1
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Feng J, She Y, Li C, Shen L. Metal ion mediated aggregation of Alzheimer's disease peptides and proteins in solutions and at surfaces. Adv Colloid Interface Sci 2023; 320:103009. [PMID: 37776735 DOI: 10.1016/j.cis.2023.103009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Although the pathogenesis of Alzheimer's disease (AD) is still unclear, abnormally high concentrations of metal ions, like copper, iron and zinc, were found in senile plaques of AD brain, which inspires extensive studies on the fundamental molecular interactions of metal ions with the pathogenic hallmarks, amyloid-β (Aβ) peptides and tau proteins, respectively forming senile plaques and neurofibrillary tangles (NFTs) in AD brains. Early works concern the concentration effect of the metal ions on Aβ and tau aggregation. Yet, it is obvious that the surrounding environment of the metal ions must also be considered, not just the metal ions as free accessible forms in the solution phase. The most important surrounding environment in vivo is a very large surface area from cell membranes and other macromolecular surfaces. These bio-interfaces make the kinetic pathways of metal ion mediated Aβ and tau aggregation radically different from those in the solution phase. To better understand the role of metal ions in AD peptide and protein aggregation, we summarize and discuss the recent achievements in the research of metal ion mediated Aβ and tau aggregation, particularly the corresponding mechanism differences between the solution phase and the surface environment. The metal ion chelation therapy for AD is also discussed from the point of the surface pool of metal ions.
Collapse
Affiliation(s)
- Jiahao Feng
- Key Laboratory for Neurodegenerative Diseases Nanomedicine of Hubei Province, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Yifei She
- Key Laboratory for Neurodegenerative Diseases Nanomedicine of Hubei Province, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Chongjia Li
- Key Laboratory for Neurodegenerative Diseases Nanomedicine of Hubei Province, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Shen
- Key Laboratory for Neurodegenerative Diseases Nanomedicine of Hubei Province, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
3
|
Schrader JM, Stanisavljevic A, Xu F, Van Nostrand WE. Distinct Brain Proteomic Signatures in Cerebral Small Vessel Disease Rat Models of Hypertension and Cerebral Amyloid Angiopathy. J Neuropathol Exp Neurol 2022; 81:731-745. [PMID: 35856898 PMCID: PMC9803909 DOI: 10.1093/jnen/nlac057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cerebral small vessel diseases (CSVDs) are prominent contributors to vascular cognitive impairment and dementia and can arise from a range of etiologies. Cerebral amyloid angiopathy (CAA) and hypertension (HTN), both prevalent in the elderly population, lead to cerebral microhemorrhages, macrohemorrhages, and white matter damage. However, their respective underlying mechanisms and molecular events are poorly understood. Here, we show that the transgenic rat model of CAA type 1 (rTg-DI) exhibits perivascular inflammation that is lacking in the spontaneously hypertensive stroke-prone (SHR-SP) rat model of HTN. Alternatively, SHR-SP rats display notable dilation of arteriolar perivascular spaces. Comparative proteomics analysis revealed few shared altered proteins, with key proteins such as ANXA3, H2A, and HTRA1 unique to rTg-DI rats, and Nt5e, Flot-1 and Flot-2 unique to SHR-SP rats. Immunolabeling confirmed that upregulation of ANXA3, HTRA1, and neutrophil extracellular trap proteins were distinctly associated with rTg-DI rats. Pathway analysis predicted activation of TGF-β1 and TNFα in rTg-DI rat brain, while insulin signaling was reduced in the SHR-SP rat brain. Thus, we report divergent protein signatures associated with distinct cerebral vessel pathologies in the SHR-SP and rTg-DI rat models and provide new mechanistic insight into these different forms of CSVD.
Collapse
Affiliation(s)
- Joseph M Schrader
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Aleksandra Stanisavljevic
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Feng Xu
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - William E Van Nostrand
- Send correspondence to: William E. Van Nostrand, PhD, George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI 02881, USA; E-mail:
| |
Collapse
|
4
|
Smit T, Ormel PR, Sluijs JA, Hulshof LA, Middeldorp J, de Witte LD, Hol EM, Donega V. Transcriptomic and functional analysis of Aβ 1-42 oligomer-stimulated human monocyte-derived microglia-like cells. Brain Behav Immun 2022; 100:219-230. [PMID: 34896594 DOI: 10.1016/j.bbi.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of microglial function contributes to Alzheimer's disease (AD) pathogenesis. Several genetic and transcriptome studies have revealed microglia specific genetic risk factors, and changes in microglia expression profiles in AD pathogenesis, viz. the human-Alzheimer's microglia/myeloid (HAM) profile in AD patients and the disease-associated microglia profile (DAM) in AD mouse models. The transcriptional changes involve genes in immune and inflammatory pathways, and in pathways associated with Aβ clearance. Aβ oligomers have been suggested to be the initial trigger of microglia activation in AD. To study the direct response to Aβ oligomers exposure, we assessed changes in gene expression in an in vitro model for microglia, the human monocyte-derived microglial-like (MDMi) cells. We confirmed the initiation of an inflammatory profile following LPS stimulation, based on increased expression of IL1B, IL6, and TNFα. In contrast, the Aβ1-42 oligomers did not induce an inflammatory profile or a classical HAM profile. Interestingly, we observed a specific increase in the expression of metallothioneins in the Aβ1-42 oligomer treated MDMi cells. Metallothioneins are involved in metal ion regulation, protection against reactive oxygen species, and have anti-inflammatory properties. In conclusion, our data suggests that exposure to Aβ1-42 oligomers may initially trigger a protective response in vitro.
Collapse
Affiliation(s)
- Tamar Smit
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paul R Ormel
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lianne A Hulshof
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Vanessa Donega
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
5
|
The Function of Transthyretin Complexes with Metallothionein in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239003. [PMID: 33256250 PMCID: PMC7730073 DOI: 10.3390/ijms21239003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most frequently diagnosed types of dementia in the elderly. An important pathological feature in AD is the aggregation and deposition of the β-amyloid (Aβ) in extracellular plaques. Transthyretin (TTR) can cleave Aβ, resulting in the formation of short peptides with less activity of amyloid plaques formation, as well as being able to degrade Aβ peptides that have already been aggregated. In the presence of TTR, Aβ aggregation decreases and toxicity of Aβ is abolished. This may prevent amyloidosis but the malfunction of this process leads to the development of AD. In the context of Aβplaque formation in AD, we discuss metallothionein (MT) interaction with TTR, the effects of which depend on the type of MT isoform. In the brains of patients with AD, the loss of MT-3 occurs. On the contrary, MT-1/2 level has been consistently reported to be increased. Through interaction with TTR, MT-2 reduces the ability of TTR to bind to Aβ, while MT-3 causes the opposite effect. It increases TTR-Aβ binding, providing inhibition of Aβ aggregation. The protective effect, assigned to MT-3 against the deposition of Aβ, relies also on this mechanism. Additionally, both Zn7MT-2 and Zn7MT-3, decrease Aβ neurotoxicity in cultured cortical neurons probably because of a metal swap between Zn7MT and Cu(II)Aβ. Understanding the molecular mechanism of metals transfer between MT and other proteins as well as cognition of the significance of TTR interaction with different MT isoforms can help in AD treatment and prevention.
