1
|
Neuronal Nitric Oxide Mediates the Anti-inflammatory Effects of Intestinal Ischemic Preconditioning. J Surg Res 2019; 244:241-250. [DOI: 10.1016/j.jss.2019.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 01/25/2023]
|
2
|
Gonçalves ARN, Marinsek GP, de Souza Abessa DM, de Britto Mari R. Adaptative responses of myenteric neurons of Sphoeroides testudineus to environmental pollution. Neurotoxicology 2019; 76:84-92. [PMID: 31669307 DOI: 10.1016/j.neuro.2019.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 01/13/2023]
Abstract
Contamination in estuarine regions affects the local biota damaging the ecosystems and reaching humans. The gastrointestinal tract is a dynamic environment capable of obtaining nutrients and energy from food while it protects the host against harmful toxins and pathogens from the external environment. These functions are modulated by the enteric nervous system and changes in its structure can result in gastrointestinal disorders. The objective of this study was to evaluate if the environmental contaminants have effects on the myenteric neuronal plasticity of pufferfish Sphoeroides testudineus. Animals were collected in Barra do Una River, located at Jureia-Itatins Mosaic of Protected Areas (reference area - RA) and in the Santos Estuarine System (impacted area - IA). Morpho-quantitative analyses of the general and metabolically active myenteric neuronal populations of the proximal and distal intestine were made. Disarrangement was observed in the general organization of the myenteric plexus, with an expressive reduction of the neuronal groups (nodes) in the animals of IA. The vulnerability of the myenteric plexus was evidenced by a decrease in density and cellular profile of the general neuronal population, followed by an increase of the metabolism of the remaining neurons, which in turn was verified by a growth of the area of the cellular and nuclear profiles of the metabolically active neuronal population. Through these analyses, we concluded that animals inhabiting polluted regions present alterations in the myenteric neuronal plasticity, as a way of maintaining the functions of the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Gabriela Pustiglione Marinsek
- São Paulo State University - Coastal Campus, Laboratório de Morfofisiologia Animal (LABMA), Sao Vicente, Sao Paulo, Brazil
| | - Denis Moledo de Souza Abessa
- São Paulo State University - Coastal Campus, Núcleo de Estudos em Poluição e Ecotoxcologia Aquática (NEPEA), Sao Vicente, Sao Paulo, Brazil
| | - Renata de Britto Mari
- São Paulo State University - Coastal Campus, Laboratório de Morfofisiologia Animal (LABMA), Sao Vicente, Sao Paulo, Brazil
| |
Collapse
|
3
|
Mendes CE, Palombit K, Tavares-de-Lima W, Castelucci P. Enteric glial cells immunoreactive for P2X7 receptor are affected in the ileum following ischemia and reperfusion. Acta Histochem 2019; 121:665-679. [PMID: 31202513 DOI: 10.1016/j.acthis.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
The aim of this study was to analyze the effect of ischemia and reperfusion injury (IS) on enteric glial cells (EGCs) and neurons immunoreactive for the P2X7 receptor. Intestinal ischemia was induced by obstructing blood flow in the ileal vessels for 35 min. Afterwards, the vessels were reperfused for 14 days. Tissues were prepared for immunohistochemical labeling of P2X7 receptor, HuC/D (Hu) (pan-neuronal marker) and S100β (glial marker); HuC/D (Hu) and glial fibrillary acidic protein (GFAP, glial marker)/DAPI (nuclear marker); or S100β and GFAP/DAPI. Qualitative and quantitative analyses of colocalization, density, profile area and cell proliferation were performed via fluorescence and confocal laser scanning microscopy. The quantitative analyses revealed that a) neurons and EGCs were immunoreactive for P2X7 receptor; b) the P2X7 receptor immunoreactive cells and Hu immunoreactive neurons were reduced after 0 h and 14 days of reperfusion; c) the S100β and GFAP immunoreactive EGCs were increased; d) the profile area of S100β immunoreactive EGCs was increased by IS; e) few GFAP immunoreactive proliferated at 14 days of reperfusion; f) distinct populations of glial cells can be discerned: S100β+/GFAP+ cells, S100β+/GFAP- cells and S100β-/GFAP + cells; g) histological analysis revealed less alterations in the epithelium cells in the IS groups and h) myeloperoxidase reaction revealed increased of the neutrophils in the lamina propria in the IS groups. This study showed that IS is associated with significant neuronal loss, increase of glial cells and altered purinergic receptor expression and that these changes may contribute to intestinal disorders.
Collapse
|
4
|
Poles MZ, Bódi N, Bagyánszki M, Fekete É, Mészáros AT, Varga G, Szűcs S, Nászai A, Kiss L, Kozlov AV, Boros M, Kaszaki J. Reduction of nitrosative stress by methane: Neuroprotection through xanthine oxidoreductase inhibition in a rat model of mesenteric ischemia-reperfusion. Free Radic Biol Med 2018; 120:160-169. [PMID: 29550332 DOI: 10.1016/j.freeradbiomed.2018.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
Abstract
Our aim was to characterize the main components of the nitrosative response with quantitative changes of the nitrergic myenteric neurons in adjacent intestinal segments after transient superior mesenteric artery occlusion. We also tested the hypothesis that exogenous methane may modulate the evolution of nitroxidation by influencing xanthine oxidoreductase (XOR) activity. The microcirculatory consequences of a 50 min ischemia or ischemia-reperfusion were investigated in anesthetized rats (n = 124) inhaling normoxic air with or without 2.2% methane. XOR activities, nitrogen monoxide (NO), nitrite/nitrate (NOx), and nitrotyrosine levels were measured, together with relative nitrergic neuron ratios from duodenum, ileum and colon samples. The effects of methane on XOR were also examined in vitro. The intramural flow stopped only in the ileum during ischemia. The highest baseline XOR activity was found in the duodenum, which increased further during ischemia. NO and nitrotyrosine levels rose, and the nNOS-immunopositive neuron ratio and NOx level both dropped. Reperfusion uniformly elevated XOR activity and nitrotyrosine formation, with the highest level attained in the duodenum, where the nitrergic neuron ratio remained depressed. These alterations were eliminated in methane-treated animals, XOR activity and nitrotyrosine formation decreased in all sites, and the duodenal nitrergic neuron ratio was re-established. The inhibitory effect of methane on XOR-linked nitrate reductase activity was also demonstrated in vitro. With segment-specific microcirculatory alterations, the risk for nitrosative stress is highest in transiently hypoxic tissues with high endogenous XOR activities. The XOR-inhibitory effect of methane can reduce nitroxidation and protects the nitrergic neuron population in such conditions.
Collapse
Affiliation(s)
- Marietta Zita Poles
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary.
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary.
| | - Éva Fekete
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary.
| | - András Tamás Mészáros
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Gabriella Varga
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Szilárd Szűcs
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Anna Nászai
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Liliána Kiss
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, Vienna 1200, Austria.
| | - Mihály Boros
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| | - József Kaszaki
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szokefalvi-Nagy Bela u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
5
|
Assemblages A and B of Giardia duodenalis reduce enteric glial cells in the small intestine in mice. Parasitol Res 2018; 117:2025-2033. [PMID: 29728828 DOI: 10.1007/s00436-018-5853-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Infection of Giardia duodenalis is one of the most common human parasitic disease worldwide. This infection may be related to important changes in the enteric nervous system. The objective of this study was to evaluate the myenteric and submucosal plexuses, the intestinal muscle layer, and gastrointestinal transit in mice infected with assemblages A and B of G. duodenalis. Swiss albino mice (Mus musculus) were infected with assemblages A and B of G. duodenalis for 15 days. Gastrointestinal transit time was evaluated before euthanasia. Duodenum and jejunum were removed for histological and immunohistochemical analyses. It was observed a reduction in the enteric glial cell count and a decrease in the ratio of enteric glial cells to neurons. The number of neurons did not change, but morphological changes were observed in the duodenum and jejunum in both plexuses, including an increase in the nuclear area and a reduction of cell bodies in the myenteric plexus and a decrease in the nuclear area in the submucosal plexus. A reduction of the thickness of the muscle layer was observed in the duodenum, with no significant differences in the gastrointestinal transit times. Assemblages A and B of G. duodenalis decrease the number of enteric glial cells in the myenteric and submucosal plexuses, decrease the thickness of the muscle layer, and change the morphology of neurons. Graphical abstract ᅟ.
