1
|
Roman KM, Dinasarapu AR, Cherian S, Fan X, Donsante Y, Aravind N, Chan CS, Jinnah H, Hess EJ. Striatal cell-type-specific molecular signatures reveal therapeutic targets in a model of dystonia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617010. [PMID: 39415987 PMCID: PMC11482807 DOI: 10.1101/2024.10.07.617010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Striatal dysfunction is implicated in many forms of dystonia, including idiopathic, inherited and iatrogenic dystonias. The striatum is comprised largely of GABAergic spiny projection neurons (SPNs) that are defined by their long-range efferents. Direct SPNs (dSPNs) project to the internal globus pallidus/substantia nigra reticulata whereas indirect pathway SPNs (iSPNs) project to the external pallidum; the concerted activity of both SPN subtypes modulates movement. Convergent results from genetic, imaging and physiological studies in patients suggest that abnormalities of both dSPNs and iSPNs contribute to the expression of dystonia, but the molecular adaptations underlying these abnormalities are not known. Here we provide a comprehensive analysis of SPN cell-type-specific molecular signatures in a model of DOPA-responsive dystonia (DRD mice), which is caused by gene defects that reduce dopamine neurotransmission, resulting in dystonia that is specifically associated with striatal dysfunction. Individually profiling the translatome of dSPNs and iSPNs using translating ribosome affinity purification with RNA-seq revealed hundreds of differentially translating mRNAs in each SPN subtype in DRD mice, yet there was little overlap between the dysregulated genes in dSPNs and iSPNs. Despite the paucity of shared adaptations, a disruption in glutamatergic signaling was predicted for both dSPNs and iSPNs. Indeed, we found that both AMPA and NMDA receptor-mediated currents were enhanced in dSPNs but diminished in iSPNs in DRD mice. The pattern of mRNA dysregulation was specific to dystonia as the adaptations in DRD mice were distinct from those in parkinsonian mice where the dopamine deficit occurs in adults, suggesting that the phenotypic outcome is dependent on both the timing of the dopaminergic deficit and the SPN-specific adaptions. We leveraged the unique molecular signatures of dSPNs and iSPNs in DRD mice to identify biochemical mechanisms that may be targets for therapeutics, including LRRK2 inhibition. Administration of the LRRK2 inhibitor MLi-2 ameliorated the dystonia in DRD mice suggesting a novel target for therapeutics and demonstrating that the delineation of cell-type-specific molecular signatures provides a powerful approach to revealing both CNS dysfunction and therapeutic targets in dystonia.
Collapse
Affiliation(s)
- Kaitlyn M. Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - Suraj Cherian
- Department of Neuroscience, Northwestern University, Chicago, Illinois, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Nivetha Aravind
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - C. Savio Chan
- Department of Neuroscience, Northwestern University, Chicago, Illinois, USA
| | - H.A. Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Ellen J. Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Chagraoui A, Di Giovanni G, De Deurwaerdère P. Neurobiological and Pharmacological Perspectives of D3 Receptors in Parkinson’s Disease. Biomolecules 2022; 12:biom12020243. [PMID: 35204744 PMCID: PMC8961531 DOI: 10.3390/biom12020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The discovery of the D3 receptor (D3R) subtypes of dopamine (DA) has generated an understandable increase in interest in the field of neurological diseases, especially Parkinson’s disease (PD). Indeed, although DA replacement therapy with l-DOPA has provided an effective treatment for patients with PD, it is responsible for invalidating abnormal involuntary movements, known as L-DOPA-induced dyskinesia, which constitutes a serious limitation of the use of this therapy. Of particular interest is the finding that chronic l-DOPA treatment can trigger the expression of D1R–D3R heteromeric interactions in the dorsal striatum. The D3R is expressed in various tissues of the central nervous system, including the striatum. Compelling research has focused on striatal D3Rs in the context of PD and motor side effects, including dyskinesia, occurring with DA replacement therapy. Therefore, this review will briefly describe the basal ganglia (BG) and the DA transmission within these brain regions, before going into more detail with regard to the role of D3Rs in PD and their participation in the current treatments. Numerous studies have also highlighted specific interactions between D1Rs and D3Rs that could promote dyskinesia. Finally, this review will also address the possibility that D3Rs located outside of the BG may mediate some of the effects of DA replacement therapy.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-83-69
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, 2080 Msida, Malta;
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche (UMR) 5287, Centre National de la Recherche Scientifique (CNRS), CEDEX, 33000 Bordeaux, France;
| |
Collapse
|
3
|
Castela I, Hernandez LF. Shedding light on dyskinesias. Eur J Neurosci 2020; 53:2398-2413. [DOI: 10.1111/ejn.14777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Ivan Castela
- HM‐CINAC Hospital Universitario HM Puerta del Sur Fundación de Investigación HM Hospitales Madrid Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) Carlos III Health Institute Madrid Spain
| | - Ledia F. Hernandez
- HM‐CINAC Hospital Universitario HM Puerta del Sur Fundación de Investigación HM Hospitales Madrid Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED) Carlos III Health Institute Madrid Spain
| |
Collapse
|
4
|
Hawthorne GH, Bernuci MP, Bortolanza M, Tumas V, Issy AC, Del-Bel E. Nanomedicine to Overcome Current Parkinson's Treatment Liabilities: A Systematic Review. Neurotox Res 2016; 30:715-729. [PMID: 27581037 DOI: 10.1007/s12640-016-9663-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022]
Abstract
Nanoparticles might be produced and manipulated to present a large spectrum of properties. The physicochemical features of the engineered nanomaterials confer to them different features, including the ability to cross the blood-brain barrier. The main objective of this review is to present the state-of-art research in nano manipulation concerning Parkinson's disease (PD). In the past few years, the association of drugs with nanoparticles solidly improved treatment outcomes. We systematically reviewed 28 studies, describing their potential contributions regarding the role of nanomedicine to increase the efficacy of known pharmacological strategies for PD treatment. Data from animal models resulted in the (i) improvement of pharmacological properties, (ii) more stable drug concentrations, (iii) longer half-live and (iv) attenuation of pharmacological adverse effects. As this approach is recent, with many of the described works being published less than 5 years ago, the expectancy is that this knowledge gives support to an improvement in the current clinical methods to the management of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Marcelo Picinin Bernuci
- Department of Health Promotion, University Center of Maringá (UniCesumar), Cesumar Institute of Science Technology and Innovation (ICETI), Maringa, Paraná, Brazil.
| | - Mariza Bortolanza
- Department of Morphology Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ana Carolina Issy
- Department of Morphology Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil.