Collapse
|
6
|
Xu Y, Xiao G, Liu L, Lang M. Zinc transporters in Alzheimer's disease. Mol Brain 2019; 12:106. [PMID: 31818314 PMCID: PMC6902570 DOI: 10.1186/s13041-019-0528-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/26/2019] [Indexed: 01/29/2023] Open
Abstract
Alzheimer’s disease (AD) is the most devastating neurodegenerative disorder. Due to the increase in population and longevity, incidence will triple by the middle of the twenty-first century. So far, no treatment has prevented or reversed the disease. More than 20 years of multidisciplinary studies have shown that brain zinc dyshomeostasis may play a critical role in AD progression, which provides encouraging clues for metal-targeted therapies in the treatment of AD. Unfortunately, the pilot clinical application of zinc chelator and/or ionophore strategy, such as the use of quinoline-based compounds, namely clioquinol and PBT2, has not yet been successful. The emerging findings revealed a list of key zinc transporters whose mRNA or protein levels were abnormally altered at different stages of AD brains. Furthermore, specifically modulating the expression of some of the zinc transporters in the central nervous system through genetic methods slowed down or prevented AD progression in animal models, resulting in significantly improved cognitive performance, movement, and prolonged lifespan. Although the underlying molecular mechanisms are not yet fully understood, it shed new light on the treatment or prevention of the disease. This review considers recent advances regarding AD, zinc and zinc transporters, recapitulating their relationships in extending our current understanding of the disease amelioration effects of zinc transport proteins as potential therapeutic targets to cure AD, and it may also provide new insights to identify novel therapeutic strategies for ageing and other neurodegenerative diseases, such as Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Yingshuo Xu
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China. .,College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
7
|
Delfino D, Rossetti DV, Martelli C, Inserra I, Vincenzoni F, Castagnola M, Urbani A, Scarpa S, Fuso A, Cavallaro RA, Desiderio C. Exploring the brain tissue proteome of TgCRND8 Alzheimer's Disease model mice under B vitamin deficient diet induced hyperhomocysteinemia by LC-MS top-down platform. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:165-172. [PMID: 31202182 DOI: 10.1016/j.jchromb.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 01/23/2023]
Abstract
The multifactorial nature of Late Onset Alzheimer's Disease (LOAD), the AD form of major relevance on epidemiological and social aspects, has driven the original investigation by LC-MS and top-down proteomics approach of the protein repertoire of the brain tissue of TgCRND8 model mice fed with a diet deficient in B vitamins. The analysis of the acid-soluble fraction of brain tissue homogenates identified a list of proteins and peptides, proteoforms and PTMs. In order to disclose possible modulations, their relative quantification in wild type and AD model mice under both B vitamin deficient and control diets was performed. The levels of metallothionein III, guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 and brain acid soluble protein 1 showed statistically significant alterations depending on genotype, diet or both effects, respectively. Particularly, metallothionein III exhibited increased levels in TgCRND8 mice under B vitamin deficient diet with respect to wild type mice under both diets. Brain acid soluble protein 1 showed the opposite, revealing decreased levels in all diet groups of AD model mice with respect to wild type mice in control diet. Lower levels of brain acid soluble protein 1 were also observed in wild type mice under deficiency of B vitamins. These results, besides contributing to increase the knowledge of AD at molecular level, give new suggestions for deeply investigating metallothionein III and brain acid soluble protein 1 in AD.
Collapse
Affiliation(s)
- Daniela Delfino
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Diana Valeria Rossetti
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Claudia Martelli
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Ilaria Inserra
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Massimo Castagnola
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy; Laboratorio di Proteomica e Metabonomica, IRCCS, Fondazione Santa Lucia, Roma, Italia
| | - Andrea Urbani
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia; Area Diagnostica di Laboratorio, Fondazione Policlinico Universitario Agostino Gemelli - IRCCS, Roma, Italy
| | - Sigfrido Scarpa
- Dipartimento di Chirurgia "P. Valdoni", Sapienza Università di Roma, Rome, Italy
| | - Andrea Fuso
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Rosaria A Cavallaro
- Dipartimento di Chirurgia "P. Valdoni", Sapienza Università di Roma, Rome, Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
8
|
Koh JY, Kim HN, Hwang JJ, Kim YH, Park SE. Lysosomal dysfunction in proteinopathic neurodegenerative disorders: possible therapeutic roles of cAMP and zinc. Mol Brain 2019; 12:18. [PMID: 30866990 PMCID: PMC6417073 DOI: 10.1186/s13041-019-0439-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
A number of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, share intra- and/or extracellular deposition of protein aggregates as a common core pathology. While the species of accumulating proteins are distinct in each disease, an increasing body of evidence indicates that defects in the protein clearance system play a crucial role in the gradual accumulation of protein aggregates. Among protein degradation systems, the endosome-autophagosome-lysosome pathway (EALP) is the main degradation machinery, especially for large protein aggregates. Lysosomal dysfunction or defects in fusion with vesicles containing cargo are commonly observed abnormalities in proteinopathic neurodegenerative diseases. In this review, we discuss the available evidence for a mechanistic connection between components of the EALP-especially lysosomes-and neurodegenerative diseases. We also focus on lysosomal pH regulation and its significance in maintaining flux through the EALP. Finally, we suggest that raising cAMP and free zinc levels in brain cells may be beneficial in normalizing lysosomal pH and EALP flux.
