epileptogenesis. This review focuses particularly on glial cells activation, peripheral leukocytes infiltration, inflammatory cytokines release and chronic neuroinflammation occurrence post-TBI. Although the immune response to TBI appears to be primarily pro-epileptogenic, further research is needed to clarify the causal relationships. A better understanding of how neuroinflammation contributes to the development of PTE is of vital importance. Novel prevention and treatment strategies based on the neuroinflammatory mechanisms underlying epileptogenesis are evidently needed. Search Strategy Search MeSH Terms in pubmed: "["Epilepsy"(Mesh)] AND "Brain Injuries, Traumatic"[Mesh]". Published in last 30 years. 160 results were founded. Full text available:145 results. Record screened manually related to Neuroinflammation and Post-traumatic epilepsy. Then finally 123 records were included.
Collapse
Affiliation(s)
- Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Wei Shan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Huajun Yang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
8
|
Zhao A, Ma B, Xu L, Yao M, Zhang Y, Xue B, Ren J, Chang D, Liu J. Jiedu Tongluo Granules Ameliorates Post-stroke Depression Rat Model via Regulating NMDAR/BDNF Signaling Pathway. Front Pharmacol 2021; 12:662003. [PMID: 34093193 PMCID: PMC8173625 DOI: 10.3389/fphar.2021.662003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/28/2021] [Indexed: 01/26/2023] Open
Abstract
Post-stroke depression (PSD) is one of the most common stroke complications, which seriously affects stroke’s therapeutic effect and brings great pain for patients. The pathological mechanism of PSD has not been revealed. Jiedu Tongluo granules (JDTLG) is an effective traditional Chinese medicine for PSD treatment which is widely used in clinical treatment. JDTLG has a significant therapeutic effect against PSD, but the mechanism is still unclear. The PSD rat model was established by carotid artery embolization combined with chronic sleep deprivation followed by treating with JDTLG. Neurobehavioral and neurofunctional experiments were engaged in studying the neural function of rats. Histomorphology, proteomics, and western blotting researches were performed to investigate the potential molecular mechanisms related to JDTLG therapy. Oral treatment of JDTLG could significantly improve the symptoms of neurological deficit and depression symptoms of PSD rats. Proteomic analysis identified several processes that may involve the regulation of JDTLG on the PSD animal model, including energy metabolism, nervous system, and N-methyl-D-aspartate receptor (NMDAR)/brain-derived neurotrophic factor (BDNF) signal pathway. Our results showed that JDTLG could reduce glutamate (Glu) level and increase gamma-aminobutyric acid (GABA) level via regulating the NMDAR/BDNF pathway, which may play a vital role in the occurrence and development of PSD.
Collapse
Affiliation(s)
- Aimei Zhao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Ma
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Xu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yehao Zhang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingjie Xue
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dennis Chang
- NICM, Western Sydney University, Penrith, NSW, Australia
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Hoffman AN, Watson S, Fanselow MS, Hovda DA, Giza C. Region-Dependent Modulation of Neural Plasticity in Limbic Structures Early after Traumatic Brain Injury. Neurotrauma Rep 2021; 2:200-213. [PMID: 33937912 PMCID: PMC8086520 DOI: 10.1089/neur.2020.0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI)-induced disruptions in synaptic function within brain regions and across networks in the limbic system may underlie a vulnerability for maladaptive plasticity and contribute to behavioral comorbidities. In this study we measured how synaptic proteins respond to lateral fluid percussion injury (FPI) brain regions known to regulate emotion and memory, including the basolateral amygdala (BLA), dorsal and ventral hippocampus (DH, VH), and medial prefrontal cortex (PFC). We investigated proteins involved in regulating plasticity, including synaptic glutamatergic a-amino-3-hydroxy5-methyl-4-isoxazolepropionic acid (AMPA; GluA1, GluA2) and N-methyl-D-aspartate (NMDA; NR1, NR2A, NR2B) receptor subunits as well as inhibitory gamma-aminobutyric acid (GABA) synthetic enzymes (GAD67, GAD65) via western blot. Adult male rats received a mild-moderate lateral FPI or sham surgery and ipsi- and contralateral BLA, DH, VH, and PFC were collected 6 h, 24 h, 48 h, and 7 days post-injury. In the ipsilateral BLA, there was a significant decrease in NR1 and GluA2 24 h after injury, whereas NR2A and NR2B were increased in the contralateral BLA at 48 h compared with sham. GAD67 was increased ipsilaterally at 24 h, but decreased contralaterally at 48 h in the BLA. In the DH, both NMDA (NR2A, NR2B) and GABA-synthetic (GAD65, GAD67) proteins were increased acutely at 6 h compared with sham. GAD67 was also robustly increased in the ipsilateral VH at 6 h. In the contralateral VH, NR2A significantly increased between 6 h and 24 h after FPI, whereas GAD65 was decreased across the same time-points in the contralateral VH. In the medial PFC at 24 h we saw bilateral increases in GAD67 and a contralateral decrease in GluA1. Later, there was a significant decrease in GAD67 in contralateral PFC from 48 h to 7 days post-injury. Collectively, these data suggest that lateral FPI causes a dynamic homeostatic response across limbic networks, leading to an imbalance of the proteins involved in plasticity in neural systems underlying cognitive and emotional regulation.
Collapse
Affiliation(s)
- Ann N Hoffman
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA.,Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Sonya Watson
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA.,Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael S Fanselow
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - David A Hovda
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, California, USA.,Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Christopher Giza
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA.,Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, California, USA.,Mattel Children's Hospital, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Walrand S, Gaulmin R, Aubin R, Sapin V, Coste A, Abbot M. Nutritional factors in sport-related concussion. Neurochirurgie 2021; 67:255-258. [PMID: 33582206 DOI: 10.1016/j.neuchi.2021.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/06/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Sports concussion is a major problem that affects thousands of people every year. Concussion-related neurometabolic changes are thought to underlie neurophysiological alterations and post-concussion symptoms, such as headaches and sensitivity to light and noise, disabilities of concentration and tiredness. The injury triggers a complex neurometabolic cascade involving multiple mechanisms. There are pharmaceutical treatments that target one mechanism, but specific nutrients have been found to impact several pathways, thus offering a broader approach. This has prompted intensive research into the use of nutrient supplements as a concussion prevention and treatment strategy. METHOD We realised a bibliographic state of art providing a contemporary clinical and preclinical studies dealing with nutritional factors in sport-related concussion. RESULTS Numerous supplements, including n-3 polyunsaturated fatty acids, sulfur amino acids, antioxidants and minerals, have shown promising results as aids to concussion recovery or prevention in animal studies, most of which use a fluid percussion technique to cause brain injury, and in a few human studies of severe or moderate traumatic brain injury. Current ongoing human trials can hopefully provide us with more information, in particular, on new options, i.e. probiotics, lactate or amino acids, for the use of nutritional supplements for concussed athletes. CONCLUSION Nutritional supplementation has emerged as a potential strategy to prevent and/or reduce the deleterious effects of sports-related concussion and subconcussive impacts.
Collapse
Affiliation(s)
- S Walrand
- Service de Nutrition Clinique, CHU Clermont-Ferrand, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France.
| | - R Gaulmin
- Service médical, ASM Clermont-Auvergne Rugby, 63028 Clermont-Ferrand cedex 2, France
| | - R Aubin
- Service médical, ASM Clermont-Auvergne Rugby, 63028 Clermont-Ferrand cedex 2, France
| | - V Sapin
- Service de Biochimie & Génétique Moléculaire, CHU Clermont-Ferrand, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - A Coste
- Service de Neurochirurgie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - M Abbot
- Service médical, ASM Clermont-Auvergne Rugby, 63028 Clermont-Ferrand cedex 2, France; Service de Médecine du Sport, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Traumatic brain injury metabolome and mitochondrial impact after early stage Ru360 treatment. Mitochondrion 2021; 57:192-204. [PMID: 33484870 DOI: 10.1016/j.mito.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Ru360, a mitochondrial Ca2+ uptake inhibitor, was tested in a unilateral fluid percussion TBI model in developing rats (P31). Vehicle and Ru360 treated TBI rats underwent sensorimotor behavioral monitoring between 24 and 72 h, thereafter which 185 brain metabolites were analyzed postmortem using LC/MS. Ru360 treatment after TBI improved sensorimotor behavioral recovery, upregulated glycolytic and pentose phosphate pathways, mitigated oxidative stress and prevented NAD+ depletion across both hemispheres. While neural viability improved ipsilaterally, it reduced contralaterally. Ru360 treatment, overall, had a global impact with most benefit near the strongest injury impact areas, while perturbing mitochondrial oxidative energetics in the milder TBI impact areas.
