1
|
A spinal neural circuitry for converting touch to itch sensation. Nat Commun 2020; 11:5074. [PMID: 33033265 PMCID: PMC7545208 DOI: 10.1038/s41467-020-18895-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Touch and itch sensations are crucial for evoking defensive and emotional responses, and light tactile touch may induce unpleasant itch sensations (mechanical itch or alloknesis). The neural substrate for touch-to-itch conversion in the spinal cord remains elusive. We report that spinal interneurons expressing Tachykinin 2-Cre (Tac2Cre) receive direct Aβ low threshold mechanoreceptor (LTMR) input and form monosynaptic connections with GRPR neurons. Ablation or inhibition markedly reduces mechanical but not acute chemical itch nor noxious touch information. Chemogenetic inhibition of Tac2Cre neurons also displays pronounced deficit in chronic dry skin itch, a type of chemical itch in mice. Consistently, ablation of gastrin-releasing peptide receptor (GRPR) neurons, which are essential for transmitting chemical itch, also abolishes mechanical itch. Together, these results suggest that innocuous touch and chemical itch information converge on GRPR neurons and thus map an exquisite spinal circuitry hard-wired for converting innocuous touch to irritating itch.
Collapse
|
2
|
Peirs C, Dallel R, Todd AJ. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia. J Neural Transm (Vienna) 2020; 127:505-525. [PMID: 32239353 PMCID: PMC7148279 DOI: 10.1007/s00702-020-02159-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The dorsal horns of the spinal cord and the trigeminal nuclei in the brainstem contain neuron populations that are critical to process sensory information. Neurons in these areas are highly heterogeneous in their morphology, molecular phenotype and intrinsic properties, making it difficult to identify functionally distinct cell populations, and to determine how these are engaged in pathophysiological conditions. There is a growing consensus concerning the classification of neuron populations, based on transcriptomic and transductomic analyses of the dorsal horn. These approaches have led to the discovery of several molecularly defined cell types that have been implicated in cutaneous mechanical allodynia, a highly prevalent and difficult-to-treat symptom of chronic pain, in which touch becomes painful. The main objective of this review is to provide a contemporary view of dorsal horn neuronal populations, and describe recent advances in our understanding of on how they participate in cutaneous mechanical allodynia.
Collapse
Affiliation(s)
- Cedric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
3
|
PKCγ interneurons, a gateway to pathological pain in the dorsal horn. J Neural Transm (Vienna) 2020; 127:527-540. [PMID: 32108249 DOI: 10.1007/s00702-020-02162-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
Abstract
Chronic pain is a frequent and disabling condition that is significantly maintained by central sensitization, which results in pathological amplification of responses to noxious and innocuous stimuli. As such, mechanical allodynia, or pain in response to a tactile stimulus that does not normally provoke pain, is a cardinal feature of chronic pain. Recent evidence suggests that the dorsal horn excitatory interneurons that express the γ isoform of protein kinase C (PKCγ) play a critical role in the mechanism of mechanical allodynia during chronic pain. Here, we review this evidence as well as the main aspects of the development, anatomy, electrophysiology, inputs, outputs, and pathophysiology of dorsal horn PKCγ neurons. Primary afferent high-threshold neurons transmit the nociceptive message to the dorsal horn of the spinal cord and trigeminal system where it activates second-order nociceptive neurons relaying the information to the brain. In physiological conditions, low-threshold mechanoreceptor inputs activate inhibitory interneurons in the dorsal horn, which may control activation of second-order nociceptive neurons. During chronic pain, low-threshold mechanoreceptor inputs now activate PKCγ neurons that forward the message to second-order nociceptive neurons, turning thus tactile inputs into pain. Several mechanisms may contribute to opening this gate, including disinhibition, activation of local astrocytes, release of diffusible factors such as reactive oxygen species, and alteration of the descending serotoninergic control on PKCγ neurons through 5-HT2A serotonin receptors. Dorsal horn PKCγ neurons, therefore, appear as a relevant therapeutic target to alleviate mechanical allodynia during chronic pain.