Collapse
Affiliation(s)
- Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Ha Na Kim
- Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jung Jin Hwang
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Yang-Hee Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Sang Eun Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
9
|
Choo XY, Liddell JR, Huuskonen MT, Grubman A, Moujalled D, Roberts J, Kysenius K, Patten L, Quek H, Oikari LE, Duncan C, James SA, McInnes LE, Hayne DJ, Donnelly PS, Pollari E, Vähätalo S, Lejavová K, Kettunen MI, Malm T, Koistinaho J, White AR, Kanninen KM. Cu II(atsm) Attenuates Neuroinflammation. Front Neurosci 2018; 12:668. [PMID: 30319344 PMCID: PMC6165894 DOI: 10.3389/fnins.2018.00668] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer’s disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex CuII(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of CuII(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). CuII(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of CuII(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Xin Yi Choo
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeffrey R Liddell
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - Mikko T Huuskonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alexandra Grubman
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Diane Moujalled
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jessica Roberts
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kai Kysenius
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Lauren Patten
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Hazel Quek
- Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Clare Duncan
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon A James
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Australian Synchrotron, Clayton, VIC, Australia
| | - Lachlan E McInnes
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| | - David J Hayne
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul S Donnelly
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eveliina Pollari
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Suvi Vähätalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katarína Lejavová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko I Kettunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Anthony R White
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia.,Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Katja M Kanninen
- Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
10
|
Waller R, Murphy M, Garwood CJ, Jennings L, Heath PR, Chambers A, Matthews FE, Brayne C, Ince PG, Wharton SB, Simpson JE. Metallothionein‐I/II expression associates with the astrocyte DNA damage response and not Alzheimer‐type pathology in the aging brain. Glia 2018; 66:2316-2323. [DOI: 10.1002/glia.23465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Rachel Waller
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Mark Murphy
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Claire J Garwood
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Luke Jennings
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Annabelle Chambers
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Fiona E Matthews
- MRC Biostatistics UnitUniversity of Cambridge Cambridge United Kingdom
- Institute of Health and SocietyUniversity of Newcastle Newcastle United Kingdom
| | - Carol Brayne
- Institute of Public HealthUniversity of Cambridge Cambridge United Kingdom
| | - Paul G Ince
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Stephen B Wharton
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | - Julie E Simpson
- Sheffield Institute for Translational NeuroscienceUniversity of Sheffield Sheffield United Kingdom
| | | |
Collapse
|
11
|
Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer's Disease Treatment. Pharmaceuticals (Basel) 2018; 11:ph11010012. [PMID: 29382156 PMCID: PMC5874708 DOI: 10.3390/ph11010012] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 02/07/2023] Open
Abstract
ADAM (a disintegrin and metalloproteinase) is a family of widely expressed, transmembrane and secreted proteins of approximately 750 amino acids in length with functions in cell adhesion and proteolytic processing of the ectodomains of diverse cell-surface receptors and signaling molecules. ADAM10 is the main α-secretase that cleaves APP (amyloid precursor protein) in the non-amyloidogenic pathway inhibiting the formation of β-amyloid peptide, whose accumulation and aggregation leads to neuronal degeneration in Alzheimer’s disease (AD). ADAM10 is a membrane-anchored metalloprotease that sheds, besides APP, the ectodomain of a large variety of cell-surface proteins including cytokines, adhesion molecules and notch. APP cleavage by ADAM10 results in the production of an APP-derived fragment, sAPPα, which is neuroprotective. As increased ADAM10 activity protects the brain from β-amyloid deposition in AD, this strategy has been proved to be effective in treating neurodegenerative diseases, including AD. Here, we describe the physiological mechanisms regulating ADAM10 expression at different levels, aiming to propose strategies for AD treatment. We report in this review on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or translational and post-translational levels. In addition, we describe the conditions that can change ADAM10 expression in vitro and in vivo, and discuss how this knowledge may help in AD treatment. Regulation of ADAM10 is achieved by multiple mechanisms that include transcriptional, translational and post-translational strategies, which we will summarize in this review.
Collapse
|
12
|
Liang JW, Fang ZY, Huang Y, Liuyang ZY, Zhang XL, Wang JL, Wei H, Wang JZ, Wang XC, Zeng J, Liu R. Application of Weighted Gene Co-Expression Network Analysis to Explore the Key Genes in Alzheimer's Disease. J Alzheimers Dis 2018; 65:1353-1364. [PMID: 30124448 PMCID: PMC6218130 DOI: 10.3233/jad-180400] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Weighted co-expression network analysis (WGCNA) is a powerful systems biology method to describe the correlation of gene expression based on the microarray database, which can be used to facilitate the discovery of therapeutic targets or candidate biomarkers in diseases. OBJECTIVE To explore the key genes in the development of Alzheimer's disease (AD) by using WGCNA. METHODS The whole gene expression data GSE1297 from AD and control human hippocampus was obtained from the GEO database in NCBI. Co-expressed genes were clustered into different modules. Modules of interest were identified through calculating the correlation coefficient between the module and phenotypic traits. GO and pathway enrichment analyses were conducted, and the central players (key hub genes) within the modules of interest were identified through network analysis. The expression of the identified key genes was confirmed in AD transgenic mice through using qRT-PCR. RESULTS Two modules were found to be associated with AD clinical severity, which functioning mainly in mineral absorption, NF-κB signaling, and cGMP-PKG signaling pathways. Through analysis of the two modules, we found that metallothionein (MT), Notch2, MSX1, ADD3, and RAB31 were highly correlated with AD phenotype. Increase in expression of these genes was confirmed in aged AD transgenic mice. CONCLUSION WGCNA analysis can be used to analyze and predict the key genes in AD. MT1, MT2, MSX1, NOTCH2, ADD3, and RAB31 are identified to be the most relevant genes, which may be potential targets for AD therapy.
Collapse
Affiliation(s)
- Jia-Wei Liang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Yu Fang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Huang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-yu Liuyang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Lin Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Lin Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wei
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Zeng
- Department of Clinic Laboratory, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Metallothionein in Brain Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5828056. [PMID: 29085556 PMCID: PMC5632493 DOI: 10.1155/2017/5828056] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I-IV), three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.
Collapse
|
14
|
Comes G, Manso Y, Escrig A, Fernandez-Gayol O, Sanchis P, Molinero A, Giralt M, Carrasco J, Hidalgo J. Influence of Transgenic Metallothionein-1 on Gliosis, CA1 Neuronal Loss, and Brain Metal Levels of the Tg2576 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18020251. [PMID: 28134760 PMCID: PMC5343787 DOI: 10.3390/ijms18020251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
The mouse model of Alzheimer’s disease (AD), Tg2576 mice (APP), has provided valuable information, such as the role of the metallothionein (MT) family in their behavioral and amyloidosis phenotypes. In this study, we further characterize the role of MT-1 by crossing Mt1-overexpressing mice with Tg2576 mice (APPTgMT). In 14-month-old mice, MT-1(/2) protein levels were dramatically increased by Mt1 overexpression throughout the cortex (Cx), which showed a prominent caudal-rostral gradient, and the hippocampus (HC). There was a trend for MT-1(/2) immunostaining to be increased in the areas surrounding the amyloid plaques in control male mice but not in Mt1-overexpressing mice. Gliosis was elicited by the amyloid plaques, but the effects of Mt1 overexpression were modest. However, in hippocampal western blots the microglial marker Iba-1 was increased in old male APPTgMT mice compared to APP-wild type (APPWT) mice, and the opposite was observed in young mice. Hippocampal CA1 neuronal loss was observed in Tg2576 mice, but was unaffected by Mt1 overexpression. Aging increased Zn and Cu levels differently depending on brain area, sex, and genotype. Thus, the effects of Mt1 overexpression on the phenotype of Tg2576 mice here studied are modest.