Collapse
|
6
|
Borges SC, Ferreira PEB, da Silva LM, de Paula Werner MF, Irache JM, Cavalcanti OA, Buttow NC. Evaluation of the treatment with resveratrol-loaded nanoparticles in intestinal injury model caused by ischemia and reperfusion. Toxicology 2018; 396-397:13-22. [PMID: 29427784 DOI: 10.1016/j.tox.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 01/07/2023]
Abstract
The gastrointestinal tract is extremely sensitive to ischemia and reperfusion (I/R). Studies have reported that resveratrol (RSV) is able to combat damage caused by intestinal I/R. Because of its effectiveness in increasing the permanence and bioavailability of resveratrol in the intestinal epithelium, we investigated whether the effect of resveratrol-loaded in poly(anhydride) nanoparticles reduce oxidative stress and promote myenteric neuroprotection in the ileum of rats subjected to I/R. Physicochemical evaluations were performed on nanoparticles. The animals were divided into nine groups (n = 6/group) and treated every 48 h. Treatments with resveratrol (7 mg/kg of body weight) were applied 5 days before surgery and continued for 7 days after surgery (reperfusion period). The superior mesenteric artery was occluded to cause I/R injury. Oxidative stress, myeloperoxidase, nitrite, aspartate aminotransferase, alanine aminotransferase, immunolabeling of myenteric neurons and glial cells, and gastrointestinal transit was evaluated. Both nanoparticle formulations presented negative charge with homogeneous distribution, and the payload, showed an encapsulation efficiency of 60%. Resveratrol administered in free form prevented alterations that were caused by I/R. The results of the groups treated with RSV-loaded nanoparticles presented similar results to the group treated with free resveratrol. Treatment with empty nanoparticles showed that poly(anhydride) is not an ideal nanocarrier for application in in vivo models of intestinal I/R injury, because of hepatotoxicity that may be caused by epithelial barrier dysfunction that triggers the translocation of nanoparticles.
Collapse
Affiliation(s)
- Stephanie Carvalho Borges
- Department of Morphological Sciences, State University of Maringá, Colombo Avenue, 5790, CEP: 87020-900, Maringá, Paraná, Brazil
| | - Paulo Emílio Botura Ferreira
- Campus Uruguaiana, Federal University of Pampa, BR 472 - Km 592, CEP: 97508-000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, University Vale of Itajaí, Uruguai Street, 458, CEP: 88302-901, Itajaí, Santa Catarina, Brazil
| | - Maria Fernanda de Paula Werner
- Department of Pharmacology, Federal University of Paraná, XV de Novembro Street, 1299, CEP 80.060-000, Curitiba, Paraná, Brazil
| | - Juan Manuel Irache
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, E-31008, Pamplona, Spain
| | - Osvaldo Albuquerque Cavalcanti
- Department of Pharmacology and Therapeutics, State University of Maringá, Colombo Avenue, 5790, CEP: 87020-900, Maringá, Paraná, Brazil
| | - Nilza Cristina Buttow
- Department of Morphological Sciences, State University of Maringá, Colombo Avenue, 5790, CEP: 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
7
|
Oda JY, Belém MO, Carlos TM, Gouveia R, Luchetti BFC, Moreira NM, Massocatto CL, Araújo SM, Sant Ana DMG, Buttow NC, Pinge-Filho P, Araújo EJA. Myenteric neuroprotective role of aspirin in acute and chronic experimental infections with Trypanosoma cruzi. Neurogastroenterol Motil 2017; 29:1-13. [PMID: 28524628 DOI: 10.1111/nmo.13102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Experimental and clinical studies have shown that myenteric neuron cell death during infection with Trypanosoma cruzi mainly occurs in the esophagus and colon, resulting in megaesophagus and megacolon, respectively. Evidence suggests that the cyclooxygenase enzyme (COX) is involved in the T. cruzi invasion process. The use of low-dose aspirin (ASA), a COX-1/COX-2 inhibitor, has been shown to reduce infection with T. cruzi. Therefore, in this study, we evaluated the effects of treatment with low-dose ASA on myenteric colonic neurons during murine infection with T. cruzi. METHODS Swiss mice were assigned into groups treated with either phosphate-buffered saline or low doses of ASA during the acute phase (20 mg/kg ASA) and chronic phase (50 mg/kg ASA) of infection with the Y strain of T. cruzi. Seventy-five days after infection, colon samples were collected to quantify inflammatory foci in histological sections and also general (myosin-V+ ), nitrergic, and VIPergic myenteric neurons in whole mounts. Gastrointestinal transit time was also measured. KEY RESULTS Aspirin treatment during the acute phase of infection reduced parasitemia (P<.05). Aspirin treatment during the acute or chronic phase of the infection reduced the intensity of inflammatory foci in the colon, protected myenteric neurons from cell death and plastic changes, and recovered the gastrointestinal transit of mice infected with T. cruzi (P<.05). CONCLUSION & INFERENCES Early and delayed treatment with low-dose ASA can reduce the morphofunctional damage of colonic myenteric neurons caused by murine T. cruzi infection.
Collapse
Affiliation(s)
- J Y Oda
- Department of Medicine, Federal University of Mato Grosso do Sul, Três Lagoas, Mato Grosso do Sul, Brazil.,Department of Pathological Science, State University of Londrina, Londrina, Paraná, Brazil
| | - M O Belém
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - T M Carlos
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - R Gouveia
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - B F C Luchetti
- Department of Pathological Science, State University of Londrina, Londrina, Paraná, Brazil
| | - N M Moreira
- Center for Education, Letters and Health, State University of Western Paraná, Foz do Iguaçu, Paraná, Brazil
| | - C L Massocatto
- Department of Morphological Science, State University of Maringá, Maringá, Paraná, Brazil
| | - S M Araújo
- Department of Basic Health Science, State University of Maringá, Maringá, Paraná, Brazil
| | - D M G Sant Ana
- Department of Morphological Science, State University of Maringá, Maringá, Paraná, Brazil
| | - N C Buttow
- Department of Morphological Science, State University of Maringá, Maringá, Paraná, Brazil
| | - P Pinge-Filho
- Department of Pathological Science, State University of Londrina, Londrina, Paraná, Brazil
| | - E J A Araújo
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
8
|
da Silva MV, Marosti AR, Mendes CE, Palombit K, Castelucci P. Submucosal neurons and enteric glial cells expressing the P2X7 receptor in rat experimental colitis. Acta Histochem 2017; 119:481-494. [PMID: 28501138 DOI: 10.1016/j.acthis.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate the effect of ulcerative colitis on the submucosal neurons and glial cells of the submucosal ganglia of rats. 2,4,6-Trinitrobenzene sulfonic acid (TNBS; colitis group) was administered in the colon to induce ulcerative colitis, and distal colons were collected after 24h. The colitis rats were compared with those in the sham and control groups. Double labelling of the P2X7 receptor with calbindin (marker for intrinsic primary afferent neurons, IPANs, submucosal plexus), calretinin (marker for secretory and vasodilator neurons of the submucosal plexus), HuC/D and S100β was performed in the submucosal plexus. The density (neurons per area) of submucosal neurons positive for the P2X7 receptor, calbindin, calretinin and HuC/D decreased by 21%, 34%, 8.2% and 28%, respectively, in the treated group. In addition, the density of enteric glial cells in the submucosal plexus decreased by 33%. The profile areas of calbindin-immunoreactive neurons decreased by 25%. Histological analysis revealed increased lamina propria and decreased collagen in the colitis group. This study demonstrated that ulcerative colitis affected secretory and vasodilatory neurons, IPANs and enteric glia of the submucosal plexus expressing the P2X7 receptor.