Collapse
|
12
|
Hoffman AN, Watson SL, Makridis AS, Patel AY, Gonzalez ST, Ferguson L, Giza CC, Fanselow MS. Sex Differences in Behavioral Sensitivities After Traumatic Brain Injury. Front Neurol 2020; 11:553190. [PMID: 33324313 PMCID: PMC7724082 DOI: 10.3389/fneur.2020.553190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with high rates of post-injury psychiatric and neurological comorbidities. TBI is more common in males than females despite females reporting more symptoms and longer recovery following TBI and concussion. Both pain and mental health conditions like anxiety and post-traumatic stress disorder (PTSD) are more common in women in the general population, however the dimorphic comorbidity in the TBI population is not well-understood. TBI may predispose the development of maladaptive anxiety or PTSD following a traumatic stressor, and the impact of sex on this interaction has not been investigated. We have shown that white noise is noxious to male rats following fluid percussion injury (FPI) and increases fear learning when used in auditory fear conditioning, but it is unclear whether females exhibit a similar phenotype. Adult female and male rats received either lateral FPI or sham surgery and 48 h later received behavioral training. We first investigated sex differences in response to 75 dB white noise followed by white noise-signaled fear conditioning. FPI groups exhibited defensive behavior to the white noise, which was significantly more robust in females, suggesting FPI increased auditory sensitivity. In another experiment, we asked how FPI affects contextual fear learning in females and males following unsignaled footshocks of either strong (0.9 mA) or weaker (0.5 mA) intensity. We saw that FPI led to rapid acquisition of contextual fear compared to sham. A consistent pattern of increased contextual fear after TBI was apparent in both sexes across experiments under differing conditioning protocols. Using a light gradient open field task we found that FPI females showed a defensive photophobia response to light, a novel finding supporting TBI enhanced sensory sensitivity across modalities in females. General behavioral differences among our measures were observed between sexes and discussed with respect to interpretations of TBI effects for each sex. Together our data support enhanced fear following a traumatic stressor after TBI in both sexes, where females show greater sensitivity to sensory stimuli across multiple modalities. These data demonstrate sex differences in emergent defensive phenotypes following TBI that may contribute to comorbid PTSD, anxiety, and other neurological comorbidities.
Collapse
Affiliation(s)
- Ann N Hoffman
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,University of California, Los Angeles Steve Tisch BrainSPORT Program, Los Angeles, CA, United States.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sonya L Watson
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anna S Makridis
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anisha Y Patel
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sarah T Gonzalez
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lindsay Ferguson
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,University of California, Los Angeles Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Christopher C Giza
- Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, United States.,University of California, Los Angeles Steve Tisch BrainSPORT Program, Los Angeles, CA, United States.,Division of Neurology, Department of Pediatrics, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, CA, United States
| | - Michael S Fanselow
- Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Science, Los Angeles, CA, United States
| |
Collapse
|
13
|
Tang S, Gao P, Chen H, Zhou X, Ou Y, He Y. The Role of Iron, Its Metabolism and Ferroptosis in Traumatic Brain Injury. Front Cell Neurosci 2020; 14:590789. [PMID: 33100976 PMCID: PMC7545318 DOI: 10.3389/fncel.2020.590789] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a structural and physiological disruption of brain function caused by external forces. It is a major cause of death and disability for patients worldwide. TBI includes both primary and secondary impairments. Iron overload and ferroptosis highly involved in the pathophysiological process of secondary brain injury. Ferroptosis is a form of regulatory cell death, as increased iron accumulation in the brain leads to lipid peroxidation, reactive oxygen species (ROS) production, mitochondrial dysfunction and neuroinflammatory responses, resulting in cellular and neuronal damage. For this reason, eliminating factors like iron deposition and inhibiting lipid peroxidation may be a promising therapy. Iron chelators can be used to eliminate excess iron and to alleviate some of the clinical manifestations of TBI. In this review we will focus on the mechanisms of iron and ferroptosis involving the manifestations of TBI, broaden our understanding of the use of iron chelators for TBI. Through this review, we were able to better find novel clinical therapeutic directions for further TBI study.
Collapse
Affiliation(s)
- Sicheng Tang
- Medical Clinic and Polyclinic IV, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Pan Gao
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Daniell B, Bernitt C, Walton SR, Malin SK, Resch JE. Changes in Metabolism and Caloric Intake after Sport Concussion: A Case Series. TRANSLATIONAL JOURNAL OF THE AMERICAN COLLEGE OF SPORTS MEDICINE 2020. [DOI: 10.1249/tjx.0000000000000129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Hoffman AN, Lam J, Hovda DA, Giza CC, Fanselow MS. Sensory sensitivity as a link between concussive traumatic brain injury and PTSD. Sci Rep 2019; 9:13841. [PMID: 31554865 PMCID: PMC6761112 DOI: 10.1038/s41598-019-50312-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most common injuries to military personnel, a population often exposed to stressful stimuli and emotional trauma. Changes in sensory processing after TBI might contribute to TBI-post traumatic stress disorder (PTSD) comorbidity. Combining an animal model of TBI with an animal model of emotional trauma, we reveal an interaction between auditory sensitivity after TBI and fear conditioning where 75 dB white noise alone evokes a phonophobia-like phenotype and when paired with footshocks, fear is robustly enhanced. TBI reduced neuronal activity in the hippocampus but increased activity in the ipsilateral lateral amygdala (LA) when exposed to white noise. The white noise effect in LA was driven by increased activity in neurons projecting from ipsilateral auditory thalamus (medial geniculate nucleus). These data suggest that altered sensory processing within subcortical sensory-emotional circuitry after TBI results in neutral stimuli adopting aversive properties with a corresponding impact on facilitating trauma memories and may contribute to TBI-PTSD comorbidity.
Collapse
Affiliation(s)
- Ann N Hoffman
- UCLA, Neurosurgery; Brain Injury Research Center, Los Angeles, USA.
- UCLA, Psychology, Los Angeles, USA.
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, USA.
- Staglin Center for Brain and Behavioral Health, Life Sciences, UCLA, Los Angeles, USA.
| | | | - David A Hovda
- UCLA, Neurosurgery; Brain Injury Research Center, Los Angeles, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, USA
- UCLA, Medical and Molecular Pharmacology, Los Angeles, USA
| | - Christopher C Giza
- UCLA, Neurosurgery; Brain Injury Research Center, Los Angeles, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, USA
- UCLA Mattel Children's Hospital, Los Angeles, USA
| | - Michael S Fanselow
- UCLA, Psychology, Los Angeles, USA
- UCLA, Psychiatry and Biobehavioral Sciences, Los Angeles, USA
- Staglin Center for Brain and Behavioral Health, Life Sciences, UCLA, Los Angeles, USA
| |
Collapse
|
16
|
Schweser F, Kyyriäinen J, Preda M, Pitkänen A, Toffolo K, Poulsen A, Donahue K, Levy B, Poulsen D. Visualization of thalamic calcium influx with quantitative susceptibility mapping as a potential imaging biomarker for repeated mild traumatic brain injury. Neuroimage 2019; 200:250-258. [PMID: 31201986 DOI: 10.1016/j.neuroimage.2019.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022] Open
Abstract
A key event in the pathophysiology of traumatic brain injury (TBI) is the influx of substantial amounts of Ca2+ into neurons, particularly in the thalamus. Detection of this calcium influx in vivo would provide a window into the biochemical mechanisms of TBI with potentially significant clinical implications. In the present work, our central hypothesis was that the Ca2+ influx could be imaged in vivo with the relatively recent MRI technique of quantitative susceptibility mapping (QSM). Wistar rats were divided into five groups: naive controls, sham-operated experimental controls, single mild TBI, repeated mild TBI, and single severe TBI. We employed the lateral fluid percussion injury (FPI) model, which replicates clinical TBI without skull fracture, performed 9.4 Tesla MRI with a 3D multi-echo gradient-echo sequence at weeks 1 and 4 post-injury, computed susceptibility maps using V-SHARP and the QUASAR-HEIDI technique, and performed histology. Sham, experimental controls animals, and injured animals did not demonstrate calcifications at 1 week after the injury. At week 4, calcifications were found in the ipsilateral thalamus of 25-50% of animals after a single TBI and 83% of animals after repeated mild TBI. The location and appearance of calcifications on stained sections was consistent with the appearance on the in vivo susceptibility maps (correlation of volumes: r = 0.7). Our findings suggest that persistent calcium deposits represent a primary pathology of repeated injury and that FPI-QSM has the potential to become a sensitive tool for studying pathophysiology related to mild TBI in vivo.
Collapse
Affiliation(s)
- Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Jenni Kyyriäinen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI, 70211, Kuopio, Finland
| | - Marilena Preda
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Asla Pitkänen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI, 70211, Kuopio, Finland
| | - Kathryn Toffolo
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Austin Poulsen
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Kaitlynn Donahue
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Benett Levy
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - David Poulsen
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
17
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
18
|
O'Neil DA, Nicholas MA, Lajud N, Kline AE, Bondi CO. Preclinical Models of Traumatic Brain Injury: Emerging Role of Glutamate in the Pathophysiology of Depression. Front Pharmacol 2018; 9:579. [PMID: 29910733 PMCID: PMC5992468 DOI: 10.3389/fphar.2018.00579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
More than 10 million people worldwide incur a traumatic brain injury (TBI) each year, with two million cases occurring in the United States. TBI survivors exhibit long-lasting cognitive and affective sequelae that are associated with reduced quality of life and work productivity, as well as mental and emotional disturbances. While TBI-related disabilities often manifest physically and conspicuously, TBI has been linked with a "silent epidemic" of psychological disorders, including major depressive disorder (MDD). The prevalence of MDD post-insult is approximately 50% within the 1st year. Furthermore, given they are often under-reported when mild, TBIs could be a significant overall cause of MDD in the United States. The emergence of MDD post-TBI may be rooted in widespread disturbances in the modulatory role of glutamate, such that glutamatergic signaling becomes excessive and deleterious to neuronal integrity, as reported in both clinical and preclinical studies. Following this acute glutamatergic storm, regulators of glutamatergic function undergo various manipulations, which include, but are not limited to, alterations in glutamatergic subunit composition, release, and reuptake. This review will characterize the glutamatergic functional and signaling changes that emerge and persist following experimental TBI, utilizing evidence from clinical, molecular, and rodent behavioral investigations. Special care will be taken to speculate on how these manipulations may correlate with the development of MDD following injury in the clinic, as well as pharmacotherapies to date. Indisputably, TBI is a significant healthcare issue that warrants discovery and subsequent refinement of therapeutic strategies to improve neurobehavioral recovery and mental health.