Collapse
Affiliation(s)
- Gemma Comes
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Yasmina Manso
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Anna Escrig
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Olaya Fernandez-Gayol
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Paula Sanchis
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Amalia Molinero
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Mercedes Giralt
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Javier Carrasco
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
15
|
Manso Y, Comes G, López-Ramos JC, Belfiore M, Molinero A, Giralt M, Carrasco J, Adlard PA, Bush AI, Delgado-García JM, Hidalgo J. Overexpression of Metallothionein-1 Modulates the Phenotype of the Tg2576 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 51:81-95. [PMID: 26836194 DOI: 10.3233/jad-151025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most commonly diagnosed dementia, where signs of neuroinflammation and oxidative stress are prominent. In this study we intend to further characterize the roles of the antioxidant, anti-inflammatory, and heavy metal binding protein, metallothionein-1 (MT-1), by crossing Mt1 overexpressing mice with a well-known mouse model of AD, Tg2576 mice, which express the human amyloid-β protein precursor (hAβPP) with the Swedish K670N/M671L mutations. Mt1 overexpression increased overall perinatal survival, but did not affect significantly hAβPP-induced mortality and weight loss in adult mice. Amyloid plaque burden in ∼14-month-old mice was increased by Mt1 overexpression in the hippocampus but not the cortex. Despite full length hAβPP levels and amyloid plaques being increased by Mt1 overexpression in the hippocampus of both sexes, oligomeric and monomeric forms of Aβ, which may contribute more to toxicity, were decreased in the hippocampus of females and increased in males. Several behavioral traits such as exploration, anxiety, and learning were altered in Tg2576 mice to various degrees depending on the age and the sex. Mt1 overexpression ameliorated the effects of hAβPP on exploration in young females, and potentiated those on anxiety in old males, and seemed to improve the rate of spatial learning (Morris water maze) and the learning elicited by a classical conditioning procedure (eye-blink test). These results clearly suggest that MT-1 may be involved in AD pathogenesis.
Collapse
Affiliation(s)
- Yasmina Manso
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Comes
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Mónica Belfiore
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Amalia Molinero
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mercedes Giralt
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Javier Carrasco
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| | | | - Juan Hidalgo
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Solaimani P, Saffari A, Sioutas C, Bondy SC, Campbell A. Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons. Neurotoxicology 2016; 58:50-57. [PMID: 27851901 DOI: 10.1016/j.neuro.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022]
Abstract
Exposure to ambient particulate matter (PM) has been associated with the onset of neurodevelopmental and neurodegenerative disorders, but the mechanism of toxicity remains unclear. To gain insight into this neurotoxicity, this study sought to examine global gene expression changes caused by exposure to ambient ultrafine PM. Microarray analysis was performed on primary human neurons derived from fetal brain tissue after a 24h exposure to 20μg/mL of ambient ultrafine particles. We found a majority of the changes in noncoding RNAs, which are involved in epigenetic regulation of gene expression, and thereby could impact the expression of several other protein coding gene targets. Although neurons from biologically different lot numbers were used, we found a significant increase in the expression of metallothionein 1A and 1F in all samples after exposure to particulate matter as confirmed by quantitative PCR. These metallothionein 1 proteins are responsible for neuroprotection after exposure to environmental insult but prolonged induction can be toxic. Epidemiological studies have reported that in utero exposure to ultrafine PM not only leads to neurodevelopmental and behavioral abnormalities, but may also predispose the progeny to neurodegenerative disease later in life by genetic imprinting. Our results pinpoint some of the PM-induced genetic changes that may underlie these findings.
Collapse
Affiliation(s)
- Parrisa Solaimani
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Arian Saffari
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
17
|
Adams SV, Barrick B, Christopher EP, Shafer MM, Makar KW, Song X, Lampe JW, Vilchis H, Ulery A, Newcomb PA. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc. Toxicol Appl Pharmacol 2015; 289:381-8. [PMID: 26529669 PMCID: PMC4689293 DOI: 10.1016/j.taap.2015.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. METHODS 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. RESULTS Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. CONCLUSIONS These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion.
Collapse
Affiliation(s)
- Scott V Adams
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| | - Brian Barrick
- Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003, USA
| | - Emily P Christopher
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Martin M Shafer
- Environmental Chemistry and Technology, Wisconsin State Laboratory of Hygiene, University of Wisconsin, 2601 Agriculture Dr., Madison, WI 53718, USA
| | - Karen W Makar
- Public Health Science Biomarker Laboratory, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Xiaoling Song
- Public Health Science Biomarker Laboratory, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Hugo Vilchis
- Border Epidemiology and Environmental Health Center, New Mexico State University, Box 30001 MSC 3BEC, Las Cruces, NM 88003, USA
| | - April Ulery
- Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| |
Collapse
|
18
|
Indomethacin induced gene regulation in the rat hippocampus. Mol Brain 2015; 8:59. [PMID: 26438564 PMCID: PMC4595115 DOI: 10.1186/s13041-015-0150-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/30/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs such as indomethacin are widely used to treat inflammatory diseases and manage pain, fever and inflammation in several conditions, including neuropsychiatric disorders. Although they predominantly function by inhibiting cyclooxygenase (COX) activity, important COX-independent actions also occur. These actions could be responsible for the adverse side effects associated with chronic and/or high dose usage of this popular drug class. RESULTS We examined gene regulation in the hippocampus after peripheral administration of indomethacin by employing a microarray approach. Secondary confirmation and the brain expression pattern of regulated genes was examined by in situ hybridization and immunohistochemistry. Transglutaminase 2, serum glucocorticoid inducible kinase, Inhibitor of NF-kappa B and vascular endothelial growth factor were among genes that were prominently upregulated, while G-protein coupled receptor 56 and neuropeptide Y were among genes that were downregulated by indomethacin. Co-localization studies using blood vessel markers revealed that transglutaminase 2 was induced specifically in brain vasculature. CONCLUSIONS The data demonstrate that COX-inhibitors can differentially regulate gene transcription in multiple, functionally distinctly cell types in the brain. The results provide additional insight into the molecular actions of COX-inhibitors and indicate that their effects on vasculature could influence cerebral blood flow mechanisms.