| | - Elaine Del-Bel
- Department of Morphology Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016; 111:1-16. [PMID: 27178731 DOI: 10.1016/j.phrs.2016.05.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
Actions of the neurotransmitter dopamine in the brain are mediated by dopamine receptors that belong to the superfamily of G protein-coupled receptors (GPCRs). Mammals have five dopamine receptor subtypes, D1 through D5. D1 and D5 couple to Gs/olf and activate adenylyl cyclase, whereas D2, D3, and D4 couple to Gi/o and inhibit it. Most GPCRs upon activation by an agonist are phosphorylated by GPCR kinases (GRKs). The GRK phosphorylation makes receptors high-affinity binding partners for arrestin proteins. Arrestin binding to active phosphorylated receptors stops further G protein activation and promotes receptor internalization, recycling or degradation, thereby regulating their signaling and trafficking. Four non- visual GRKs are expressed in striatal neurons. Here we describe known effects of individual GRKs on dopamine receptors in cell culture and in the two in vivo models of dopamine-mediated signaling: behavioral response to psychostimulants and L-DOPA- induced dyskinesia. Dyskinesia, associated with dopamine super-sensitivity of striatal neurons, is a debilitating side effect of L-DOPA therapy in Parkinson's disease. In vivo, GRK subtypes show greater receptor specificity than in vitro or in cultured cells. Overexpression, knockdown, and knockout of individual GRKs, particularly GRK2 and GRK6, have differential effects on signaling of dopamine receptor subtypes in the brain. Furthermore, deletion of GRK isoforms in select striatal neuronal types differentially affects psychostimulant-induced behaviors. In addition, anti-dyskinetic effect of GRK3 does not require its kinase activity: it is mediated by the binding of its RGS-like domain to Gαq/11, which suppresses Gq/11 signaling. The data demonstrate that the dopamine signaling in defined neuronal types in vivo is regulated by specific and finely orchestrated actions of GRK isoforms.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA.
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; Skolkovo Institute of Science and Technology, Skolkovo, 143025, Moscow, Russia
| | | |
Collapse
|
6
|
Gurevich EV, Gainetdinov RR, Gurevich VV. Regulation of Dopamine-Dependent Behaviors by G Protein-Coupled Receptor Kinases. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3798-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Marton TM, Hussain Shuler MG, Worley PF. Homer 1a and mGluR5 phosphorylation in reward-sensitive metaplasticity: A hypothesis of neuronal selection and bidirectional synaptic plasticity. Brain Res 2015; 1628:17-28. [PMID: 26187757 DOI: 10.1016/j.brainres.2015.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/29/2015] [Accepted: 06/23/2015] [Indexed: 12/31/2022]
Abstract
Drug addiction and reward learning both involve mechanisms in which reinforcing neuromodulators participate in changing synaptic strength. For example, dopamine receptor activation modulates corticostriatal plasticity through a mechanism involving the induction of the immediate early gene Homer 1a, the phosphorylation of metabotropic glutamate receptor 5 (mGluR5)'s Homer ligand, and the enhancement of an NMDA receptor-dependent current. Inspired by hypotheses that Homer 1a functions selectively in recently-active synapses, we propose that Homer 1a is recruited by a synaptic tag to functionally discriminate between synapses that predict reward and those that do not. The involvement of Homer 1a in this mechanism further suggests that decaminutes-old firing patterns can define which synapses encode new information.
Collapse
Affiliation(s)
- Tanya M Marton
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Marshall G Hussain Shuler
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Ahmed MR, Bychkov E, Kook S, Zurkovsky L, Dalby KN, Gurevich EV. Overexpression of GRK6 rescues L-DOPA-induced signaling abnormalities in the dopamine-depleted striatum of hemiparkinsonian rats. Exp Neurol 2015; 266:42-54. [PMID: 25687550 DOI: 10.1016/j.expneurol.2015.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/26/2015] [Accepted: 02/05/2015] [Indexed: 12/26/2022]
Abstract
l-DOPA therapy in Parkinson's disease often results in side effects such as l-DOPA-induced dyskinesia (LID). Our previous studies demonstrated that defective desensitization of dopamine receptors caused by decreased expression of G protein-coupled receptor kinases (GRKs) plays a role. Overexpression of GRK6, the isoform regulating dopamine receptors, in parkinsonian rats and monkeys alleviated LID and reduced LID-associated changes in gene expression. Here we show that 2-fold lentivirus-mediated overexpression of GRK6 in the dopamine-depleted striatum in rats unilaterally lesioned with 6-hydroxydopamine ameliorated supersensitive ERK response to l-DOPA challenge caused by loss of dopamine. A somewhat stronger effect of GRK6 was observed in drug-naïve than in chronically l-DOPA-treated animals. GRK6 reduced the responsiveness of p38 MAP kinase to l-DOPA challenge rendered supersensitive by dopamine depletion. The JNK MAP kinase was unaffected by loss of dopamine, chronic or acute l-DOPA, or GRK6. Overexpressed GRK6 suppressed enhanced activity of Akt in the lesioned striatum by reducing elevated phosphorylation at its major activating residue Thr(308). Finally, GRK6 reduced accumulation of ΔFosB in the lesioned striatum, the effect that paralleled a decrease in locomotor sensitization to l-DOPA in GRK6-expressing rats. The results suggest that elevated GRK6 facilitate desensitization of DA receptors, thereby normalizing of the activity of multiple signaling pathways implicated in LID. Thus, improving the regulation of dopamine receptor function via the desensitization mechanism could be an effective way of managing LID.
Collapse
Affiliation(s)
- M Rafiuddin Ahmed
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Evgeny Bychkov
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lilia Zurkovsky
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin N Dalby
- Division of Medicinal Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Zhong SY, Chen YX, Fang M, Zhu XL, Zhao YX, Liu XY. Low-dose levodopa protects nerve cells from oxidative stress and up-regulates expression of pCREB and CD39. PLoS One 2014; 9:e95387. [PMID: 24743653 PMCID: PMC3990701 DOI: 10.1371/journal.pone.0095387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/25/2014] [Indexed: 11/18/2022] Open
Abstract
Objective This study aimed to investigate the influence of low-dose levodopa (L-DOPA) on neuronal cell death under oxidative stress. Methods PC12 cells were treated with L-DOPA at different concentrations. We detected the L-DOPA induced reactive oxygen species (ROS). Meanwhile, MTT and LDH assay were performed to determine the proliferation and growth of PC12 cells with or without ROS scavenger. In addition, after pretreatment with L-DOPA at different concentrations alone or in combination with CD39 inhibitor, PC12 cells were incubated with hydrogen peroxide (H2O2) and the cell viability was evaluated by MTT and LDH assay. In addition, the expression of pCREB and CD39 was detected by immunofluorescence staining and Western blot assay in both cells and rat’s brain after L-DOPA treatment. Results After treatment with L-DOPA for 3 days, the cell proliferation and growth were promoted when the L-DOPA concentration was <30 µM, while cell proliferation was comparable to that in control group when the L-DOPA concentration was >30 µM. Low dose L-DOPA could protect the PC12 cells from H2O2 induced oxidative stress, which was compromised by CD39 inhibitor. In addition, the expression of CD39 and pCREB increased in both PC12 cells and rats’ brain after L-DOPA treatment. Conclusions L-DOPA at different concentrations has distinct influence on proliferation and growth of PC12 cells, and low dose (<30 µM) L-DOPA protects PC12 cells against oxidative stress which might be related to the up-regulation of CD39 and pCREB expression.