Collapse
Affiliation(s)
- Darik A O'Neil
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melissa A Nicholas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Naima Lajud
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia, Mexico
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States.,Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Schranz AL, Manning KY, Dekaban GA, Fischer L, Jevremovic T, Blackney K, Barreira C, Doherty TJ, Fraser DD, Brown A, Holmes J, Menon RS, Bartha R. Reduced brain glutamine in female varsity rugby athletes after concussion and in non-concussed athletes after a season of play. Hum Brain Mapp 2018; 39:1489-1499. [PMID: 29271016 PMCID: PMC6866259 DOI: 10.1002/hbm.23919] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/07/2017] [Accepted: 12/04/2017] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to use non-invasive proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) to monitor changes in prefrontal white matter metabolite levels and tissue microstructure in female rugby players with and without concussion (ages 18-23, n = 64). Evaluations including clinical tests and 3 T MRI were performed at the beginning of a season (in-season) and followed up at the end of the season (off-season). Concussed athletes were additionally evaluated 24-72 hr (n = 14), three months (n = 11), and six months (n = 8) post-concussion. Reduced glutamine at 24-72 hr and three months post-concussion, and reduced glutamine/creatine at three months post-concussion were observed. In non-concussed athletes (n = 46) both glutamine and glutamine/creatine were lower in the off-season compared to in-season. Within the MRS voxel, an increase in fractional anisotropy (FA) and decrease in radial diffusivity (RD) were also observed in the non-concussed athletes, and correlated with changes in glutamine and glutamine/creatine. Decreases in glutamine and glutamine/creatine suggest reduced oxidative metabolism. Changes in FA and RD may indicate neuroinflammation or re-myelination. The observed changes did not correlate with clinical test scores suggesting these imaging metrics may be more sensitive to brain injury and could aid in assessing recovery of brain injury from concussion.
Collapse
Affiliation(s)
- Amy L. Schranz
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Kathryn Y. Manning
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Gregory A. Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Microbiology and ImmunologyThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Dental Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Lisa Fischer
- Department of Family Medicine and Fowler Kennedy Sport Medicine ClinicThe University of Western Ontario, 3M Centre, 1151 Richmond Street NorthLondonOntarioN6A 3K7Canada
| | - Tatiana Jevremovic
- Department of Family Medicine and Fowler Kennedy Sport Medicine ClinicThe University of Western Ontario, 3M Centre, 1151 Richmond Street NorthLondonOntarioN6A 3K7Canada
| | - Kevin Blackney
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Microbiology and ImmunologyThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Dental Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Christy Barreira
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
| | - Timothy J. Doherty
- Department of Physical Medicine and RehabilitationThe University of Western Ontario, Schulich School of Medicine and Dentistry, Parkwood Institute, 550 Wellington Road, Hobbins BuildingLondonOntarioN6C 0A7Canada
| | - Douglas D. Fraser
- Paediatrics Critical Care Medicine, London Health Sciences Centre, Children's Hospital, 800 Commissioners Road EastLondonOntarioN6A 5W9Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Anatomy and Cell BiologyThe University of Western Ontario, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Jeff Holmes
- School of Occupational TherapyThe University of Western Ontario, 1201 Western Road, Elborn CollegeLondonOntarioN6A 1H1Canada
| | - Ravi S. Menon
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Robert Bartha
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| |
Collapse
|
20
|
Estrada-Rojo F, Morales-Gomez J, Coballase-Urrutia E, Martinez-Vargas M, Navarro L. Diurnal variation of NMDA receptor expression in the rat cerebral cortex is associated with traumatic brain injury damage. BMC Res Notes 2018; 11:150. [PMID: 29467028 PMCID: PMC5822486 DOI: 10.1186/s13104-018-3258-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/14/2018] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Data from our laboratory suggest that recovery from a traumatic brain injury depends on the time of day at which it occurred. In this study, we examined whether traumatic brain injury -induced damage is related to circadian variation in N-methyl-D-aspartate receptor expression in rat cortex. RESULTS We confirmed that traumatic brain injury recovery depended on the time of day at which the damage occurred. We also found that motor cortex N-methyl-D-aspartate receptor subunit NR1 expression exhibited diurnal variation in both control and traumatic brain injury-subjected rats. However, this rhythm is more pronounced in traumatic brain injury-subjected rats, with minimum expression in those injured during nighttime hours. These findings suggest that traumatic brain injury occurrence times should be considered in future clinical studies and when designing neuroprotective strategies for patients.
Collapse
Affiliation(s)
- Francisco Estrada-Rojo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.,Programa de Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Julio Morales-Gomez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | - Marina Martinez-Vargas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Luz Navarro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
21
|
Schweser F, Raffaini Duarte Martins AL, Hagemeier J, Lin F, Hanspach J, Weinstock-Guttman B, Hametner S, Bergsland N, Dwyer MG, Zivadinov R. Mapping of thalamic magnetic susceptibility in multiple sclerosis indicates decreasing iron with disease duration: A proposed mechanistic relationship between inflammation and oligodendrocyte vitality. Neuroimage 2018; 167:438-452. [PMID: 29097315 PMCID: PMC5845810 DOI: 10.1016/j.neuroimage.2017.10.063] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Recent advances in susceptibility MRI have dramatically improved the visualization of deep gray matter brain regions and the quantification of their magnetic properties in vivo, providing a novel tool to study the poorly understood iron homeostasis in the human brain. In this study, we used an advanced combination of the recent quantitative susceptibility mapping technique with dedicated analysis methods to study intra-thalamic tissue alterations in patients with clinically isolated syndrome (CIS) and multiple sclerosis (MS). Thalamic pathology is one of the earliest hallmarks of MS and has been shown to correlate with cognitive dysfunction and fatigue, but the mechanisms underlying the thalamic pathology are poorly understood. We enrolled a total of 120 patients, 40 with CIS, 40 with Relapsing Remitting MS (RRMS), and 40 with Secondary Progressive MS (SPMS). For each of the three patient groups, we recruited 40 controls, group matched for age- and sex (120 total). We acquired quantitative susceptibility maps using a single-echo gradient echo MRI pulse sequence at 3 T. Group differences were studied by voxel-based analysis as well as with a custom thalamus atlas. We used threshold-free cluster enhancement (TFCE) and multiple regression analyses, respectively. We found significantly reduced magnetic susceptibility compared to controls in focal thalamic subregions of patients with RRMS (whole thalamus excluding the pulvinar nucleus) and SPMS (primarily pulvinar nucleus), but not in patients with CIS. Susceptibility reduction was significantly associated with disease duration in the pulvinar, the left lateral nuclear region, and the global thalamus. Susceptibility reduction indicates a decrease in tissue iron concentration suggesting an involvement of chronic microglia activation in the depletion of iron from oligodendrocytes in this central and integrative brain region. Not necessarily specific to MS, inflammation-mediated iron release may lead to a vicious circle that reduces the protection of axons and neuronal repair.
Collapse
Affiliation(s)
- Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Ana Luiza Raffaini Duarte Martins
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Fuchun Lin
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jannis Hanspach
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
22
|
Hylin MJ, Holden RC, Smith AC, Logsdon AF, Qaiser R, Lucke-Wold BP. Juvenile Traumatic Brain Injury Results in Cognitive Deficits Associated with Impaired Endoplasmic Reticulum Stress and Early Tauopathy. Dev Neurosci 2018; 40:175-188. [PMID: 29788004 PMCID: PMC6376969 DOI: 10.1159/000488343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 03/12/2018] [Indexed: 02/05/2023] Open
Abstract
The leading cause of death in the juvenile population is trauma, and in particular neurotrauma. The juvenile brain response to neurotrauma is not completely understood. Endoplasmic reticulum (ER) stress has been shown to contribute to injury expansion and behavioral deficits in adult rodents and furthermore has been seen in adult postmortem human brains diagnosed with chronic traumatic encephalopathy. Whether endoplasmic reticulum stress is increased in juveniles with traumatic brain injury (TBI) is poorly delineated. We investigated this important topic using a juvenile rat controlled cortical impact (CCI) model. We proposed that ER stress would be significantly increased in juvenile rats following TBI and that this would correlate with behavioral deficits using a juvenile rat model. A juvenile rat (postnatal day 28) CCI model was used. Binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP) were measured at 4 h in the ipsilateral pericontusion cortex. Hypoxia-inducible factor (HIF)-1α was measured at 48 h and tau kinase measured at 1 week and 30 days. At 4 h following injury, BiP and CHOP (markers of ER stress) were significantly elevated in rats exposed to TBI. We also found that HIF-1α was significantly upregulated 48 h following TBI showing delayed hypoxia. The early ER stress activation was additionally asso-ciated with the activation of a known tau kinase, glycogen synthase kinase-3β (GSK-3β), by 1 week. Tau oligomers measured by R23 were significantly increased by 30 days following TBI. The biochemical changes following TBI were associated with increased impulsive-like or anti-anxiety behavior measured with the elevated plus maze, deficits in short-term memory measured with novel object recognition, and deficits in spatial memory measured with the Morris water maze in juvenile rats exposed to TBI. These results show that ER stress was increased early in juvenile rats exposed to TBI, that these rats developed tau oligomers over the course of 30 days, and that they had significant short-term and spatial memory deficits following injury.