Collapse
|
4
|
Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain. Pain 2019; 160:2641-2650. [DOI: 10.1097/j.pain.0000000000001672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Gutierrez‐Mecinas M, Bell AM, Shepherd F, Polgár E, Watanabe M, Furuta T, Todd AJ. Expression of cholecystokinin by neurons in mouse spinal dorsal horn. J Comp Neurol 2019; 527:1857-1871. [PMID: 30734936 PMCID: PMC6563475 DOI: 10.1002/cne.24657] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/22/2022]
Abstract
Excitatory interneurons account for the majority of dorsal horn neurons, and are required for perception of normal and pathological pain. We have identified largely non-overlapping populations in laminae I-III, based on expression of substance P, gastrin-releasing peptide, neurokinin B, and neurotensin. Cholecystokinin (CCK) is expressed by many dorsal horn neurons, particularly in the deeper laminae. Here, we have used immunocytochemistry and in situ hybridization to characterize the CCK cells. We show that they account for ~7% of excitatory neurons in laminae I-II, but between a third and a quarter of those in lamina III. They are largely separate from the neurokinin B, neurotensin, and gastrin-releasing peptide populations, but show limited overlap with the substance P cells. Laminae II-III neurons with protein kinase Cγ (PKCγ) have been implicated in mechanical allodynia following nerve injury, and we found that around 50% of CCK cells were PKCγ-immunoreactive. Neurotensin is also expressed by PKCγ cells, and among neurons with moderate to high levels of PKCγ, ~85% expressed CCK or neurotensin. A recent transcriptomic study identified mRNA for thyrotropin-releasing hormone in a specific subpopulation of CCK neurons, and we show that these account for half of the CCK/PKCγ cells. These findings indicate that the CCK cells are distinct from other excitatory interneuron populations that we have defined. They also show that PKCγ cells can be assigned to different classes based on neuropeptide expression, and it will be important to determine the differential contribution of these classes to neuropathic allodynia.
Collapse
Affiliation(s)
- Maria Gutierrez‐Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Andrew M. Bell
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Fraser Shepherd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Masahiko Watanabe
- Department of AnatomyHokkaido University School of MedicineSapporoJapan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of DentistryOsaka UniversityOsakaJapan
| | - Andrew J. Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
6
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
7
|
Preprotachykinin A is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli. Pain 2017; 158:440-456. [PMID: 27902570 PMCID: PMC5302415 DOI: 10.1097/j.pain.0000000000000778] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Expression of the substance P precursor preprotachykinin A defines a distinct population of superficial dorsal horn excitatory neurons, many of which respond to noxious or pruritic stimuli. The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined 3 nonoverlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B, and gastrin-releasing peptide. Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in ∼14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for ∼15% of the excitatory neurons in this region. They are different from the neurotensin, neurokinin B, or gastrin-releasing peptide neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1Cre), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P–expressing excitatory neurons is likely to play an important role in the transmission of signals that are perceived as pain and itch.
Collapse
|
8
|
Todd AJ. Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn. Mol Pain 2017; 13:1744806917693003. [PMID: 28326935 PMCID: PMC5315367 DOI: 10.1177/1744806917693003] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
The spinal dorsal horn receives input from primary afferent axons, which terminate in a modality-specific fashion in different laminae. The incoming somatosensory information is processed through complex synaptic circuits involving excitatory and inhibitory interneurons, before being transmitted to the brain via projection neurons for conscious perception. The dorsal horn is important, firstly because changes in this region contribute to chronic pain states, and secondly because it contains potential targets for the development of new treatments for pain. However, at present, we have only a limited understanding of the neuronal circuitry within this region, and this is largely because of the difficulty in defining functional populations among the excitatory and inhibitory interneurons. The recent discovery of specific neurochemically defined interneuron populations, together with the development of molecular genetic techniques for altering neuronal function in vivo, are resulting in a dramatic improvement in our understanding of somatosensory processing at the spinal level.
Collapse
Affiliation(s)
- Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Abstract
This study suggests that 5% of lamina I neurons are projection cells, which most express the neurokinin 1 receptor, and that these can generally be distinguished from interneurons based on their larger size. The anterolateral tract (ALT), which originates from neurons in lamina I and the deep dorsal horn, represents a major ascending output through which nociceptive information is transmitted to brain areas involved in pain perception. Although there is detailed quantitative information concerning the ALT in the rat, much less is known about this system in the mouse, which is increasingly being used for studies of spinal pain mechanisms because of the availability of genetically modified lines. The aim of this study was therefore to determine the extent to which information about the ALT in the rat can be extrapolated to the mouse. Our results suggest that as in the rat, most lamina I ALT projection neurons in the lumbar enlargement can be retrogradely labelled from the lateral parabrachial area, that the majority of these cells (∼90%) express the neurokinin 1 receptor (NK1r), and that these are larger than other NK1r-expressing neurons in this lamina. This means that many lamina I spinoparabrachial cells can be identified in NK1r-immunostained sections from animals that have not received retrograde tracer injections. However, we also observed certain species differences, in particular we found that many spinoparabrachial cells in laminae III and IV lack the NK1r, meaning that they cannot be identified based solely on the expression of this receptor. We also provide evidence that the majority of spinoparabrachial cells are glutamatergic and that some express substance P. These findings will be important for studies designed to unravel the complex neuronal circuitry that underlies spinal pain processing.
