1
|
Thouaye M, Yalcin I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol Ther 2023; 251:108546. [PMID: 37832728 DOI: 10.1016/j.pharmthera.2023.108546] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/07/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Neuropathic pain, caused by a lesion or disease affecting the somatosensory system, affects between 3 and 17% of the general population. The treatment of neuropathic pain is challenging due to its heterogeneous etiologies, lack of objective diagnostic tools and resistance to classical analgesic drugs. First-line treatments recommended by the Special Interest Group on Neuropathic Pain (NeuPSIG) and European Federation of Neurological Societies (EFNS) include gabapentinoids, tricyclic antidepressants (TCAs) and selective serotonin noradrenaline reuptake inhibitors (SNRIs). Nevertheless these treatments have modest efficacy or dose limiting side effects. There is therefore a growing number of preclinical and clinical studies aim at developing new treatment strategies to treat neuropathic pain with better efficacy, selectivity, and less side effects. In this review, after a brief description of the mechanisms of action, efficacy, and limitations of current therapeutic drugs, we reviewed new preclinical and clinical targets currently under investigation, as well as promising non-pharmacological alternatives and their potential co-use with pharmacological treatments.
Collapse
Affiliation(s)
- Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Liu X, Cui C, Sun W, Meng J, Guo J, Wu L, Chen B, Liao D, Jiang P. Paclitaxel Induces Neurotoxicity by Disrupting Tricarboxylic Acid Cycle Metabolic Balance in the Mouse Hippocampus. J Toxicol 2023; 2023:5660481. [PMID: 37575636 PMCID: PMC10423086 DOI: 10.1155/2023/5660481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Objective It is well known that paclitaxel (PTX)-induced neurotoxicity seriously affects the quality of life of patients and is the main reason for reducing the dose of chemotherapy or even stopping chemotherapy. The current data are limited, and further information is required for practice and verification. The aims of this study were to clarify the molecular mechanism underlying PTX-induced neurotoxicity by combining in vivo and in vitro metabolomics studies and provide new targets for the prevention and treatment of PTX-induced neurotoxicity. Methods In the in vivo study, a PTX-induced neurotoxicity mouse model was established by intraperitoneal injection of PTX (6 mg/kg every three days) for two consecutive weeks. After verification by water maze tests and HE staining of pathological sections, hippocampal metabolites were measured and the differential metabolites and related metabolic pathways were identified by multivariate statistical analysis. In the in vitro study, we investigated the effects of PTX on mouse hippocampal neuron cells, assessing the concentration and time of administration by MTT assays. After modeling, the relevant metabolites in the TCA cycle were quantified by targeted metabolomics using stable isotope labeling. Finally, the key enzymes of the TCA cycle in tissues and cells were verified by RT-PCR. Results Administration of PTX to model mice resulted in neurological damage, shown by both water-maze tests and hippocampal tissue sections. Twenty-four metabolites and five associated metabolic pathways were found to differ significantly between the hippocampal tissues of the model and control groups. These included metabolites and pathways related to the TCA cycle and pyruvate metabolism. Metabolomics analysis using stable isotope labeling showed significant changes in metabolites associated with the TCA cycle compared with the control group (P < 0.05). Finally, RT-PCR verified that the expression of key enzymes in the TCA cycle was changed to different degrees in both hippocampal tissues and cells. Conclusion Our results showed that PTX neurotoxicity in hippocampal tissue and neuron cells was associated with inhibition of the TCA cycle. This inhibition leads to brain insufficiency and impaired metabolism, resulting in various neurotoxic symptoms.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pharmacy, Linfen People's Hospital, Linfen, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Jinxiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Linlin Wu
- Department of Oncology, Tengzhou Central People's Hospital, Affiliated to Jining Medical College, Tengzhou, China
| | - Beibei Chen
- ADFA School of Science, University of New South Wales, Canberra, Australia
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| |
Collapse
|
4
|
Pușcașu C, Ungurianu A, Șeremet OC, Andrei C, Mihai DP, Negreș S. The Influence of Sildenafil-Metformin Combination on Hyperalgesia and Biochemical Markers in Diabetic Neuropathy in Mice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1375. [PMID: 37629665 PMCID: PMC10456948 DOI: 10.3390/medicina59081375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Background and objectives: Worldwide, approximately 500 million people suffer from diabetes and at least 50% of these people develop neuropathy. Currently, therapeutic strategies for reducing diabetic neuropathy (DN)-associated pain are limited and have several side effects. The purpose of the study was to evaluate the antihyperalgesic action of different sildenafil (phosphodiesterase-5 inhibitor) and metformin (antihyperglycemic agent) combinations in alloxan-induced DN. Methods: The study included 100 diabetic mice and 20 non-diabetic mice that were subjected to hot and cold stimulus tests. Furthermore, we determined the influence of this combination on TNF-α, IL-6 and nitrites levels in brain and liver tissues. Results: In both the hot-plate and tail withdrawal test, all sildenafil-metformin combinations administered in our study showed a significant increase in pain reaction latencies when compared to the diabetic control group. Furthermore, all combinations decreased blood glucose levels due to the hypoglycemic effect of metformin. Additionally, changes in nitrite levels and pro-inflammatory cytokines (TNF-α and IL-6) were observed after 14 days of treatment with different sildenafil-metformin combinations. Conclusions: The combination of these two substances increased the pain reaction latency of diabetic animals in a dose-dependent manner. Moreover, all sildenafil-metformin combinations significantly reduced the concentration of nitrites in the brain and liver, which are final products formed under the action of iNOS.
Collapse
Affiliation(s)
| | | | - Oana Cristina Șeremet
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | | | | | | |
Collapse
|
5
|
Widerström-Noga E. Neuropathic Pain and Spinal Cord Injury: Management, Phenotypes, and Biomarkers. Drugs 2023:10.1007/s40265-023-01903-7. [PMID: 37326804 DOI: 10.1007/s40265-023-01903-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Chronic neuropathic pain after a spinal cord injury (SCI) continues to be a complex condition that is difficult to manage due to multiple underlying pathophysiological mechanisms and the association with psychosocial factors. Determining the individual contribution of each of these factors is currently not a realistic goal; however, focusing on the primary mechanisms may be more feasible. One approach used to uncover underlying mechanisms includes phenotyping using pain symptoms and somatosensory function. However, this approach does not consider cognitive and psychosocial mechanisms that may also significantly contribute to the pain experience and impact treatment outcomes. Indeed, clinical experience supports that a combination of self-management, non-pharmacological, and pharmacological approaches is needed to optimally manage pain in this population. This article will provide a broad updated summary integrating the clinical aspects of SCI-related neuropathic pain, potential pain mechanisms, evidence-based treatment recommendations, neuropathic pain phenotypes and brain biomarkers, psychosocial factors, and progress regarding how defining neuropathic pain phenotypes and other surrogate measures in the neuropathic pain field may lead to targeted treatments for neuropathic pain after SCI.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, 1611 NW 12th Avenue, Miami, FL, 33136, USA.
- Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Lückemeyer DD, Prudente AS, de Amorim Ferreira M, da Silva AM, Tonello R, Junior SJM, do Prado CSH, de Castro Júnior CJ, Gomez MV, Calixto JB, Ferreira J. Critical Pronociceptive Role of Family 2 Voltage-Gated Calcium Channels in a Novel Mouse Model of HIV-Associated Sensory Neuropathy. Mol Neurobiol 2023; 60:2954-2968. [PMID: 36754911 DOI: 10.1007/s12035-023-03244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Some people living with HIV present painful sensory neuropathy (HIV-SN) that is pharmacoresistant, sex-associated, and a major source of morbidity. Since the specific mechanisms underlying HIV-SN are not well understood, the aim of our study was to characterize a novel model of painful HIV-SN by combining the HIV-1 gp120 protein and the antiretroviral stavudine (d4T) in mice and to investigate the pronociceptive role of the family 2 voltage-gated calcium channel (VGCC) α1 subunit (Cav2.X channels) in such a model. HIV-SN was induced in male and female C57BL/6 mice by administration of gp120 and/or d4T and detected by a battery of behavior tests and by immunohistochemistry. The role of Cav2.X channels was assessed by the treatment with selective blockers and agonists as well as by mRNA detection. Repeated administration with gp120 and/or d4T produced long-lasting touch-evoked painful-like behaviors (starting at 6 days, reaching a maximum on day 13, and lasting up to 28 days after treatment started), with a greater intensity in female mice treated with the combination of gp120 + d4T. Moreover, gp120 + d4T treatment reduced the intraepidermal nerve fibers and well-being of female mice, without altering other behaviors. Mechanistically, gp120 + d4T treatment induced Cav2.1, 2.2, and 2.3 transcriptional increases in the dorsal root ganglion and the Cav2.X agonist-induced nociception. Accordingly, intrathecal selective Cav2.2 blockade presented longer and better efficacy in reversing the hyperalgesia induced by gp120 + d4T treatment compared with Cav2.1 or Cav2.3, but also presented the worst safety (inducing side effects at effective doses). We conclude that the family 2 calcium channels (Cav2.X) exert a critical pronociceptive role in a novel mouse model of HIV-SN.
Collapse
Affiliation(s)
- Debora Denardin Lückemeyer
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Arthur Silveira Prudente
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marcella de Amorim Ferreira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Merian da Silva
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Raquel Tonello
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sérgio José Macedo Junior
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Centro de Inovação E Ensaios Pré-Clínicos, Florianópolis, SC, Brazil
| | | | | | - Marcus Vinicius Gomez
- Instituto de Educação E Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Juliano Ferreira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Haroun R, Wood JN, Sikandar S. Mechanisms of cancer pain. FRONTIERS IN PAIN RESEARCH 2023; 3:1030899. [PMID: 36688083 PMCID: PMC9845956 DOI: 10.3389/fpain.2022.1030899] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
Personalised and targeted interventions have revolutionised cancer treatment and dramatically improved survival rates in recent decades. Nonetheless, effective pain management remains a problem for patients diagnosed with cancer, who continue to suffer from the painful side effects of cancer itself, as well as treatments for the disease. This problem of cancer pain will continue to grow with an ageing population and the rapid advent of more effective therapeutics to treat the disease. Current pain management guidelines from the World Health Organisation are generalised for different pain severities, but fail to address the heterogeneity of mechanisms in patients with varying cancer types, stages of disease and treatment plans. Pain is the most common complaint leading to emergency unit visits by patients with cancer and over one-third of patients that have been diagnosed with cancer will experience under-treated pain. This review summarises preclinical models of cancer pain states, with a particular focus on cancer-induced bone pain and chemotherapy-associated pain. We provide an overview of how preclinical models can recapitulate aspects of pain and sensory dysfunction that is observed in patients with persistent cancer-induced bone pain or neuropathic pain following chemotherapy. Peripheral and central nervous system mechanisms of cancer pain are discussed, along with key cellular and molecular mediators that have been highlighted in animal models of cancer pain. These include interactions between neuronal cells, cancer cells and non-neuronal cells in the tumour microenvironment. Therapeutic targets beyond opioid-based management are reviewed for the treatment of cancer pain.
Collapse
Affiliation(s)
- Rayan Haroun
- Division of Medicine, Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- Division of Medicine, Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Klazas M, Naamneh MS, Zheng W, Lazarovici P. Gabapentin Increases Intra-Epidermal and Peptidergic Nerve Fibers Density and Alleviates Allodynia and Thermal Hyperalgesia in a Mouse Model of Acute Taxol-Induced Peripheral Neuropathy. Biomedicines 2022; 10:biomedicines10123190. [PMID: 36551946 PMCID: PMC9775678 DOI: 10.3390/biomedicines10123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The clinical pathology of Taxol-induced peripheral neuropathy (TIPN), characterized by loss of sensory sensitivity and pain, is mirrored in a preclinical pharmacological mice model in which Gabapentin, produced anti-thermal hyperalgesia and anti-allodynia effects. The study aimed to investigate the hypothesis that gabapentin may protect against Taxol-induced neuropathic pain in association with an effect on intra-epidermal nerve fibers density in the TIPN mice model. A TIPN study schedule was induced in mice by daily injection of Taxol during the first week of the experiment. Gabapentin therapy was performed during the 2nd and 3rd weeks. The neuropathic pain was evaluated during the whole experiment by the Von Frey, tail flick, and hot plate tests. Intra-epidermal nerve fibers (IENF) density in skin biopsies was measured at the end of the experiment by immunohistochemistry of ubiquitin carboxyl-terminal hydrolase PGP9.5 pan-neuronal and calcitonin gene-related (CGRP) peptides-I/II- peptidergic markers. Taxol-induced neuropathy was expressed by 80% and 73% reduction in the paw density of IENFs and CGPR, and gabapentin treatment corrected by 83% and 46% this reduction, respectively. Gabapentin-induced increase in the IENF and CGRP nerve fibers density, thus proposing these evaluations as an additional objective end-point tool in TIPN model studies using gabapentin as a reference compound.
Collapse
Affiliation(s)
- Michal Klazas
- Pharmacy Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Majdi Saleem Naamneh
- Pharmacology Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Philip Lazarovici
- Pharmacology Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
- Correspondence: ; Tel.: +972-2-6758729; Fax: +972-2-6757490
| |
Collapse
|
9
|
Velasco-González R, Coffeen U. Neurophysiopathological Aspects of Paclitaxel-induced Peripheral Neuropathy. Neurotox Res 2022; 40:1673-1689. [PMID: 36169871 DOI: 10.1007/s12640-022-00582-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
Chemotherapy is widely used as a primary treatment or adjuvant therapy for cancer. Anti-microtubule agents (such as paclitaxel and docetaxel) are used for treating many types of cancer, either alone or in combination. However, their use has negative consequences that restrict the treatment's ability to continue. The principal negative effect is the so-called chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a complex ailment that depends on diversity in the mechanisms of action of the different chemotherapy drugs, which are not fully understood. In this paper, we review several neurophysiological and pathological characteristics, such as morphological changes, changes in ion channels, mitochondria and oxidative stress, cell death, changes in the immune response, and synaptic control, as well as the characteristics of neuropathic pain produced by paclitaxel.
