1
|
Shionoya K, Nilsson A, Engström Ruud L, Engblom D, Blomqvist A. Melanocortin-4 receptors on neurons in the parabrachial nucleus mediate inflammation-induced suppression of food-seeking behavior. Brain Behav Immun 2023; 110:80-84. [PMID: 36813210 DOI: 10.1016/j.bbi.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Anorexia is a common symptom during infectious and inflammatory disease. Here we examined the role of melanocortin-4 receptors (MC4Rs) in inflammation-induced anorexia. Mice with transcriptional blockage of the MC4Rs displayed the same reduction of food intake following peripheral injection of lipopolysaccharide as wild type mice but were protected against the anorexic effect of the immune challenge in a test in which fasted animals were to use olfactory cues to find a hidden cookie. By using selective virus-mediated receptor re-expression we demonstrate that the suppression of the food-seeking behavior is subserved by MC4Rs in the brain stem parabrachial nucleus, a central hub for interoceptive information involved in the regulation of food intake. Furthermore, the selective expression of MC4R in the parabrachial nucleus also attenuated the body weight increase that characterizes MC4R KO mice. These data extend on the functions of the MC4Rs and show that MC4Rs in the parabrachial nucleus are critically involved in the anorexic response to peripheral inflammation but also contribute to body weight homeostasis during normal conditions.
Collapse
Affiliation(s)
- Kiseko Shionoya
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Nilsson
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Linda Engström Ruud
- Institute of Neuroscience and Physiology, Department of Physiology, University of Gothenburg, Sweden
| | - David Engblom
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Pauli JL, Chen JY, Basiri ML, Park S, Carter ME, Sanz E, McKnight GS, Stuber GD, Palmiter RD. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. eLife 2022; 11:e81868. [PMID: 36317965 PMCID: PMC9668336 DOI: 10.7554/elife.81868] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
The parabrachial nucleus (PBN) is a major hub that receives sensory information from both internal and external environments. Specific populations of PBN neurons are involved in behaviors including food and water intake, nociceptive responses, breathing regulation, as well as learning and responding appropriately to threatening stimuli. However, it is unclear how many PBN neuron populations exist and how different behaviors may be encoded by unique signaling molecules or receptors. Here we provide a repository of data on the molecular identity, spatial location, and projection patterns of dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed in situ hybridization showed many of these subclusters are enriched within specific PBN subregions with scattered cells in several other regions. We also provide detailed visualization of the axonal projections from 21 Cre-driver lines of mice. These results are all publicly available for download and provide a foundation for further interrogation of PBN functions and connections.
Collapse
Affiliation(s)
- Jordan L Pauli
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Jane Y Chen
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Marcus L Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Sekun Park
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Matthew E Carter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Elisenda Sanz
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - G Stanley McKnight
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
3
|
Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways. Nat Commun 2021; 12:157. [PMID: 33420038 PMCID: PMC7794361 DOI: 10.1038/s41467-020-20421-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
The vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions. Advances in wireless technologies have enabled internalisation of light sources, but organ specific illumination is challenging. Here, the authors present a durable, multimodal, wireless system enabling optogenetic stimulation of peripheral neurons within organs.
Collapse
|
4
|
Olson B, Marks DL, Grossberg AJ. Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1429-1446. [PMID: 32985801 PMCID: PMC7749623 DOI: 10.1002/jcsm.12630] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Our evolutionary history is defined, in part, by our ability to survive times of nutrient scarcity. The outcomes of the metabolic and behavioural adaptations during starvation are highly efficient macronutrient allocation, minimization of energy expenditure, and maximized odds of finding food. However, in different contexts, caloric deprivation is met with vastly different physiologic and behavioural responses, which challenge the primacy of energy homeostasis. METHODS We conducted a literature review of scientific studies in humans, laboratory animals, and non-laboratory animals that evaluated the physiologic, metabolic, and behavioural responses to fasting, starvation, protein-deficient or essential amino acid-deficient diets, and cachexia. Studies that investigated the changes in ingestive behaviour, locomotor activity, resting metabolic rate, and tissue catabolism were selected as the focus of discussion. RESULTS Whereas starvation responses prioritize energy balance, both protein malnutrition and cachexia present existential threats that induce unique adaptive programmes, which can exacerbate the caloric insufficiency of undernutrition. We compare and contrast the behavioural and metabolic responses and elucidate the mechanistic pathways that drive state-dependent alterations in energy seeking and partitioning. CONCLUSIONS The evolution of energetically inefficient metabolic and behavioural responses to protein malnutrition and cachexia reveal a hierarchy of metabolic priorities governed by discrete regulatory networks.