Collapse
|
10
|
Subpopulations of PKCγ interneurons within the medullary dorsal horn revealed by electrophysiologic and morphologic approach. Pain 2016; 156:1714-1728. [PMID: 25961142 DOI: 10.1097/j.pain.0000000000000221] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mechanical allodynia, a cardinal symptom of persistent pain, is associated with the unmasking of usually blocked local circuits within the superficial spinal or medullary dorsal horn (MDH) through which low-threshold mechanical inputs can gain access to the lamina I nociceptive output neurons. Specific interneurons located within inner lamina II (IIi) and expressing the gamma isoform of protein kinase C (PKCγ⁺) have been shown to be key elements for such circuits. However, their morphologic and electrophysiologic features are still unknown. Using whole-cell patch-clamp recordings and immunohistochemical techniques in slices of adult rat MDH, we characterized such lamina IIi PKCγ⁺ interneurons and compared them with neighboring PKCγ⁻ interneurons. Our results reveal that PKCγ⁺ interneurons display very specific activity and response properties. Compared with PKCγ⁻ interneurons, they exhibit a smaller membrane input resistance and rheobase, leading to a lower threshold for action potentials. Consistently, more than half of PKCγ⁺ interneurons respond with tonic firing to step current. They also receive a weaker excitatory synaptic drive. Most PKCγ⁺ interneurons express Ih currents. The neurites of PKCγ⁺ interneurons arborize extensively within lamina IIi, can spread dorsally into lamina IIo, but never reach lamina I. In addition, at least 2 morphologically and functionally different subpopulations of PKCγ⁺ interneurons can be identified: central and radial PKCγ⁺ interneurons. The former exhibit a lower membrane input resistance, rheobase and, thus, action potential threshold, and less PKCγ⁺ immunoreactivity than the latter. These 2 subpopulations might thus differently contribute to the gating of dorsally directed circuits within the MDH underlying mechanical allodynia.
Collapse
|
11
|
Gutierrez-Mecinas M, Furuta T, Watanabe M, Todd AJ. A quantitative study of neurochemically defined excitatory interneuron populations in laminae I-III of the mouse spinal cord. Mol Pain 2016; 12:12/0/1744806916629065. [PMID: 27030714 PMCID: PMC4946630 DOI: 10.1177/1744806916629065] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Excitatory interneurons account for the majority of neurons in laminae I-III, but their functions are poorly understood. Several neurochemical markers are largely restricted to excitatory interneuron populations, but we have limited knowledge about the size of these populations or their overlap. The present study was designed to investigate this issue by quantifying the neuronal populations that express somatostatin (SST), neurokinin B (NKB), neurotensin, gastrin-releasing peptide (GRP) and the γ isoform of protein kinase C (PKCγ), and assessing the extent to which they overlapped. Since it has been reported that calretinin- and SST-expressing cells have different functions, we also looked for co-localisation of calretinin and SST. RESULTS SST, preprotachykinin B (PPTB, the precursor of NKB), neurotensin, PKCγ or calretinin were detected with antibodies, while cells expressing GRP were identified in a mouse line (GRP-EGFP) in which enhanced green fluorescent protein (EGFP) was expressed under control of the GRP promoter. We found that SST-, neurotensin-, PPTB- and PKCγ-expressing cells accounted for 44%, 7%, 12% and 21% of the neurons in laminae I-II, and 16%, 8%, 4% and 14% of those in lamina III, respectively. GRP-EGFP cells made up 11% of the neuronal population in laminae I-II. The neurotensin, PPTB and GRP-EGFP populations showed very limited overlap, and we estimate that between them they account for ~40% of the excitatory interneurons in laminae I-II. SST which is expressed by ~60% of excitatory interneurons in this region, was found in each of these populations, as well as in cells that did not express any of the other peptides. Neurotensin and PPTB were often found in cells with PKCγ, and between them, constituted around 60% of the PKCγ cells. Surprisingly, we found extensive co-localisation of SST and calretinin. CONCLUSIONS These results suggest that cells expressing neurotensin, NKB or GRP form largely non-overlapping sets that are likely to correspond to functional populations. In contrast, SST is widely expressed by excitatory interneurons that are likely to be functionally heterogeneous.