Collapse
Affiliation(s)
- Michael J. Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Ryan C. Holden
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Aidan C. Smith
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Aric F. Logsdon
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Rabia Qaiser
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
23
|
Hill RL, Singh IN, Wang JA, Hall ED. Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury. Neurochem Int 2017; 111:45-56. [PMID: 28342966 PMCID: PMC5610595 DOI: 10.1016/j.neuint.2017.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) results in rapid reactive oxygen species (ROS) production and oxidative damage to essential brain cellular components leading to neuronal dysfunction and cell death. It is increasingly appreciated that a major player in TBI-induced oxidative damage is the reactive nitrogen species (RNS) peroxynitrite (PN) which is produced in large part in injured brain mitochondria. Once formed, PN decomposes into highly reactive free radicals that trigger membrane lipid peroxidation (LP) of polyunsaturated fatty acids (e.g. arachidonic acid) and protein nitration (3-nitrotyrosine, 3-NT) in mitochondria and other cellular membranes causing various functional impairments to mitochondrial oxidative phosphorylation and calcium (Ca2+) buffering capacity. The LP also results in the formation of neurotoxic reactive aldehyde byproducts including 4-hydroxynonenal (4-HNE) and propenal (acrolein) which exacerbates ROS/RNS production and oxidative protein damage in the injured brain. Ultimately, this results in intracellular Ca2+ overload that activates proteolytic degradation of α-spectrin, a neuronal cytoskeletal protein. Therefore, the aim of this study was to establish the temporal evolution of mitochondrial dysfunction, oxidative damage and cytoskeletal degradation in the brain following a severe controlled cortical impact (CCI) TBI in young male adult rats. In mitochondria isolated from an 8 mm diameter cortical punch including the 5 mm wide impact site and their respiratory function studied ex vivo, we observed an initial decrease in complex I and II mitochondrial bioenergetics within 3 h (h). For complex I bioenergetics, this partially recovered by 12-16 h, whereas for complex II respiration the recovery was complete by 12 h. During the first 24 h, there was no evidence of an injury-induced increase in LP or protein nitration in mitochondrial or cellular homogenates. However, beginning at 24 h, there was a gradual secondary decline in complex I and II respiration that peaked at 72 h. post-TBI that coincided with progressive peroxidation of mitochondrial and cellular lipids, protein nitration and protein modification by 4-HNE and acrolein. The oxidative damage and respiratory failure paralleled an increase in Ca2+-induced proteolytic degradation of the neuronal cytoskeletal protein α-spectrin indicating a failure of intracellular Ca2+ homeostasis. These findings of a surprisingly delayed peak in secondary injury, suggest that the therapeutic window and needed treatment duration for certain antioxidant treatment strategies following CCI-TBI in rodents may be longer than previously believed.
Collapse
Affiliation(s)
- Rachel L Hill
- University of Kentucky College of Medicine, Spinal Cord and Brain Injury Research Center (SCoBIRC), 741 S. Limestone St, Lexington, KY 40536-0509, USA
| | - Indrapal N Singh
- University of Kentucky College of Medicine, Spinal Cord and Brain Injury Research Center (SCoBIRC), 741 S. Limestone St, Lexington, KY 40536-0509, USA; University of Kentucky College of Medicine, Department of Neuroscience, 741 S. Limestone St, Lexington, KY 40536-0509, USA
| | - Juan A Wang
- University of Kentucky College of Medicine, Spinal Cord and Brain Injury Research Center (SCoBIRC), 741 S. Limestone St, Lexington, KY 40536-0509, USA
| | - Edward D Hall
- University of Kentucky College of Medicine, Spinal Cord and Brain Injury Research Center (SCoBIRC), 741 S. Limestone St, Lexington, KY 40536-0509, USA; University of Kentucky College of Medicine, Department of Neuroscience, 741 S. Limestone St, Lexington, KY 40536-0509, USA.
| |
Collapse
|
24
|
Kaplan GB, Leite-Morris KA, Wang L, Rumbika KK, Heinrichs SC, Zeng X, Wu L, Arena DT, Teng YD. Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder. J Neurotrauma 2017; 35:210-225. [PMID: 29017388 DOI: 10.1089/neu.2016.4953] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high rates of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) diagnoses encountered in recent years by the United States Veterans Affairs Healthcare System have increased public awareness and research investigation into these conditions. In this review, we analyze the neural mechanisms underlying the TBI/PTSD comorbidity. TBI and PTSD present with common neuropsychiatric symptoms including anxiety, irritability, insomnia, personality changes, and memory problems, and this overlap complicates diagnostic differentiation. Interestingly, both TBI and PTSD can be produced by overlapping pathophysiological changes that disrupt neural connections termed the "connectome." The neural disruptions shared by PTSD and TBI and the comorbid condition include asymmetrical white matter tract abnormalities and gray matter changes in the basolateral amygdala, hippocampus, and prefrontal cortex. These neural circuitry dysfunctions result in behavioral changes that include executive function and memory impairments, fear retention, fear extinction deficiencies, and other disturbances. Pathophysiological etiologies can be identified using experimental models of TBI, such as fluid percussion or blast injuries, and for PTSD, using models of fear conditioning, retention, and extinction. In both TBI and PTSD, there are discernible signs of neuroinflammation, excitotoxicity, and oxidative damage. These disturbances produce neuronal death and degeneration, axonal injury, and dendritic spine dysregulation and changes in neuronal morphology. In laboratory studies, various forms of pharmacological or psychological treatments are capable of reversing these detrimental processes and promoting axonal repair, dendritic remodeling, and neurocircuitry reorganization, resulting in behavioral and cognitive functional enhancements. Based on these mechanisms, novel neurorestorative therapeutics using anti-inflammatory, antioxidant, and anticonvulsant agents may promote better outcomes for comorbid TBI and PTSD.
Collapse
Affiliation(s)
- Gary B Kaplan
- 1 Mental Health Service , VA Boston Healthcare System, Brockton, Massachusetts.,2 Department of Psychiatry, Boston University School of Medicine , Boston, Massachusetts.,3 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, Massachusetts
| | - Kimberly A Leite-Morris
- 2 Department of Psychiatry, Boston University School of Medicine , Boston, Massachusetts.,3 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, Massachusetts.,4 Research Service, VA Boston Healthcare System , Jamaica Plain, Massachusetts
| | - Lei Wang
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Kendra K Rumbika
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Stephen C Heinrichs
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Xiang Zeng
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Liquan Wu
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Danielle T Arena
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Yang D Teng
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
25
|
Liu X, Qiu J, Alcon S, Hashim J, Meehan WP, Mannix R. Environmental Enrichment Mitigates Deficits after Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2017; 34:2445-2455. [PMID: 28376667 DOI: 10.1089/neu.2016.4823] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although environmental enrichment has been shown to improve functional and histologic outcomes in pre-clinical moderate-to-severe traumatic brain injury (TBI), there are a paucity of pre-clinical data regarding enrichment strategies in the setting of repetitive mild traumatic brain injury (rmTBI). Given the vast numbers of athletes and those in the military who sustain rmTBI, the mounting evidence of the long-term and progressive sequelae of rmTBI, and the lack of targeted therapies to mitigate these sequelae, successful enrichment interventions in rmTBI could have large public health significance. Here, we evaluated enrichment strategies in an established pre-clinical rmTBI model. Seventy-one male C57BL/6 mice were randomized to two different housing conditions, environmental enrichment (EE) or normal condition (NC), then subjected to rmTBI injury (seven injuries in 9 days) or sham injury (anesthesia only). Functional outcomes in all four groups (NC-TBI, EE-TBI, NC-sham, and EE-sham) were assessed by motor, exploratory/anxiety, and mnemonic behavioral tests. At the synaptic level, N-methyl d-aspartate receptor (NMDAR) subunit expression of phosphorylated glutamate receptor 1 (GluR1), phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), and calpain were evaluated by western blot. Compared to injured NC-TBI mice, EE-TBI mice had improved memory and decreased anxiety and exploratory activity post-injury. Treatment with enrichment also corresponded to normal NMDAR subunit expression, decreased GluR1 phosphorylation, decreased phosphorylated CaMKII, and normal calpain expression post-rmTBI. These data suggest that enrichment strategies may improve functional outcomes and mitigate synaptic changes post-rmTBI. Given that enrichment strategies are feasible in the clinical setting, particularly for athletes and soldiers for whom the risk of repetitive injury is greatest, these data suggest that clinical trials may be warranted.