Collapse
Affiliation(s)
- Brennan Olson
- Medical Scientist Training ProgramOregon Health & Science UniversityPortlandORUSA
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
| | - Aaron J. Grossberg
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
- Department of Radiation MedicineOregon Health & Science UniversityPortlandORUSA
- Cancer Early Detection Advanced Research CenterOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
5
|
Palmiter RD. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm. Trends Neurosci 2018; 41:280-293. [PMID: 29703377 PMCID: PMC5929477 DOI: 10.1016/j.tins.2018.03.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/17/2018] [Accepted: 03/07/2018] [Indexed: 12/24/2022]
Abstract
The parabrachial nucleus (PBN), which is located in the pons and is dissected by one of the major cerebellar output tracks, is known to relay sensory information (visceral malaise, taste, temperature, pain, itch) to forebrain structures including the thalamus, hypothalamus, and extended amygdala. The availability of mouse lines expressing Cre recombinase selectively in subsets of PBN neurons and viruses for Cre-dependent gene expression is beginning to reveal the connectivity and functions of PBN component neurons. This review focuses on PBN neurons expressing calcitonin gene-related peptide (CGRPPBN) that play a major role in regulating appetite and transmitting real or potential threat signals to the extended amygdala. The functions of other specific PBN neuronal populations are also discussed. This review aims to encourage investigation of the numerous unanswered questions that are becoming accessible.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute, and Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Campos CA, Bowen AJ, Han S, Wisse BE, Palmiter RD, Schwartz MW. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat Neurosci 2017; 20:934-942. [PMID: 28581479 PMCID: PMC5538581 DOI: 10.1038/nn.4574] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/30/2017] [Indexed: 12/13/2022]
Abstract
Anorexia is a common manifestation of chronic diseases, including cancer. Here we investigate the contribution to cancer anorexia made by calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) that transmit anorexic signals. We show that CGRPPBN neurons are activated in mice implanted with Lewis lung carcinoma cells. Inactivation of CGRPPBN neurons before tumor implantation prevents anorexia and loss of lean mass, and their inhibition after symptom onset reverses anorexia. CGRPPBN neurons are also activated in Apcmin/+ mice, which develop intestinal cancer and lose weight despite the absence of reduced food intake. Inactivation of CGRPPBN neurons in Apcmin/+ mice permits hyperphagia that counteracts weight loss, revealing a role for these neurons in a 'nonanorexic' cancer model. We also demonstrate that inactivation of CGRPPBN neurons prevents lethargy, anxiety and malaise associated with cancer. These findings establish CGRPPBN neurons as key mediators of cancer-induced appetite suppression and associated behavioral changes.
Collapse
Affiliation(s)
- Carlos A Campos
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Anna J Bowen
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Sung Han
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Brent E Wisse
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Michael W Schwartz
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Liu Y, Huang Y, Liu T, Wu H, Cui H, Gautron L. Lipopolysacharide Rapidly and Completely Suppresses AgRP Neuron-Mediated Food Intake in Male Mice. Endocrinology 2016; 157:2380-92. [PMID: 27111742 PMCID: PMC4891783 DOI: 10.1210/en.2015-2081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although Agouti-related peptide (AgRP) neurons play a key role in the regulation of food intake, their contribution to the anorexia caused by proinflammatory insults has yet to be identified. Using a combination of neuroanatomical and pharmacogenetics experiments, this study sought to investigate the importance of AgRP neurons and downstream targets in the anorexia caused by the peripheral administration of a moderate dose of lipopolysaccharide (LPS) (100 μg/kg, ip). First, in the C57/Bl6 mouse, we demonstrated that LPS induced c-fos in select AgRP-innervated brain sites involved in feeding but not in any arcuate proopiomelanocortin neurons. Double immunohistochemistry further showed that LPS selectively induced c-Fos in a large subset of melanocortin 4 receptor-expressing neurons in the lateral parabrachial nucleus. Secondly, we used pharmacogenetics to stimulate the activity of AgRP neurons during the course of LPS-induced anorexia. In AgRP-Cre mice expressing the designer receptor hM3Dq-Gq only in AgRP neurons, the administration of the designer drug clozapine-N-oxide (CNO) induced robust food intake. Strikingly, CNO-mediated food intake was rapidly and completely blunted by the coadministration of LPS. Neuroanatomical experiments further indicated that LPS did not interfere with the ability of CNO to stimulate c-Fos in AgRP neurons. In summary, our findings combined together support the view that the stimulation of select AgRP-innervated brain sites and target neurons, rather than the inhibition of AgRP neurons themselves, is likely to contribute to the rapid suppression of food intake observed during acute bacterial endotoxemia.
Collapse
Affiliation(s)
- Yang Liu
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Ying Huang
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Tiemin Liu
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Hua Wu
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Huxing Cui
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine (Y.L., Y.H., T.L., L.G.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Orthopedics (Y.L., H.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030; and Department of Pharmacology (H.C.), Center for Hypertension Research, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
8
|
Braquet P, Mercier G, Reynes J, Jeandel C, Pinzani V, Guilpain P, Rivière S, Le Quellec A. [Diagnostic value of selective anorexia in pathological weight loss]. Rev Med Interne 2015; 37:84-90. [PMID: 26302696 DOI: 10.1016/j.revmed.2015.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/18/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE The diagnostic value of selective anorexia is debated. Some authors have suggested an association between meat aversion and cancer, but most do not use it as a diagnostic tool. We aimed to characterize anorexia of different diseases to search for an association between selective aversions and diagnostic groups. METHODS All the patients admitted to three departments of a teaching hospital were included consecutively for 22months if they had more than 10 % weight loss in less than one year. Patients were excluded if history taking was not reliable, or if they suffered from anorexia nervosa. We compiled diagnoses at discharge and validated them six months later. We used logistic regression to identify independent factors associated with selective anorexia. RESULTS Inclusion criteria were met in 106patients (female 44 %, median age 65years). Most frequent diagnoses were: cancer (36 %), infection (35 %), digestive diseases (19 %), non organic diseases (21 %). Recent selective anorexia was found in 46 % of the cases. It was significantly associated with female gender (P=0.002), marginally with young age (P=0.069) and long duration of weight loss (P=0.079). Opioid use at admission was negatively associated with selective anorexia (P=0.001). No specific diagnostic category was found to be associated. CONCLUSION Selective anorexia does not appear to be a useful symptom to investigate pathological weight loss. It behaves more like a non-specific reactivation by current disease of earlier latent personal food aversions.