Collapse
Affiliation(s)
- Shi-Ying Zhong
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Yong-Xing Chen
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Min Fang
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Xiao-Long Zhu
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Yan-Xin Zhao
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
- * E-mail: (YXZ); (XYL)
| | - Xue-Yuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
- * E-mail: (YXZ); (XYL)
| |
Collapse
|
10
|
Differential dopamine receptor occupancy underlies L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. PLoS One 2014; 9:e90759. [PMID: 24614598 PMCID: PMC3948692 DOI: 10.1371/journal.pone.0090759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/03/2014] [Indexed: 01/03/2023] Open
Abstract
Dyskinesia is a major side effect of an otherwise effective L-DOPA treatment in Parkinson's patients. The prevailing view for the underlying presynaptic mechanism of L-DOPA-induced dyskinesia (LID) suggests that surges in dopamine (DA) via uncontrolled release from serotonergic terminals results in abnormally high level of extracellular striatal dopamine. Here we used high-sensitivity online microdialysis and PET imaging techniques to directly investigate DA release properties from serotonergic terminals both in the parkinsonian striatum and after neuronal transplantation in 6-OHDA lesioned rats. Although L-DOPA administration resulted in a drift in extracellular DA levels, we found no evidence for abnormally high striatal DA release from serotonin neurons. The extracellular concentration of DA remained at or below levels detected in the intact striatum. Instead, our results showed that an inefficient release pool of DA associated with low D2 receptor binding remained unchanged. Taken together, these findings suggest that differential DA receptor activation rather than excessive release could be the underlying mechanism explaining LID seen in this model. Our data have important implications for development of drugs targeting the serotonergic system to reduce DA release to manage dyskinesia in patients with Parkinson's disease.
Collapse
|
11
|
Lindenbach D, Dupre KB, Eskow Jaunarajs KL, Ostock CY, Goldenberg AA, Bishop C. Effects of 5-HT1A receptor stimulation on striatal and cortical M1 pERK induction by L-DOPA and a D1 receptor agonist in a rat model of Parkinson's disease. Brain Res 2013; 1537:327-39. [PMID: 24060645 DOI: 10.1016/j.brainres.2013.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022]
Abstract
Motor symptoms of Parkinson's disease are commonly treated using l-DOPA although long-term treatment usually causes debilitating motor side effects including dyskinesias. A putative source of dyskinesia is abnormally high levels of phosphorylated extracellular-regulated kinase (pERK) within the striatum. In animal models, the serotonin 1A receptor agonist ±8-OH-DPAT reduces dyskinesia, suggesting it may exhibit efficacy through the pERK pathway. The present study investigated the effects of ±8-OH-DPAT on pERK density in rats treated with l-DOPA or the D1 receptor agonist SKF81297. Rats were given a unilateral dopamine lesion with 6-hydroxydopamine and primed with a chronic regimen of l-DOPA, SKF81297 or their vehicles. On the final test day, rats were given two injections: first with ±8-OH-DPAT, the D1 receptor antagonist SCH23390 or their vehicles, and second with l-DOPA, SKF81297 or their vehicles. Rats were then transcardially perfused for immunohistological analysis of pERK expression in the striatum and primary motor cortex. Rats showed greater dyskinesia in response to l-DOPA and SKF81297 after repeated injections. Although striatal pERK induction was similar between acute and chronic l-DOPA, SKF81297 caused the largest increase in striatal pERK after the first exposure. Neither compound alone affected motor cortex pERK. Surprisingly, in the ventromedial striatum, ±8-OH-DPAT potentiated l-DOPA-induced pERK; in the motor cortex, ±8-OH-DPAT potentiated pERK with l-DOPA or SKF81297. Our results support previous work that the striatal pERK pathway is dysregulated after dopamine depletion, but call into question the utility of pERK as a biomarker of dyskinesia expression.