Collapse
|
9
|
Resveratrol promotes myenteric neuroprotection in the ileum of rats after ischemia-reperfusion injury. Life Sci 2016; 166:54-59. [PMID: 27671039 DOI: 10.1016/j.lfs.2016.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/31/2023]
Abstract
AIMS The present study evaluated the effects of resveratrol in the myenteric plexus after intestinal ischemia-reperfusion (I/R) injury caused by occluding the superior mesenteric artery for 45min, followed by 7days of reperfusion. MAIN METHODS Forty-two male Wistar rats were divided into seven groups: control (C group), untreated sham surgery control (SC group), sham surgery control treated with resveratrol before surgery (STA group), sham surgery control treated with resveratrol before and after surgery (STAD group), ischemic control (IRC group), ischemic treated before I/R (IRTA group), and ischemic treated before and after I/R (IRTAD group). Resveratrol (10mg/kg) was administered for 4days and 2h prior to surgery and/or 7days later. Morphometric analyses were performed, and the density of the general neuronal population (HuC/D-immunoreactive [IR]), nitrergic subpopulation (neuronal nitric oxide synthase [nNOS]-IR), vasoactive intestinal peptide (VIP)ergic varicosities (VIP-IR), and glial cells (S100-IR) was determined. KEY FINDINGS Injury that was caused by I/R significantly reduced (p<0.01) the HuC/D-IR general neuronal population. Treatment with resveratrol before and after ischemia had a neuroprotective effect. Morphometric changes caused by I/R in nitrergic neurons and varicosities were also attenuated by resveratrol. Ischemia/reperfusion promoted the proliferation of enteric glial cells, and resveratrol treatment before and after I/R reversed this effect. SIGNIFICANCE Resveratrol had neuroprotective effects, showing promise for application in intestinal surgery and transplants.
Collapse
|
10
|
Light-emitting diodes at 940 nm attenuate colitis-induced inflammatory process in mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:367-373. [DOI: 10.1016/j.jphotobiol.2016.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
|
11
|
Filpa V, Moro E, Protasoni M, Crema F, Frigo G, Giaroni C. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology 2016; 111:14-33. [PMID: 27561972 DOI: 10.1016/j.neuropharm.2016.08.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023]
Abstract
Several studies have been carried out in the last 30 years in the attempt to clarify the possible role of glutamate as a neurotransmitter/neuromodulator in the gastrointestinal tract. Such effort has provided immunohistochemical, biomolecular and functional data suggesting that the entire glutamatergic neurotransmitter machinery is present in the complex circuitries of the enteric nervous system (ENS), which participates to the local coordination of gastrointestinal functions. Glutamate is also involved in the regulation of the brain-gut axis, a bi-directional connection pathway between the central nervous system (CNS) and the gut. The neurotransmitter contributes to convey information, via afferent fibers, from the gut to the brain, and to send appropriate signals, via efferent fibers, from the brain to control gut secretion and motility. In analogy with the CNS, an increasing number of studies suggest that dysregulation of the enteric glutamatergic neurotransmitter machinery may lead to gastrointestinal dysfunctions. On the whole, this research field has opened the possibility to find new potential targets for development of drugs for the treatment of gastrointestinal diseases. The present review analyzes the more recent literature on enteric glutamatergic neurotransmission both in physiological and pathological conditions, such as gastroesophageal reflux, gastric acid hypersecretory diseases, inflammatory bowel disease, irritable bowel syndrome and intestinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Viviana Filpa
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Marina Protasoni
- Department of Surgical and Morphological Sciences, University of Insubria, via F. Guicciardini 9, I-21100 Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Gianmario Frigo
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Cristina Giaroni
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy
| |
Collapse
|
12
|
Öztürk T, Vural K, Tuğlu İ, Var A, Kurdal T, Aydemir I. Acute and Chronic Pretreatment With Atenolol Attenuates Intestinal Ischemia and Reperfusion Injury in Hypercholesterolemic Rats. J Cardiothorac Vasc Anesth 2016; 30:985-92. [PMID: 27521968 DOI: 10.1053/j.jvca.2016.03.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To evaluate the protective effects of preinjury atenolol (acute v chronic) on apoptosis, contractility, oxidative stress, and inflammatory markers in hypercholesterolemic rats undergoing intestinal ischemia-reperfusion (I/R) injury. DESIGN Prospective, experimental animal study. SETTING University laboratory. PARTICIPANTS Male Wistar rats (n = 32). INTERVENTIONS Rats were divided into the following 4 groups: 1 group was fed a normal diet (ND) (group ND+NoAT [no atenolol]), and the other 3 groups were fed a high-cholesterol diet (HCD)-group HCD+NoAT, group HCD+ChAT (chronic atenolol, 3 mg/kg/day for 8 weeks), and group HCD+AcAT (acute atenolol, 1.5 mg/kg, given 5 minutes before intestinal clamping). All rats underwent I/R injury. The superior mesenteric artery was clamped for 60 minutes, then opened for 120 minutes (reperfusion). Apoptotic cells and stimulated contractions of ileal segments were examined. Tissue markers of intestinal I/R injury were examined. Intestinal malondialdehyde, superoxide dismutase, and nitrate/nitrite levels were measured. MEASUREMENTS AND MAIN RESULTS The chronic atenolol group had fewer apoptotic cells and higher superoxide dismutase activity compared with the other groups. Intestinal contraction was higher in both atenolol pretreatment groups compared with the NoAT groups. Chronic and acute atenolol resulted in lower ileal levels of malondialdehyde and immunolabeling-positive cells (intestinal inducible nitric oxide synthase, endothelial nitric oxide synthase, interleukin-1, and interleukin-8) after I/R injury compared with the no atenolol groups. CONCLUSIONS Both chronic and acute pre-I/R injury treatment with atenolol attenuated I/R injury in this hypercholesterolemic rat model. These findings should encourage future studies of atenolol in hypercholesterolemic patients undergoing procedures with a high risk of intestinal ischemia.
Collapse
Affiliation(s)
- Tülün Öztürk
- Departments of Anaesthesiology and Reanimation, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey.
| | - Kamil Vural
- Pharmacology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - İbrahim Tuğlu
- Histology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - Ahmet Var
- Biochemistry, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - Taner Kurdal
- Cardiovascular Surgery, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - Işıl Aydemir
- Pharmacology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey; Histology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| |
Collapse
|
13
|
Mendes CE, Palombit K, Vieira C, Silva I, Correia-de-Sá P, Castelucci P. The Effect of Ischemia and Reperfusion on Enteric Glial Cells and Contractile Activity in the Ileum. Dig Dis Sci 2015; 60:2677-89. [PMID: 25917048 DOI: 10.1007/s10620-015-3663-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/09/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND We investigated the effects of ischemia followed by different periods of reperfusion (I/R) on immunoreactive S100β-positive glial and Hu-immunoreactive neurons co-expressing the P2X2 receptor in the myenteric plexus of the rat ileum. METHODS The ileal artery was occluded for 35 min with an atraumatic vascular clamp. The animals were killed 24 h, 72 h, and 1 week after ischemia. Sham animals were not submitted to ileal artery occlusion. The relative density, size, and co-localization of P2X2 receptor-expressing cells in relation to S100β-immunoreactive glial and Hu-immunoreactive neuronal cells were evaluated. Additionally, we analyzed the effects of I/R on gastrointestinal transit and ileum contractile activity. RESULTS The cellular density of P2X2 receptor and neuronal Hu immunoreactivity/cm(2) decreased after I/R, whereas glial S100β immunoreactivity/cm(2) increased. No significant differences between sham and I/R groups were observed regarding the perikarya area of Hu-positive neurons. The area of S100β-immunoreactive glial cells increased by 24.1 % 1 week after I/R compared with the 24 h group. Methylene blue progression along the small intestine decreased (P < 0.05) from 24.5 ± 2.3 % in the sham group to 17.2 ± 2.0 % 1 week post-ischemia. We noted a significant (P < 0.05) decrease in the maximal contraction amplitude triggered by electrical field stimulation in the presence of ATP in preparations submitted to 24 h of I/R. CONCLUSIONS Changes in the P2X2 receptor density parallel myenteric neuronal loss following I/R of the rat ileum. This, together with the increase in the activated (oversized) glial cells, may contribute to decreased GI motility after I/R.