Collapse
Affiliation(s)
- P Braquet
- Équipe « médecine interne ; maladies multi-organiques », département de médecine interne, CHRU de Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France.
| | - G Mercier
- Département de l'information médicale, CHRU, 34295 Montpellier, France
| | - J Reynes
- Département des maladies infectieuses et tropicales, CHRU, 34295 Montpellier, France
| | - C Jeandel
- Département de gérontologie, CHRU Centre-Balmès, 34295 Montpellier, France
| | - V Pinzani
- Centre régional de pharmacovigilance, CHRU, 34295 Montpellier, France
| | - P Guilpain
- Équipe « médecine interne ; maladies multi-organiques », département de médecine interne, CHRU de Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| | - S Rivière
- Équipe « médecine interne ; maladies multi-organiques », département de médecine interne, CHRU de Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| | - A Le Quellec
- Équipe « médecine interne ; maladies multi-organiques », département de médecine interne, CHRU de Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| |
Collapse
|
9
|
Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia. Neuropsychopharmacology 2015; 40:2001-14. [PMID: 25703200 PMCID: PMC4839524 DOI: 10.1038/npp.2015.50] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/10/2015] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback.
Collapse
|
10
|
Garfield AS, Li C, Madara JC, Shah BP, Webber E, Steger JS, Campbell JN, Gavrilova O, Lee CE, Olson DP, Elmquist JK, Tannous BA, Krashes MJ, Lowell BB. A neural basis for melanocortin-4 receptor-regulated appetite. Nat Neurosci 2015; 18:863-71. [PMID: 25915476 PMCID: PMC4446192 DOI: 10.1038/nn.4011] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022]
Abstract
Pro-opiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus (ARC) are oppositely regulated by caloric depletion and coordinately stimulate and inhibit homeostatic satiety, respectively. This bimodality is principally underscored by the antagonistic actions of these ligands at downstream melanocortin-4 receptors (MC4R) in the paraventricular nucleus of the hypothalamus (PVH). Although this population is critical to energy balance, the underlying neural circuitry remains unknown. Using mice expressing Cre recombinase in MC4R neurons, we demonstrate bidirectional control of feeding following real-time activation and inhibition of PVH(MC4R) neurons and further identify these cells as a functional exponent of ARC(AgRP) neuron-driven hunger. Moreover, we reveal this function to be mediated by a PVH(MC4R)→lateral parabrachial nucleus (LPBN) pathway. Activation of this circuit encodes positive valence, but only in calorically depleted mice. Thus, the satiating and appetitive nature of PVH(MC4R)→LPBN neurons supports the principles of drive reduction and highlights this circuit as a promising target for antiobesity drug development.
Collapse
Affiliation(s)
- Alastair S Garfield
- 1] Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA. [2] Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Chia Li
- 1] Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Bhavik P Shah
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily Webber
- 1] Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer S Steger
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - John N Campbell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charlotte E Lee
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - David P Olson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael J Krashes
- 1] Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Bradford B Lowell
- 1] Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA. [2] Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Damasceno RS, Takakura AC, Moreira TS. Regulation of the chemosensory control of breathing by Kölliker-Fuse neurons. Am J Physiol Regul Integr Comp Physiol 2014; 307:R57-67. [PMID: 24760995 DOI: 10.1152/ajpregu.00024.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Kölliker-Fuse region (KF) and the lateral parabrachial nucleus (LPBN) have been implicated in the maintenance of cardiorespiratory control. Here, we evaluated the involvement of the KF region and the LPBN in cardiorespiratory responses elicited by chemoreceptor activation in unanesthetized rats. Male Wistar rats (280-330 g; n = 5-9/group) with bilateral stainless-steel guide cannulas implanted in the KF region or the LPBN were used. Injection of muscimol (100 and 200 pmol/100 nl) in the KF region decreased resting ventilation (1,140 ± 68 and 978 ± 100 vs. saline: 1,436 ± 155 ml·kg(-1)·min(-1)), without changing mean arterial pressure (MAP) and heart rate (HR). Bilateral injection of the GABA-A antagonist bicuculline (1 nmol/100 nl) in the KF blocked the inhibitory effect on ventilation (1,418 ± 138 vs. muscimol: 978 ± 100 ml·kg(-1)·min(-1)) elicited by muscimol. Muscimol injection in the KF reduced the increase in ventilation produced by hypoxia (8% O2) (1,827 ± 61 vs. saline: 3,179 ± 325 ml·kg(-1)·min(-1)) or hypercapnia (7% CO2) (1,488 ± 277 vs. saline: 3,539 ± 374 ml·kg(-1)·min(-1)) in unanesthetized rats. Bilateral injection of bicuculline in the KF blocked the decrease in ventilation produced by muscimol in the KF during peripheral or central chemoreflex activation. Bilateral injection of muscimol in the LPBN did not change resting ventilation or the increase in ventilation elicited by hypoxia or hypercapnia. The results of the present study suggest that the KF region, but not the LPBN, has mechanisms to control ventilation in resting, hypoxic, or hypercapnic conditions in unanesthetized rats.