Collapse
Affiliation(s)
- Roberto Velasco-González
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.,Maestría en Ciencias Biológicas, UNAM, Ciudad de México, México
| | - Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.
| |
Collapse
|
10
|
Zhou YP, Sun Y, Takahashi K, Belov V, Andrews N, Woolf CJ, Brugarolas P. Development of a PET radioligand for α2δ-1 subunit of calcium channels for imaging neuropathic pain. Eur J Med Chem 2022; 242:114688. [PMID: 36031695 PMCID: PMC9623503 DOI: 10.1016/j.ejmech.2022.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
Neuropathic pain affects 7-10% of the adult population. Being able to accurately monitor biological changes underlying neuropathic pain will improve our understanding of neuropathic pain mechanisms and facilitate the development of novel therapeutics. Positron emission tomography (PET) is a noninvasive molecular imaging technique that can provide quantitative information of biochemical changes at the whole-body level by using radiolabeled ligands. One important biological change underlying the development of neuropathic pain is the overexpression of α2δ-1 subunit of voltage-dependent calcium channels (the target of gabapentin). Thus, we hypothesized that a radiolabeled form of gabapentin may allow imaging changes in α2δ-1 for monitoring the underlying pathophysiology of neuropathic pain. Here, we report the development of two 18F-labeled derivatives of gabapentin (trans-4-[18F]fluorogabapentin and cis-4-[18F]fluorogabapentin) and their evaluation in healthy rats and a rat model of neuropathic pain (spinal nerve ligation model). Both isomers were found to selectively bind to the α2δ-1 receptor with trans-4-[18F]fluorogabapentin having higher affinity. Both tracers displayed around 1.5- to 2-fold increased uptake in injured nerves over the contralateral uninjured nerves when measured by gamma counting ex vivo. Although the small size of the nerves and the signal from surrounding muscle prevented visualizing these changes using PET, this work demonstrates that fluorinated derivatives of gabapentin retain binding to α2δ-1 and that their radiolabeled forms can be used to detect pathological changes in vitro and ex vivo. Furthermore, this work confirms that α2δ-1 is a promising target for imaging specific features of neuropathic pain.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Sun
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kazue Takahashi
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vasily Belov
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nick Andrews
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Tay N, Laakso EL, Schweitzer D, Endersby R, Vetter I, Starobova H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front Mol Biosci 2022; 9:1015746. [PMID: 36310587 PMCID: PMC9614173 DOI: 10.3389/fmolb.2022.1015746] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Brain cancer and leukemia are the most common cancers diagnosed in the pediatric population and are often treated with lifesaving chemotherapy. However, chemotherapy causes severe adverse effects and chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting and debilitating side effect. CIPN can greatly impair quality of life and increases morbidity of pediatric patients with cancer, with the accompanying symptoms frequently remaining underdiagnosed. Little is known about the incidence of CIPN, its impact on the pediatric population, and the underlying pathophysiological mechanisms, as most existing information stems from studies in animal models or adult cancer patients. Herein, we aim to provide an understanding of CIPN in the pediatric population and focus on the 6 main substance groups that frequently cause CIPN, namely the vinca alkaloids (vincristine), platinum-based antineoplastics (cisplatin, carboplatin and oxaliplatin), taxanes (paclitaxel and docetaxel), epothilones (ixabepilone), proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). We discuss the clinical manifestations, assessments and diagnostic tools, as well as risk factors, pathophysiological processes and current pharmacological and non-pharmacological approaches for the prevention and treatment of CIPN.
Collapse
Affiliation(s)
- Nicolette Tay
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - E-Liisa Laakso
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Daniel Schweitzer
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Raelene Endersby
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Hana Starobova,
| |
Collapse
|
12
|
7-Chloro-4-(Phenylselanyl) Quinoline Is a Novel Multitarget Therapy to Combat Peripheral Neuropathy and Comorbidities Induced by Paclitaxel in Mice. Mol Neurobiol 2022; 59:6567-6589. [DOI: 10.1007/s12035-022-02991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
13
|
Illias AM, Yu KJ, Hwang SH, Solis J, Zhang H, Velasquez JF, Cata JP, Dougherty PM. Dorsal root ganglion toll-like receptor 4 signaling contributes to oxaliplatin-induced peripheral neuropathy. Pain 2022; 163:923-935. [PMID: 34490849 DOI: 10.1097/j.pain.0000000000002454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Activation of toll-like receptor 4 (TLR4) in the dorsal root ganglion (DRG) and spinal cord contributes to the generation of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Generalizability of TLR4 signaling in oxaliplatin-induced CIPN was tested here. Mechanical hypersensitivity developed in male SD rats by day 1 after oxaliplatin treatment, reached maximum intensity by day 14, and persisted through day 35. Western blot revealed an increase in TLR4 expression in the DRG of oxaliplatin at days 1 and 7 after oxaliplatin treatment. Cotreatment of rats with the TLR4 antagonist lipopolysaccharide derived from Rhodobacter sphaeroides ultrapure or with the nonspecific immunosuppressive minocycline with oxaliplatin resulted in significantly attenuated hyperalgesia on day 7 and 14 compared with rats that received oxaliplatin plus saline vehicle. Immunostaining of DRGs revealed an increase in the number of neurons expressing TLR4, its canonical downstream signal molecules myeloid differentiation primary response gene 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β, at both day 7 and day 14 after oxaliplatin treatment. These increases were blocked by cotreatment with either lipopolysaccharide derived from Rhodobacter sphaeroides or minocycline. Double staining showed the localization of TLR4, MyD88, and TIR-domain-containing adapter-inducing interferon-β in subsets of DRG neurons. Finally, there was no significant difference in oxaliplatin-induced mechanical hypersensitivity between male and female rats when observed for 2 weeks. Furthermore, upregulation of TLR4 was detected in both sexes when tested 14 days after treatment with oxaliplatin. These findings suggest that the activation of TLR4 signaling in DRG neurons is a common mechanism in CIPN induced by multiple cancer chemotherapy agents.
Collapse
Affiliation(s)
- Amina M Illias
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Jie Yu
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Seon-Hee Hwang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jacob Solis
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Hongmei Zhang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jose F Velasquez
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Patrick M Dougherty
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Sugimoto M, Takagi T, Suzuki R, Konno N, Asama H, Sato Y, Irie H, Okubo Y, Nakamura J, Takasumi M, Hashimoto M, Kato T, Kobashi R, Hikichi T, Ohira H. Drug treatment for chemotherapy-induced peripheral neuropathy in patients with pancreatic cancer. Fukushima J Med Sci 2022; 68:1-10. [PMID: 35197393 PMCID: PMC9071352 DOI: 10.5387/fms.2021-32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal disease where most tumors are too advanced at diagnosis for resection, leaving chemotherapy as the mainstay of treatment. Although the prognosis of unresectable PC is poor, it has been dramatically improved by new chemotherapy treatments, such as the combination of 5-fluorouracil, oxaliplatin, irinotecan, and leucovorin (FOLFIRINOX) or gemcitabine plus nab-paclitaxel. However, as oxaliplatin and paclitaxel are common neurotoxic drugs, chemotherapy-induced peripheral neuropathy (CIPN) is a common and severe adverse effect of both treatments. As there are no agents recommended in the ASCO guidelines, we review the methods used to treat CIPN caused by PC treatment. The efficacy of duloxetine was observed in a large randomized controlled trial (RCT). In addition, pregabalin was more effective than duloxetine for CIPN in two RCTs. Although duloxetine and pregabalin can be effective for CIPN, they have several side effects. Therefore, the choice between the two drugs should be determined according to effect and tolerability. Mirogabalin is also used in patients with PC and there is hope it will yield positive outcomes when treating CIPN in the future.