Collapse
Affiliation(s)
- Cristina Eusébio Mendes
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, CEP 05508-900, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Interaction between NMDA glutamatergic and nitrergic enteric pathways during in vitro ischemia and reperfusion. Eur J Pharmacol 2015; 750:123-31. [DOI: 10.1016/j.ejphar.2015.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/23/2022]
|
15
|
Carpanese E, Moretto P, Filpa V, Marchet S, Moro E, Crema F, Frigo G, Giaroni C. Antagonism of ionotropic glutamate receptors attenuates chemical ischemia-induced injury in rat primary cultured myenteric ganglia. PLoS One 2014; 9:e113613. [PMID: 25419700 PMCID: PMC4242681 DOI: 10.1371/journal.pone.0113613] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/27/2014] [Indexed: 01/26/2023] Open
Abstract
Alterations of the enteric glutamatergic transmission may underlay changes in the function of myenteric neurons following intestinal ischemia and reperfusion (I/R) contributing to impairment of gastrointestinal motility occurring in these pathological conditions. The aim of the present study was to evaluate whether glutamate receptors of the NMDA and AMPA/kainate type are involved in myenteric neuron cell damage induced by I/R. Primary cultured rat myenteric ganglia were exposed to sodium azide and glucose deprivation (in vitro chemical ischemia). After 6 days of culture, immunoreactivity for NMDA, AMPA and kainate receptors subunits, GluN1 and GluA1–4, GluK1–3 respectively, was found in myenteric neurons. In myenteric cultured ganglia, in normal metabolic conditions, -AP5, an NMDA antagonist, decreased myenteric neuron number and viability, determined by calcein AM/ethidium homodimer-1 assay, and increased reactive oxygen species (ROS) levels, measured with hydroxyphenyl fluorescein. CNQX, an AMPA/kainate antagonist exerted an opposite action on the same parameters. The total number and viability of myenteric neurons significantly decreased after I/R. In these conditions, the number of neurons staining for GluN1 and GluA1–4 subunits remained unchanged, while, the number of GluK1–3-immunopositive neurons increased. After I/R, -AP5 and CNQX, concentration-dependently increased myenteric neuron number and significantly increased the number of living neurons. Both -AP5 and CNQX (100–500 µM) decreased I/R-induced increase of ROS levels in myenteric ganglia. On the whole, the present data provide evidence that, under normal metabolic conditions, the enteric glutamatergic system exerts a dualistic effect on cultured myenteric ganglia, either by improving or reducing neuron survival via NMDA or AMPA/kainate receptor activation, respectively. However, blockade of both receptor pathways may exert a protective role on myenteric neurons following and I/R damage. The neuroprotective effect may depend, at least in part, on the ability of both receptors to increase intraneuronal ROS production.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/pharmacology
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Animals
- Cell Count
- Cell Survival/drug effects
- Cells, Cultured
- Excitatory Amino Acid Antagonists/pharmacology
- Ganglia/blood supply
- Ganglia/cytology
- Ganglia/metabolism
- Glucose/metabolism
- Immunohistochemistry
- Ischemia/chemically induced
- Ischemia/physiopathology
- Male
- Myenteric Plexus/blood supply
- Myenteric Plexus/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Rats
- Reactive Oxygen Species/metabolism
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Ionotropic Glutamate/antagonists & inhibitors
- Receptors, Ionotropic Glutamate/metabolism
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Reperfusion Injury/physiopathology
- Sodium Azide/pharmacology
Collapse
Affiliation(s)
- Elisa Carpanese
- Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Paola Moretto
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Viviana Filpa
- Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Silvia Marchet
- Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Gianmario Frigo
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Cristina Giaroni
- Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
- * E-mail:
| |
Collapse
|
16
|
Bertoni S, Arcaro V, Vivo V, Rapalli A, Tognolini M, Cantoni AM, Saccani F, Flammini L, Domenichini G, Ballabeni V, Barocelli E. Suppression of inflammatory events associated to intestinal ischemia–reperfusion by 5-HT1A blockade in mice. Pharmacol Res 2014; 81:17-25. [DOI: 10.1016/j.phrs.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/19/2022]
|
17
|
Palombit K, Mendes CE, Tavares-de-Lima W, Silveira MP, Castelucci P. Effects of ischemia and reperfusion on subpopulations of rat enteric neurons expressing the P2X7 receptor. Dig Dis Sci 2013; 58:3429-39. [PMID: 23990036 DOI: 10.1007/s10620-013-2847-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 08/15/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal ischemia followed by reperfusion (I/R) may occur following intestinal obstruction. In rats, I/R in the small intestine leads to structural changes accompanied by neuronal death. AIM To analyze the impact of I/R injury on different neuronal populations in the myenteric plexus of rat ileum. METHODS The ileal artery was occluded for 35 min and animals were euthanized 6, 24, and 72 h, and 1 week later. Immunohistochemistry was performed with antibodies against the P2X7 receptor as well as nitric oxide synthase (NOS), calbindin, calretinin, choline acetyltransferase (ChAT), or the pan-neuronal marker anti-HuC/D. RESULTS Double immunolabeling demonstrated that 100% of NOS-, calbindin-, calretinin-, and ChAT-immunoreactive neurons in all groups expressed the P2X7 receptor. Following I/R, neuronal density decreased by 22.6% in P2X7 receptor-immunoreactive neurons, and decreased by 46.7, 38, 39.8, 21.7, and 20% in NOS-, calbindin-, calretinin-, ChAT-, and HuC/D-immunoreactive neurons, respectively, at 6, 24, and 72 h and 1 week following injury compared to the control and sham groups. We also observed a 14% increase in the neuronal cell body profile area of the NOS-immunoreactive neurons at 6 and 24 h post-I/R and a 14% increase in ChAT-immunoreactive neurons at 1 week following I/R. However, the average size of the calretinin-immunoreactive neurons was reduced by 12% at 6 h post-I/R and increased by 8% at 24 h post-I/R. CONCLUSIONS This work demonstrates that I/R is associated with a significant loss of different subpopulations of neurons in the myenteric plexus accompanied by morphological changes, all of which may underlie conditions related to intestinal motility disorder.