Collapse
Affiliation(s)
- Rosélia S Damasceno
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; and
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; and
| |
Collapse
|
12
|
Salivary peptide tyrosine-tyrosine 3-36 modulates ingestive behavior without inducing taste aversion. J Neurosci 2014; 33:18368-80. [PMID: 24259562 DOI: 10.1523/jneurosci.1064-13.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hormone peptide tyrosine-tyrosine (PYY) is secreted into circulation from the gut L-endocrine cells in response to food intake, thus inducing satiation during interaction with its preferred receptor, Y2R. Clinical applications of systemically administered PYY for the purpose of reducing body weight were compromised as a result of the common side effect of visceral sickness. We describe here a novel approach of elevating PYY in saliva in mice, which, although reliably inducing strong anorexic responses, does not cause aversive reactions. The augmentation of salivary PYY activated forebrain areas known to mediate feeding, hunger, and satiation while minimally affecting brainstem chemoreceptor zones triggering nausea. By comparing neuronal pathways activated by systemic versus salivary PYY, we identified a metabolic circuit associated with Y2R-positive cells in the oral cavity and extending through brainstem nuclei into hypothalamic satiety centers. The discovery of this alternative circuit that regulates ingestive behavior without inducing taste aversion may open the possibility of a therapeutic application of PYY for the treatment of obesity via direct oral application.
Collapse
|
13
|
Genetic identification of a neural circuit that suppresses appetite. Nature 2013; 503:111-4. [PMID: 24121436 PMCID: PMC3878302 DOI: 10.1038/nature12596] [Citation(s) in RCA: 422] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/20/2013] [Indexed: 12/03/2022]
Abstract
Appetite suppression occurs following a meal and also during conditions when it is unfavorable to eat, such as during illness or exposure to toxins. A brain region hypothesized to play a role in appetite suppression is the parabrachial nucleus (PBN)1-3, a heterogeneous population of neurons surrounding the superior cerebellar peduncle in the brainstem. The PBN is thought to mediate the suppression of appetite induced by the anorectic hormones amylin and cholecystokinin, as well as lithium chloride and lipopolysaccharide, compounds that mimic the effects of toxic foods and bacterial infections, respectively4-6. Hyperactivity of the PBN is also thought to cause starvation following ablation of orexigenic agouti-related peptide (AgRP) neurons in adult mice1,7. However, the identities of PBN neurons that regulate feeding are unknown, as are the functionally relevant downstream projections. Here we identify calcitonin gene-related peptide (CGRP)-expressing neurons in the outer external lateral subdivision of the PBN that project to the laterocapsular division of the central nucleus of the amygdala (CeAlc) as forming a functionally important circuit for the suppression of appetite. Using genetically-encoded anatomical, optogenetic8, and pharmacogenetic9 tools, we demonstrate that activation of PBelo CGRP neurons projecting to the CeAlc suppresses appetite. In contrast, inhibition of these neurons increases food intake in circumstances when mice do not normally eat and prevents starvation in adult AgRP neuron-ablated mice. Taken together, our data demonstrate that this neural circuit from the PBN to CeAlc mediates appetite suppression in conditions when it is unfavorable to eat. This neural circuit may provide targets for therapeutic intervention to overcome or promote appetite.
Collapse
|
14
|
Gautron L, Lee CE, Lee S, Elmquist JK. Melanocortin-4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse. J Comp Neurol 2013; 520:3933-48. [PMID: 22592759 DOI: 10.1002/cne.23137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melanocortin-4 receptor (MC4R) ligands are known to modulate nociception, but the site of action of MC4R signaling on nociception remains to be elucidated. The current study investigated MC4R expression in dorsal root ganglia (DRG) of the MC4R-GFP reporter mouse. Because MC4R is known to be expressed in vagal afferent neurons in the nodose ganglion (NG), we also systematically compared MC4R-expressing vagal and spinal afferent neurons. Abundant green fluorescent protein (GFP) immunoreactivity was found in about 45% of DRG neuronal profiles (at the mid-thoracic level), the majority being small-sized profiles. Immunohistochemistry combined with in situ hybridization confirmed that GFP was genuinely produced in MC4R-expressing neurons in the DRG. While a large number of GFP profiles in the DRG coexpressed Nav1.8 mRNA (84%) and bound isolectin B4 (72%), relatively few GFP profiles were positive for NF200 (16%) or CGRP (13%), suggesting preferential MC4R expression in C-fiber nonpeptidergic neurons. By contrast, GFP in the NG frequently colocalized with Nav1.8 mRNA (64%) and NF200 (29%), but only to a moderate extent with isolectin B4 (16%). Lastly, very few GFP profiles in the NG expressed CGRP (5%) or CART (4%). Together, our findings demonstrate variegated MC4R expression in different classes of vagal and spinal primary afferent neurons, and underscore the role of the melanocortin system in modulating nociceptive and nonnociceptive peripheral sensory modalities.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA.