Collapse
Affiliation(s)
- Xixia Liu
- 1 People's Hospital of Guangxi Zhuang Autonomous Region , Nanning, People's Republic of China
| | - Jianhua Qiu
- 2 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts.,3 Harvard Medical School , Boston, Massachusetts
| | - Sasha Alcon
- 2 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - Jumana Hashim
- 2 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - William P Meehan
- 2 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts.,3 Harvard Medical School , Boston, Massachusetts.,4 Sports Concussion Clinic , Division of Sports Medicine, Boston, Massachusetts.,5 The Micheli Center for Sports Injury Prevention , Waltham, Massachusetts
| | - Rebekah Mannix
- 2 Division of Emergency Medicine, Boston Children's Hospital , Boston, Massachusetts.,3 Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
26
|
Salvatore AP, Cannito M, Brassil HE, Bene ER, Sirmon-Taylor B. Auditory comprehension performance of college students with and without sport concussion on Computerized-Revised Token Test Subtest VIII. Concussion 2017; 2:CNC37. [PMID: 30202577 PMCID: PMC6094027 DOI: 10.2217/cnc-2016-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/02/2017] [Indexed: 11/25/2022] Open
Abstract
Aim: Auditory comprehension (AC) and visually assessed cognitive functions were compared in early stage postconcussed (PC) athletes and healthy controls using the Subtest VIII of the Computerized-Revised Token Test (C-RTT) and Immediate Postconcussion Assessment and Cognitive Test (ImPACT). Results: As compared with healthy controls (n = 30), PC subjects (n = 30) had significantly lower C-RTT efficiency scores (p = 0.018), and lower ImPACT scores; total symptom score (p = 0.000.), verbal memory (p = 0.000), visual memory (p = 0.000), visual motor speed (p = 0.000) and reaction time (p = 0.004) in this post-test only matched subject design. Impulse Control was not significant (p = 0.613). Multiple regression and ANOVA indicated an association with reaction time only (p = 0.012) for the PC subjects. After controlling for reaction time, a significant difference in AC remained. Conclusion: The relationship between AC and other visually assessed cognitive functions was inconsistent suggesting that the C-RTT and ImPACT assessed different functional systems.
Collapse
Affiliation(s)
- Anthony P Salvatore
- Department of Rehabilitation Sciences, University of Texas at El Paso, El Paso, TX 79902, USA.,Department of Rehabilitation Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Michael Cannito
- Department of Communicative Disorders, University of Louisiana-Lafayette, Lafayette, LA 70504, USA.,Department of Communicative Disorders, University of Louisiana-Lafayette, Lafayette, LA 70504, USA
| | - Heather E Brassil
- Department of Rehabilitation Sciences, University of Texas at El Paso, El Paso, TX 79902, USA.,Department of Rehabilitation Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Edina R Bene
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN 38152, USA.,School of Communication Sciences & Disorders, University of Memphis, Memphis, TN 38152, USA
| | - Bess Sirmon-Taylor
- Department of Rehabilitation Sciences, University of Texas at El Paso, El Paso, TX 79902, USA.,Department of Rehabilitation Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| |
Collapse
|
27
|
Sta Maria NS, Reger ML, Cai Y, Baquing MAT, Buen F, Ponnaluri A, Hovda DA, Harris NG, Giza CC. D-Cycloserine Restores Experience-Dependent Neuroplasticity after Traumatic Brain Injury in the Developing Rat Brain. J Neurotrauma 2017; 34:1692-1702. [PMID: 27931146 PMCID: PMC5397224 DOI: 10.1089/neu.2016.4747] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) in children can cause persisting cognitive and behavioral dysfunction, and inevitably raises concerns about lost potential in these injured youth. Lateral fluid percussion injury (FPI) in weanling rats pathologically affects hippocampal N-methyl-d-aspartate receptor (NMDAR)- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated glutamatergic neurotransmission subacutely within the first post-injury week. FPI to weanling rats has also been shown to impair enriched-environment (EE) induced enhancement of Morris water maze (MWM) learning and memory in adulthood. Recently, improved outcomes can be achieved using agents that enhance NMDAR function. We hypothesized that administering D-cycloserine (DCS), an NMDAR co-agonist, every 12 h (i.p.) would restore subacute glutamatergic neurotransmission and reinstate experience-dependent plasticity. Postnatal day 19 (P19) rats received either a sham or FPI. On post-injury day (PID) 1-3, animals were randomized to saline (Sal) or DCS. Firstly, immunoblotting of hippocampal NMDAR and AMPAR proteins were measured on PID4. Second, PID4 novel object recognition, an NMDAR- and hippocampal- mediated working memory task, was assessed. Third, P19 rats were placed in an EE (17 days), and MWM performance was measured, starting on PID30. On PID4, DCS restored reduced NR2A and increased GluR2 by 54%, and also restored diminished recognition memory in FPI pups. EE significantly improved MWM performance in shams, regardless of treatment. In contrast, FPI-EE-Sal animals only performed to the level of standard housed animals, whereas FPI-EE-DCS animals were comparable with sham-EE counterparts. This study shows that NMDAR agonist use during reduced glutamatergic transmission after developmental TBI can reinstate early molecular and behavioral responses that subsequently manifest in experience-dependent plasticity and rescued potential.
Collapse
Affiliation(s)
- Naomi S. Sta Maria
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Bioengineering, UCLA Brain Injury Research Center, Los Angeles, California
| | - Maxine L. Reger
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Psychology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Yan Cai
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Mary Anne T. Baquing
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Harbor-UCLA Department of Obstetrics and Gynecology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Floyd Buen
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Head and Neck Surgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Aditya Ponnaluri
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Mechanical Engineering, UCLA Brain Injury Research Center, Los Angeles, California
| | - David A. Hovda
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Medical and Molecular Pharmacology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Neil G. Harris
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Christopher C. Giza
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Division of Pediatric Neurology, UCLA Brain Injury Research Center, Los Angeles, California
| |
Collapse
|
28
|
Mei Z, Qiu J, Alcon S, Hashim J, Rotenberg A, Sun Y, Meehan WP, Mannix R. Memantine improves outcomes after repetitive traumatic brain injury. Behav Brain Res 2017; 340:195-204. [PMID: 28412305 DOI: 10.1016/j.bbr.2017.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 04/10/2017] [Indexed: 02/03/2023]
Abstract
Repetitive mild traumatic brain injury (rmTBI; e.g., sports concussions) is common and results in significant cognitive impairment. Targeted therapies for rmTBI are lacking, though evidence from other injury models indicates that targeting N-methyl-d-aspartate (NMDA) receptor (NMDAR)-mediated glutamatergic toxicity might mitigate rmTBI-induced neurologic deficits. However, there is a paucity of preclinical or clinical data regarding NMDAR antagonist efficacy in the rmTBI setting. To test whether NMDAR antagonist therapy improves outcomes after rmTBI, mice were subjected to rmTBI injury (4 injuries in 4days) and randomized to treatment with the NMDA antagonist memantine or with vehicle. Functional outcomes were assessed by motor, anxiety/impulsivity and mnemonic behavioral tests. At the synaptic level, NMDAR-dependent long-term potentiation (LTP) was assessed in isolated neocortical slices. At the molecular level, the magnitude of gliosis and tau hyper-phosphorylation was tested by Western blot and immunostaining, and NMDAR subunit expression was evaluated by Western blot and polymerase chain reaction (PCR). Compared to vehicle-treated mice, memantine-treated mice had reduced tau phosphorylation at acute time points after injury, and less glial activation and LTP deficit 1 month after injury. Treatment with memantine also corresponded to normal NMDAR expression after rmTBI. No corresponding protection in behavior outcomes was observed. Here we found NMDAR antagonist therapy may improve histopathological and functional outcomes after rmTBI, though without consistent corresponding improvement in behavioral outcomes. These data raise prospects for therapeutic post-concussive NMDAR antagonism, particularly in athletes and warriors, who suffer functional impairment and neurodegenerative sequelae after multiple concussions.
Collapse
Affiliation(s)
- Zhengrong Mei
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, People's Republic of China.
| | - Jianhua Qiu
- Division of Emergency Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Harvard Medical School, United States.
| | - Sasha Alcon
- Division of Emergency Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - Jumana Hashim
- Division of Emergency Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - Alexander Rotenberg
- Harvard Medical School, United States; Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - Yan Sun
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - William P Meehan
- Division of Emergency Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Harvard Medical School, United States; The Micheli Center for Sports Injury Prevention, 9 Hope Avenue, Suite 100 Waltham, MA 02453, United States; Sports Concussion Clinic, Division of Sports Medicine, Boston Children's Hospital, United States.
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States; Harvard Medical School, United States.
| |
Collapse
|
29
|
McDevitt J, Krynetskiy E. Genetic findings in sport-related concussions: potential for individualized medicine? Concussion 2017; 2:CNC26. [PMID: 30202567 PMCID: PMC6096436 DOI: 10.2217/cnc-2016-0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/28/2016] [Indexed: 11/24/2022] Open
Abstract
Concussion is a traumatic transient disturbance of the brain. In sport, the initial time and severity of concussion is known giving an opportunity for subsequent analysis. Variability in susceptibility and recovery between individual athletes depends, among other parameters, on genetic factors. The genes-encoding polypeptides that determine incidence, severity and prognosis for concussion are the primary candidates for genetic analysis. Genetic polymorphisms in the genes contributing to plasticity and repair (APOE), synaptic connectivity (GRIN2A), calcium influx (CACNA1E), uptake and deposit of glutamate (SLC17A7) are potential biomarkers of concussion incidence and recovery rate. With catalogued genetic variants, prospective genotyping of athletes at the beginning of their career will allow medical professionals to improve concussion management and return-to-play decisions.