Collapse
Affiliation(s)
- Kelly Palombit
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | | | | | | | | |
Collapse
|
18
|
Giaroni C, Marchet S, Carpanese E, Prandoni V, Oldrini R, Bartolini B, Moro E, Vigetti D, Crema F, Lecchini S, Frigo G. Role of neuronal and inducible nitric oxide synthases in the guinea pig ileum myenteric plexus during in vitro ischemia and reperfusion. Neurogastroenterol Motil 2013; 25:e114-26. [PMID: 23279126 DOI: 10.1111/nmo.12061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal ischemia and reperfusion (I/R) injury leads to abnormalities in motility, namely delay of transit, caused by damage to myenteric neurons. Alterations of the nitrergic transmission may occur in these conditions. This study investigated whether an in vitro I/R injury may affect nitric oxide (NO) production from the myenteric plexus of the guinea pig ileum and which NO synthase (NOS) isoform is involved. METHODS The distribution of the neuronal (n) and inducible (i) NOS was determined by immunohistochemistry during 60 min of glucose/oxygen deprivation (in vitro ischemia) followed by 60 min of reperfusion. The protein and mRNA levels of nNOS and iNOS were investigated by Western-immunoblotting and real time RT-PCR, respectively. NO levels were quantified as nitrite/nitrate. KEY RESULTS After in vitro I/R the proportion of nNOS-expressing neurons and protein levels remained unchanged. nNOS mRNA levels increased 60 min after inducing ischemia and in the following 5 min of reperfusion. iNOS-immunoreactive neurons, protein and mRNA levels were up-regulated during the whole I/R period. A significant increase of nitrite/nitrate levels was observed in the first 5 min after inducing I/R and was significantly reduced by N(ω) -propyl-l-arginine and 1400 W, selective inhibitors of nNOS and iNOS, respectively. CONCLUSIONS & INFERENCES Our data demonstrate that both iNOS and nNOS represent sources for NO overproduction in ileal myenteric plexus during I/R, although iNOS undergoes more consistent changes suggesting a more relevant role for this isoform in the alterations occurring in myenteric neurons following I/R.
Collapse
Affiliation(s)
- C Giaroni
- Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Saccani F, Anselmi L, Jaramillo I, Bertoni S, Barocelli E, Sternini C. Protective role of μ opioid receptor activation in intestinal inflammation induced by mesenteric ischemia/reperfusion in mice. J Neurosci Res 2012; 90:2146-53. [PMID: 22806643 DOI: 10.1002/jnr.23108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 05/27/2012] [Accepted: 05/31/2012] [Indexed: 12/17/2022]
Abstract
Intestinal ischemia is a clinical emergency with high morbidity and mortality. We investigated whether activation of μ opioid receptor (μOR) protects from the inflammation induced by intestinal ischemia and reperfusion (I/R) in mice. Ischemia was induced by occlusion of the superior mesenteric artery (45 min), followed by reperfusion (5 hr). Sham-operated (SO) and normal (N) mice served as controls. Each group received subcutaneously 1) saline solution, 2) the μOR selective agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO; 0.01 mg kg(-1) ), 3) DAMGO and the selective μOR antagonist [H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2] (CTAP; 0.1 mg kg(-1) ), or 4) CTAP alone. I/R induced intestinal inflammation as indicated by histological damage and the significant increase in myeloperoxidase (MPO) activity, an index of tissue neutrophil accumulation. Tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) mRNA levels were also increased in I/R mice compared with SO. DAMGO significantly reduced tissue damage, MPO activity, and TNF-α mRNA levels in I/R, and these effects were reversed by CTAP. By contrast, DAMGO did not modify IL-10 mRNA levels or gastrointestinal transit. DAMGO's effects are receptor mediated and likely are due to activation of peripheral μORs, because it does not readily cross the blood-brain barrier. These findings suggest that activation of peripheral μOR protects from the inflammatory response induced by I/R through a pathway involving the proinflammatory cytokine TNF-α. Reduction of acute inflammation might prevent I/R complications, including motility impairment, which develop at a later stage of reperfusion and likely are due to inflammatory cell infiltrates.
Collapse
Affiliation(s)
- Francesca Saccani
- Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
20
|
Dauch JR, Yanik BM, Hsieh W, Oh SS, Cheng HT. Neuron-astrocyte signaling network in spinal cord dorsal horn mediates painful neuropathy of type 2 diabetes. Glia 2012; 60:1301-15. [PMID: 22573263 DOI: 10.1002/glia.22349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022]
Abstract
Activation of the neuronal-glial network in the spinal cord dorsal horn (SCDH) mediates various chronic painful conditions. We studied spinal neuronal-astrocyte signaling interactions involved in the maintenance of painful diabetic neuropathy (PDN) in type 2 diabetes. We used the db/db mouse, an animal model for PDN of type 2 diabetes, which develops mechanical allodynia from 6 to 12 wk of age. In this study, enhanced substance P expression was detected in the presynaptic sensory fibers innervating lamina I-III in the lumbar SCDH (LSCDH) of the db/db mouse at 10 wk of age. This phenomenon is associated with enhanced spinal ERK1/2 phosphorylation in projection sensory neurons and regional astrocyte activation. In addition, peak phosphorylation of the NR1 subunit of N-methyl-D-aspartate receptor (NMDAR), along with upregulation of neuronal and inducible nitric oxide synthase (nNOS and iNOS) expression were detected in diabetic mice. Expression of nNOS and iNOS was detected in both interneurons and astrocytes in lamina I-III of the LSCDH. Treatment with MK801, an NMDAR inhibitor, inhibited mechanical allodynia, ERK1/2 phosphorylation, and nNOS and iNOS upregulation in diabetic mice. MK801 also reduced astrocytosis and glial acidic fibrillary protein upregulation in db/db mice. In addition, N(G)-nitro-L-arginine methyl ester (L-NAME), a nonspecific NOS inhibitor, had similar effects on NMDAR signaling and NOS expression. These results suggest that nitric oxide from surrounding interneurons and astrocytes interacts with NMDAR-dependent signaling in the projection neurons of the SCDH during the maintenance of PDN.
Collapse
Affiliation(s)
- Jacqueline R Dauch
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
21
|
Rivera LR, Poole DP, Thacker M, Furness JB. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol Motil 2011; 23:980-8. [PMID: 21895878 DOI: 10.1111/j.1365-2982.2011.01780.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO), produced by the neural nitric oxide synthase enzyme (nNOS) is a transmitter of inhibitory neurons supplying the muscle of the gastrointestinal tract. Transmission from these neurons is necessary for sphincter relaxation that allows the passage of gut contents, and also for relaxation of muscle during propulsive activity in the colon. There are deficiencies of transmission from NOS neurons to the lower esophageal sphincter in esophageal achalasia, to the pyloric sphincter in hypertrophic pyloric stenosis and to the internal anal sphincter in colonic achalasia. Deficits in NOS neurons are observed in two disorders in which colonic propulsion fails, Hirschsprung's disease and Chagas' disease. In addition, damage to NOS neurons occurs when there is stress to cells, in diabetes, resulting in gastroparesis, and following ischemia and reperfusion. A number of factors may contribute to the propensity of NOS neurons to be involved in enteric neuropathies. One of these is the failure of the neurons to maintain Ca(2+) homeostasis. In neurons in general, stress can increase cytoplasmic Ca(2+), causing a Ca(2+) toxicity. NOS neurons face the additional problem that NOS is activated by Ca(2+). This is hypothesized to produce an excess of NO, whose free radical properties can cause cell damage, which is exacerbated by peroxynitrite formed when NO reacts with oxygen free radicals.