Collapse
|
19
|
Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II. J Bioenerg Biomembr 2015; 47:209-16. [PMID: 25808318 DOI: 10.1007/s10863-015-9609-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.
Collapse
|
20
|
Lynes MA, Hidalgo J, Manso Y, Devisscher L, Laukens D, Lawrence DA. Metallothionein and stress combine to affect multiple organ systems. Cell Stress Chaperones 2014; 19:605-11. [PMID: 24584987 PMCID: PMC4147071 DOI: 10.1007/s12192-014-0501-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 12/16/2022] Open
Abstract
Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich, metal-binding proteins that have a wide range of functions in cellular homeostasis and immunity. MTs can be induced by a variety of conditions including metals, glucocorticoids, endotoxin, acute phase cytokines, stress, and irradiation. In addition to their important immunomodulatory functions, MTs can protect essential cellular compartments from toxicants, serve as a reservoir of essential heavy metals, and regulate cellular redox potential. Many of the roles of MTs in the neuroinflammation, intestinal inflammation, and stress response have been investigated and were the subject of a session at the 6th International Congress on Stress Proteins in Biology and Medicine in Sheffield, UK. Like the rest of the cell stress response, there are therapeutic opportunities that arise from an understanding of MTs, and these proteins also provide potential insights into the world of the heat shock protein.
Collapse
Affiliation(s)
- Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA,
| | | | | | | | | | | |
Collapse
|
21
|
Dihydromyricetin Ameliorates Behavioral Deficits and Reverses Neuropathology of Transgenic Mouse Models of Alzheimer’s Disease. Neurochem Res 2014; 39:1171-81. [DOI: 10.1007/s11064-014-1304-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
|
22
|
Manso Y, Carrasco J, Comes G, Meloni G, Adlard PA, Bush AI, Vašák M, Hidalgo J. Characterization of the role of metallothionein-3 in an animal model of Alzheimer's disease. Cell Mol Life Sci 2012; 69:3683-700. [PMID: 22722772 PMCID: PMC11114720 DOI: 10.1007/s00018-012-1047-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/21/2012] [Accepted: 05/31/2012] [Indexed: 01/02/2023]
Abstract
Among the dementias, Alzheimer's disease (AD) is the most commonly diagnosed, but there are still no effective drugs available for its treatment. It has been suggested that metallothionein-3 (MT-3) could be somehow involved in the etiology of AD, and in fact very promising results have been found in in vitro studies, but the role of MT-3 in vivo needs further analysis. In this study, we analyzed the role of MT-3 in a mouse model of AD, Tg2576 mice, which overexpress human Amyloid Precursor Protein (hAPP) with the Swedish mutation. MT-3 deficiency partially rescued the APP-induced mortality of females, and mildly affected APP-induced changes in behavior assessed in the hole-board and plus-maze tests in a gender-dependent manner. Amyloid plaque burden and/or hAPP expression were decreased in the cortex and hippocampus of MT-3-deficient females. Interestingly, exogenously administered Zn(7)MT-3 increased soluble Aβ40 and Aβ42 and amyloid plaques and gliosis, particularly in the cortex, and changed several behavioral traits (increased deambulation and exploration and decreased anxiety). These results highlight that the control of the endogenous production and/or action of MT-3 could represent a powerful therapeutic target in AD.
Collapse
Affiliation(s)
- Yasmina Manso
- Unidad de Fisiología Animal, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Edificio C, Bellaterra, 08193 Barcelona, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Javier Carrasco
- Unidad de Fisiología Animal, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Edificio C, Bellaterra, 08193 Barcelona, Spain
| | - Gemma Comes
- Unidad de Fisiología Animal, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Edificio C, Bellaterra, 08193 Barcelona, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Gabriele Meloni
- Department of Biochemistry, University of Zürich, 8057 Zurich, Switzerland
- Present Address: Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125 USA
| | - Paul A. Adlard
- Oxidation Biology Laboratory, The Mental Health Research Institute, The University of Melbourne, Parkville, VIC 3052 Australia
- Synaptic Neurobiology Laboratory, The Mental Health Research Institute, The University of Melbourne, Parkville, VIC 3052 Australia
| | - Ashley I. Bush
- Synaptic Neurobiology Laboratory, The Mental Health Research Institute, The University of Melbourne, Parkville, VIC 3052 Australia
| | - Milan Vašák
- Department of Biochemistry, University of Zürich, 8057 Zurich, Switzerland
| | - Juan Hidalgo
- Unidad de Fisiología Animal, Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universidad Autónoma de Barcelona, Edificio C, Bellaterra, 08193 Barcelona, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
23
|
Manso Y, Carrasco J, Comes G, Adlard PA, Bush AI, Hidalgo J. Characterization of the role of the antioxidant proteins metallothioneins 1 and 2 in an animal model of Alzheimer's disease. Cell Mol Life Sci 2012; 69:3665-81. [PMID: 22766972 PMCID: PMC11114722 DOI: 10.1007/s00018-012-1045-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/18/2012] [Accepted: 05/29/2012] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is by far the most commonly diagnosed dementia, and despite multiple efforts, there are still no effective drugs available for its treatment. One strategy that deserves to be pursued is to alter the expression and/or physiological action of endogenous proteins instead of administering exogenous factors. In this study, we intend to characterize the roles of the antioxidant, anti-inflammatory, and heavy-metal binding proteins, metallothionein-1 + 2 (MT1 + 2), in a mouse model of Alzheimer's disease, Tg2576 mice. Contrary to expectations, MT1 + 2-deficiency rescued partially the human amyloid precursor protein-induced changes in mortality and body weight in a gender-dependent manner. On the other hand, amyloid plaque burden was decreased in the cortex and hippocampus in both sexes, while the amyloid cascade, neuroinflammation, and behavior were affected in the absence of MT1 + 2 in a complex manner. These results highlight that the control of the endogenous production and/or action of MT1 + 2 could represent a powerful therapeutic target in AD.