Collapse
Affiliation(s)
- Jane McDevitt
- East Stroudsburg University, Athletic Training Department, East Stroudsburg, PA 18301, USA.,East Stroudsburg University, Athletic Training Department, East Stroudsburg, PA 18301, USA
| | - Evgeny Krynetskiy
- Temple University School of Pharmacy, Pharmaceutical Sciences Department, Philadelphia, PA 19140, USA.,Temple University School of Pharmacy, Pharmaceutical Sciences Department, Philadelphia, PA 19140, USA
| |
Collapse
|
30
|
Perez EJ, Cepero ML, Perez SU, Coyle JT, Sick TJ, Liebl DJ. EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain. Neurobiol Dis 2016; 94:73-84. [PMID: 27317833 PMCID: PMC5662938 DOI: 10.1016/j.nbd.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/25/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI), ranging from mild concussion to severe penetrating wounds, can involve brain regions that contain damaged or lost synapses in the absence of neuronal death. These affected regions significantly contribute to sensory, motor and/or cognitive deficits. Thus, studying the mechanisms responsible for synaptic instability and dysfunction is important for protecting the nervous system from the consequences of progressive TBI. Our controlled cortical impact (CCI) injury produces ~20% loss of synapses and mild changes in synaptic protein levels in the CA3-CA1 hippocampus without neuronal losses. These synaptic changes are associated with functional deficits, indicated by >50% loss in synaptic plasticity and impaired learning behavior. We show that the receptor tyrosine kinase EphB3 participates in CCI injury-induced synaptic damage, where EphB3(-/-) mice show preserved long-term potentiation and hippocampal-dependent learning behavior as compared with wild type (WT) injured mice. Improved synaptic function in the absence of EphB3 results from attenuation in CCI injury-induced synaptic losses and reduced d-serine levels compared with WT injured mice. Together, these findings suggest that EphB3 signaling plays a deleterious role in synaptic stability and plasticity after TBI.
Collapse
Affiliation(s)
- Enmanuel J Perez
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria L Cepero
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sebastian U Perez
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joseph T Coyle
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA
| | - Thomas J Sick
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
31
|
Sun Q, Liao Y, Wang T, Wang G, Zhao F, Jin Y. Alteration in mitochondrial function and glutamate metabolism affected by 2-chloroethanol in primary cultured astrocytes. Toxicol In Vitro 2016; 37:50-60. [PMID: 27596522 DOI: 10.1016/j.tiv.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/08/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
The aim of this study was to explore the mechanisms that contribute to 1,2-dichloroethane (1,2-DCE) induced brain edema by focusing on alteration of mitochondrial function and glutamate metabolism in primary cultured astrocytes induced by 2-chloroethanol (2-CE), a metabolite of 1,2-DCE in vivo. The cells were exposed to different levels of 2-CE in the media for 24h. Mitochondrial function was evaluated by its membrane potential and intracellular contents of ATP, lactic acid and reactive oxygen species (ROS). Glutamate metabolism was indicated by expression of glutamine synthase (GS), glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) at both protein and gene levels. Compared to the control group, exposure to 2-CE could cause a dose dependent damage in astrocytes, indicated by decreased cell viability and morphological changes, and supported by decreased levels of nonprotein sulfhydryl (NPSH) and inhibited activities of Na+/K+-ATPase and Ca2+-ATPase in the cells. The present study also revealed both mitochondrial function and glutamate metabolism in astrocytes were significantly disturbed by 2-CE. Of which, mitochondrial function was much vulnerable to the effects of 2-CE. In conclusion, our findings suggested that mitochondrial dysfunction and glutamate metabolism disorder could contribute to 2-CE-induced cytotoxicity in astrocytes, which might be related to 1,2-DCE-induced brain edema.
Collapse
Affiliation(s)
- Qi Sun
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yingjun Liao
- Department of Physiology, China Medical University, People's Republic of China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
32
|
Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plast 2016; 2016:2701526. [PMID: 27630777 PMCID: PMC5007376 DOI: 10.1155/2016/2701526] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca(2+) influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca(2+) homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases.
Collapse
|
33
|
The interplay between neuropathology and activity based rehabilitation after traumatic brain injury. Brain Res 2016; 1640:152-163. [DOI: 10.1016/j.brainres.2016.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 02/07/2023]
|
34
|
López-Picón F, Snellman A, Shatillo O, Lehtiniemi P, Grönroos TJ, Marjamäki P, Trigg W, Jones PA, Solin O, Pitkänen A, Haaparanta-Solin M. Ex Vivo Tracing of NMDA and GABA-A Receptors in Rat Brain After Traumatic Brain Injury Using 18F-GE-179 and 18F-GE-194 Autoradiography. J Nucl Med 2016; 57:1442-7. [DOI: 10.2967/jnumed.115.167403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/07/2016] [Indexed: 12/30/2022] Open
|
35
|
Guerriero RM, Giza CC, Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep 2015; 15:27. [PMID: 25796572 DOI: 10.1007/s11910-015-0545-1] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) leads to multiple short- and long-term changes in neuronal circuits that ultimately conclude with an imbalance of cortical excitation and inhibition. Changes in neurotransmitter concentrations, receptor populations, and specific cell survival are important contributing factors. Many of these changes occur gradually, which may explain the vulnerability of the brain to multiple mild impacts, alterations in neuroplasticity, and delays in the presentation of posttraumatic epilepsy. In this review, we provide an overview of normal glutamate and GABA homeostasis and describe acute, subacute, and chronic changes that follow injury. We conclude by highlighting opportunities for therapeutic interventions in this paradigm.
Collapse
Affiliation(s)
- Réjean M Guerriero
- Division Epilepsy, Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA,
| | | | | |
Collapse
|
36
|
Chang CZ, Wu SC, Kwan AL, Lin CL. Magnesium Lithospermate B Implicates 3'-5'-Cyclic Adenosine Monophosphate/Protein Kinase A Pathway and N-Methyl-d-Aspartate Receptors in an Experimental Traumatic Brain Injury. World Neurosurg 2015; 84:954-63. [PMID: 26093361 DOI: 10.1016/j.wneu.2015.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Decreased 3'-5'-cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and increased N-methyl-d-aspartate (NMDA) related apoptosis were observed in traumatic brain injury (TBI). It is of interest to examine the effect of magnesium lithospermate B (MLB) on cAMP/PKA pathway and NMDAR in TBI. METHODS A rodent weight-drop TBI model was used. Administration of MLB was initiated 1 week before (precondition) and 24 hours later (reversal). Cortical homogenates were harvested to measure cAMP (enzyme-linked immunosorbent assay), soluble guanylyl cyclases, PKA and NMDA receptor-2β (Western blot). In addition, cAMP kinase antagonist and H-89 dihydrochloride hydrate were used to test MLB's effect on the cytoplasm cAMP/PKA pathway after TBI. RESULTS Morphologically, vacuolated neuron and activated microglia were observed in the TBI groups but absent in the MLB preconditioning and healthy controls. Induced cAMP, soluble guanylyl cyclase α1, and PKA were observed in the MLB groups, when compared with the TBI group (P < 0.01) Administration of H-89 dihydrochloride hydrate reversed the effect of MLB on cortical PKA and NMDA-2β expression after TBI. CONCLUSIONS This study showed that MLB exerted an antioxidant effect on the enhancement of cytoplasm cAMP and PKA. This compound also decreased NMDA-2β levels, which may correspond to its neuroprotective effects. This finding lends credence to the presumption that MLB modulates the NMDA-2β neurotoxicity through a cAMP-dependent mechanism in the pathogenesis of TBI.
Collapse
Affiliation(s)
- Chih-Zen Chang
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Municipal Ta Tung Hospital, Kaohsiung, Taiwan.
| | - Shu-Chuan Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Abstract
There are more than 3.17 million people coping with long-term disabilities due to traumatic brain injury (TBI) in the United States. The majority of TBI research is focused on developing acute neuroprotective treatments to prevent or minimize these long-term disabilities. Therefore, chronic TBI survivors represent a large, underserved population that could significantly benefit from a therapy that capitalizes on the endogenous recovery mechanisms occurring during the weeks to months following brain trauma. Previous studies have found that the hippocampus is highly vulnerable to brain injury, in both experimental models of TBI and during human TBI. Although often not directly mechanically injured by the head injury, in the weeks to months following TBI, the hippocampus undergoes atrophy and exhibits deficits in long-term potentiation (LTP), a persistent increase in synaptic strength that is considered to be a model of learning and memory. Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampal-dependent learning for chronic survivors of TBI.
Collapse
Affiliation(s)
- Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
38
|
Wang JF, Li Y, Song JN, Pang HG. Role of hydrogen sulfide in secondary neuronal injury. Neurochem Int 2013; 64:37-47. [PMID: 24239876 DOI: 10.1016/j.neuint.2013.11.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/10/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022]
Abstract
In acute neuronal insult events, such as stroke, traumatic brain injury, and spinal cord injury, pathological processes of secondary neuronal injury play a key role in the severity of insult and clinical prognosis. Along with nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) is regarded as the third gasotransmitter and endogenous neuromodulator and plays multiple roles in the central nervous system under physiological and pathological states, especially in secondary neuronal injury. The endogenous level of H2S in the brain is significantly higher than that in peripheral tissues, and is mainly formed by cystathionine β-synthase (CBS) in astrocytes and released in response to neuronal excitation. The mechanism of secondary neuronal injury exacerbating the damage caused by the initial insult includes microcirculation failure, glutamate-mediated excitotoxicity, oxidative stress, inflammatory responses, neuronal apoptosis and calcium overload. H2S dilates cerebral vessels by activating smooth muscle cell plasma membrane ATP-sensitive K channels (KATP channels). This modification occurs on specific cysteine residues of the KATP channel proteins which are S-sulfhydrated. H2S counteracts glutamate-mediated excitotoxicity by inducing astrocytes to intake more glutamate from the extracellular space and thus increasing glutathione in neurons. In addition, H2S protects neurons from secondary neuronal injury by functioning as an anti-oxidant, anti-inflammatory and anti-apoptotic mediator. However, there are still some reports suggest that H2S elevates neuronal Ca(2+) concentration and may contribute to the formation of calcium overload in secondary neuronal injury. H2S also elicits calcium waves in primary cultures of astrocytes and may mediate signals between neurons and glia. Consequently, further exploration of the molecular mechanisms of H2S in secondary neuronal injury will provide important insights into its potential therapeutic uses for the treatment of acute neuronal insult events.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yu Li
- Department of Neurosurgery, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jin-Ning Song
- Department of Neurosurgery, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Hong-Gang Pang
- Department of Neurosurgery, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, PR China
| |
Collapse
|
39
|
Ferrario CR, Ndukwe BO, Ren J, Satin LS, Goforth PB. Stretch injury selectively enhances extrasynaptic, GluN2B-containing NMDA receptor function in cortical neurons. J Neurophysiol 2013; 110:131-40. [PMID: 23576693 DOI: 10.1152/jn.01011.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alterations in the function and expression of NMDA receptors are observed after in vivo and in vitro traumatic brain injury. We recently reported that mechanical stretch injury in cortical neurons transiently increases the contribution of NMDA receptors to network activity and results in an increase in calcium-permeable AMPA (CP-AMPA) receptor-mediated transmission 4 h postinjury (Goforth et al. 2011). Here, we evaluated changes in the function of synaptic vs. extrasynaptic GluN2B-containing NMDA receptors after injury. We also determined whether postinjury treatment with the GluN2B-selective antagonist Ro 25-6981 or memantine prevents injury-induced increases in CP-AMPA receptor activity. We found that injury increased extrasynaptic, GluN2B-containing NMDA receptor-mediated whole cell currents. In contrast, we found no differences in synaptic NMDA receptor-mediated transmission after injury. Furthermore, treatment with Ro 25-6981 or memantine after injury prevented injury-induced increases in CP-AMPA receptor-mediated activity. Together, our data suggest that increased NMDA receptor activity after injury is predominantly due to alterations in extrasynaptic, GluN2B-containing NMDA receptors and that activation of these receptors may contribute to the appearance of CP-AMPA receptors after injury.