Collapse
Affiliation(s)
- L R Rivera
- Department of Anatomy & Cell Biology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
Paulino AS, Palombit K, Cavriani G, Tavares-de-Lima W, Mizuno MS, Marosti AR, da Silva MV, Girotti PA, Liberti EA, Castelucci P. Effects of ischemia and reperfusion on P2X2 receptor expressing neurons of the rat ileum enteric nervous system. Dig Dis Sci 2011; 56:2262-75. [PMID: 21409380 DOI: 10.1007/s10620-011-1588-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 01/17/2011] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated the effects of ischemia/reperfusion in the intestine (I/R-i) on purine receptor P2X2-immunoreactive (IR) neurons of the rat ileum. METHODS The superior mesenteric artery was occluded for 45 min with an atraumatic vascular clamp and animals were sacrificed 4 h later. Neurons of the myenteric and submucosal plexuses were evaluated for immunoreactivity against the P2X2 receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT), calbindin, and calretinin. RESULTS Following I/R-i, we observed a decrease in P2X2 receptor immunoreactivity in the cytoplasm and surface membranes of neurons of the myenteric and submucosal plexuses. These studies also revealed an absence of calbindin-positive neurons in the I/R-i group. In addition, the colocalization of the P2X2 receptor with NOS, ChAT, and calretinin immunoreactivity in the myenteric plexus was decreased following I/R-i. Likewise, the colocalization between P2X2 and calretinin in neurons of the submucosal plexus was also reduced. In the I/R-i group, there was a 55.8% decrease in the density of neurons immunoreactive (IR) for the P2X2 receptor, a 26.4% reduction in NOS-IR neuron, a 25% reduction in ChAT-IR neuron, and a 47% reduction in calretinin-IR neuron. The density of P2X2 receptor and calretinin-IR neurons also decreased in the submucosal plexus of the I/R-i group. In the myenteric plexus, P2X2-IR, NOS-IR, ChAT-IR and calretinin-IR neurons were reduced in size by 50%, 49.7%, 42%, and 33%, respectively, in the I/R-i group; in the submucosal plexus, P2X2-IR and calretinin-IR neurons were reduced in size by 56% and 72.6%, respectively. CONCLUSIONS These data demonstrate that ischemia/reperfusion of the intestine affects the expression of the P2X2 receptor in neurons of the myenteric and submucosal plexus, as well as density and size of neurons in this population. Our findings indicate that I/R-i induces changes in P2X2-IR enteric neurons that could result in alterations in intestinal motility.
Collapse
Affiliation(s)
- Ariane Silva Paulino
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, CEP 05508-900, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rivera LR, Thacker M, Pontell L, Cho HJ, Furness JB. Deleterious effects of intestinal ischemia/reperfusion injury in the mouse enteric nervous system are associated with protein nitrosylation. Cell Tissue Res 2011; 344:111-23. [DOI: 10.1007/s00441-010-1126-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022]
|
24
|
Giaroni C, Zanetti E, Giuliani D, Oldrini R, Marchet S, Moro E, Borroni P, Trinchera M, Crema F, Lecchini S, Frigo G. Protein kinase C modulates NMDA receptors in the myenteric plexus of the guinea pig ileum during in vitro ischemia and reperfusion. Neurogastroenterol Motil 2011; 23:e91-103. [PMID: 21159064 DOI: 10.1111/j.1365-2982.2010.01644.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ischemic episodes lead to profound functional and structural alterations of the gastrointestinal tract which may contribute to disorders of intestinal motility. Enhancement of glutamate overflow and the consequent activation of NMDA (N-methyl-D-aspartate) receptors may participate to such changes by modulating different enteric neurotransmitter systems, including cholinergic motor pathways. METHODS The molecular mechanism/s underlying activation of NMDA receptors in the guinea pig ileum were investigated after glucose/oxygen deprivation (in vitro ischemia) and during reperfusion. KEY RESULTS The number of ileal myenteric neurons positive for NR1, the functional subunit of NMDA receptors, and its mRNA levels were unchanged after in vitro ischemia/reperfusion. In these conditions, the protein levels of NR1, and of its phosphorylated form by protein kinase C (PKC), significantly increased in myenteric neurons, whereas, the levels of NR1 phosphorylated by protein kinase A (PKA) did not change, with respect to control values. Spontaneous glutamate overflow increased during in vitro ischemia/reperfusion. In these conditions, the NMDA receptor antagonists, D(-)-2-amino-5-phosphonopentanoic acid [(D)-AP5] (10 μmol L(-1)) and 5,7-dichlorokynurenic acid (5,7-diClKyn acid) (10 μmol L(-1)) and the PKC antagonist, chelerythrine (1 μmol L(-1)), but not the PKA antagonist, H-89 (1 μmol L(-1)), were able to significantly depress the increased glutamate efflux. CONCLUSIONS & INFERENCES The present data suggest that in the guinea pig ileum during in vitro ischemia/reperfusion, NR1 protein levels increase. Such event may rely upon posttranscriptional events involving NR1 phosphorylation by PKC. Increased NR1 levels may, at least in part, explain the ability of NMDA receptors to modulate a positive feedback on ischemia/reperfusion-induced glutamate overflow.
Collapse
Affiliation(s)
- C Giaroni
- Department of Clinical Medicine, University of Insubria, Varese, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Damaging effects of ischemia/reperfusion on intestinal muscle. Cell Tissue Res 2010; 343:411-9. [PMID: 21153664 DOI: 10.1007/s00441-010-1096-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 11/18/2010] [Indexed: 01/15/2023]
Abstract
Periods of ischemia followed by restoration of blood flow cause ischemia/reperfusion (I/R) injury. In the intestine, I/R damage to the mucosa and neurons is prominent. Functionally, abnormalities occur in motility, most conspicuously a slowing of transit, possibly as a consequence of damage to neurons and/or muscle. Here, we describe degenerative and regenerative changes that have not been previously reported in intestinal muscle. The mouse small intestine was made ischemic for 1 h, followed by re-perfusion for 1 h to 7 days. The tissues were examined histologically, after hematoxylin/eosin and Masson's trichrome staining, and by myeloperoxidase histochemistry to detect inflammatory reactions to I/R. Histological analysis revealed changes in the mucosa, muscle, and neurons. The mucosa was severely but transiently damaged. The mucosal surface was sloughed off at 1-3 h, but re-epithelialization occurred by 12 h, and the epithelium appeared healthy by 1-2 days. Longitudinal muscle degeneration was followed by regeneration, but little effect on the circular muscle was noted. The first signs of muscle change were apparent at 3-12 h, and by 1 and 2 days, extensive degeneration within the muscle was observed, which included clear cytoplasm, pyknotic nuclei, and apoptotic bodies. The muscle recovered quickly and appeared normal at 7 days. Histological evidence of neuronal damage was apparent at 1-7 days. Neutrophils were not present in the muscle layers and were infrequent in the mucosa. However, they were often seen in the longitudinal muscle at 1-3 days and were also present in the circular muscle. Neutrophil numbers increased in the mucosa in both I/R and sham-operated animals and remained elevated from 1 h to 7 days. We conclude that I/R causes severe longitudinal muscle damage, which might contribute to the long-term motility deficits observed after I/R injury to the intestine.
Collapse
|
26
|
Guzmán-de la Garza FJ, Cámara-Lemarroy CR, Ballesteros-Elizondo RG, Alarcón-Galván G, Cordero-Pérez P, Fernández-Garza NE. Ketamine and the myenteric plexus in intestinal ischemia/reperfusion injury. Dig Dis Sci 2010; 55:1878-85. [PMID: 19760156 DOI: 10.1007/s10620-009-0976-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 08/31/2009] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Intestinal ischemia/reperfusion (I/R) is a common clinical entity with severe consequences. We studied the effects of ketamine and the participation of the myenteric plexus in I/R injury. METHODS Rats were divided into six groups: sham, IR (30 min ischemia/60 min reperfusion), KET+IR (50 mg/kg i.p. ketamine injection before I/R), DEN (myenteric plexus ablated with benzalkonium chloride (BAC) and sham operation performed), DEN+IR (BAC treated and I/R induced), and DEN+KET+IR (BAC treated, ketamine administered, and I/R induced). Serum concentrations of p-selectin, intracellular adhesion molecule-1 (ICAM-1), and antithrombin III (ATIII) were measured, and tissue samples were obtained for histological analysis. RESULTS IR group had higher intestinal mucosa injury and elevated serum concentrations of ICAM-1 and p-selectin, as well as ATIII depletion, compared with sham group (P < 0.05). In KET+IR group these alterations were significantly reduced (P < 0.05). DEN group showed ICAM-1 elevations when compared with sham group (P < 0.05), and DEN+IR group showed no difference in any parameter compared with IR group. However, ketamine administration in group DEN+KET+IR had no effect on any parameter when compared with DEN+IR group. CONCLUSIONS Ketamine was able to diminish alterations induced by I/R. Myenteric plexus ablation with BAC treatment alone had no effects on intestinal I/R injury. However, this procedure abolished ketamine's protective effects. Ketamine seems to require an intact enteric nervous system to exert its protective action.