Collapse
Affiliation(s)
- Mitsuru Sugimoto
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Tadayuki Takagi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Rei Suzuki
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Naoki Konno
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Hiroyuki Asama
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Yuki Sato
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Hiroki Irie
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Yoshinori Okubo
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
- Department of Endoscopy, Fukushima Medical University Hospital
| | - Jun Nakamura
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
- Department of Endoscopy, Fukushima Medical University Hospital
| | - Mika Takasumi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Minami Hashimoto
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
- Department of Endoscopy, Fukushima Medical University Hospital
| | - Tsunetaka Kato
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
- Department of Endoscopy, Fukushima Medical University Hospital
| | - Ryoichiro Kobashi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| | - Takuto Hikichi
- Department of Endoscopy, Fukushima Medical University Hospital
| | - Hiromasa Ohira
- Department of Gastroenterology, School of Medicine, Fukushima Medical University
| |
Collapse
|
15
|
Strath LJ, Sorge RE. Racial Differences in Pain, Nutrition, and Oxidative Stress. Pain Ther 2022; 11:37-56. [PMID: 35106711 PMCID: PMC8861224 DOI: 10.1007/s40122-022-00359-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Investigating the disproportionate rates of chronic pain and their related comorbidities between Black and non-Hispanic White (White) individuals is a growing area of interest, both in the healthcare community and in general society. Researchers have identified racial differences in chronic pain prevalence and severity, but still very little is known about the mechanisms underlying them. Current explanations for these differences have primarily focused on socioeconomic status and unequal healthcare between races as causal factors. Whereas these factors are informative, a racial gap still exists between Black and White individuals when these factors are controlled for. One potential cause of this racial gap in chronic pain is the differences in nutrition and dietary intake between groups. Certain foods play a key role in the inflammatory and oxidative stress pathways in the human body and could potentially influence the severity of the pain experience. Here, we review the previous literature on the surrounding topics and propose a potential mechanism to explain racial differences in the chronic pain population, based on established racial differences in diet and oxidative stress.
Collapse
Affiliation(s)
- Larissa J Strath
- Department of Psychology, The University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Robert E Sorge
- Department of Psychology, The University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
16
|
Dahn ML, Walsh HR, Dean CA, Giacomantonio MA, Fernando W, Murphy JP, Walker OL, Wasson MCD, Gujar S, Pinto DM, Marcato P. Metabolite profiling reveals a connection between aldehyde dehydrogenase 1A3 and GABA metabolism in breast cancer metastasis. Metabolomics 2022; 18:9. [PMID: 34989902 PMCID: PMC8739322 DOI: 10.1007/s11306-021-01864-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Aldehyde dehydrogenase 1A3 (ALDH1A3) is a cancer stem cell (CSC) marker and in breast cancer it is associated with triple-negative/basal-like subtypes and aggressive disease. Studies on the mechanisms of ALDH1A3 in cancer have primarily focused on gene expression changes induced by the enzyme; however, its effects on metabolism have thus far been unstudied and may reveal novel mechanisms of pathogenesis. OBJECTIVE Determine how ALDH1A3 alters the metabolite profile in breast cancer cells and assess potential impacts. METHOD Triple-negative MDA-MB-231 tumors and cells with manipulated ALDH1A3 levels were assessed by HPLC-MS metabolomics and metabolite data was integrated with transcriptome data. Mice harboring MDA-MB-231 tumors with or without altered ALDH1A3 expression were treated with γ-aminobutyric acid (GABA) or placebo. Effects on tumor growth, and lungs and brain metastasis were quantified by staining of fixed thin sections and quantitative PCR. Breast cancer patient datasets from TCGA, METABRIC and GEO were used to assess the co-expression of GABA pathway genes with ALDH1A3. RESULTS Integrated metabolomic and transcriptome data identified GABA metabolism as a primary dysregulated pathway in ALDH1A3 expressing breast tumors. Both ALDH1A3 and GABA treatment enhanced metastasis. Patient dataset analyses revealed expression association between ALDH1A3 and GABA pathway genes and corresponding increased risk of metastasis. CONCLUSION This study revealed a novel pathway affected by ALDH1A3, GABA metabolism. Like ALDH1A3 expression, GABA treatment promotes metastasis. Given the clinical use of GABA mimics to relieve chemotherapy-induced peripheral nerve pain, further study of the effects of GABA in breast cancer progression is warranted.
Collapse
Affiliation(s)
- Margaret L Dahn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Hayley R Walsh
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Cheryl A Dean
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | | | - J Patrick Murphy
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Olivia L Walker
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Devanand M Pinto
- Human Health Therapeutics Research Centre, National Research Council of Canada, Halifax, NS, Canada
| | - Paola Marcato
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
- Department of Pathology, Dalhousie University, Rm 11C1, 5850 College Street, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
17
|
Sugimoto M, Takagi T, Suzuki R, Konno N, Asama H, Sato Y, Irie H, Okubo Y, Nakamura J, Takasumi M, Hashimoto M, Kato T, Kobashi R, Hikichi T, Ohira H. Mirogabalin vs pregabalin for chemotherapy-induced peripheral neuropathy in pancreatic cancer patients. BMC Cancer 2021; 21:1319. [PMID: 34886831 PMCID: PMC8656082 DOI: 10.1186/s12885-021-09069-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background The prognosis of pancreatic cancer (PC) has been improved by new chemotherapy regimens (combination of 5-fluorouracil, oxaliplatin, irinotecan, and leucovorin (FOLFIRINOX) or gemcitabine plus nab-paclitaxel (GnP)). Unfortunately, chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse event of these two regimens. The efficacy of pregabalin for CIPN has been reported in previous studies. However, the efficacy of mirogabalin for CIPN remains unknown. Thus, in this study, we aimed to clarify which drug (mirogabalin or pregabalin) was more valuable for improving CIPN. Methods A total of 163 PC patients who underwent FOLFIRINOX or GnP between May 2014 and January 2021 were enrolled. Among them, 34 patients were diagnosed with CIPN. Thirteen patients were treated with mirogabalin (mirogabalin group), and twenty-one patients were treated with pregabalin (pregabalin group). Treatment efficacy was compared between the two groups. Results In both the mirogabalin group and the pregabalin group, the grade of patients with CIPN at 2, 4, and 6 weeks after the initiation of treatment showed significant improvement compared to the pretreatment grade. Notably, the rate of CIPN improvement was higher in the mirogabalin group than in the pregabalin group (2 weeks: 84.6% (11/13) vs 33.3% (7/21), P value = 0.005; 4 weeks, 6 weeks: 92.3% (12/13) vs 33.3% (7/21), P value = 0.001). Conclusions Although both mirogabalin and pregabalin were effective at improving CIPN, mirogabalin might be a suitable first choice for CIPN in PC patients. Trial registration Not applicable
Collapse
Affiliation(s)
- Mitsuru Sugimoto
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Tadayuki Takagi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Rei Suzuki
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Naoki Konno
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Asama
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yuki Sato
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroki Irie
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshinori Okubo
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Jun Nakamura