Collapse
Affiliation(s)
- David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University - State University of New York, Binghamton, NY, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lynch S, Sivam SP. Dopamine and GABA Interaction in Basal Ganglia: GABA-A or GABA-B Receptor Stimulation Attenuates L-DOPA-Induced Striatal and Nigral ERK1/2 Signaling in a Rat Model of Parkinson’s Disease. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbbs.2013.36050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Yang X, Zheng R, Cai Y, Liao M, Yuan W, Liu Z. Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats. Int J Nanomedicine 2012; 7:2077-86. [PMID: 22619544 PMCID: PMC3356186 DOI: 10.2147/ijn.s30463] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Levodopa remains the most effective drug in the treatment of Parkinson’s disease. However, long-term administration of levodopa induces motor complications, such as levodopa-induced dyskinesia. The mechanisms underlying levodopa-induced dyskinesia are not fully understood. Methods In this study, we prepared levodopa methyl ester (LDME)/benserazide-loaded nanoparticles, which can release LDME and benserazide in a sustained manner. Dyskinesia was induced in rats by repeated administration of levodopa then treated with LDME plus benserazide or the same dose of LDME/benserazide-loaded nanoparticles. Apomorphine- induced rotations and abnormal involuntary movements (AIMs) were measured on treatment days 1, 5, 10, 15, and 20. In addition, the levels of phosphorylated dopamine- and cyclic adenosine monophosphate- regulated phosphoprotein of 32 kDa, extracellular signal-regulated kinases 1/2, and ΔfosB were determined by Western blot. Tau levels were determined by Western blot and immunohistochemistry. Dynorphin levels in the striatum and cortex of rats were measured using enzyme-linked immunosorbent assay. Results Over the course of levodopa treatment, the rats developed abnormal AIMs, classified as locomotive, axial, orolingual, and forelimb dyskinesia. The degree of reduction of apomorphine-induced rotations was comparable in dyskinetic rats treated with LDME plus benserazide or LDME/benserazide-loaded nanoparticles. The axial, limb, and orolingual (ALO) AIMs of dyskinetic rats treated with LDME/benserazide-loaded nanoparticles were 14 ± 2.5, 9 ± 2.0, and 10 ± 2.1 on treatment days 10, 15, and 20, respectively, which were significantly reduced compared with dyskinetic rats treated with LDME plus benserazide (25 ± 3.7, 27 ± 3.8, and 25 ± 3.5, respectively). The locomotive AIMs of dyskinetic rats treated with LDME/benserazide-loaded nanoparticles were 2.3 ± 0.42, 1.7 ± 0.35, and 1.6 ± 0.37 on treatment days 10, 15, and 20, respectively, which were also reduced compared with dyskinetic rats treated with LDME plus benserazide (4.4 ± 0.85, 4.7 ± 0.95 and 4.8 ± 0.37, respectively). Western blot showed that the levels of phosphorylated dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein of 32 kDa, extracellular signal-regulated kinases 1/2, tau, and ΔfosB in dyskinetic rats treated with LDME/benserazide-loaded nanoparticles were 134.6 ± 14.1, 174.9 ± 15.1, 134.2 ± 19.3, and 320.5 ± 32.8, respectively, which were significantly reduced compared with those of dyskinetic rats treated with LDME plus benserazide (210.3 ± 19.7, 320.8 ± 21.9, 340.4 ± 27.1, and 620.7 ± 48.3, respectively). Immunohistochemistry indicated that the level of phosphorylated tau was (7.2 ± 1.1) × 104 in dyskinetic rats treated with LDME/benserazide-loaded nanoparticles. However, the tau level was only (14.6 ± 2.3) × 104 in LDME plus benserazide-treated dyskinetic rats. There was a significant difference between the two groups. Enzyme-linked immunosorbent assay showed that dynorphin levels in the striatum and cortex of dyskinetic rats treated with LDME/benserazide-loaded nanoparticles were 5.7 ± 1.2 and 4.8 ± 0.87, respectively, which were significantly reduced compared with LDME plus benserazide-treated dyskinetic rats (13.3 ± 2.1 and 8.1 ± 1.1 for the striatum and cortex, respectively). Conclusion Results suggest that LDME/benserazide-loaded nanoparticles can be used to reduce the expression of dyskinesia in dyskinetic rats.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Neurology, Xinhua Hospital (affiliated to Shanghai Jiaotong University School of Medicine), Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Gangarossa G, Perroy J, Valjent E. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum. Brain Struct Funct 2012; 218:405-19. [PMID: 22453353 DOI: 10.1007/s00429-012-0405-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/12/2012] [Indexed: 12/11/2022]
Abstract
Therapeutic agents and drugs of abuse regulate the extracellular signal-regulated kinase (ERK) cascade signaling in the medium-sized spiny neurons (MSNs) of the striatum. However, whether this regulation is associated with specific cortical and thalamic inputs has never been studied. We used Drd2-EGFP BAC-transgenic mice to undertake a topographical and cell-type specific analysis of ERK phosphorylation and two of its downstream targets histone H3 and ribosomal protein S6 (rS6) in the dorsal striatum following injection of SKF81297 (D1R-like agonist), quinpirole (D2R-like agonist) or apomorphine (non selective DA receptor agonist). In striatal areas receiving inputs from the cingulate/prelimbic, visual and auditory cortex, SKF81297 treatment increased phosphorylation of ERK, histone H3 and rS6 selectively in EGFP-negative MSNs of Drd2-EGFP mice. In contrast, no regulation was found in striatal region predominantly targeted by the sensorimotor and motor cortex. Apomorphine slightly enhanced ERK and rS6, but not histone H3 phosphorylation. This regulation occurred exclusively in EGFP-negative neurons mostly in striatal sectors receiving connections from the insular, visual and auditory cortex. Quinpirole administration inhibited basal ERK activation but did not change histone H3 and rS6 phosphorylation throughout the rostrocaudal axis of the dorsal striatum. This anatomo-functional study indicates that D1R and D2R agonists produce a unique topography and cell-type specific regulation of the ERK cascade signaling in the mouse striatum, and that those patterns are closely associated with particular cortical and thalamic inputs. This work evidences the need of a precise identification of the striatal areas under study to further understand striatal plasticity.
Collapse
|
15
|
Managò F, Espinoza S, Salahpour A, Sotnikova TD, Caron MG, Premont RT, Gainetdinov RR. The role of GRK6 in animal models of Parkinson's disease and L-DOPA treatment. Sci Rep 2012; 2:301. [PMID: 22393477 PMCID: PMC3293148 DOI: 10.1038/srep00301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/14/2012] [Indexed: 01/11/2023] Open
Abstract
G protein-coupled Receptor Kinase 6 (GRK6) belongs to a family of kinases that phosphorylate GPCRs. GRK6 levels were found to be altered in Parkinson's Disease (PD) and D2 dopamine receptors are supersensitive in mice lacking GRK6 (GRK6-KO mice). To understand how GRK6 modulates the behavioral manifestations of dopamine deficiency and responses to L-DOPA, we used three approaches to model PD in GRK6-KO mice: 1) the cataleptic response to haloperidol; 2) introducing GRK6 mutation to an acute model of absolute dopamine deficiency, DDD mice; 3) hemiparkinsonian 6-OHDA model. Furthermore, dopamine-related striatal signaling was analyzed by assessing the phosphorylation of AKT/GSK3β and ERK1/2. GRK6 deficiency reduced cataleptic behavior, potentiated the acute effect of L-DOPA in DDD mice, reduced rotational behavior in hemi-parkinsonian mice, and reduced abnormal involuntary movements induced by chronic L-DOPA. These data indicate that approaches to regulate GRK6 activity could be useful in modulating both therapeutic and side-effects of L-DOPA.