Collapse
|
27
|
Cámara-Lemarroy CR, Guzmán-de la Garza FJ, Alarcón-Galván G, Cordero-Pérez P, Fernández-Garza NE. The effects of NMDA receptor antagonists over intestinal ischemia/reperfusion injury in rats. Eur J Pharmacol 2009; 621:78-85. [PMID: 19751722 DOI: 10.1016/j.ejphar.2009.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 08/14/2009] [Accepted: 08/20/2009] [Indexed: 11/26/2022]
Abstract
Intestinal ischemia/reperfusion causes severe injury and alters motility. N-methyl-D-aspartate (NMDA) receptor antagonists have been shown to reduce ischemia/reperfusion injury in the nervous system, and in other organs. In this study, we set out to investigate the effects of NMDA receptor antagonists over intestinal ischemia/reperfusion injury. Male Wistar rats were randomly divided into four groups: (1) a control, sham-operated group; (2) an intestinal ischemia/reperfusion group subjected to 45 min ischemia and 1h reperfusion; (3) a group treated with 10 mg/kg ketamine before ischemia/reperfusion; and (4) a group treated with 10 mg/kg memantine before ischemia/reperfusion. Intestinal samples were taken for histological evaluation. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), malondialdehyde (MDA), total antioxidant capacity, tumor necrosis factor alpha (TNF-alpha), P-selectin and antithrombin III (ATIII) were measured. Intestinal transit time was determined to evaluate intestinal motility. Fecal pellet output and animal weight were also registered daily for 7 days post-ischemia. After reperfusion, AST, LDH, TNF-alpha and P-selectin levels were elevated, ATIII levels were depleted, and ALT levels were unchanged in serum. Additionally, levels of MDA were increased and total antioxidant capacity was reduced in serum, indicating oxidative stress. Intestinal mucosa showed severe injury. Ketamine, but not memantine, diminished these alterations. Intestinal motility and fecal pellet output were also altered after ischemia/reperfusion. Both drugs abolished the alterations in motility. In conclusion, ketamine's protective effects over ischemia/reperfusion do not appear to be NMDA mediated, but they could be playing a role in protecting the intestine against ischemia-induced functional changes.
Collapse
|
28
|
Rivera LR, Thacker M, Castelucci P, Bron R, Furness JB. The reactions of specific neuron types to intestinal ischemia in the guinea pig enteric nervous system. Acta Neuropathol 2009; 118:261-70. [PMID: 19466432 DOI: 10.1007/s00401-009-0549-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 12/31/2022]
Abstract
Damage following ischemia and reperfusion (I/R) is common in the intestine and can be caused during abdominal surgery, in several disease states and following intestinal transplantation. Most studies have concentrated on damage to the mucosa, although published evidence also points to effects on neurons. Moreover, alterations of neuronally controlled functions of the intestine persist after I/R. The present study was designed to investigate the time course of damage to neurons and the selectivity of the effect of I/R damage for specific types of enteric neurons. A branch of the superior mesenteric artery supplying the distal ileum of anesthetised guinea pigs was occluded for 1 h and the animals were allowed to recover for 2 h to 4 weeks before tissue was taken for the immunohistochemical localization of markers of specific neuron types in tissues from sham and I/R animals. The dendrites of neurons with nitric oxide synthase (NOS) immunoreactivity, which are inhibitory motor neurons and interneurons, were distorted and swollen by 24 h after I/R and remained enlarged up to 28 days. The total neuron profile areas (cell body plus dendrites) increased by 25%, but the sizes of cell bodies did not change significantly. Neurons of type II morphology (intrinsic primary afferent neurons), revealed by NeuN immunoreactivity, were transiently reduced in cell size, at 24 h and 7 days. These neurons also showed signs of minor cell surface blebbing. Calretinin neurons, many of which are excitatory motor neurons, were unaffected. Thus, this study revealed a selective damage to NOS neurons that was observed at 24 h and persisted up to 4 weeks, without a significant change in the relative numbers of NOS neurons.
Collapse
Affiliation(s)
- Leni R Rivera
- Department of Anatomy & Cell Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | |
Collapse
|
29
|
Berber I, Aydin C, Cevahir N, Yenisey C, Gumrukcu G, Kocbil G, Tellioglu G, Tekin K. Tempol reduces bacterial translocation after ischemia/reperfusion injury in a rat model of superior mesenteric artery occlusion. Surg Today 2009; 39:407-13. [PMID: 19408078 DOI: 10.1007/s00595-008-3900-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/02/2008] [Indexed: 12/16/2022]
Abstract
PURPOSE We investigated whether Tempol, a water-soluble antioxidant, prevents the harmful effects of superior mesenteric ischemia/reperfusion on intestinal tissues in rats. METHODS The rats were divided into three groups of 10. In group 1, the superior mesenteric artery (SMA) was isolated but not occluded, and in groups 2 and 3 the superior mesenteric artery was occluded for 60 min. After that, the clamp was removed and reperfusion began. In group 3, 5 min before the start of reperfusion, a bolus dose of 30 mg/kg Tempol was administered intravenously and continued at a dose of 30 mg/kg for 60 min. All animals were euthanized after 24 h and tissue samples were collected for analysis. RESULTS There was a significant increase in myeloperoxidase activity, malondialdehyde levels, and the incidence of bacterial translocation in group 2, with a decrease in glutathione levels. These parameters were found to be normalized in group 3. The intestinal mucosal injury score in group 2 was significantly higher than those in groups 1 and 3. CONCLUSION Tempol prevents bacterial translocation while precluding the harmful effects of ischemia/reperfusion injury on intestinal tissues in a rat model of superior mesenteric artery occlusion.
Collapse
Affiliation(s)
- Ibrahim Berber
- Department of General Surgery, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sand E, Themner-Persson A, Ekblad E. Infiltration of mast cells in rat colon is a consequence of ischemia/reperfusion. Dig Dis Sci 2008; 53:3158-69. [PMID: 18463982 DOI: 10.1007/s10620-008-0279-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/02/2008] [Indexed: 12/11/2022]
Abstract
Intestinal ischemia as well as mastocytosis occur in patients with inflammatory bowel disease and irritable bowel syndrome. Our aim was to clarify how ischemia with reperfusion (I/R) affects the structure, enteric neurons, and immune cells in the colon. Rats were subjected to colon ischemia for 1 h and reperfused for 1 day up to 20 weeks; sham-operated rats were used as controls. No structural remodeling of the intestinal segment was detected after I/R. The number and distribution of eosinophils were not affected by I/R. Local areas containing numerous mast cells were detected in the muscle layers, the serosa, and in and around the myenteric ganglia 4-20 weeks post ischemia. It was notable that myenteric ganglionic formations within mast-cell-rich areas virtually lacked neurons. Mast cells were rarely found in controls. In conclusion, I/R of the colon attracts mast cells, and death of myenteric neurons occurs in such locations.
Collapse
Affiliation(s)
- Elin Sand
- Neurogastroenterology Unit, Department of Experimental Medical Science, Lund University, BMC B:11, S-22184, Lund, Sweden.
| | | | | |
Collapse
|
31
|
Cámara CR, Guzmán FJ, Barrera EA, Cabello AJ, Garcia A, Fernández NE, Caballero E, Ancer J. Ketamine anesthesia reduces intestinal ischemia/reperfusion injury in rats. World J Gastroenterol 2008; 14:5192-6. [PMID: 18777596 PMCID: PMC2744009 DOI: 10.3748/wjg.14.5192] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of ketamine anesthesia on the motility alterations and tissue injury caused by ischemia/reperfusion in rats.