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Mika Takasumi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Minami Hashimoto
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Tsunetaka Kato
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Ryoichiro Kobashi
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takuto Hikichi
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
18
|
Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021; 60:1369-1382. [PMID: 34313190 DOI: 10.1080/0284186x.2021.1954241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Paclitaxel is a taxane-based chemotherapeutic agent used as a treatment in breast cancer. There is no effective prevention or treatment strategy for the most common side effect of peripheral neuropathy. In this manuscript, we reviewed the molecular mechanisms that contribute to paclitaxel-induced peripheral neuropathy (PIPN) with an emphasis on immune-related processes. METHODS A systematic search of the literature was conducted in PubMed, EMBASE and Cochrane Library. The SYRCLE's risk of bias tool was used to assess internal validity. RESULTS 156 studies conducted with rodent models were included. The risk of bias was high due to unclear methodology. Paclitaxel induces changes in myelinated axons, mitochondrial dysfunction, and mechanical hypersensitivity by affecting ion channels expression and function and facilitating spinal transmission. Paclitaxel-induced inflammatory responses are important contributors to PIPN. CONCLUSION Immune-related processes are an important mechanism contributing to PIPN. Studies in humans that validate these mechanistic data are highly needed to facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia J. C. Vermeer
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurence Cleenewerk
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Hore ZL, Villa-Hernandez S, Denk F. Probing the peripheral immune response in mouse models of oxaliplatin-induced peripheral neuropathy highlights their limited translatability. Wellcome Open Res 2021; 6:68. [PMID: 34250264 PMCID: PMC8243229 DOI: 10.12688/wellcomeopenres.16635.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of various chemotherapeutic agents, including oxaliplatin. It is highly prevalent amongst cancer patients, causing sensory abnormalities and pain. Unfortunately, as the underlying mechanisms remain poorly understood, effective therapeutics are lacking. Neuro-immune interactions have been highlighted as potential contributors to the development and maintenance of CIPN, however, whether this is the case in oxaliplatin-induced peripheral neuropathy (OIPN) is yet to be fully established. Methods: In this study we used flow cytometry to examine the peripheral immune response of male C57BL/6 mice following both single and repeated oxaliplatin administration. In animals exposed to repeated dosing, we also undertook mechanical and thermal behavioural assays to investigate how oxaliplatin alters phenotype, and conducted RT-qPCR experiments on bone marrow derived macrophages in order to further inspect the effects of oxaliplatin on immune cells. Results: In contrast to other reports, we failed to observe substantial changes in overall leukocyte, lymphocyte or myeloid cell numbers in dorsal root ganglia, sciatic nerves or inguinal lymph nodes. We did however note subtle, tissue-dependant alterations in several myeloid subpopulations following repeated dosing. These included a significant reduction in MHCII antigen presenting cells in the sciatic nerve and an increase in infiltrating cell types into the inguinal lymph nodes. Though repeated oxaliplatin administration had a systemic effect, we were unable to detect a pain-like behavioural phenotype in response to either cold or mechanical stimuli. Consequently, we cannot comment on whether the observed myeloid changes are associated with OIPN. Conclusions: Our discussion puts these results into the wider context of the field, advocating for greater transparency in reporting, alignment in experimental design and the introduction of more clinically relevant models. Only through joint concerted effort can we hope to increase our understanding of the underlying mechanisms of CIPN, including any immune contributions.
Collapse
Affiliation(s)
- Zoe Lee Hore
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Sara Villa-Hernandez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| |
Collapse
|
20
|
Omran M, Belcher EK, Mohile NA, Kesler SR, Janelsins MC, Hohmann AG, Kleckner IR. Review of the Role of the Brain in Chemotherapy-Induced Peripheral Neuropathy. Front Mol Biosci 2021; 8:693133. [PMID: 34179101 PMCID: PMC8226121 DOI: 10.3389/fmolb.2021.693133] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating, and dose-limiting side effect of many chemotherapy regimens yet has limited treatments due to incomplete knowledge of its pathophysiology. Research on the pathophysiology of CIPN has focused on peripheral nerves because CIPN symptoms are felt in the hands and feet. However, better understanding the role of the brain in CIPN may accelerate understanding, diagnosing, and treating CIPN. The goals of this review are to (1) investigate the role of the brain in CIPN, and (2) use this knowledge to inform future research and treatment of CIPN. We identified 16 papers using brain interventions in animal models of CIPN and five papers using brain imaging in humans or monkeys with CIPN. These studies suggest that CIPN is partly caused by (1) brain hyperactivity, (2) reduced GABAergic inhibition, (3) neuroinflammation, and (4) overactivation of GPCR/MAPK pathways. These four features were observed in several brain regions including the thalamus, periaqueductal gray, anterior cingulate cortex, somatosensory cortex, and insula. We discuss how to leverage this knowledge for future preclinical research, clinical research, and brain-based treatments for CIPN.
Collapse
Affiliation(s)
- Maryam Omran
- University of Rochester Medical Center, Rochester, NY, United States
| | | | - Nimish A Mohile
- University of Rochester Medical Center, Rochester, NY, United States
| | - Shelli R Kesler
- The University of Texas at Austin, Austin, TX, United States
| | | | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, United States
| | - Ian R Kleckner
- University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
21
|
Foss JD, Farkas DJ, Huynh LM, Kinney WA, Brenneman DE, Ward SJ. Behavioural and pharmacological effects of cannabidiol (CBD) and the cannabidiol analogue KLS-13019 in mouse models of pain and reinforcement. Br J Pharmacol 2021; 178:3067-3078. [PMID: 33822373 DOI: 10.1111/bph.15486] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabidiol (CBD) is a non-euphorigenic component of Cannabis sativa that prevents the development of paclitaxel-induced mechanical sensitivity in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). We recently reported that the CBD structural analogue KLS-13019 shows efficacy in an in vitro model of CIPN. The present study was to characterize the behavioural effects of KLS-13019 compared to CBD and morphine in mouse models of CIPN, nociceptive pain and reinforcement. EXPERIMENTAL APPROACH Prevention or reversal of paclitaxel-induced mechanical sensitivity were assessed following intraperitoneal or oral administration of CBD, KLS-13019 or morphine. Antinociceptive activity using acetic acid-induced stretching and hot plate assay, anti-reinforcing effects on palatable food or morphine self-administration and binding to human opioid receptors were also determined. KEY RESULTS Like CBD, KLS-13019 prevented the development of mechanical sensitivity associated with paclitaxel administration. In contrast to CBD, KLS-13019 was also effective at reversing established mechanical sensitivity. KLS-13019 significantly attenuated acetic acid-induced stretching and produced modest effects in the hot plate assay. KLS-13019 was devoid of activity at μ-, δ- or κ-opioid receptors. Lastly, KLS-13019, but not CBD, attenuated the reinforcing effects of palatable food or morphine. CONCLUSIONS AND IMPLICATIONS KLS-13019 like CBD, prevented the development of CIPN, while KLS-13019 uniquely attenuated established CIPN. Because KLS-13019 binds to fewer biological targets, this will help to identifying molecular mechanisms shared by these two compounds and those unique to KLS-13019. Lastly, KLS-13019 may possess the ability to attenuate reinforced behaviour, an effect not observed in the present study with CBD.