| | | | | | | |
Collapse
|
15
|
Muceniece R, Dambrova M. Melanocortins in brain inflammation: the role of melanocortin receptor subtypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 681:61-70. [PMID: 21222260 DOI: 10.1007/978-1-4419-6354-3_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The melanocortins (MC) are released from neurons and paracrine cells in the CNS where they are involved in important physiological functions, including regulation of body temperature and immune responses. MC bind to melanocortin receptors, a class of cell surface G-protein-coupled receptors. Of the five subtypes of MC receptors that have been cloned in mammals, the MC1, MC3, MC4 and MC5 receptors are expressed in brain tissues. Expression of MC receptors in both brain cells and cells of the immune system suggests direct involvement of MC in regulation of inflammatory processes in the brain. The binding of MC to MC receptors induces activation of adenylate cyclase, increase in intracellular cAMP level and, consequently, inhibition of the nuclear transcription factor kappaB (NF-κB) signalling. Inflammatory processes contribute to development of severe CNS diseases, both in acute and chronic conditions. Thus far, the anti-inflammatory effects of MC in the CNS have been mainly studied using peptides that are relatively unselective for individual MC receptor subtypes. Consequently, these studies do not allow identification of specific MC receptor(s) involved in the regulation of inflammatory processes. However, recently synthesized ligands selective for individual MC receptors indicated that both MC4 and MC3 agonists are promising anti-inflammatory agents in treatment of brain inflammation.
Collapse
Affiliation(s)
- Ruta Muceniece
- Faculty of Medicine, University of Latvia, Sarlotes St. 1a, Riga, LV-1001, Latvia.
| | | |
Collapse
|
16
|
Miller RL, Knuepfer MM, Wang MH, Denny GO, Gray PA, Loewy AD. Fos-activation of FoxP2 and Lmx1b neurons in the parabrachial nucleus evoked by hypotension and hypertension in conscious rats. Neuroscience 2012; 218:110-25. [PMID: 22641087 PMCID: PMC3405558 DOI: 10.1016/j.neuroscience.2012.05.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 02/07/2023]
Abstract
The parabrachial nucleus (PB) is a brainstem cell group that receives a strong input from the nucleus tractus solitarius regarding the physiological status of the internal organs and sends efferent projections throughout the forebrain. Since the neuroanatomical organization of the PB remains unclear, our first step was to use specific antibodies against two neural lineage transcription factors: Forkhead box protein2 (FoxP2) and LIM homeodomain transcription factor 1 beta (Lmx1b) to define the PB in adult rats. This allowed us to construct a cytoarchitectonic PB map based on the distribution of neurons that constitutively express these two transcription factors. Second, the in situ hybridization method combined with immunohistochemistry demonstrated that mRNA for glutamate vesicular transporter Vglut2 (Slc17a6) was present in most of the Lmx1b+ and FoxP2+ parabrachial neurons, indicating these neurons use glutamate as a transmitter. Third, conscious rats were maintained in a hypotensive or hypertensive state for 2h, and then, their brainstems were prepared by the standard c-Fos method which is a measure of neuronal activity. Both hypotension and hypertension resulted in c-Fos activation of Lmx1b+ neurons in the external lateral-outer subdivision of the PB (PBel-outer). Hypotension, but not hypertension, caused c-Fos activity in the FoxP2+ neurons of the central lateral PB (PBcl) subnucleus. The Kölliker-Fuse nucleus as well as the lateral crescent PB and rostral-most part of the PBcl contain neurons that co-express FoxP2+ and Lmx1b+, but none of these were activated after blood pressure changes. Salt-sensitive FoxP2 neurons in the pre-locus coeruleus and PBel-inner were not c-Fos activated following blood pressure changes. In summary, the present study shows that the PBel-outer and PBcl subnuclei originate from two different neural progenitors, contain glutamatergic neurons, and are affected by blood pressure changes, with the PBel-outer reacting to both hypo- and hypertension, and the PBcl signaling only hypotensive changes.
Collapse
Affiliation(s)
- Rebecca L. Miller
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark M. Knuepfer
- Department of Pharmacological & Physiological Science, St. Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA
| | - Michelle H. Wang
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George O. Denny
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul A. Gray
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arthur D. Loewy
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Abstract
The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct mutations reported thus far. This review will summarize the studies on the MC4R, from its cloning and tissue distribution to its physiological roles in regulating energy homeostasis, cachexia, cardiovascular function, glucose and lipid homeostasis, reproduction and sexual function, drug abuse, pain perception, brain inflammation, and anxiety. I will then review the studies on the pharmacology of the receptor, including ligand binding and receptor activation, signaling pathways, as well as its regulation. Finally, the pathophysiology of the MC4R in obesity pathogenesis will be reviewed. Functional studies of the mutant MC4Rs and the therapeutic implications, including small molecules in correcting binding and signaling defect, and their potential as pharmacological chaperones in rescuing intracellularly retained mutants, will be highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Alabama 36849-5519, USA.
| |
Collapse
|
18
|
Mountjoy KG. Distribution and function of melanocortin receptors within the brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 681:29-48. [PMID: 21222258 DOI: 10.1007/978-1-4419-6354-3_3] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biological responses to pro-opiomelanocortin (POMC)-derived peptides administered in the brain were documented in the 1950s but their molecular mechanisms of action only began to be resolved with the mapping of melanocortin receptor subtypes to specific brain regions in the 1990s. Out of the five melanocortin receptor subtypes, MC3R and MC4R are widely recognised as 'neural' melanocortin receptors. In situ hybridization anatomical mapping of these receptor subtypes to distinct hypothalamic nuclei first indicated their roles in energy homeostasis, roles that were later confirmed with the obese phenotypes exhibited by Mc3R and Mc4R knockout mice. It is perhaps less well known however, that all five melanocortin receptor subtypes have been detected in developing and/or adult brains of various species. This chapter provides a comprehensive summary of the detection and mapping of each melanocortin receptor subtype in mammalian, chicken and fish brains and relates the sites of expression to functions that are either known or proposed for each receptor subtype.