METHODS: Thirty male Wistar rats weighing 200-250 g were used. Ischemia was induced by obstructing blood flow in 25% of the total small intestinal length (ileum) with a vascular clamp for 45 min, after which either 60 min or 24 h of reperfusion was allowed. Rats were either anesthetized with pentobarbital sodium (50 mg/kg) or ketamine (100 mg/kg). Control groups received sham surgery. After 60 min of reperfusion, the intestine was examined for morphological alterations, and after 24 h intestinal basic electrical rhythm (BER) frequency was calculated, and intestinal transit determined in all groups.
RESULTS: The intestinal mucosa in rats that were anesthetized with ketamine showed moderate alterations such as epithelial lifting, while ulceration and hemorrhage was observed in rats that received pentobarbital sodium after 60 min of reperfusion. Quantitative analysis of structural damage using the Chiu scale showed significantly less injury in rats that received ketamine than in rats that did not (2.35 ± 1.14 vs 4.58 ± 0.50, P < 0.0001). The distance traveled by a marker, expressed as percentage of total intestinal length, in rats that received pentobarbital sodium was 20% ± 2% in comparison with 25.9% ± 1.64% in rats that received ketamine (P = 0.017). BER was not statistically different between groups.
CONCLUSION: Our results show that ketamine anesthesia is associated with diminished intestinal injury and abolishes the intestinal transit delay induced by ischemia/reperfusion.
Collapse
|
32
|
Donnerer J, Liebmann I. Stimulus-evoked opioid inhibition in guinea-pig longitudinal muscle-myenteric plexus strip is modulated by NMDA receptors. Neurosci Lett 2007; 419:74-7. [PMID: 17412512 DOI: 10.1016/j.neulet.2007.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 11/17/2022]
Abstract
Longitudinal muscle-myenteric plexus (LMMP) strips of the guinea-pig ileum were used to investigate the stimulus-evoked endogenous opioid inhibition and its modulation by ionotropic glutamate receptors. Regular cholinergic twitch responses evoked by a short 3-s-field stimulation in intervals of 80s were found reduced after an interposed period of prolonged 40-s-field stimulation. In the presence of a peptidase-inhibitor-cocktail, the cholinergic twitch response following the period of prolonged stimulation was even further reduced as compared to normal Tyrode solution without peptidase inhibitors. In both instances, the impairment of the cholinergic twitch response was completely abolished by naloxone thus demonstrating its opioidergic nature. This endogenous inhibitory opioid effect was significantly mitigated by the NMDA-receptor antagonist MK-801, but not by the AMPA/kainate receptor antagonist CNQX. These results demonstrate by functional experiments that there is a significant opioid-mediated inhibition in guinea-pig LMMP preparations evoked by a prolonged electrical stimulation, and that an NMDA antagonist can mitigate the opioid inhibition.
Collapse
Affiliation(s)
- Josef Donnerer
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | | |
Collapse
|
33
|
Ohlsson B, Janciauskiene S. New Insights into the Understanding of Gastrointestinal Dysmotility. Drug Target Insights 2007. [DOI: 10.1177/117739280700200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Bodil Ohlsson
- Department of Clinical Sciences, Gastroenterology Division, Entrance 46, 2nd floor, University Hospital Malmö, Lund University, 20502 Malmö, Sweden
| | - Sabina Janciauskiene
- Wallenberg Laboratory, Entrance 46, 2nd floor, University Hospital Malmö, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
34
|
Cattaruzza F, Cenac N, Barocelli E, Impicciatore M, Hyun E, Vergnolle N, Sternini C. Protective effect of proteinase-activated receptor 2 activation on motility impairment and tissue damage induced by intestinal ischemia/reperfusion in rodents. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:177-88. [PMID: 16816371 PMCID: PMC1698753 DOI: 10.2353/ajpath.2006.051098] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We hypothesized that proteinase-activated receptor-2 (PAR(2)) modulates intestinal injuries induced by ischemia/reperfusion. Ischemia (1 hour) plus reperfusion (6 hours) significantly delayed gastrointestinal transit (GIT) compared with sham operation. Intraduodenal injection of PAR(2)-activating peptide SLIGRL-NH(2) significantly accelerated transit in ischemia/reperfusion but not in sham-operated rats. GIT was significantly delayed in ischemia/reperfusion and sham-operated PAR(2)(-/-) mice compared with PAR(2)(+/+). SLIGRL-NH(2) significantly accelerated transit in ischemia/reperfusion in PAR(2)(+/+) but not in PAR(2)(-/-) mice. Prevention of mast cell degranulation with cromolyn, ablation of visceral afferents with capsaicin, and antagonism of calcitonin gene-related peptide (CGRP) and neurokinin-1 receptors with CGRP(8-37) and RP67580, respectively, abolished the SLIGRL-NH(2)-induced stimulatory effect on transit in ischemia/reperfusion. Tissue damage was significantly reduced by SLIGRL-NH(2); this effect was not observed in cromolyn-, capsaicin-, or RP67580-treated rats but was detected following CGRP(8-37). Intestinal PAR(2) mRNA levels were not affected by SLIGRL-NH(2) in ischemia/reperfusion. We propose that PAR(2) modulates GIT and tissue damage in intestinal ischemia/reperfusion by a mechanism dependent on mast cells and visceral afferents. PAR(2) effect on transit might be mediated by CGRP and substance P, whereas the effect on tissue damage appears to involve substance P but not CGRP. PAR(2) might be a signaling system in the neuroimmune communication in intestinal ischemia/reperfusion.
Collapse
Affiliation(s)
- Fiore Cattaruzza
- Center for Ulcer Research and Education, Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Giuliani D, Giaroni C, Zanetti E, Canciani L, Borroni P, Lecchini S, Frigo G. Involvement of glutamate receptors of the NMDA type in the modulation of acetylcholine and glutamate overflow from the guinea pig ileum during in vitro hypoxia and hypoglycaemia. Neurochem Int 2006; 48:191-200. [PMID: 16290263 DOI: 10.1016/j.neuint.2005.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 10/05/2005] [Indexed: 01/14/2023]
Abstract
The involvement of NMDA glutamate receptors in the effects of glucose/oxygen deprivation (in vitro ischaemia) on spontaneous endogenous acetylcholine and glutamate overflow from the guinea pig ileum was studied. Neurotransmitter overflow was measured by HPLC. Deprivation of glucose in the medium slightly reduced acetylcholine overflow, and did not significantly influence glutamate overflow. During oxygen deprivation and glucose/oxygen deprivation, acetylcholine overflow augmented with a biphasic modality: an early peak was followed by a long lasting increase, whereas glutamate overflow increased with a rapid and sustained modality. The effects of glucose/oxygen deprivation on both acetylcholine and glutamate overflow were abolished after reperfusion with normal oxygenated medium. Acetylcholine and glutamate overflow induced by glucose/oxygen deprivation were significantly reduced in the absence of external Ca(2+) as well as by the addition of the mitochondrial Na(+)-Ca(2+) exchanger blocker, CGP 37157, and of the endoplasmic reticulum Ca(2+)/ATPase blocker, thapsigargin. +/-AP5, an NMDA receptor antagonist, and 5,7-diCl-kynurenic acid, an antagonist of the glycine site associated to NMDA receptor, markedly depressed glucose/oxygen deprivation-induced acetylcholine and glutamate overflow as well. Our results suggest that in vitro simulated ischaemia evokes acetylcholine and glutamate overflow from the guinea pig ileum, which is partly linked to an increase in intracellular Ca(2+) concentration dependent on both Ca(2+) influx from the extracellular space and Ca(2+) mobilization from the endoplasmic reticulum and mitochondrial stores. During glucose/oxygen deprivation, ionotropic glutamate receptors of the NMDA type exert both a positive feedback modulation of glutamate output and contribute to increased acetylcholine overflow.
Collapse
Affiliation(s)
- Daniela Giuliani
- Clinical and Applied Pharmacology Centre, University of Insubria and University of Pavia, via O. Rossi 9, I-21100 Varese, Italy
| | | | | | | | | | | | | |
Collapse
|