Collapse
Affiliation(s)
- Francesca Managò
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Moreno C, Sivam SP. The Time Course of D1 Agonist Induced Striatonigral ERK1/2 Signaling in a Rat Model of Parkinson’s Disease. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbbs.2012.21001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Ren T, Yang X, Wu N, Cai Y, Liu Z, Yuan W. Sustained-release formulation of levodopa methyl ester/benserazide for prolonged suppressing dyskinesia expression in 6-OHDA-leisoned rats. Neurosci Lett 2011; 502:117-22. [PMID: 21835223 DOI: 10.1016/j.neulet.2011.07.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022]
Abstract
Although levodopa remains the most effective drug in the treatment of Parkinson's disease (PD), chronic administration of levodopa in the treatment of PD usually caused levodopa-induced dyskinesia (LID), the pathogenesis of which is poorly understood. It has been demonstrated that continuous dopamine stimulation reduces the expression of LID in PD. In the present study, levodopa methyl ester (LDME) and benserazide were microencapsulated into poly (lactide-co-glycolide) (PLGA) microspheres and then administrated to PD model of rats, which were induced by 6-hydroxydopamine injections. We found that both LDME/benserazide-loaded microspheres achieved sustained-release without burst release during the first day. LDME and benserazide had the same release slope from the second day on in vivo though benserazide released faster than LDME during the whole process. In our pharmacodynamic study, LDME/benserazide-loaded microspheres decreased apomorphine-induced turns and improved stepping of the lesioned forepaw in PD rats. Moreover, western blot analysis showed that the levels of ΔfosB, phosphorylated dopamine, cAMP-regulated phosphoprotein of 32kDa at threonine 34 and extracellular signal-regulated kinases 1 and 2 were decreased by LDME/benserazide-loaded microspheres in PD rats. These data showed that LDME/benserazide-loaded microspheres could be used to treat PD motor symptoms and ameliorate the expression of LID in this rat model of PD.
Collapse
Affiliation(s)
- Tiantian Ren
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
18
|
Wall VZ, Parker JG, Fadok JP, Darvas M, Zweifel L, Palmiter RD. A behavioral genetics approach to understanding D1 receptor involvement in phasic dopamine signaling. Mol Cell Neurosci 2010; 46:21-31. [PMID: 20888914 DOI: 10.1016/j.mcn.2010.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022] Open
Abstract
Dopamine-producing neurons fire with both basal level tonic patterns and phasic bursts. Varying affinities of the five dopamine receptors have led to a hypothesis that higher affinity receptors are primarily activated by basal level tonic dopamine, while lower affinity receptors may be tuned to be sensitive to higher levels caused by phasic bursts. Genetically modified mice provide a method to begin to probe this hypothesis. Here we discuss three mouse models. Dopamine-deficient mice were used to determine which behaviors require dopamine. These behaviors were then analyzed in mice lacking D1 receptors and in mice with reduced phasic dopamine release. Comparison of the latter two mouse models revealed a similar failure to learn about and respond normally to cues that indicate either a positive or negative outcome, giving support to the hypothesis that phasic dopamine release and the D1 receptor act in the same pathway. However, the D1 receptor likely has additional roles beyond those of phasic dopamine detection, because D1 receptor knockout mice have deficits in addition to what has been observed in mice with reduced phasic dopamine release.
Collapse
Affiliation(s)
- Valerie Z Wall
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
19
|
Santini E, Sgambato-Faure V, Li Q, Savasta M, Dovero S, Fisone G, Bezard E. Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia. PLoS One 2010; 5:e12322. [PMID: 20808799 PMCID: PMC2925943 DOI: 10.1371/journal.pone.0012322] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 07/30/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In rodents, the development of dyskinesia produced by L-DOPA in the dopamine-depleted striatum occurs in response to increased dopamine D1 receptor-mediated activation of the cAMP - protein kinase A and of the Ras-extracellular signal-regulated kinase (ERK) signalling pathways. However, very little is known, in non-human primates, about the regulation of these signalling cascades and their association with the induction, manifestation and/or maintenance of dyskinesia. METHODOLOGY/RESULTS We here studied, in the gold-standard non-human primate model of Parkinson's disease, the changes in PKA-dependent phosphorylation of DARPP-32 and GluR1 AMPA receptor, as well as in ERK and ribosomal protein S6 (S6) phosphorylation, associated to acute and chronic administration of L-DOPA. Increased phosphorylation of DARPP-32 and GluR1 was observed in both L-DOPA first-ever exposed and chronically-treated dyskinetic parkinsonian monkeys. In contrast, phosphorylation of ERK and S6 was enhanced preferentially after acute L-DOPA administration and decreased during the course of chronic treatment. CONCLUSION Dysregulation of cAMP signalling is maintained during the course of chronic L-DOPA administration, while abnormal ERK signalling peaks during the initial phase of L-DOPA treatment and decreases following prolonged exposure. While cAMP signalling enhancement is associated with dyskinesia, abnormal ERK signalling is associated with priming.
Collapse
Affiliation(s)
- Emanuela Santini
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronique Sgambato-Faure
- INSERM U836, Grenoble Institut des Neurosciences, Grenoble, France
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229 - Université Claude Bernard Lyon I, Bron, France
| | - Qin Li
- Université Victor Segalen-Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, UMR 5227, Bordeaux, France
- Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Marc Savasta
- INSERM U836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Sandra Dovero
- Université Victor Segalen-Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, UMR 5227, Bordeaux, France
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erwan Bezard
- Université Victor Segalen-Bordeaux 2, Centre National de la Recherche Scientifique, Bordeaux Institute of Neuroscience, UMR 5227, Bordeaux, France
- Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
|
21
|
Presynaptic dopaminergic compartment determines the susceptibility to L-DOPA-induced dyskinesia in rats. Proc Natl Acad Sci U S A 2010; 107:13159-64. [PMID: 20615977 DOI: 10.1073/pnas.1003432107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drug-induced dyskinesias in dopamine-denervated animals are known to depend on both pre- and postsynaptic changes of the nigrostriatal circuitry. In lesion models used thus far, changes occur in both of these compartments and, therefore, it has not been possible to dissect the individual contribution of each compartment in the pathophysiology of dyskinesias. Here we silenced the nigrostriatal dopamine neurotransmission without affecting the anatomical integrity of the presynaptic terminals using a short-hairpin RNA-mediated knockdown of tyrosine hydroxylase enzyme (shTH). This treatment resulted in significant reduction (by about 70%) in extracellular dopamine concentration in the striatum as measured by on-line microdialysis. Under these conditions, the animals remained nondyskinetic after chronic L-DOPA treatment, whereas partial intrastriatal 6-hydoxydopamine lesioned rats with comparable reduction in extracellular dopamine levels developed dyskinesias. On the other hand, apomorphine caused moderate to severe dyskinesias in both groups. Importantly, single-dose L-DOPA challenge in apomorphine-primed shTH animals failed to activate the already established abnormal postsynaptic responses. Taken together, these data provide direct evidence that the status of the presynaptic, DA releasing compartment is a critical determinant of both the induction and maintenance of L-DOPA-induced dyskinesias.