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, The University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | | | | | |
Collapse
|
40
|
Mesfin MN, von Reyn CR, Mott RE, Putt ME, Meaney DF. In vitro stretch injury induces time- and severity-dependent alterations of STEP phosphorylation and proteolysis in neurons. J Neurotrauma 2012; 29:1982-98. [PMID: 22435660 DOI: 10.1089/neu.2011.2253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Striatal-enriched tyrosine phosphatase (STEP) has been identified as a component of physiological and pathophysiological signaling pathways mediated by N-methyl-d-aspartate (NMDA) receptor/calcineurin/calpain activation. Activation of these pathways produces a subsequent change in STEP isoform expression or activation via dephosphorylation. In this study, we evaluated changes in STEP phosphorylation and proteolysis in dissociated cortical neurons after sublethal and lethal mechanical injury using an in vitro stretch injury device. Sublethal stretch injury produces minimal changes in STEP phosphorylation at early time points, and increased STEP phosphorylation at 24 h that is blocked by the NMDA-receptor antagonist APV, the calcineurin-inhibitor FK506, and the sodium channel blocker tetrodotoxin. Lethal stretch injury produces rapid STEP dephosphorylation via NR2B-containing NMDA receptors, but not calcineurin, and a subsequent biphasic phosphorylation pattern. STEP(61) expression progressively increases after sublethal stretch with no change in calpain-mediated STEP(33) formation, while lethal stretch injury results in STEP(33) formation via a NR2B-containing NMDA receptor pathway within 1 h of injury. Blocking calpain activation in the initial 30 min after stretch injury increases the ratio of active STEP in cells and blocks STEP(33) formation, suggesting that STEP is an early substrate of calpain after mechanical injury. There is a strong correlation between the amount of STEP(33) formed and the degree of cell death observed after lethal stretch injury. In summary, these data demonstrate that previously characterized pathways of STEP regulation via the NMDA receptor are generally conserved in mechanical injury, and suggest that calpain-mediated cleavage of STEP(33) should be further examined as an early marker of neuronal fate after stretch injury.
Collapse
Affiliation(s)
- Mahlet N Mesfin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
41
|
Spaethling J, Le L, Meaney DF. NMDA receptor mediated phosphorylation of GluR1 subunits contributes to the appearance of calcium-permeable AMPA receptors after mechanical stretch injury. Neurobiol Dis 2012; 46:646-54. [PMID: 22426393 DOI: 10.1016/j.nbd.2012.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 01/30/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022] Open
Abstract
Alterations in neuronal cytosolic calcium is a key mediator of the traumatic brain injury (TBI) pathobiology, but less is known of the role and source of calcium in shaping early changes in synaptic receptors and neural circuits after TBI. In this study, we examined the calcium source and potential phosphorylation events leading to insertion of calcium-permeable AMPARs (CP-AMPARs) after in vitro traumatic brain injury, a receptor subtype that influences neural circuit dynamics for hours to days following injury. We found that both synaptic and NR2B-containing NMDARs contribute significantly to the calcium influx following stretch injury. Moreover, an early and sustained phosphorylation of the S-831 site of the GluR1 subunit appeared after mechanical injury, and this phosphorylation was blocked with the inhibition of either synaptic NMDARs or NR2B-containing NMDARs. In comparison, mechanical injury led to no significant change in the S-845 phosphorylation of the GluR1 subunit. Although no change in S-845 phosphorylation appeared in injured cultures, we observed that inhibition of NR2B-containing NMDARs significantly increased S-845 phosphorylation 1h after injury while blockade of synaptic NMDARs did not change S-845 phosphorylation at any time point following injury. These findings show that a broad class of NMDARs are activated in parallel and that targeting either subpopulation will reverse some of the consequences of mechanical injury, providing distinct paths to treat the effects of mechanical injury on neural circuits after TBI.
Collapse
Affiliation(s)
- Jennifer Spaethling
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | | | |
Collapse
|
42
|
Reger ML, Poulos AM, Buen F, Giza CC, Hovda DA, Fanselow MS. Concussive brain injury enhances fear learning and excitatory processes in the amygdala. Biol Psychiatry 2012; 71:335-43. [PMID: 22169439 PMCID: PMC3264758 DOI: 10.1016/j.biopsych.2011.11.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mild traumatic brain injury (cerebral concussion) results in cognitive and emotional dysfunction. These injuries are a significant risk factor for the development of anxiety disorders, including posttraumatic stress disorder. However, because physically traumatic events typically occur in a highly emotional context, it is unknown whether traumatic brain injury itself is a cause of augmented fear and anxiety. METHODS Rats were trained with one of five fear-conditioning procedures (n = 105) 2 days after concussive brain trauma. Fear learning was assessed over subsequent days and chronic changes in fear learning and memory circuitry were assessed by measuring N-methyl-D-aspartate receptor subunits and glutamic acid decarboxylase, 67 kDa isoform protein levels in the hippocampus and basolateral amygdala complex (BLA). RESULTS Injured rats exhibited an overall increase in fear conditioning, regardless of whether fear was retrieved via discrete or contextual-spatial stimuli. Moreover, injured rats appeared to overgeneralize learned fear to both conditioned and novel stimuli. Although no gross histopathology was evident, injury resulted in a significant upregulation of excitatory N-methyl-D-aspartate receptors in the BLA. There was a trend toward decreased γ-aminobutyric acid-related inhibition (glutamic acid decarboxylase, 67 kDa isoform) in the BLA and hippocampus. CONCLUSIONS These results suggest that mild traumatic brain injury predisposes the brain toward heightened fear learning during stressful postinjury events and provides a potential molecular mechanism by which this occurs. Furthermore, these data represent a novel rodent model that can help advance the neurobiological and therapeutic understanding of the comorbidity of posttraumatic stress disorder and traumatic brain injury.
Collapse
Affiliation(s)
- Maxine L. Reger
- UCLA Neurotrauma Laboratory, Department of Neurosurgery, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, California, 90095, U.S.A,Department of Psychology, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Andrew M. Poulos
- Department of Psychology, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Floyd Buen
- School of Medicine, University of California at San Diego, La Jolla, California, 92093, U.S.A
| | - Christopher C. Giza
- UCLA Neurotrauma Laboratory, Department of Neurosurgery, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, California, 90095, U.S.A,Department of Pediatrics, Division of Pediatric Neurology, Mattel Children’s Hospital, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A
| | - David A. Hovda
- UCLA Neurotrauma Laboratory, Department of Neurosurgery, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, California, 90095, U.S.A,Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Michael S. Fanselow
- Department of Psychology, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A,Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, California, 90095, U.S.A
| |
Collapse
|
43
|
Abstract
Mild traumatic brain injury, especially sport-related concussion, is common among young persons. Consequences of transient pathophysiologic dysfunction must be considered in the context of a developing or immature brain, as must the potential for an accumulation of damage with repeated exposure. This review summarizes the underlying neurometabolic cascade of concussion, with emphasis on the young brain in terms of acute pathophysiology, vulnerability, alterations in plasticity and activation, axonal injury, and cumulative risk from chronic, repetitive damage, and discusses their implications in the context of clinical care for the concussed youth, highlighting areas for future investigation.