Collapse
Affiliation(s)
- Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Takahiro Furuta
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Gutierrez-Mecinas M, Watanabe M, Todd AJ. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn. Mol Pain 2014; 10:79. [PMID: 25496164 PMCID: PMC4320531 DOI: 10.1186/1744-8069-10-79] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/02/2014] [Indexed: 01/31/2023] Open
Abstract
Background Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. Results GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. Conclusions These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.
Collapse
Affiliation(s)
| | | | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
13
|
Baseer N, Al-Baloushi AS, Watanabe M, Shehab SAS, Todd AJ. Selective innervation of NK1 receptor-lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat. Pain 2014; 155:2291-300. [PMID: 25168670 PMCID: PMC4247378 DOI: 10.1016/j.pain.2014.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/20/2014] [Accepted: 08/19/2014] [Indexed: 11/30/2022]
Abstract
Fine myelinated (Aδ) nociceptors are responsible for fast, well-localised pain, but relatively little is known about their postsynaptic targets in the spinal cord, and therefore about their roles in the neuronal circuits that process nociceptive information. Here we show that transganglionically transported cholera toxin B subunit (CTb) labels a distinct set of afferents in lamina I that are likely to correspond to Aδ nociceptors, and that most of these lack neuropeptides. The vast majority of lamina I projection neurons can be retrogradely labelled from the lateral parabrachial area, and these can be divided into 2 major groups based on expression of the neurokinin 1 receptor (NK1r). We show that CTb-labelled afferents form contacts on 43% of the spinoparabrachial lamina I neurons that lack the NK1r, but on a significantly smaller proportion (26%) of those that express the receptor. We also confirm with electron microscopy that these contacts are associated with synapses. Among the spinoparabrachial neurons that received contacts from CTb-labelled axons, contact density was considerably higher on NK1r-lacking cells than on those with the NK1r. By comparing the density of CTb contacts with those from other types of glutamatergic bouton, we estimate that nonpeptidergic Aδ nociceptors may provide over half of the excitatory synapses on some NK1r-lacking spinoparabrachial cells. These results provide further evidence that synaptic inputs to dorsal horn projection neurons are organised in a specific way. Taken together with previous studies, they suggest that both NK1r(+) and NK1r-lacking lamina I projection neurons are directly innervated by Aδ nociceptive afferents.
Collapse
Affiliation(s)
- Najma Baseer
- Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Abdullah S Al-Baloushi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Safa A S Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Peirs C, Patil S, Bouali-Benazzouz R, Artola A, Landry M, Dallel R. Protein kinase C gamma interneurons in the rat medullary dorsal horn: distribution and synaptic inputs to these neurons, and subcellular localization of the enzyme. J Comp Neurol 2014; 522:393-413. [PMID: 23818225 DOI: 10.1002/cne.23407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022]
Abstract
The γ isoform of protein kinase C (PKCγ), which is concentrated in interneurons in the inner part of lamina II (IIi ) of the dorsal horn, has been implicated in the expression of tactile allodynia. Lamina IIi PKCγ interneurons were shown to be activated by tactile inputs and to participate in local circuits through which these inputs can reach lamina I, nociceptive output neurons. That such local circuits are gated by glycinergic inhibition and that A- and C-fibers low threshold mechanoreceptors (LTMRs) terminate in lamina IIi raise the general issue of synaptic inputs to lamina IIi PKCγ interneurons. Combining light and electron microscopic immunochemistry in the rat spinal trigeminal nucleus, we show that PKCγ-immunoreactivity is mostly restricted to interneurons in lamina IIi of the medullary dorsal horn, where they constitute 1/3 of total neurons. The majority of synapses on PKCγ-immunoreactive interneurons are asymmetric (likely excitatory). PKCγ-immunoreactive interneurons appear to receive exclusively myelinated primary afferents in type II synaptic glomeruli. Neither large dense core vesicle terminals nor type I synaptic glomeruli, assumed to be the endings of unmyelinated nociceptive terminals, were found on these interneurons. Moreover, there is no vesicular glutamate transporter 3-immunoreactive bouton, specific to C-LTMRs, on PKCγ-immunoreactive interneurons. PKCγ-immunoreactive interneurons contain GABAA ergic and glycinergic receptors. At the subcellular level, PKCγ-immunoreactivity is mostly concentrated on plasma membranes, close to, but not within, postsynaptic densities. That only myelinated primary afferents were found to contact PKCγ-immunoreactive interneurons suggests that myelinated, but not unmyelinated, LTMRs play a critical role in the expression of mechanical allodynia.