Collapse
|
22
|
Yuan J, Darvas M, Sotak B, Hatzidimitriou G, McCann UD, Palmiter RD, Ricaurte GA. Dopamine is not essential for the development of methamphetamine-induced neurotoxicity. J Neurochem 2010; 114:1135-42. [PMID: 20533999 PMCID: PMC3124237 DOI: 10.1111/j.1471-4159.2010.06839.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is widely believed that dopamine (DA) mediates methamphetamine (METH)-induced toxicity to brain dopaminergic neurons, because drugs that interfere with DA neurotransmission decrease toxicity, whereas drugs that increase DA neurotransmission enhance toxicity. However, temperature effects of drugs that have been used to manipulate brain DA neurotransmission confound interpretation of the data. Here we show that the recently reported ability of l-dihydroxyphenylalanine to reverse the protective effect of alpha-methyl-para-tyrosine on METH-induced DA neurotoxicity is also confounded by drug effects on body temperature. Further, we show that mice genetically engineered to be deficient in brain DA develop METH neurotoxicity, as long as the thermic effects of METH are preserved. In addition, we demonstrate that mice genetically engineered to have unilateral brain DA deficits develop METH-induced dopaminergic deficits that are of comparable magnitude on both sides of the brain. Taken together, these findings demonstrate that DA is not essential for the development of METH-induced dopaminergic neurotoxicity and suggest that mechanisms independent of DA warrant more intense investigation.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Santini E, Alcacer C, Cacciatore S, Heiman M, Hervé D, Greengard P, Girault JA, Valjent E, Fisone G. l-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice. J Neurochem 2009; 108:621-33. [DOI: 10.1111/j.1471-4159.2008.05831.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Dysregulation of CalDAG-GEFI and CalDAG-GEFII predicts the severity of motor side-effects induced by anti-parkinsonian therapy. Proc Natl Acad Sci U S A 2009; 106:2892-6. [PMID: 19171906 DOI: 10.1073/pnas.0812822106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voluntary movement difficulties in Parkinson's disease are initially relieved by l-DOPA therapy, but with disease progression, the repeated l-DOPA treatments can produce debilitating motor abnormalities known as l-DOPA-induced dyskinesias. We show here that 2 striatum-enriched regulators of the Ras/Rap/ERK MAP kinase signal transduction cascade, matrix-enriched CalDAG-GEFI and striosome-enriched CalDAG-GEFII (also known as RasGRP), are strongly and inversely dysregulated in proportion to the severity of abnormal movements induced by l-DOPA in a rat model of parkinsonism. In the dopamine-depleted striatum, the l-DOPA treatments produce down-regulation of CalDAG-GEFI and up-regulation of CalDAG-GEFII mRNAs and proteins, and quantification of the mRNA levels shows that these changes are closely correlated with the severity of the dyskinesias. As these CalDAG-GEFs control ERK cascades, which are implicated in l-DOPA-induced dyskinesias, and have differential compartmental expression patterns in the striatum, we suggest that they may be key molecules involved in the expression of the dyskinesias. They thus represent promising new therapeutic targets for limiting the motor complications induced by l-DOPA therapy.
Collapse
|
25
|
Priming for l-dopa-induced dyskinesia in Parkinson's disease: a feature inherent to the treatment or the disease? Prog Neurobiol 2008; 87:1-9. [PMID: 18938208 DOI: 10.1016/j.pneurobio.2008.09.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 11/27/2022]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa therapy for Parkinson's disease ultimately experienced by the vast majority of patients. This article does not review the increased understanding of dyskinesia pathophysiology we have seen during the past few years but, instead, specifically focuses upon the very first molecular events thought to be responsible for the establishment of dyskinesia and generally grouped under the term of "priming". Priming is classically defined as the process by which the brain becomes sensitized such that administration of a dopaminergic therapy modifies the response to subsequent dopaminergic treatments. In this way, over time, with repeated treatment, the chance of dopaminergic stimulation eliciting dyskinesia is increased and once dyskinesia has been established, the severity of dyskinesia increases. In this opinion review, however, we aim at strongly opposing the common view of priming. We propose, and hopefully will demonstrate, that priming does not exist per se but is the direct and intrinsic consequence of the loss of dopamine innervation of the striatum (and other target structures), meaning that the first injections of dopaminergic drugs only exacerbate those mechanisms (sensitization) but do not induce them. Chronicity and pulsatility of subsequent dopaminergic treatment only exacerbates the likelihood of developing dyskinesia.
Collapse
|
26
|
Palmiter RD. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 2008; 1129:35-46. [PMID: 18591467 PMCID: PMC2720267 DOI: 10.1196/annals.1417.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genetically engineered mice that lack tyrosine hydroxylase in all dopaminergic neurons become hypoactive and aphagic, and they starve by 4 weeks of age. However, they can be rescued by daily treatment with l-dopa, which restores activity and feeding for about 10 hours. Thus, these mice can be examined in both dopamine-depleted and dopamine-replete states. A series of behavioral experiments lead to the primary conclusion that in the dopamine-depleted state these mice are not motivated to engage in goal-directed behaviors. Nevertheless, they still have a preference for sucrose, they can learn the location of food rewards, and they can form a conditioned-place preference for drugs. Dopamine signaling can be restored to the striatum by several different viral gene-therapy procedures. Restoring dopamine signaling selectively to the dorsal striatum is sufficient to allow feeding, locomotion, and reward-based learning. The rescued mice appear to have normal motivation to engage in all goal-directed behaviors that have been tested. The results suggest that dopamine facilitates the output from dorsal striatum, which provides a permissive signal allowing feeding and other goal-directed behaviors.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, Box 357370, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
27
|
D1 receptor regulation of preprotachykinin-A gene by extracellular signal-regulated kinase pathway in striatal cultures. Neuroreport 2008; 19:187-91. [PMID: 18185106 DOI: 10.1097/wnr.0b013e3282f35595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In animal models of Parkinson's disease, a supersensitive response to dopamine (DA) is associated with a switch in the coupling of striatal DA D1 receptors from a cyclic AMP/protein kinase A signaling pathway to one involving extracellular signal-regulated kinase/mitogen-associated protein kinase. In this study, we found that generation of organotypic striatal cultures, with concomitant loss of DA innervation, led to a downregulation in preprotachykinin-A gene expression, which was reinstated by D1 receptor activation in an extracellular signal-regulated kinase/mitogen-associated protein kinase-dependent manner. These data demonstrate that acute organotypic slice cultures recapitulate important changes in D1 receptor-mediated signal transduction seen in DA-denervated animals, providing a valuable model system to study denervation effects on DA signaling and striatal gene expression.