Collapse
Affiliation(s)
- Jeffery D Foss
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniel J Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Lana M Huynh
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - William A Kinney
- KannaLife Sciences Inc., Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Douglas E Brenneman
- KannaLife Sciences Inc., Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Hore ZL, Villa-Hernandez S, Denk F. Probing the peripheral immune response in mouse models of oxaliplatin-induced peripheral neuropathy highlights their limited translatability. Wellcome Open Res 2021; 6:68. [PMID: 34250264 PMCID: PMC8243229 DOI: 10.12688/wellcomeopenres.16635.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 04/03/2024] Open
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of various chemotherapeutic agents, including oxaliplatin. It is highly prevalent amongst cancer patients, causing sensory abnormalities and pain. Unfortunately, as the underlying mechanisms remain poorly understood, effective therapeutics are lacking. Neuro-immune interactions have been highlighted as potential contributors to the development and maintenance of CIPN, however, whether this is the case in oxaliplatin-induced peripheral neuropathy (OIPN) is yet to be fully established. Methods: In this study we used flow cytometry to examine the peripheral immune response of male C57BL/6 mice following both single and repeated oxaliplatin administration. In animals exposed to repeated dosing, we also undertook mechanical and thermal behavioural assays to investigate how oxaliplatin alters phenotype, and conducted RT-qPCR experiments on bone marrow derived macrophages in order to further inspect the effects of oxaliplatin on immune cells. Results: In contrast to other reports, we failed to observe substantial changes in overall leukocyte, lymphocyte or myeloid cell numbers in dorsal root ganglia, sciatic nerves or inguinal lymph nodes. We did however note subtle, tissue-dependant alterations in several myeloid subpopulations following repeated dosing. These included a significant reduction in MHCII antigen presenting cells in the sciatic nerve and an increase in infiltrating cell types into the inguinal lymph nodes. Though repeated oxaliplatin administration had a systemic effect, we were unable to detect a pain-like behavioural phenotype in response to either cold or mechanical stimuli. Consequently, we cannot comment on whether the observed myeloid changes are associated with OIPN. Conclusions: Our discussion puts these results into the wider context of the field, advocating for greater transparency in reporting, alignment in experimental design and the introduction of more clinically relevant models. Only through joint concerted effort can we hope to increase our understanding of the underlying mechanisms of CIPN, including any immune contributions.
Collapse
Affiliation(s)
- Zoe Lee Hore
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Sara Villa-Hernandez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, UK
| |
Collapse
|
23
|
Siddiqui M, Abdellatif B, Zhai K, Liskova A, Kubatka P, Büsselberg D. Flavonoids Alleviate Peripheral Neuropathy Induced by Anticancer Drugs. Cancers (Basel) 2021; 13:cancers13071576. [PMID: 33805565 PMCID: PMC8036789 DOI: 10.3390/cancers13071576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating condition that severely reduces the quality of life of a considerable proportion of cancer patients. There is no cure for CIPN to date. Here, we explore the potential of flavonoids as pharmacological agents in combating CIPN. Flavonoids alleviate CIPN by reducing oxidative stress, inflammation, and neuronal damage, among other mechanisms. Future research should evaluate the efficacy and side effects of flavonoids in human models of CIPN. Abstract Purpose: This study aimed to assess the potential of flavonoids in combating CIPN. Methods: PubMed and Google Scholar were used, and studies that investigated flavonoids in models of CIPN and models of neuropathic pain similar to CIPN were included. Only studies investigating peripheral mechanisms of CIPN were used. Results: Flavonoids inhibit several essential mechanisms of CIPN, such as proinflammatory cytokine release, astrocyte and microglial activation, oxidative stress, neuronal damage and apoptosis, mitochondrial damage, ectopic discharge, and ion channel activation. They decreased the severity of certain CIPN symptoms, such as thermal hyperalgesia and mechanical, tactile, and cold allodynia. Conclusions: Flavonoids hold immense promise in treating CIPN; thus, future research should investigate their effects in humans. Specifically, precise pharmacological mechanisms and side effects need to be elucidated in human models before clinical benefits can be achieved.
Collapse
Affiliation(s)
- Manaal Siddiqui
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (M.S.); (B.A.); (K.Z.)
| | - Basma Abdellatif
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (M.S.); (B.A.); (K.Z.)
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (M.S.); (B.A.); (K.Z.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (M.S.); (B.A.); (K.Z.)
- Correspondence:
| |
Collapse
|
24
|
Gajda JM, Asiedu M, Morrison G, Dunning JA, Ghoreishi-Haack N, Barth AL. NYX-2925, A NOVEL, NON-OPIOID, SMALL-MOLECULE MODULATOR OF THE N-METHYL-d-ASPARTATE RECEPTOR (NMDAR), DEMONSTRATES POTENTIAL TO TREAT CHRONIC, SUPRASPINAL CENTRALIZED PAIN CONDITIONS. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2020.100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Chen L, Huang J, Benson C, Lankford KL, Zhao P, Carrara J, Tan AM, Kocsis JD, Waxman SG, Dib-Hajj SD. Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia. Brain 2020; 143:2421-2436. [PMID: 32830219 DOI: 10.1093/brain/awaa208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022] Open
Abstract
Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.
Collapse
Affiliation(s)
- Lubin Chen
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jianying Huang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Curtis Benson
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Karen L Lankford
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jennifer Carrara
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Andrew M Tan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
26
|
Bluette CT, Shoieb AM, Peng Q, Manickam B, Huang W, Shin E, Zhang W, Song YH, Liu CN. Behavioral, Histopathologic, and Molecular Biological Responses of Nanoparticle- and Solution-Based Formulations of Vincristine in Mice. Int J Toxicol 2020; 40:40-51. [PMID: 33148080 DOI: 10.1177/1091581820968255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clinical use of the chemotherapeutic agent vincristine (VCR) is limited by chemotherapy-induced peripheral neuropathy (CiPN). A new formulation of VCR encapsulated by nanoparticles has been proposed and developed to alleviate CiPN. We hypothesized in nonclinical animals that the nanoparticle drug would be less neurotoxic due to different absorption and distribution properties to the peripheral nerve from the unencapsulated free drug. Here, we assessed whether VCR encapsulation in nanoparticles alleviates CiPN using behavioral gait analysis (CatWalk), histopathologic and molecular biological (RT-qPCR) approaches. Adult male C57BL/6 mice were assigned to 3 groups (empty nanoparticle, nano-VCR, solution-based VCR, each n = 8). After 15 days of dosing, animals were euthanized for tissue collection. It was shown that intraperitoneal administration of nano-VCR (0.15 mg/kg, every other day) and the empty nanoparticle resulted in no changes in gait parameters; whereas, injection of solution-based VCR resulted in decreased run speed and increased step cycle and stance (P < 0.05). There were no differences in incidence and severity of degeneration in the sciatic nerves between the nano-VCR-dosed and solution-based VCR-dosed animals. Likewise, decreased levels of a nervous tissue-enriched microRNA-183 in circulating blood did not show a significant difference between the nano- and solution-based VCR groups (P > 0.05). Empty nanoparticle administration did not cause any behavioral, microRNA, or structural changes. In conclusion, this study suggests that the nano-VCR formulation may alleviate behavioral changes in CiPN, but it does not improve the structural changes of CiPN in peripheral nerve. Nanoparticle properties may need to be optimized to improve biological observations.