Collapse
Affiliation(s)
- Kathleen G Mountjoy
- Departments of Physiology and Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1023, New Zealand.
| |
Collapse
|
19
|
Skibicka KP, Grill HJ. Hypothalamic and hindbrain melanocortin receptors contribute to the feeding, thermogenic, and cardiovascular action of melanocortins. Endocrinology 2009; 150:5351-61. [PMID: 19854868 PMCID: PMC2795709 DOI: 10.1210/en.2009-0804] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Forebrain ventricular delivery of melanocortin receptor (MC3/4R) agonist increases energy expenditure and decreases food intake (FI). Because forebrain ventricular delivery provides ligand to various anatomically distributed MC3/4R-bearing nuclei, it is unclear which of the receptor subpopulations contributes to the feeding suppression and the sympathetic-thermogenic effects observed. The literature indicates that reexpression of MC4R in the paraventricular nucleus (PVH) affects the feeding but not the energetic phenotype of the MC4R knockout, suggesting that divergent MC4R populations mediate energy expenditure (hindbrain) and FI (hypothalamus) effects of stimulation. Not consistent with this view are data indicating that PVH sympathetic projection neurons express MC4Rs and that feeding effects are induced from hindbrain MC4R sites. Therefore, we hypothesize an opposing perspective: that stimulation of anatomically diverse MC3/4R-bearing nuclei triggers energetic as well as feeding effects. To test this hypothesis, ventricle subthreshold doses of MC3/4R agonist (5 and 10 pmol) were applied in separate experiments to six hindbrain and hypothalamic sites; core temperature (Tc), heart rate (HR), spontaneous activity (SPA), and FI were measured in behaving rats. Nucleus tractus solitarius and PVH stimulation increased Tc, HR, and SPA and decreased FI. Rostral ventrolateral medulla, parabrachial nucleus, and retrochiasmatic area stimulation increased Tc, HR, but not SPA, and decreased FI. The response profile differed to some extent for each nucleus tested, suggesting differential output circuitries for the measured parameters. Data are consistent with the view that energetic and feeding responses are not controlled by regionally divergent MC3/4Rs and can be elicited from multiple, anatomically distributed MC3/4R populations.
Collapse
Affiliation(s)
- Karolina P Skibicka
- Graduate Group of Psychology and Graduate Group of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
20
|
Abraham H, Covasa M, Hajnal A. Cocaine- and amphetamine-regulated transcript peptide immunoreactivity in the brain of the CCK-1 receptor deficient obese OLETF rat. Exp Brain Res 2009; 196:545-56. [PMID: 19533109 DOI: 10.1007/s00221-009-1885-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 05/28/2009] [Indexed: 11/28/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed in brain areas involved in homeostatic regulation and reward. CART has been shown to reduce food intake, but the underlying mechanisms and the relevance of this effect on obesity yet remain unknown. Therefore, we used immunohistochemistry to investigate the expression of CART peptide in various brain regions of the obese Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking the CCK-1 receptor. Analysis revealed that whereas the distribution of CART-peptide immunoreactive neurons and axonal networks was identical in OLETF rats and lean controls, the intensity of CART immunoreactivity was significantly reduced in the rostral part of the nucleus accumbens (p < 0.01), the basolateral complex of the amygdala (p < 0.05) and the rostro-medial nucleus of the solitary tract (p < 0.001) of the OLETF rats. These areas are involved in reward and integration of taste and viscerosensory information and have been previously associated with altered functions in this strain. The findings suggest that in addition to previously described deficits in peripheral satiety signals and augmented orexigenic regulation, the anorectic effect of CART peptide may also be diminished in OLETF rats.
Collapse
Affiliation(s)
- Hajnalka Abraham
- Central Electron Microscopic Laboratory, Faculty of Medicine, University of Pecs, Szigeti u. 12, 7643, Pecs, Hungary.