Collapse
|
28
|
Santini E, Valjent E, Fisone G. Parkinson's disease: levodopa-induced dyskinesia and signal transduction. FEBS J 2008; 275:1392-1399. [PMID: 18279379 DOI: 10.1111/j.1742-4658.2008.06296.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
l-3,4-Dihydroxyphenylalanine (L-dopa) remains the most effective pharmacological treatment for relief of the severe motor impairments of Parkinson's disease. It is very effective in controlling parkinsonian symptoms in the initial phase of the disease, but its action wanes with time. Such 'wearing-off' imposes an escalation in the dosage of the drug, which ultimately fails to provide stable control of motor symptoms and results in the appearance of abnormal involuntary movements or dyskinesia. 'Peak-dose'l-dopa-induced dyskinesia (LID) currently represents one of the major challenges in the treatment of Parkinson's disease. Accumulating evidence suggests that LID derives from overstimulation of dopamine receptors located on the GABAergic medium spiny neurons (MSNs) of the dorsal striatum. These neurons form two distinct projection pathways, which exert opposite effects on motor activity: the direct, striatonigral pathway promotes locomotion, whereas the indirect, striatopallidal pathway depresses locomotion. In order to understand the mechanisms underlying LID, it is important to identify molecular adaptations produced by chronic administration of L-dopa, at the level of one or the other of these two neuronal populations. This review summarizes the results of recent studies indicating that LID is associated with abnormal dopamine D1 receptor signaling affecting the MSNs of the direct pathway. The role of this pathological adaptation and of the consequent changes in signaling in the development and expression of LID are discussed.
Collapse
Affiliation(s)
- Emanuela Santini
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuel Valjent
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden., INSERM, U839, Paris, France., Université Pierre et Marie Curie, Paris, France., Institut du Fer à Moulin, Paris, France
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Sivam SP, Pugazhenthi S, Pugazhenthi V, Brown H. L-DOPA-induced activation of striatal p38MAPK and CREB in neonatal dopaminergic denervated rat: Relevance to self-injurious behavior. J Neurosci Res 2008; 86:339-49. [PMID: 17893915 DOI: 10.1002/jnr.21504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The destruction of nigrostriatal dopaminergic neurons with 6-hydroxydopamine (6OHDA) during the neonatal period results in dopamine (DA) loss and susceptibility for self-injurious behavior (SIB) when challenged with L-dihydroxyphenylalanine (L-DOPA), via a supersensitive D1 receptor-mediated mechanism. However, there are no changes in D1 receptor binding or mRNA levels, suggesting a potential postreceptor signaling mechanism(s). Here, we examined whether L-DOPA-induced SIB is associated with altered MAPK signaling (p38MAPK, ERK1/2, and JNK) and their nuclear target, CREB. Neonatal dopaminergic lesioned animals were challenged, as adults, with L-DOPA, observed for SIB for 6 hr, and then sacrificed. The data were grouped as follows: control, lesioned rats without SIB (SIB(-)), and lesioned rats that were positive for SIB (SIB(+)). HPLC analysis of striatal extracts revealed a more significant loss of DA and an increase of serotonin in the SIB(+) than in the SIB(-) group. The striatal levels of TH protein were severely decreased, but D1 receptor levels were unaltered in the lesioned groups. These results confirm and extend previous studies indicating that SIB is associated with a near-total loss of DA and TH, an increase in serotonin, and no change in D1 receptor levels. The present studies further revealed that the levels of active phosphorylated forms of p38MAPK and CREB were significantly higher in the SIB(+) group than in the SIB(-) group in the striatum, but not in cortex or olfactory tubercle. The results indicate an induction of striatal p38MAPK and an activation of its nuclear target, CREB, as additional mechanisms in the genesis of L-DOPA-induced SIB.
Collapse
Affiliation(s)
- Subbiah P Sivam
- Department of Pharmacology and Toxicology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| | | | | | | |
Collapse
|
30
|
Ahmed MR, Bychkov E, Gurevich VV, Benovic JL, Gurevich EV. Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J Neurochem 2007; 104:1622-36. [PMID: 17996024 DOI: 10.1111/j.1471-4159.2007.05104.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dysregulation of dopamine (DA) receptors is believed to underlie Parkinson's disease pathology and l-DOPA-induced motor complications. DA receptors are subject to regulation by G protein-coupled receptor kinases (GRKs) and arrestins. DA lesion with 6-hydroxydopamine caused multiple protein- and brain region-specific changes in the expression of GRKs. In the globus pallidus, all four GRK isoforms (GRK2, 3, 5, 6) were reduced in the lesioned hemisphere. In the caudal caudate-putamen (cCPu) three GRK isoforms (GRK2, 3, 6) were decreased by DA depletion. The decrease in GRK proteins in globus pallidus, but not cCPu, was mirrored by reduction in mRNA. GRK3 protein was reduced in the rostral caudate-putamen (rCPu), whereas other isoforms were either unchanged or up-regulated. GRK6 protein and mRNA were up-regulated in rCPu and nucleus accumbens. l-DOPA (25 mg/kg, twice daily for 10 days) failed to reverse changes caused by DA depletion, whereas D(2)/D(3) agonist pergolide (0.25 mg/kg daily for 10 days) restored normal levels of expression of GRK5 and 6. In rCPu, GRK2 protein was increased in most subcellular fractions by l-DOPA but not by DA depletion alone. Similarly, l-DOPA up-regulated arrestin3 in membrane fractions in both regions. GRK5 was down-regulated by l-DOPA in cCPu in the light membrane fraction, where this isoform is the most abundant. The data suggest that alterations in the expression and subcellular distribution of arrestins and GRKs contribute to pathophysiology of Parkinson's disease. Thus, these proteins may be targets for antiparkinsonian therapy.