Collapse
Affiliation(s)
- Crystal T Bluette
- Comparative Medicine, 105623Pfizer Worldwide RD&M, Cambridge, MA, USA
| | - Ahmed M Shoieb
- Drug Safety R&D, 105623Pfizer Worldwide RD&M, Groton, CT, USA
| | - Qinghai Peng
- Drug Safety R&D, 105623Pfizer Worldwide RD&M, San Diego, CA, USA
| | | | - Wenhu Huang
- Drug Safety R&D, 105623Pfizer Worldwide RD&M, San Diego, CA, USA
| | - Eyoung Shin
- Oncology, 105623Pfizer Worldwide RD&M, Pearl River, NY, USA
| | - Wei Zhang
- Oncology, 105623Pfizer Worldwide RD&M, Pearl River, NY, USA
| | - Young-Ho Song
- Oncology, 105623Pfizer Worldwide RD&M, Pearl River, NY, USA
| | - Chang-Ning Liu
- Comparative Medicine, 105623Pfizer Worldwide RD&M, Groton, CT, USA. Peng is now with Protego Biopharma, San Diego, CA, USA
| |
Collapse
|
27
|
Kim HK, Lee SY, Koike N, Kim E, Wirianto M, Burish MJ, Yagita K, Lee HK, Chen Z, Chung JM, Abdi S, Yoo SH. Circadian regulation of chemotherapy-induced peripheral neuropathic pain and the underlying transcriptomic landscape. Sci Rep 2020; 10:13844. [PMID: 32796949 PMCID: PMC7427990 DOI: 10.1038/s41598-020-70757-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Growing evidence demonstrates circadian rhythms of pain hypersensitivity in various chronic disorders. In chemotherapy-induced peripheral neuropathy (CIPN), agents such as paclitaxel are known to elicit chronic neuropathic pain in cancer patients and seriously compromise their quality of life. Here, we report that the mechanical threshold for allodynia in paclitaxel-treated rats exhibited a robust circadian oscillation, reaching the nadir during the daytime (inactive phase). Using Per2::LucSV circadian reporter mice expressing a PER2::LUC fusion protein, we isolated dorsal root ganglia (DRG), the primary sensory cell body for peripheral nerve injury generated hypersensitivity, and monitored ex vivo reporter bioluminescence. We observed strong circadian reporter rhythms in DRG neurons which are highly entrainable by external cues. Paclitaxel treatment significantly lengthened DRG circadian periods, with little effects on the amplitude of oscillation. We further observed the core protein BMAL1 and PER2 in DRG neurons and satellite cells. Using DRG and dorsal horn (DH; another key structure for CIPN pain response) tissues from vehicle and paclitaxel treated rats, we performed RNA-sequencing and identified diurnal expression of core clock genes as well as clock-controlled genes in both sites. Interestingly, 20.1% and 30.4% of diurnal differentially expressed genes (DEGs) overlapped with paclitaxel-induced DEGs in the DRG and the DH respectively. In contrast, paclitaxel-induced DEGs displayed only a modest overlap between daytime and nighttime (Zeitgeber Time 8 and 20). Furthermore, paclitaxel treatment induced de novo diurnal DEGs, suggesting reciprocal interaction of circadian rhythms and chemotherapy. Our study therefore demonstrates a circadian oscillation of CIPN and its underlying transcriptomic landscape.
Collapse
Affiliation(s)
- Hee Kee Kim
- Division of Anesthesiology, Critical Care and Pain Medicine, Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sun-Yeul Lee
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Mark J Burish
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, 6400 Fannin St., Houston, TX, 77030, USA
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hyun Kyoung Lee
- Department of Pediatrics, Baylor College of Medicine, Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Jin Mo Chung
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Salahadin Abdi
- Division of Anesthesiology, Critical Care and Pain Medicine, Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center At Houston, 6431 Fannin St., Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Qabazard B, Masocha W, Khajah M, Phillips OA. H2S donor GYY4137 ameliorates paclitaxel-induced neuropathic pain in mice. Biomed Pharmacother 2020; 127:110210. [DOI: 10.1016/j.biopha.2020.110210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/29/2022] Open
|
29
|
Bonomo R, Cavaletti G, Skene DJ. Metabolomics markers in Neurology: current knowledge and future perspectives for therapeutic targeting. Expert Rev Neurother 2020; 20:725-738. [PMID: 32538242 DOI: 10.1080/14737175.2020.1782746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Metabolomics is an emerging approach providing new insights into the metabolic changes and underlying mechanisms involved in the pathogenesis of neurological disorders. AREAS COVERED Here, the authors present an overview of the current knowledge of metabolic profiling (metabolomics) to provide critical insight on the role of biochemical markers and metabolic alterations in neurological diseases. EXPERT OPINION Elucidation of characteristic metabolic alterations in neurological disorders is crucial for a better understanding of their pathogenesis, and for identifying potential biomarkers and drug targets. Nevertheless, discrepancies in diagnostic criteria, sample handling protocols, and analytical methods still affect the generalizability of current study results.
Collapse
Affiliation(s)
- Roberta Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy.,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| |
Collapse
|
30
|
Rigo FK, Rossato MF, Borges V, da Silva JF, Pereira EMR, de Ávila RAM, Trevisan G, Dos Santos DC, Diniz DM, Silva MAR, de Castro CJ, Cunha TM, Ferreira J, Gomez MV. Analgesic and side effects of intravenous recombinant Phα1β. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190070. [PMID: 32362927 PMCID: PMC7179342 DOI: 10.1590/1678-9199-jvatitd-2019-0070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Intrathecal injection of voltage-sensitive calcium channel blocker peptide toxins exerts analgesic effect in several animal models of pain. Upon intrathecal administration, recombinant Phα1β exerts the same analgesic effects as the those of the native toxin. However, from a clinical perspective, the intrathecal administration limits the use of anesthetic drugs in patients. Therefore, this study aimed to investigate the possible antinociceptive effect of intravenous recombinant Phα1β in rat models of neuropathic pain, as well as its side effects on motor, cardiac (heart rate and blood pressure), and biochemical parameters. Methods Male Wistar rats and male Balb-C mice were used in this study. Giotto Biotech® synthesized the recombinant version of Phα1β using Escherichia coli expression. In rats, neuropathic pain was induced by chronic constriction of the sciatic nerve and paclitaxel-induced acute and chronic pain. Mechanical sensitivity was evaluated using von Frey filaments. A radiotelemeter transmitter (TA11PA-C10; Data Sciences, St. Paul, MN, USA) was placed on the left carotid of mice for investigation of cardiovascular side effects. Locomotor activity data were evaluated using the open-field paradigm, and serum CKMB, TGO, TGP, LDH, lactate, creatinine, and urea levels were examined. Results Intravenous administration of recombinant Phα1β toxin induced analgesia for up to 4 h, with ED50 of 0.02 (0.01-0.03) mg/kg, and reached the maximal effect (Emax = 100% antinociception) at a dose of 0.2 mg/kg. No significant changes were observed in any of the evaluated motor, cardiac or biochemical parameters. Conclusion Our data suggest that intravenous administration of recombinant Phα1β may be feasible for drug-induced analgesia, without causing any severe side effects.