| | | | | |
Collapse
|
21
|
DeBoer MD, Scarlett JM, Levasseur PR, Grant WF, Marks DL. Administration of IL-1beta to the 4th ventricle causes anorexia that is blocked by agouti-related peptide and that coincides with activation of tyrosine-hydroxylase neurons in the nucleus of the solitary tract. Peptides 2009; 30:210-8. [PMID: 19028534 PMCID: PMC2853249 DOI: 10.1016/j.peptides.2008.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 12/19/2022]
Abstract
Inflammation-associated cachexia is associated with multiple chronic diseases and involves activation of appetite regulating centers in the arcuate nucleus of the hypothalamus (ARH). The nucleus of the solitary tract (NTS) in the brainstem has also been implicated as an important nucleus involved in appetite regulation. We set out to determine whether the NTS may be involved in inflammation-associated anorexia by injecting IL-1 beta into the 4th ventricle and assessing food intake and NTS neuronal activation. Injection of IL-1 beta produced a decrease in food intake at 3 and 12h after injection which was ameliorated at the 12h time point by a sub-threshold dose of agouti-related peptide (AgRP). Investigation into neuron types in the NTS revealed that IL-1 beta injection was associated with an increase in c-Fos activity in NTS neurons expressing tyrosine hydroxylase (TH). Additionally, injection of IL-1 beta into the 4th ventricle did not produce c-Fos activation of neurons expressing pro-opiomelanocortin (POMC) in the ARH, cells known to be involved in producing anorexia in response to systemic inflammation. Double-label in situ hybridization revealed that TH neurons did not express IL-1 receptor I (IL1-RI) transcript, demonstrating that c-Fos activation of TH neurons in this setting was not via direct stimulation of IL-1 beta on TH neurons themselves. We conclude that IL-1 beta injection into the 4th ventricle produces anorexia and is accompanied by an increase in activation in TH neurons in the NTS. This provides evidence that the brainstem may be an important mediator of anorexia in the setting of inflammation.
Collapse
Affiliation(s)
- Mark D. DeBoer
- Department of Pediatrics, Oregon Health & Science University, United States
| | - Jarrad M. Scarlett
- Department of Pediatrics, Oregon Health & Science University, United States
| | - Peter R. Levasseur
- Department of Pediatrics, Oregon Health & Science University, United States
| | - Wilmon F. Grant
- Department of Pediatrics, Oregon Health & Science University, United States
| | - Daniel L. Marks
- Department of Pediatrics, Oregon Health & Science University, United States
| |
Collapse
|
22
|
Lipopolysaccharide (LPS) blocks the acquisition of LiCl-induced gaping in a rodent model of anticipatory nausea. Neurosci Lett 2009; 450:301-5. [DOI: 10.1016/j.neulet.2008.11.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/13/2008] [Accepted: 11/24/2008] [Indexed: 11/20/2022]
|
23
|
Cross-Mellor SK, Foley KA, Parker LA, Ossenkopp KP. Lipopolysaccharide dose dependently impairs rapid toxin (LiCl)-induced gustatory conditioning: a taste reactivity examination of the conditioned taste aversion. Brain Behav Immun 2009; 23:204-16. [PMID: 18835436 DOI: 10.1016/j.bbi.2008.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 12/01/2022] Open
Abstract
There is much debate on how immune activation affects cognitive processing. Research has shown that stimulation of the immune system can significantly impair, have no adverse effects, or enhance learning and memory processes in animals. The present experiment evaluated the effects of the bacterial endotoxin, lipopolysaccharide (LPS) on the acquisition of a rapidly acquired conditioned taste aversion using a toxin-containing food. Male Long Evans rats were fitted with intraoral cannulae and habituated to the taste reactivity procedure. Rats received two conditioning days, 72 h apart, in which they were injected systemically with LPS (200, 100, or 50 microg/kg) or NaCl (0.9% vehicle) and 90 min later placed in the taste reactivity test chamber. Rats were given 5 brief (1 min) intraoral infusions of either a LiCl-adulterated sucrose solution (0.15M LiCl+0.3M sucrose) or NaCl-sucrose solution (0.15M NaCl+0.3M sucrose) across a 1h period. On the test day (72 h after the last conditioning trial), rats were given a 2 min intraoral infusion of the respective taste in a drug-free state. Individual taste reactivity responses were recorded and analyzed. Results demonstrate that rats treated with LPS dose-dependently increased ingestive responding to the LiCl-sucrose flavor while at the same time showing reduced rejection response frequency on the two conditioning days. LPS treatment did not alter taste reactivity responding to the NaCl-sucrose solution. On the test day, the LPS groups again displayed a dose dependent increase in ingestive responses and a decrease in rejection responses to the LiCl-sucrose taste. The present results suggest that LPS-induced immune system activation, significantly impairs the rapid acquisition of a conditioned taste aversion.
Collapse
Affiliation(s)
- Shelley K Cross-Mellor
- Department of Psychology and Graduate Neuroscience Program, Social Science Centre, University of Western Ontario, London, Ont., Canada N6A 5C2.
| | | | | | | |
Collapse
|
24
|
Pecchi E, Dallaporta M, Jean A, Thirion S, Troadec JD. mPGES-1 knock-out mice are resistant to cancer-induced anorexia despite the absence of central mPGES-1 up-regulation in wild-type anorexic mice. J Neuroimmunol 2008; 199:104-14. [PMID: 18602702 DOI: 10.1016/j.jneuroim.2008.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/21/2008] [Accepted: 05/21/2008] [Indexed: 12/27/2022]
Abstract
Anorexia-cachexia syndrome is a very common symptom observed in individuals affected by chronic inflammatory diseases. The present study was designed to address the possible involvement of the inducible microsomal prostaglandin E synthase-1 (mPGES-1) in the hypopaghia observed during these pathological states. To this end, we used a model of cancer-induced anorexia and we report here that despite the absence of up-regulation of the mPGES-1 enzyme within the brain during anorexia-cachexia syndrome, mPGES-1 knock-out mice exhibit resistance to tumor-induced anorexia and maintain their body mass.