Collapse
Affiliation(s)
- M Rafiuddin Ahmed
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
31
|
Bychkov E, Ahmed MR, Dalby KN, Gurevich EV. Dopamine depletion and subsequent treatment with L-DOPA, but not the long-lived dopamine agonist pergolide, enhances activity of the Akt pathway in the rat striatum. J Neurochem 2007; 102:699-711. [PMID: 17630981 DOI: 10.1111/j.1471-4159.2007.04586.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dysregulation of signaling pathways is believed to contribute to Parkinson's disease pathology and l-DOPA-induced motor complications. Long-lived dopamine (DA) agonists are less likely to cause motor complications by virtue of continuous stimulation of DA receptors. In this study, we compared the effects of the unilateral 6-hydroxydopamine lesion and subsequent treatment with l-DOPA and DA agonist pergolide on signaling pathways in rats. Pergolide caused less pronounced behavioral sensitization than l-DOPA (25 mg/kg, i.p., 10 days), particularly at lower dose (0.5 and 0.25 mg/kg, i.p.). Pergolide, but not l-DOPA, reversed lesion-induced up-regulation of preproenkephalin and did not up-regulate preprodynorphine or DA D3 receptor in the lesioned hemisphere. Pergolide was as effective as l-DOPA in reversing the lesion-induced elevation of ERK2 phosphorylation in response to acute apomorphine administration (0.05 mg/kg, s.c.). Chronic l-DOPA significantly elevated the level of Akt phosphorylation at both Thr(308) and Ser(473) and concentration of phosphorylated GSK3alpha, whereas pergolide suppressed the lesion- and/or challenge-induced supersensitive Akt responses. The data indicate that l-DOPA, unlike pergolide, exacerbates imbalances in the Akt pathway caused by the loss of DA. The results support the hypothesis that the Akt pathway is involved in long-term actions of l-DOPA and may be linked to l-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Evgeny Bychkov
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
32
|
Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, Hervé D, Greengard P, Fisone G. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci 2007; 27:6995-7005. [PMID: 17596448 PMCID: PMC6672217 DOI: 10.1523/jneurosci.0852-07.2007] [Citation(s) in RCA: 340] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/27/2007] [Accepted: 05/15/2007] [Indexed: 11/21/2022] Open
Abstract
The molecular basis of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID), one of the major hindrances in the current therapy for Parkinson's disease, is still unclear. We show that attenuation of cAMP signaling in the medium spiny neurons of the striatum, achieved by genetic inactivation of the dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), reduces LID. We also show that, in dyskinetic mice, sensitized cAMP/cAMP-dependent protein kinase/DARPP-32 signaling leads to phosphorylation/activation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). The increase in ERK1/2 phosphorylation associated with dyskinesia results in activation of mitogen- and stress-activated kinase-1 (MSK-1) and phosphorylation of histone H3, two downstream targets of ERK involved in transcriptional regulation. In line with these observations, we found that c-Fos expression is abnormally elevated in the striata of mice affected by LID. Persistent enhancement of the ERK signaling cascade is implicated in the generation of LID. Thus, pharmacological inactivation of ERK1/2 achieved using SL327 (alpha-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile), an inhibitor of the mitogen-activated kinase/ERK kinase, MEK, during chronic L-DOPA treatment counteracts the induction dyskinesia. Together, these results indicate that a significant proportion of the abnormal involuntary movements developed in response to chronic L-DOPA are attributable to hyperactivation in striatal medium spiny neurons of a signaling pathway including sequential phosphorylation of DARPP-32, ERK1/2, MSK-1, and histone H3.
Collapse
Affiliation(s)
- Emanuela Santini
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emmanuel Valjent
- Inserm, Unité 839, 75005 Paris, France
- Université Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Alessandro Usiello
- Centro di Ingegneria Genetica, Biotecnologie Avanzate, 80145 Naples, Italy
| | - Manolo Carta
- Wallenberg Neuroscience Centre, Lund University, 22184 Lund, Sweden, and
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jean-Antoine Girault
- Inserm, Unité 839, 75005 Paris, France
- Université Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Denis Hervé
- Inserm, Unité 839, 75005 Paris, France
- Université Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021
| |
Collapse
|
33
|
Colebrooke RE, Humby T, Lynch PJ, McGowan DP, Xia J, Emson PC. Age-related decline in striatal dopamine content and motor performance occurs in the absence of nigral cell loss in a genetic mouse model of Parkinson's disease. Eur J Neurosci 2007; 24:2622-30. [PMID: 17100850 DOI: 10.1111/j.1460-9568.2006.05143.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopamine cytotoxicity is thought to contribute towards the selective loss of substantia nigra pars compacta dopamine neurons and disease progression in Parkinson's disease. However, the long-term toxicity of dopamine in vivo has not previously been established. The vesicular monoamine transporter 2 (VMAT2) sequesters monoamines into synaptic vesicles, a process that, in addition to being important in normal transmission, may also act to keep intracellular levels of monoamine neurotransmitters below potentially toxic thresholds. The homozygous VMAT2-hypomorphic mouse has an insertion in the VMAT2 gene (Slc18a2). Consequently, VMAT2-deficient mice (VD(-/-)) have an approximately 95% reduction in VMAT2 expression and an equivalent level of dopamine depletion in the striatum which results in moderate motor impairment. Here, we show that L-DOPA induces locomotor hyperactivity in VD(-/-) mice and reverses the deficit in motor coordination and balance as tested with the rotarod. We report that evidence for cytosolic accumulation of dopamine in substantia nigra neurons in these mice is two-fold: firstly, there is reduced phosphorylation of tyrosine hydroxylase at the residue associated with catechol feedback inhibition; and, secondly, there are increased rates of dopamine turnover at 6, 12 and 24 months of age. These animals exhibit a progressive decline in striatal monoamine levels and rotarod performance with increasing age. However, despite these data, there was no loss of nigral dopamine neurons as estimated by quantification of tyrosine hydroxylase-immunoreactive cells in the substantia nigra pars compacta of old VD(-/-) mice (24-month-old), implying that these age-dependent manifestations may be due to senescence alone.
Collapse
Affiliation(s)
- Rebecca E Colebrooke
- Laboratory of Molecular Neuroscience, The Babraham Institute, Cambridge, CB2 4AT, UK
| | | | | | | | | | | |
Collapse
|
34
|
Quiroz C, Gomes C, Pak AC, Ribeiro JA, Goldberg SR, Hope BT, Ferré S. Blockade of adenosine A2A receptors prevents protein phosphorylation in the striatum induced by cortical stimulation. J Neurosci 2006; 26:10808-12. [PMID: 17050719 PMCID: PMC6674747 DOI: 10.1523/jneurosci.1661-06.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have shown that cortical stimulation selectively activates extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and immediate early gene expression in striatal GABAergic enkephalinergic neurons. In the present study, we demonstrate that blockade of adenosine A2A receptors with caffeine or a selective A2A receptor antagonist counteracts the striatal activation of cAMP-protein kinase A cascade (phosphorylation of the Ser845 residue of the glutamate receptor 1 subunit of the AMPA receptor) and mitogen-activated protein kinase (ERK1/2 phosphorylation) induced by the in vivo stimulation of corticostriatal afferents. The results indicate that A2A receptors strongly modulate the efficacy of glutamatergic synapses on striatal enkephalinergic neurons.
Collapse
Affiliation(s)
- César Quiroz
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, and
| | - Catarina Gomes
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Arlene C. Pak
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, and
| | - Joaquim A. Ribeiro
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, Institute of Molecular Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Steven R. Goldberg
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, and
| | - Bruce T. Hope
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, and
| | - Sergi Ferré
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, and
| |
Collapse
|