Collapse
Affiliation(s)
- Cédric Peirs
- Inserm/UdA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Université d'Auvergne, Faculté de Chirurgie Dentaire, Clermont-Ferrand, 63000, France
| | | | | | | | | | | |
Collapse
|
15
|
Braz J, Solorzano C, Wang X, Basbaum AI. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 2014; 82:522-36. [PMID: 24811377 DOI: 10.1016/j.neuron.2014.01.018] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The original formulation of Gate Control Theory (GCT) proposed that the perception of pain produced by spinal cord signaling to the brain depends on a balance of activity generated in large (nonnociceptive)- and small (nociceptive)-diameter primary afferent fibers. The theory proposed that activation of the large-diameter afferent "closes" the gate by engaging a superficial dorsal horn interneuron that inhibits the firing of projection neurons. Activation of the nociceptors "opens" the gate through concomitant excitation of projection neurons and inhibition of the inhibitory interneurons. Sixty years after publication of the GCT, we are faced with an ever-growing list of morphologically and neurochemically distinct spinal cord interneurons. The present Review highlights the complexity of superficial dorsal horn circuitry and addresses the question whether the premises outlined in GCT still have relevance today. By examining the dorsal horn circuits that underlie the transmission of "pain" and "itch" messages, we also address the extent to which labeled lines can be incorporated into a contemporary view of GCT.
Collapse
Affiliation(s)
- João Braz
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Carlos Solorzano
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Xidao Wang
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Allan I Basbaum
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Abstract
Here we used an array-based differential screen to uncover the expression of the neuropeptide neuromedin B (NMB) in the trigeminal ganglia of mice. Double-labeling experiments reveal NMB is expressed in a subset of sensory neurons that colabel with calcitonin gene-related peptide and TRPV1 suggestive of a role for NMB in nociception. Indeed, administration of NMB antagonist greatly attenuates edema and nerve sensitization following stimulation of peripheral nerves with mustard oil, demonstrating that NMB contributes to neurogenic inflammation. Moreover, direct injection of NMB causes local swelling and nociceptive sensitization. Interestingly, we also find that the receptor for NMB is expressed in interneurons in the superficial layers of the dorsal horn. We used NMB-saporin to specifically eliminate NMBR-expressing neurons and determined they are required in responses to noxious heat, but not for reaction to mechanical and pruritic stimuli. Thus, NMB may be a neurotransmitter that is selectively involved in the perception of thermal stimuli.
Collapse
|
17
|
Mar L, Yang FC, Ma Q. Genetic marking and characterization of Tac2-expressing neurons in the central and peripheral nervous system. Mol Brain 2012; 5:3. [PMID: 22272772 PMCID: PMC3281773 DOI: 10.1186/1756-6606-5-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neurocircuits that process somatic sensory information in the dorsal horn of the spinal cord are still poorly understood, with one reason being the lack of Cre lines for genetically marking or manipulating selective subpopulations of dorsal horn neurons. Here we describe Tac2-Cre mice that were generated to express the Cre recombinase gene from the Tac2 locus. Tachykinin 2 (Tac2) encodes a neurotransmitter, neurokinin B (NKB). RESULTS By crossing Tac2-Cre mice with ROSA26-tdTomato reporter mice, we directly visualized Tac2 lineage neurons in the dorsal root ganglia, the dorsal horn of the spinal cord, and many parts of the brain including the olfactory bulb, cerebral cortex, amygdala, hippocampus, habenula, hypothalamus, and cerebellum. This Tac2-Cre allele itself was a null allele for the Tac2 gene. Behavioral analyses showed that Tac2 homozygous null mice responded normally to a series of algogenic (pain-inducing) and pruritic (itch-inducing) stimuli. CONCLUSIONS Tac2-Cre mice are a useful tool to mark specific subsets of neurons in the sensory ganglia, the dorsal spinal cord, and the brain. These mice can also be used for future genetic manipulations to study the functions of Tac2-expressing neurons or the functions of genes expressed in these neurons.