Collapse
Affiliation(s)
- Yasmina Manso
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Edificio C, Bellaterra, Barcelona, 08193 Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193 Spain
| | - Javier Carrasco
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Edificio C, Bellaterra, Barcelona, 08193 Spain
| | - Gemma Comes
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Edificio C, Bellaterra, Barcelona, 08193 Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193 Spain
| | - Paul A. Adlard
- Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, The University of Melbourne, Victoria, 3052 Australia
- Synaptic Neurobiology Laboratory, The Mental Health Research Institute, Parkville, The University of Melbourne, Victoria, 3052 Australia
| | - Ashley I. Bush
- Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, The University of Melbourne, Victoria, 3052 Australia
| | - Juan Hidalgo
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Edificio C, Bellaterra, Barcelona, 08193 Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193 Spain
| |
Collapse
|
24
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
25
|
Kim JH, Nam YP, Jeon SM, Han HS, Suk K. Amyloid neurotoxicity is attenuated by metallothionein: dual mechanisms at work. J Neurochem 2012; 121:751-62. [PMID: 22404335 DOI: 10.1111/j.1471-4159.2012.07725.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognition. One of the hallmarks of AD is the accumulation of beta-amyloid (Aβ). Although endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress have been implicated in Aβ toxicity, the molecular mechanism(s) of Aβ-induced neurotoxicity are not fully understood. In this study, we present evidence that the glia-derived stress protein metallothionein (MT) attenuates Aβ-induced neurotoxicity by unique mechanisms. MT expression was increased in brain astrocytes of a NSE-APPsw transgenic mouse model of AD. Astrocyte-derived MT protected N2a neuroblastoma cells and primary cortical neurons against Aβ toxicity with concurrent reduction of reactive oxygen species levels. MT reversed Aβ-induced down-regulation of Bcl-2 and survival signaling in neuroblastoma cells. Moreover, MT inhibited Aβ-induced proinflammatory cytokine production from microglia. The neurotoxicity of Aβ-stimulated microglia was significantly attenuated by MT-I. The results indicate that MT released from reactive astrocytes may antagonize Aβ neurotoxicity by direct inhibition of Aβ neurotoxicity and indirect suppression of neurotoxic microglial activation. These findings broaden the understanding of neurotoxic mechanisms of Aβ and the crosstalk between Aβ and MT in AD.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Department of Pharmacology, CMRI, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | |
Collapse
|
26
|
Santos CRA, Martinho A, Quintela T, Gonçalves I. Neuroprotective and neuroregenerative properties of metallothioneins. IUBMB Life 2011; 64:126-35. [DOI: 10.1002/iub.585] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/09/2011] [Indexed: 12/30/2022]
|
27
|
Fernández-Fernández L, Comes G, Bolea I, Valente T, Ruiz J, Murtra P, Ramirez B, Anglés N, Reguant J, Morelló JR, Boada M, Hidalgo J, Escorihuela RM, Unzeta M. LMN diet, rich in polyphenols and polyunsaturated fatty acids, improves mouse cognitive decline associated with aging and Alzheimer's disease. Behav Brain Res 2011; 228:261-71. [PMID: 22119712 DOI: 10.1016/j.bbr.2011.11.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/08/2011] [Accepted: 11/12/2011] [Indexed: 11/29/2022]
Abstract
We examined whether LMN diet, reported to induce neurogenesis in adult mice, was able to antagonize the age-related behavioural impairment and neuropathology in wild type (WT) mice and Tg2576 mice, a mouse model of Alzheimer's disease (AD). Thirteen-month-old mice (once the amyloid (Aβ) plaques were formed) were fed with the LMN diet for 5 months, and in the last 2 months of the regimen they received a battery of behavioural tests. In general, both aging and (to a higher extent) Tg2576 genotype deteriorated sensorimotor reflexes, exploratory behaviour in the hole board, activity (but not anxiety) in the elevated plus-maze, ambulation in the home cage during the dark phase, and spatial learning in the Morris water maze. LMN diet did not affect the detrimental effects observed in sensorimotor reflexes, but clearly reversed the effects of both aging and Tg2576 genotype. This behavioural amelioration was correlated with a 70% increase in cellular proliferation in subventricular zone (SVZ) of the brain, but did not correlate with a decrease of amyloid plaques. In contrast, administration of LMN diet to 10 months old mice (before the plaques are formed) strongly suggested a putative delay in the formation of plaques, as indicated by a decreasing tendency of soluble and fibrillar Aβ levels in hippocampus which correlated with a decrease in Aβ (1-40, 1-42) plasma content. Herein we describe for the first time that LMN diet rich in polyphenols, dry fruits and cocoa, was able to decrease behavioural deterioration caused by aging and Tg2576 genotype and to delay the Aβ plaque formation. These results corroborate the increasing importance of polyphenols as human dietary supplements in amelioration of the cognitive impairment during aging and neurological disorders such as AD.
Collapse
Affiliation(s)
- Laura Fernández-Fernández
- Instituto de Neurociencias, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aras MA, Aizenman E. Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons. Antioxid Redox Signal 2011; 15:2249-63. [PMID: 20849376 PMCID: PMC3166180 DOI: 10.1089/ars.2010.3607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Zn(2+) has emerged as a major regulator of neuronal physiology, as well as an important signaling agent in neural injury. The intracellular concentration of this metal is tightly regulated through the actions of Zn(2+) transporters and the thiol-rich metal binding protein metallothionein, closely linking the redox status of the cell to cellular availability of Zn(2+). Accordingly, oxidative and nitrosative stress during ischemic injury leads to an accumulation of neuronal free Zn(2+) and the activation of several downstream cell death processes. While this Zn(2+) rise is an established signaling event in neuronal cell death, recent evidence suggests that a transient, sublethal accumulation of free Zn(2+) can also play a critical role in neuroprotective pathways activated during ischemic preconditioning. Thus, redox-sensitive proteins, like metallothioneins, may play a critical role in determining neuronal cell fate by regulating the localization and concentration of intracellular free Zn(2+).