Collapse
Affiliation(s)
- Daniel W Shrey
- Division of Pediatric Neurology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Mattel Children's Hospital, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
44
|
The dopamine and cAMP regulated phosphoprotein, 32 kDa (DARPP-32) signaling pathway: a novel therapeutic target in traumatic brain injury. Exp Neurol 2011; 229:300-7. [PMID: 21376040 DOI: 10.1016/j.expneurol.2011.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 01/02/2011] [Accepted: 02/20/2011] [Indexed: 01/22/2023]
Abstract
Traumatic brain injury (TBI) causes persistent neurologic deficits. Current therapies, predominantly focused upon cortical and hippocampal cellular survival, have limited benefit on cognitive outcomes. Striatal damage is associated with deficits in executive function, learning, and memory. Dopamine and cAMP regulated phosphoprotein 32 (DARPP-32) is expressed within striatal medium spiny neurons and regulates striatal function. We found that controlled cortical impact injury in rats produces a chronic decrease in DARPP-32 phosphorylation at threonine-34 and an increase in protein phosphatase-1 activity. There is no effect of injury on threonine-75 phosphorylation or on DARPP-32 protein. Amantadine, shown to be efficacious in treating post-TBI cognitive deficits, given daily for two weeks is able to restore the loss of DARPP-32 phosphorylation and reduce protein phosphatase-1 activity. Amantadine also decreases the phosphorylation of threonine-75 consistent with activity as a partial N-methyl-D-aspartate (NMDA) receptor antagonist and partial dopamine agonist. These data demonstrate that targeting the DARPP-32 signaling cascade represents a promising novel therapeutic approach in the treatment of persistent deficits following a TBI.
Collapse
|
45
|
Goforth PB, Ren J, Schwartz BS, Satin LS. Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons. J Neurophysiol 2011; 105:2350-63. [PMID: 21346214 DOI: 10.1152/jn.00467.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro and in vivo traumatic brain injury (TBI) alter the function and expression of glutamate receptors, yet the combined effect of these alterations on cortical excitatory synaptic transmission is unclear. We examined the effect of in vitro mechanical injury on excitatory synaptic function in cultured cortical neurons by assaying synaptically driven intracellular free calcium ([Ca(2+)](i)) oscillations in small neuronal networks as well as spontaneous and miniature excitatory postsynaptic currents (mEPSCs). We show that injury decreased the incidence and frequency of spontaneous neuronal [Ca(2+)](i) oscillations for at least 2 days post-injury. The amplitude of the oscillations was reduced immediately and 2 days post-injury, although a transient rebound at 4 h post-injury was observed due to increased activity of N-methyl-d-aspartate (NMDARs) and calcium-permeable α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (CP-AMPARs). Increased CP-AMPAR function was abolished by the inhibition of protein synthesis. In parallel, mEPSC amplitude decreased immediately, 4 h, and 2 days post-injury, with a transient increase in the contribution of synaptic CP-AMPARs observed at 4 h post-injury. Decreased mEPSC amplitude was evident after injury, even if NMDARs and CP-AMPARs were blocked pharmacologically, suggesting the decrease reflected alterations in synaptic Glur2-containing, calcium-impermeable AMPARs. Despite the transient increase in CP-AMPAR activity that we observed, the overriding effect of mechanical injury was long-term depression of excitatory neurotransmission that would be expected to contribute to the cognitive deficits of TBI.
Collapse
Affiliation(s)
- Paulette B Goforth
- University of Michigan Medical School, Department of Pharmacology, Ann Arbor, MI 48105, USA
| | | | | | | |
Collapse
|
46
|
Giza CC, DiFiori JP. Pathophysiology of sports-related concussion: an update on basic science and translational research. Sports Health 2011; 3:46-51. [PMID: 23015990 PMCID: PMC3445184 DOI: 10.1177/1941738110391732] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CONTEXT Concussions that occur during participation in athletic events affect millions of individuals each year. Although our understanding of the pathophysiology of concussion has grown considerably in recent years, much remains to be elucidated. This article reviews basic science and relevant translational clinical research regarding several aspects of concussion. EVIDENCE ACQUISITION A literature search was conducted using PubMed from 1966 to 2010, with an emphasis on work published within the past 10 years. Additional articles were identified from the bibliography of recent reviews. RESULTS Basic science and clinical data both indicate that there is a period of increased vulnerability to repeated injury following a concussion and that its duration is variable. Growing evidence indicates that postinjury activity is likely to affect recovery from brain injury. Data suggest that long-term sequelae may result from prior concussion-particularly, repeated injuries. The unique aspects of cerebral development may account for differences in the effects of concussion in children and adolescents when compared with adults. CONCLUSIONS The available pathophysiologic data from basic science and clinical studies have increased the evidence base for concussion management strategies-the approaches to which may differ between young athletes and adults.
Collapse
Affiliation(s)
- Christopher C. Giza
- Brain Injury Research Center, University of California, Los Angeles, California
| | - John P. DiFiori
- Division of Sports Medicine, University of California, Los Angeles, California
| |
Collapse
|
47
|
Therapeutic targets for neuroprotection and/or enhancement of functional recovery following traumatic brain injury. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:85-131. [PMID: 21199771 DOI: 10.1016/b978-0-12-385506-0.00003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a significant public health concern. The number of injuries that occur each year, the cost of care, and the disabilities that can lower the victim's quality of life are all driving factors for the development of therapy. However, in spite of a wealth of promising preclinical results, clinicians are still lacking a therapy. The use of preclinical models of the primary mechanical trauma have greatly advanced our knowledge of the complex biochemical sequela that follow. This cascade of molecular, cellular, and systemwide changes involves plasticity in many different neurochemical systems, which represent putative targets for remediation or attenuation of neuronal injury. The purpose of this chapter is to highlight some of the promising molecular and cellular targets that have been identified and to provide an up-to-date summary of the development of therapeutic compounds for those targets.
Collapse
|
48
|
Zhou Y, Li HL, Zhao R, Yang LT, Dong Y, Yue X, Ma YY, Wang Z, Chen J, Cui CL, Yu ACH. Astrocytes Express N-Methyl-D-Aspartate Receptor Subunits in Development, Ischemia and Post-Ischemia. Neurochem Res 2010; 35:2124-34. [DOI: 10.1007/s11064-010-0325-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2010] [Indexed: 11/30/2022]
|
49
|
Bartnik-Olson BL, Oyoyo U, Hovda DA, Sutton RL. Astrocyte oxidative metabolism and metabolite trafficking after fluid percussion brain injury in adult rats. J Neurotrauma 2010; 27:2191-202. [PMID: 20939699 DOI: 10.1089/neu.2010.1508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Despite various lines of evidence pointing to the compartmentation of metabolism within the brain, few studies have reported the effect of a traumatic brain injury (TBI) on neuronal and astrocyte compartments and/or metabolic trafficking between these cells. In this study we used ex vivo ¹³C NMR spectroscopy following an infusion of [1-¹³C] glucose and [1,2-¹³C₂] acetate to study oxidative metabolism in neurons and astrocytes of sham-operated and fluid percussion brain injured (FPI) rats at 1, 5, and 14 days post-surgery. FPI resulted in a decrease in the ¹³C glucose enrichment of glutamate in neurons in the injured hemisphere at day 1. In contrast, enrichment of glutamine in astrocytes from acetate was not significantly decreased at day 1. At day 5 the ¹³C enrichment of glutamate and glutamine from glucose in the injured hemisphere of FPI rats did not differ from sham levels, but glutamine derived from acetate metabolism in astrocytes was significantly increased. The ¹³C glucose enrichment of the C3 position of glutamate (C3) in neurons was significantly decreased ipsilateral to FPI at day 14, whereas the enrichment of glutamine in astrocytes had returned to sham levels at this time point. These findings indicate that the oxidative metabolism of glucose is reduced to a greater extent in neurons compared to astrocytes following a FPI. The increased utilization of acetate to synthesize glutamine, and the acetate enrichment of glutamate via the glutamate-glutamine cycle, suggests an integral protective role for astrocytes in maintaining metabolic function following TBI-induced impairments in glucose metabolism.
Collapse
Affiliation(s)
- Brenda L Bartnik-Olson
- Brain Injury Research Center, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
50
|
Atkins CM, Falo MC, Alonso OF, Bramlett HM, Dietrich WD. Deficits in ERK and CREB activation in the hippocampus after traumatic brain injury. Neurosci Lett 2009; 459:52-6. [PMID: 19416748 DOI: 10.1016/j.neulet.2009.04.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/20/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI) activates several protein kinase signaling pathways in the hippocampus that are critical for hippocampal-dependent memory formation. In particular, extracellular signal-regulated kinase (ERK), a protein kinase activated during and necessary for hippocampal-dependent learning, is transiently activated after TBI. However, TBI patients experience hippocampal-dependent cognitive deficits that occur for several months to years after the initial injury. Although basal activation levels of ERK return to sham levels within hours after TBI, we hypothesized that activation of ERK may be impaired after TBI. Adult male Sprague-Dawley rats received either sham surgery or moderate parasagittal fluid-percussion brain injury. At 2, 8, or 12 weeks after surgery, the ipsilateral hippocampi of sham surgery and TBI animals were sectioned into transverse slices. After 2h of recovery in oxygenated artificial cerebrospinal fluid, the hippocampal slices were stimulated with glutamate or KCl depolarization, then analyzed by western blotting for phosphorylated, activated ERK and one of its downstream effectors, the transcription factor cAMP response element-binding protein (CREB). We found that activation of ERK (p<0.05) and CREB (p<0.05) after 30s of glutamate stimulation or KCl depolarization was decreased in hippocampal slices from animals at 2, 8, or 12 weeks after TBI as compared to sham animals. Basal levels of phosphorylated or total ERK were not significantly altered at 2, 8, or 12 weeks after TBI, although basal levels of phosphorylated CREB were decreased 12 weeks post-trauma. These results suggest that TBI results in chronic signaling deficits through the ERK-CREB pathway in the hippocampus.
Collapse
Affiliation(s)
- Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | | | | | | | | |
Collapse
|