Collapse
Affiliation(s)
- Lynn Mar
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, 450 Brookline Ave, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
18
|
Sardella TCP, Polgár E, Garzillo F, Furuta T, Kaneko T, Watanabe M, Todd AJ. Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Mol Pain 2011; 7:76. [PMID: 21958458 PMCID: PMC3192681 DOI: 10.1186/1744-8069-7-76] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/29/2011] [Indexed: 01/09/2023] Open
Abstract
Background The opioid peptide dynorphin is expressed by certain neurons in the superficial dorsal horn of the spinal cord, but little is known about the types of cell that contain dynorphin. In this study, we have used an antibody against the dynorphin precursor preprodynorphin (PPD), to reveal the cell bodies and axons of dynorphin-expressing neurons in the rat spinal cord. The main aims were to estimate the proportion of neurons in each of laminae I-III that express dynorphin and to determine whether they are excitatory or inhibitory neurons. Results PPD-immunoreactive cells were concentrated in lamina I and the outer part of lamina II (IIo), where they constituted 17% and 8%, respectively, of all neurons. Around half of those in lamina I and 80% of those in lamina II were GABA-immunoreactive. We have previously identified four non-overlapping neurochemical populations of inhibitory interneurons in this region, defined by the presence of neuropeptide Y, galanin, parvalbumin and neuronal nitric oxide synthase. PPD co-localised extensively with galanin in both cell bodies and axons, but rarely or not at all with the other three markers. PPD was present in around 4% of GABAergic boutons (identified by the presence of the vesicular GABA transporter) in laminae I-II. Conclusions These results show that most dynorphin-expressing cells in the superficial dorsal horn are inhibitory interneurons, and that they largely correspond to the population that is defined by the presence of galanin. We estimate that dynorphin is present in ~32% of inhibitory interneurons in lamina I and 11% of those in lamina II. Since the proportion of GABAergic boutons that contain PPD in these laminae was considerably lower than this, our findings suggest that these neurons may generate relatively small axonal arborisations.
Collapse
Affiliation(s)
- Thomas C P Sardella
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Polgár E, Sardella TCP, Watanabe M, Todd AJ. Quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn. J Comp Neurol 2011; 519:1007-23. [PMID: 21344400 PMCID: PMC3258544 DOI: 10.1002/cne.22570] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Between 25-40% of neurons in laminae I-III are GABAergic, and some of these express neuropeptide Y (NPY). We previously reported that NPY-immunoreactive axons form numerous synapses on lamina III projection neurons that possess the neurokinin 1 receptor (NK1r). The aims of this study were to determine the proportion of neurons and GABAergic boutons in this region that contain NPY, and to look for evidence that they selectively innervate different neuronal populations. We found that 4-6% of neurons in laminae I-III were NPY-immunoreactive and based on the proportions of neurons that are GABAergic, we estimate that NPY is expressed by 18% of inhibitory interneurons in laminae I-II and 9% of those in lamina III. GABAergic boutons were identified by the presence of the vesicular GABA transporter (VGAT) and NPY was found in 13-15% of VGAT-immunoreactive boutons in laminae I-II, and 5% of those in lamina III. For both the lamina III NK1r-immunoreactive projection neurons and protein kinase Cγ (PKCγ)-immunoreactive interneurons in lamina II, we found that around one-third of the VGAT boutons that contacted them were NPY-immunoreactive. However, based on differences in the sizes of these boutons and the strength of their NPY-immunoreactivity, we conclude that these originate from different populations of interneurons. Only 6% of VGAT boutons presynaptic to large lamina I projection neurons that lacked NK1rs contained NPY. These results show that NPY-containing neurons make up a considerable proportion of the inhibitory interneurons in laminae I-III, and that their axons preferentially target certain classes of dorsal horn neuron.
Collapse
Affiliation(s)
- Erika Polgár
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QQ, UK
| | | | | | | |
Collapse
|
20
|
Tiong SYX, Polgár E, van Kralingen JC, Watanabe M, Todd AJ. Galanin-immunoreactivity identifies a distinct population of inhibitory interneurons in laminae I-III of the rat spinal cord. Mol Pain 2011; 7:36. [PMID: 21569622 PMCID: PMC3118366 DOI: 10.1186/1744-8069-7-36] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/15/2011] [Indexed: 11/12/2022] Open
Abstract
Background Inhibitory interneurons constitute 30-40% of neurons in laminae I-III and have an important anti-nociceptive role. However, because of the difficulty in classifying them we know little about their organisation. Previous studies have identified 3 non-overlapping groups of inhibitory interneuron, which contain neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) or parvalbumin, and have shown that these differ in postsynaptic targets. Some inhibitory interneurons contain galanin and the first aim of this study was to determine whether these form a different population from those containing NPY, nNOS or parvalbumin. We also estimated the proportion of neurons and GABAergic axons that contain galanin in laminae I-III. Results Galanin cells were concentrated in laminae I-IIo, with few in laminae IIi-III. Galanin showed minimal co-localisation with NPY, nNOS or parvalbumin in laminae I-II, but most galanin-containing cells in lamina III were nNOS-positive. Galanin cells constituted ~7%, 3% and 2% of all neurons in laminae I, II and III, and we estimate that this corresponds to 26%, 10% and 5% of the GABAergic neurons in these laminae. However, galanin was only found in ~6% of GABAergic boutons in laminae I-IIo, and ~1% of those in laminae IIi-III. Conclusions These results show that galanin, NPY, nNOS and parvalbumin can be used to define four distinct neurochemical populations of inhibitory interneurons. Together with results of a recent study, they suggest that the galanin and NPY populations account for around half of the inhibitory interneurons in lamina I and a quarter of those in lamina II.