Collapse
Affiliation(s)
- Mandar A Aras
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace St., Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
29
|
Grabrucker AM, Schmeisser MJ, Udvardi PT, Arons M, Schoen M, Woodling NS, Andreasson KI, Hof PR, Buxbaum JD, Garner CC, Boeckers TM. Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold. Mol Neurodegener 2011; 6:65. [PMID: 21939532 PMCID: PMC3189132 DOI: 10.1186/1750-1326-6-65] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/22/2011] [Indexed: 01/14/2023] Open
Abstract
Background Memory deficits in Alzheimer's disease (AD) manifest together with the loss of synapses caused by the disruption of the postsynaptic density (PSD), a network of scaffold proteins located in dendritic spines. However, the underlying molecular mechanisms remain elusive. Since it was shown that ProSAP2/Shank3 scaffold assembly within the PSD is Zn2+-dependent and that the amyloid beta protein (Aβ) is able to bind Zn2+, we hypothesize that sequestration of Zn2+ ions by Aβ contributes to ProSAP/Shank platform malformation. Results To test this hypothesis, we designed multiple in vitro and in vivo assays demonstrating ProSAP/Shank dysregulation in rat hippocampal cultures following Aβ oligomer accumulation. These changes were independent from alterations on ProSAP/Shank transcriptional level. However, application of soluble Aβ prevented association of Zn2+ ions with ProSAP2/Shank3 in a cell-based assay and decreased the concentration of Zn2+ clusters within dendrites. Zn2+ supplementation or saturation of Aβ with Zn2+ ions prior to cell treatment was able to counter the effects induced by Aβ on synapse density and ProSAP2/Shank3 levels at the PSD. Interestingly, intracellular Zn2+ levels in APP-PS1 mice and human AD hippocampus are reduced along with a reduction in synapse density and synaptic ProSAP2/Shank3 and Shank1 protein levels. Conclusions We conclude that sequestration of Zn2+ ions by Aβ significantly contributes to changes in ProSAP2/Shank3 platforms. These changes in turn lead to less consolidated (mature) synapses reflected by a decrease in Shank1 protein levels at the PSD and decreased synapse density in hippocampal neurons.
Collapse
Affiliation(s)
- Andreas M Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, Albert Einstein Allee 11, Ulm, 89081, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Michael GJ, Esmailzadeh S, Moran LB, Christian L, Pearce RKB, Graeber MB. Up-regulation of metallothionein gene expression in parkinsonian astrocytes. Neurogenetics 2011; 12:295-305. [PMID: 21800131 DOI: 10.1007/s10048-011-0294-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
The role of glial cells in Parkinson's disease (PD) is unclear. We have previously reported a striking up-regulation of DnaJB6 heat shock protein in PD substantia nigra astrocytes. Whole genome transcriptome analysis also indicated increased expression of metallothionein genes in substantia nigra and cortex of sporadic PD cases. Metallothioneins are metal-binding proteins in the CNS that are released by astrocytes and associated with neuroprotection. Metallothionein expression was investigated in 18 PD cases and 15 non-PD controls using quantitative real-time polymerase chain reaction (qRT-PCR), in situ hybridisation (ISH) and immunocytochemistry (ICC). We observed a strong increase in the expression of metallothioneins MT1E, MT1F, MT1G, MT1H, MT1M, MT1X and MT2A in both PD nigra and frontal cortex. Expression of LRP2 (megalin), the neuronal metallothionein receptor was also significantly increased. qRT-PCR confirmed metallothionein up-regulation. Astrocytes were found to be the main source of metallothioneins 1 and 2 based on ISH results, and this finding was confirmed by ICC. Our findings demonstrate metallothionein expression by reactive astrocytes in PD nigra and support a neuroprotective role for these cells. The traditional view that nigral astrocytes are non-reactive in PD is clearly incorrect. However, it is possible that astrocytes are themselves affected by the disease process which may explain their comparatively modest and previously overlooked response.
Collapse
Affiliation(s)
- Gregory J Michael
- Centre for Neuroscience and Trauma, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London E1 2AT, UK
| | | | | | | | | | | |
Collapse
|
31
|
Metallothionein and brain inflammation. J Biol Inorg Chem 2011; 16:1103-13. [PMID: 21678079 DOI: 10.1007/s00775-011-0802-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Since the seminal discoveries of Bert Vallee regarding zinc and metallothioneins (MTs) more than 50 years ago, thousands of studies have been published concerning this fascinating story. One of the most active areas of research is the involvement of these proteins in the inflammatory response in general, and in neuroinflammation in particular. We describe the general aspects of the inflammatory response, highlighting the essential role of the major cytokine interleukin-6, and review briefly the expression and function of MTs in the central nervous system in the context of neuroinflammation. Particular attention is paid to the Tg2576 Alzheimer disease mouse model and the preliminary results obtained in mice into which human Zn(7)MT-2A was injected, which suggest a reversal of the behavioral deficits while enhancing amyloid plaque load and gliosis.
Collapse
|
32
|
Vašák M, Meloni G. Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 2011; 16:1067-78. [PMID: 21647776 DOI: 10.1007/s00775-011-0799-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal-thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.
Collapse
Affiliation(s)
- Milan Vašák
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
33
|
The native copper- and zinc-binding protein metallothionein blocks copper-mediated Abeta aggregation and toxicity in rat cortical neurons. PLoS One 2010; 5:e12030. [PMID: 20711450 PMCID: PMC2920313 DOI: 10.1371/journal.pone.0012030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 07/15/2010] [Indexed: 11/30/2022] Open
Abstract
Background A major pathological hallmark of AD is the deposition of insoluble extracellular β-amyloid (Aβ) plaques. There are compelling data suggesting that Aβ aggregation is catalysed by reaction with the metals zinc and copper. Methodology/Principal Findings We now report that the major human-expressed metallothionein (MT) subtype, MT-2A, is capable of preventing the in vitro copper-mediated aggregation of Aβ1–40 and Aβ1–42. This action of MT-2A appears to involve a metal-swap between Zn7MT-2A and Cu(II)-Aβ, since neither Cu10MT-2A or carboxymethylated MT-2A blocked Cu(II)-Aβ aggregation. Furthermore, Zn7MT-2A blocked Cu(II)-Aβ induced changes in ionic homeostasis and subsequent neurotoxicity of cultured cortical neurons. Conclusions/Significance These results indicate that MTs of the type represented by MT-2A are capable of protecting against Aβ aggregation and toxicity. Given the recent interest in metal-chelation therapies for AD that remove metal from Aβ leaving a metal-free Aβ that can readily bind metals again, we believe that MT-2A might represent a different therapeutic approach as the metal exchange between MT and Aβ leaves the Aβ in a Zn-bound, relatively inert form.