Collapse
Affiliation(s)
- E Pecchi
- Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille (CRN2M), UMR 6231 CNRS, Université Paul Cézanne and Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
25
|
Muceniece R, Zvejniece L, Vilskersts R, Liepinsh E, Baumane L, Kalvinsh I, Wikberg JE, Dambrova M. Functional Evaluation of THIQ, a Melanocortin 4 Receptor Agonist, in Models of Food Intake and Inflammation. Basic Clin Pharmacol Toxicol 2007; 101:416-20. [DOI: 10.1111/j.1742-7843.2007.00133.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Ruud J, Blomqvist A. Identification of rat brainstem neuronal structures activated during cancer-induced anorexia. J Comp Neurol 2007; 504:275-86. [PMID: 17640050 DOI: 10.1002/cne.21407] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In cancer-related anorexia, body weight loss is paradoxically associated with reduced appetite, which is contrary to the situation during starvation, implying that the normal coupling of food intake to energy expenditure is disarranged. Here we examined brainstem mechanisms that may underlie suppression of food intake in a rat model of cancer anorexia. Cultured Morris 7777 hepatoma cells were injected subcutaneously in Buffalo rats, resulting in slowly growing tumor and reduced food intake and body weight loss after about 10 days. The brainstem was examined for induced expression of the transcription factors Fos and FosB as signs of neuronal activation. The results showed that anorexia and retarded body weight growth were associated with Fos protein expression in the area postrema, the general visceral region of the nucleus of the solitary tract, and the external lateral parabrachial nucleus, structures that also display Fos after peripheral administration of satiating or anorexigenic stimuli. The magnitude of the Fos expression was specifically related to the size of induced tumor, and not associated with weight loss per se, because it was not present in pair-fed or food-deprived rats. It also appeared to be independent of proinflammatory cytokines, as determined by the absence of increased cytokine levels in plasma and induced cytokine and cyclooxygenase expression in the brain. The findings thus provide evidence that cancer-associated anorexia and weight loss in this model is associated with activation of brainstem circuits involved in the suppression of food intake, and suggest that this occurs by inflammatory-independent mechanisms.
Collapse
Affiliation(s)
- Johan Ruud
- Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
27
|
Geerling JC, Loewy AD. Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex. J Comp Neurol 2007; 504:379-403. [PMID: 17663450 DOI: 10.1002/cne.21452] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salt intake is an established response to sodium deficiency, but the brain circuits that regulate this behavior remain poorly understood. We studied the activation of neurons in the nucleus of the solitary tract (NTS) and their efferent target nuclei in the pontine parabrachial complex (PB) in rats during sodium deprivation and after salt intake. After 8-day dietary sodium deprivation, immunoreactivity for c-Fos (a neuronal activity marker) increased markedly within the aldosterone-sensitive neurons of the NTS, which express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2). In the PB, c-Fos labeling increased specifically within two sites that relay signals from the HSD2 neurons to the forebrain--the pre-locus coeruleus and the innermost region of the external lateral parabrachial nucleus. Then, 1-2 hours after sodium-deprived rats ingested salt (a hypertonic 3% solution of NaCl), c-Fos immunoreactivity within the HSD2 neurons was virtually eliminated, despite a large increase in c-Fos activation in the surrounding NTS (including the A2 noradrenergic neurons) and area postrema. Also after salt intake, c-Fos activation increased within pontine nuclei that relay gustatory (caudal medial PB) and viscerosensory (rostral lateral PB) information from the NTS to the forebrain. Thus, sodium deficiency and salt intake stimulate separate subpopulations of neurons in the NTS, which then transmit this information to the forebrain via largely separate relay nuclei in the PB complex. These findings offer new perspectives on the roles of sensory information from the brainstem in the regulation of sodium appetite.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
28
|
Elander L, Engström L, Hallbeck M, Blomqvist A. IL-1beta and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1. Am J Physiol Regul Integr Comp Physiol 2006; 292:R258-67. [PMID: 16946079 DOI: 10.1152/ajpregu.00511.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent work demonstrated that the febrile response to peripheral immune stimulation with proinflammatory cytokine IL-1beta or bacterial wall lipopolysaccharide (LPS) is mediated by induced synthesis of prostaglandin E(2) by the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). The present study examined whether a similar mechanism might also mediate the anorexia induced by these inflammatory agents. Transgenic mice with a deletion of the Ptges gene, which encodes mPGES-1, and wild-type controls were injected intraperitoneally with IL-1beta, LPS, or saline. Mice were free fed, and food intake was continuously monitored with an automated system for 12 h. Body weight was recorded every 24 h for 4 days. The IL-1beta induced anorexia in wild-type but not knock-out mice, and so it was almost completely dependent on mPGES-1. In contrast, LPS induced anorexia of the same magnitude in both phenotypes, and hence it was independent of mPGES-1. However, when the mice were prestarved for 22 h, LPS induced anorexia and concomitant body weight loss in the knock-out animals that was attenuated compared with the wild-type controls. These data suggest that IL-1beta and LPS induce anorexia by distinct immune-to-brain signaling pathways and that the anorexia induced by LPS is mediated by a mechanism different from the fever induced by LPS. However, nutritional state and/or motivational factors also seem to influence the pathways for immune signaling to the brain. Furthermore, both IL-1beta and LPS caused reduced meal size but not meal frequency, suggesting that both agents exerted an anhedonic effect during these experimental conditions.
Collapse
Affiliation(s)
- Louise Elander
- Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköping University, S-58185 Linköping, Sweden
| | | | | | | |
Collapse
|