Collapse
Affiliation(s)
- Sheena Y X Tiong
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ UK.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region.
Collapse
Affiliation(s)
- Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
22
|
Triggering genetically-expressed transneuronal tracers by peripheral axotomy reveals convergent and segregated sensory neuron-spinal cord connectivity. Neuroscience 2009; 163:1220-32. [PMID: 19647044 DOI: 10.1016/j.neuroscience.2009.07.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/21/2009] [Indexed: 11/20/2022]
Abstract
To better understand the mechanisms through which non-painful and painful stimuli evoke behavior, new resources to dissect the complex circuits engaged by subsets of primary afferent neurons are required. This is especially true to understand the consequences of injury, when reorganization of central nervous system circuits likely contributes to the persistence of pain. Here we describe a transgenic mouse line (ZWX) in which there is Cre-recombinase-dependent expression of a transneuronal tracer, wheat germ agglutinin (WGA), in primary somatic or visceral afferent neurons, but only after transection of their peripheral axons. The latter requirement allows for both regional and temporal control of tracer expression, even in the adult. Using a variety of Cre lines to target WGA transport to subpopulations of sensory neurons, here we demonstrate the extent to which myelinated and unmyelinated "pain" fibers (nociceptors) engage different spinal cord circuits. We found significant convergence (i.e., manifest as WGA-transneuronal labeling) of unmyelinated afferents, including the TRPV1-expressing subset, and myelinated afferents to NK1-receptor-expressing neurons of lamina I. By contrast, PKCgamma interneurons of inner lamina II only receive a myelinated afferent input. This differential distribution of WGA labeling in the spinal cord indicates that myelinated and unmyelinated sensory neurons target different and spatially segregated populations of postsynaptic neurons. On the other hand, we show that neurons of deeper laminae (III-V) receive direct (i.e., monosynaptic) inputs from myelinated afferents and polysynaptic input from unmyelinated afferents. Taken together, our results indicate that peripheral sensory information is transmitted to the central nervous system both through segregated and convergent pathways.
Collapse
|
23
|
Kozsurek M, Lukácsi E, Fekete C, Puskár Z. Nonselective innervation of lamina I projection neurons by cocaine- and amphetamine-regulated transcript peptide (CART)-immunoreactive fibres in the rat spinal dorsal horn. Eur J Neurosci 2009; 29:2375-87. [PMID: 19490082 DOI: 10.1111/j.1460-9568.2009.06773.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides have been implicated in spinal pain transmission. A dense plexus of CART-immunoreactive fibres has been described in the superficial laminae of the spinal cord, which are key areas in sensory information and pain processing. We demonstrated previously that the majority of these fibres originate from nociceptive primary afferents. Using tract tracing, multiple immunofluorescent labelling and electronmicroscopy we determined the proportion of peptidergic primary afferents expressing CART, looked for evidence for coexistence of CART with galanin in these afferents in lamina I and examined their targets. Almost all (97.9%) randomly selected calcitonin gene-related peptide (CGRP)-immunoreactive terminals were substance P (SP)-positive (+) and CART was detected in approximately half (48.6%) of them. Most (81.4%) of the CGRP/SPergic boutons were galanin+ and approximately half (49.0%) of these contained CART. Many (72.9%) of the CARTergic boutons which expressed CGRP were also immunoreactive for galanin, while only 8.6% of the CARTergic terminals were galanin+ without CGRP. Electron microscopy showed that most of the CART terminals formed asymmetrical synapses, mainly with dendrites. All different morphological and neurochemical subtypes of spinoparabrachial projection neurons in the lamina I received contacts from CART-immunoreactive nociceptive afferents. The innervation density from these boutons did not differ significantly between either the different neurochemical or the morphological subclasses of these cells. This suggests a nonselective innervation of lamina I projection neurons from a subpopulation of CGRP/SP afferents containing CART peptide. These results provide anatomical evidence for involvement of CART peptide in spinal pain transmission.