Collapse
|
34
|
Martinho A, Gonçalves I, Cardoso I, Almeida MR, Quintela T, Saraiva MJ, Santos CRA. Human metallothioneins 2 and 3 differentially affect amyloid-beta binding by transthyretin. FEBS J 2010; 277:3427-36. [PMID: 20646067 DOI: 10.1111/j.1742-4658.2010.07749.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transthyretin (TTR), an amyloid-beta (Abeta) scavenger protein, and metallothioneins 2 and 3 (MT2 and MT3), low molecular weight metal-binding proteins, have recognized impacts in Abeta metabolism. Because TTR binds MT2, an ubiquitous isoform of the MTs, we investigated whether it also interacts with MT3, an isoform of the MTs predominantly expressed in the brain, and studied the role of MT2 and MT3 in human TTR-Abeta binding. The TTR-MT3 interaction was characterized by yeast two-hybrid assays, saturation-binding assays, co-immunolocalization and co-immunoprecipitation. The effect of MT2 and MT3 on TTR-Abeta binding was assessed by competition-binding assays. The results obtained clearly demonstrate that TTR interacts with MT3 with a K(d) of 373.7 +/- 60.2 nm. Competition-binding assays demonstrated that MT2 diminishes TTR-Abeta binding, whereas MT3 has the opposite effect. In addition to identifying a novel ligand for TTR that improves human TTR-Abeta binding, the present study highlights the need to clarify whether the effects of MT2 and MT3 in human TTR-Abeta binding observed in vitro have a relevant impact on Abeta deposition in animal models of Alzheimer's disease.
Collapse
Affiliation(s)
- Ana Martinho
- Health Sciences Research Centre, CICS, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | | | | | |
Collapse
|
35
|
Wirths O, Breyhan H, Marcello A, Cotel MC, Brück W, Bayer TA. Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer's disease. Neurobiol Aging 2010; 31:747-57. [DOI: 10.1016/j.neurobiolaging.2008.06.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 06/20/2008] [Accepted: 06/20/2008] [Indexed: 12/16/2022]
|
36
|
Pountney DL, Dickson TC, Power JHT, Vickers JC, West AJ, Gai WP. Association of Metallothionein-III with Oligodendroglial Cytoplasmic Inclusions in Multiple System Atrophy. Neurotox Res 2009; 19:115-22. [DOI: 10.1007/s12640-009-9146-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 01/04/2023]
|
37
|
Kim HG, Hwang YP, Han EH, Choi CY, Yeo CY, Kim JY, Lee KY, Jeong HG. Metallothionein-III provides neuronal protection through activation of nuclear factor-kappaB via the TrkA/phosphatidylinositol-3 kinase/Akt signaling pathway. Toxicol Sci 2009; 112:435-49. [PMID: 19767621 DOI: 10.1093/toxsci/kfp230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metallothionein (MT)-III is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. The present study investigated the mechanisms of MT-III protection of neuronal cells from hypoxia or DNA damage-induced cell death. MT-III reduced the hydrogen peroxide- or DNA damage-induced effects on neuronal cells, including the cell death, the activation of caspase-3 and -9, and the release of mitochondrial cytochrome c to the cytoplasm in a dose-dependent manner. MT-III also increased the activation of Akt, the phosphorylation and degradation of IkappaB, the nuclear translocation/accumulation and the transcriptional activity of nuclear factor-kappaB (NF-kappaB) in neuronal cells in a dose-dependent manner. The MT-III-induced antiapoptotic effects and increase in NF-kappaB activity were blocked by specific inhibitors of TrkA, phosphatidylinositol-3 kinase (PI3K), Akt, or NF-kappaB, indicating that MT-III provides neuronal protection by activating NF-kappaB through the TrkA/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hyung Gyun Kim
- Department of Pharmacy and Research Center for Proteineous Materials, College of Pharmacy, Chosun University, Gwangju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Buico A, Cassino C, Dondero F, Vergani L, Osella D. Radical scavenging abilities of fish MT-A and mussel MT-10 metallothionein isoforms: An ESR study. J Inorg Biochem 2008; 102:921-7. [DOI: 10.1016/j.jinorgbio.2007.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/02/2007] [Accepted: 12/16/2007] [Indexed: 01/08/2023]
|
39
|
Metallothionein in the central nervous system: Roles in protection, regeneration and cognition. Neurotoxicology 2008; 29:489-503. [PMID: 18313142 DOI: 10.1016/j.neuro.2007.12.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/22/2007] [Indexed: 12/23/2022]
Abstract
Metallothionein (MT) is an enigmatic protein, and its physiological role remains a matter of intense study and debate 50 years after its discovery. This is particularly true of its function in the central nervous system (CNS), where the challenge remains to link its known biochemical properties of metal binding and free radical scavenging to the intricate workings of brain. In this compilation of four reports, first delivered at the 11th International Neurotoxicology Association (INA-11) Meeting, June 2007, the authors present the work of their laboratories, each of which gives an important insight into the actions of MT in the brain. What emerges is that MT has the potential to contribute to a variety of processes, including neuroprotection, regeneration, and even cognitive functions. In this article, the properties and CNS expression of MT are briefly reviewed before Dr Hidalgo describes his pioneering work using transgenic models of MT expression to demonstrate how this protein plays a major role in the defence of the CNS against neurodegenerative disorders and other CNS injuries. His group's work leads to two further questions, what are the mechanisms at the cellular level by which MT acts, and does this protein influence higher order issues of architecture and cognition? These topics are addressed in the second and third sections of this review by Dr West, and Dr Levin and Dr Eddins, respectively. Finally, Dr Aschner examines the ability of MT to protect against a specific toxicant, methylmercury, in the CNS.
Collapse
|
40
|
Vergani L, Grattarola M, Grasselli E, Dondero F, Viarengo A. Molecular characterization and function analysis of MT-10 and MT-20 metallothionein isoforms from Mytilus galloprovincialis. Arch Biochem Biophys 2007; 465:247-53. [PMID: 17601485 DOI: 10.1016/j.abb.2007.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/15/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Structure and function of molluscan metallothioneins (MTs) are still poorly understood. The sea mussel Mytilus galloprovincialis displays two MT isoforms which differ in both primary sequences and physiological functions. MT-10 is the constitutive isoform, whereas MT-20 is mainly induced by cadmium (Cd). Both MTs were produced as recombinant proteins and showed identical Cd content and similar Cd-binding properties. Conversely, circular dichroism disclosed marked differences in the secondary conformations of the two Cd(7)-MTs. The possible relapses of these structural differences on protein stability and function were assessed. MT-10 presented a higher thermal stability and a more compact structure than MT-20, as it was inferred by absorption and emission spectroscopy studies. Moreover, the kinetics of Cd-release clearly indicated that MT-10 is much more sensitive to oxidation than is MT-20. The observed differences between MT-10 and MT-20 are discussed in terms of the different physiological roles exerted by the two isoforms in mussel.
Collapse
Affiliation(s)
- Laura Vergani
- Department of Biology, University of Genova, Genova, Corso Europa 26, 16132 Genova, Italy.
| | | | | | | | | |
Collapse
|