Collapse
Affiliation(s)
- Márk Kozsurek
- Department of Anatomy, Histology and Embryology, János Szentágothai Laboratory, Semmelweis University, Tuzoltó u. 58, 1094-Budapest, Hungary
| | | | | | | |
Collapse
|
24
|
Bröhl D, Strehle M, Wende H, Hori K, Bormuth I, Nave KA, Müller T, Birchmeier C. A transcriptional network coordinately determines transmitter and peptidergic fate in the dorsal spinal cord. Dev Biol 2008; 322:381-93. [PMID: 18721803 DOI: 10.1016/j.ydbio.2008.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/21/2008] [Accepted: 08/01/2008] [Indexed: 01/19/2023]
Abstract
Dorsal horn neurons express many different neuropeptides that modulate sensory perception like the sensation of pain. Inhibitory neurons of the dorsal horn derive from postmitotic neurons that express Pax2, Lbx1 and Lhx1/5, and diversify during maturation. In particular, fractions of maturing inhibitory neurons express various neuropeptides. We demonstrate here that a coordinate molecular mechanism determines inhibitory and peptidergic fate in the developing dorsal horn. A bHLH factor complex that contains Ptf1a acts as upstream regulator and initiates the expression of several downstream transcription factors in the future inhibitory neurons, of which Pax2 is known to determine the neurotransmitter phenotype. We demonstrate here that dynorphin, galanin, NPY, nociceptin and enkephalin expression depends on Ptf1a, indicating that these neuropeptides are expressed in inhibitory neurons. Furthermore, we show that Neurod1/2/6 and Lhx1/5, which act downstream of Ptf1a, control distinct aspects of peptidergic differentiation. In particular, the Neurod1/2/6 factors are essential for dynorphin and galanin expression, whereas the Lhx1/5 factors are essential for NPY expression. We conclude that a transcriptional network operates in maturing dorsal horn neurons that coordinately determines transmitter and peptidergic fate.
Collapse
Affiliation(s)
- Dominique Bröhl
- Department of Neuroscience, Max-Delbrück-Centrum for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tlx1 and Tlx3 coordinate specification of dorsal horn pain-modulatory peptidergic neurons. J Neurosci 2008; 28:4037-46. [PMID: 18400903 DOI: 10.1523/jneurosci.4126-07.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dorsal spinal cord synthesizes a variety of neuropeptides that modulate the transmission of nociceptive sensory information. Here, we used genetic fate mapping to show that Tlx3(+) spinal cord neurons and their derivatives represent a heterogeneous population of neurons, marked by partially overlapping expression of a set of neuropeptide genes, including those encoding the anti-opioid peptide cholecystokinin, pronociceptive Substance P (SP), Neurokinin B, and a late wave of somatostatin. Mutations of Tlx3 and Tlx1 result in a loss of expression of these peptide genes. Brn3a, a homeobox transcription factor, the expression of which is partly dependent on Tlx3, is required specifically for the early wave of SP expression. These studies suggest that Tlx1 and Tlx3 operate high in the regulatory hierarchy that coordinates specification of dorsal horn pain-modulatory peptidergic neurons.
Collapse
|
26
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|
27
|
Polgár E, Thomson S, Maxwell DJ, Al-Khater K, Todd AJ. A population of large neurons in laminae III and IV of the rat spinal cord that have long dorsal dendrites and lack the neurokinin 1 receptor. Eur J Neurosci 2007; 26:1587-98. [PMID: 17880393 PMCID: PMC2635481 DOI: 10.1111/j.1460-9568.2007.05793.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dorsal horn of the rat spinal cord contains a population of large neurons with cell bodies in laminae III or IV, that express the neurokinin 1 receptor (NK1r) and have long dorsal dendrites that branch extensively within the superficial laminae. In this study, we have identified a separate population of neurons that have similar dendritic morphology, but lack the NK1r. These cells also differ from the NK1r-expressing neurons in that they have significantly fewer contacts from substance P-containing axons and are not retrogradely labelled following injection of tracer into the caudal ventrolateral medulla. We also provide evidence that these cells do not belong to the postsynaptic dorsal column pathway or the spinothalamic tract. It is therefore likely that these cells do not have supraspinal projections. They may provide a route through which information transmitted by C fibres that lack neuropeptides is conveyed to deeper laminae. The present findings demonstrate the need for caution when attempting to classify neurons solely on the basis of somatodendritic morphology.
Collapse
Affiliation(s)
- Erika Polgár
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|