Collapse
Affiliation(s)
- Flavia Karine Rigo
- Graduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mateus Fortes Rossato
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vanessa Borges
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Juliana Figueira da Silva
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| | - Elizete Maria Rita Pereira
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| | | | - Gabriela Trevisan
- Graduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Duana Carvalho Dos Santos
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| | - Danuza Montijo Diniz
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| | - Marco Aurélio Romano Silva
- Department of Neurosciences, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Célio José de Castro
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Juliano Ferreira
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Marcus Vinicius Gomez
- Institute of Education and Research of Santa Casa Belo Horizonte, Santa Casa of Belo Horizonte Group, Belo Horizonte, MG, Brazil
| |
Collapse
|
31
|
Fradkin M, Batash R, Elmaleh S, Debi R, Schaffer P, Schaffer M, Asna N. Management of Peripheral Neuropathy Induced by Chemotherapy. Curr Med Chem 2019; 26:4698-4708. [PMID: 30621553 DOI: 10.2174/0929867326666190107163756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/15/2018] [Accepted: 12/25/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is considered a severe side effect of therapeutic agents with limited treatment options. The incidence of CIPN in cancer patients is approximately 3-7% in cytostatic monotherapy and as high as 38% in cases of polychemotherapy. The prevalence of CIPN was found to be 68% within the first month of chemotherapy treatment. In some cases, CIPN can resolve, partially or completely, after completion of the treatment; in other cases, it can remain for a long time and affect the patient's quality of life. OBJECTIVE The aim of this study is to present up-to-date data regarding available treatment options for the management of CIPN. MATERIALS AND METHODS The up-to-date guidelines of ESMO (European Society for Medical Oncology), ASCO (American Society of Clinical Oncology), ONS (Oncology Nursing Society), NCI (National Cancer Institute), and NCCN (National Comprehensive Cancer Network) were reviewed and included in the manuscript. RESULTS The use of tricyclic antidepressant (TCA), selective serotonin norepinephrine reuptake inhibitor (SSNRI), pregabalin, and gabapentin are recommended as first-line treatment. Other treatment options were offered as second and third lines of treatment (lidocaine patches, capsaicin high-concentration patches, tramadol, and strong opioids, respectively); however, lower significance was demonstrated. Inconclusive results were found in the use of cannabinoids, drug combinations, antiepileptics, antidepressants, and topical drugs. CONCLUSION TCA, other antidepressants, and opioids could be recommended as treatment. Yet, we could not recommend an ideal therapeutic agent for the prevention or treatment of CIPN. Therefore, CIPN continues to be a challenge to clinicians and our patients.
Collapse
Affiliation(s)
- Maayan Fradkin
- Department of Oncology, Barzilai Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ron Batash
- Department of Orthopedic Surgery, Barzilai Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Shiran Elmaleh
- Department of Orthopedic Surgery, Barzilai Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ronen Debi
- Department of Orthopedic Surgery, Barzilai Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Pamela Schaffer
- Department of Radiation Therapy, Bad Trissl, Oberaudorf Germany, and Faculty of Medicine, University of Oradea, Romania
| | - Moshe Schaffer
- Department of Oncology, Barzilai Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Noam Asna
- Department of Oncology, Barzilai Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
32
|
Yook C, Kim K, Kim D, Kang H, Kim SG, Kim E, Kim SY. A TBR1-K228E Mutation Induces Tbr1 Upregulation, Altered Cortical Distribution of Interneurons, Increased Inhibitory Synaptic Transmission, and Autistic-Like Behavioral Deficits in Mice. Front Mol Neurosci 2019; 12:241. [PMID: 31680851 PMCID: PMC6797848 DOI: 10.3389/fnmol.2019.00241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Mutations in Tbr1, a high-confidence ASD (autism spectrum disorder)-risk gene encoding the transcriptional regulator TBR1, have been shown to induce diverse ASD-related molecular, synaptic, neuronal, and behavioral dysfunctions in mice. However, whether Tbr1 mutations derived from autistic individuals cause similar dysfunctions in mice remains unclear. Here we generated and characterized mice carrying the TBR1-K228E de novo mutation identified in human ASD and identified various ASD-related phenotypes. In heterozygous mice carrying this mutation (Tbr1+/K228E mice), levels of the TBR1-K228E protein, which is unable to bind target DNA, were strongly increased. RNA-Seq analysis of the Tbr1+/K228E embryonic brain indicated significant changes in the expression of genes associated with neurons, astrocytes, ribosomes, neuronal synapses, and ASD risk. The Tbr1+/K228E neocortex also displayed an abnormal distribution of parvalbumin-positive interneurons, with a lower density in superficial layers but a higher density in deep layers. These changes were associated with an increase in inhibitory synaptic transmission in layer 6 pyramidal neurons that was resistant to compensation by network activity. Behaviorally, Tbr1+/K228E mice showed decreased social interaction, increased self-grooming, and modestly increased anxiety-like behaviors. These results suggest that the human heterozygous TBR1-K228E mutation induces ASD-related transcriptomic, protein, neuronal, synaptic, and behavioral dysfunctions in mice.
Collapse
Affiliation(s)
- Chaehyun Yook
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Sun-Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Soo Young Kim
- College of Pharmacy, Yeongnam University, Gyeongsan, South Korea
| |
Collapse
|
33
|
Chine VB, Au NPB, Ma CHE. Therapeutic benefits of maintaining mitochondrial integrity and calcium homeostasis by forced expression of Hsp27 in chemotherapy-induced peripheral neuropathy. Neurobiol Dis 2019; 130:104492. [DOI: 10.1016/j.nbd.2019.104492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 01/24/2023] Open
|
34
|
Hincker A, Frey K, Rao L, Wagner-Johnston N, Ben Abdallah A, Tan B, Amin M, Wildes T, Shah R, Karlsson P, Bakos K, Kosicka K, Kagan L, Haroutounian S. Somatosensory predictors of response to pregabalin in painful chemotherapy-induced peripheral neuropathy: a randomized, placebo-controlled, crossover study. Pain 2019; 160:1835-1846. [PMID: 31335651 PMCID: PMC6687437 DOI: 10.1097/j.pain.0000000000001577] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/25/2019] [Accepted: 03/29/2019] [Indexed: 01/22/2023]
Abstract
Painful chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and treatment-resistant sequela of many chemotherapeutic medications. Ligands of α2δ subunits of voltage-gated Ca channels, such as pregabalin, have shown efficacy in reducing mechanical sensitivity in animal models of neuropathic pain. In addition, some data suggest that pregabalin may be more efficacious in relieving neuropathic pain in subjects with increased sensitivity to pinprick. We hypothesized that greater mechanical sensitivity, as quantified by decreased mechanical pain threshold at the feet, would be predictive of a greater reduction in average daily pain in response to pregabalin vs placebo. In a prospective, randomized, double-blinded study, 26 patients with painful CIPN from oxaliplatin, docetaxel, or paclitaxel received 28-day treatment with pregabalin (titrated to maximum dose 600 mg per day) and placebo in crossover design. Twenty-three participants were eligible for efficacy analysis. Mechanical pain threshold was not significantly correlated with reduction in average pain (P = 0.97) or worst pain (P = 0.60) in response to pregabalin. There was no significant difference between pregabalin and placebo in reducing average daily pain (22.5% vs 10.7%, P = 0.23) or worst pain (29.2% vs 16.0%, P = 0.13) from baseline. Post hoc analysis of patients with CIPN caused by oxaliplatin (n = 18) demonstrated a larger reduction in worst pain with pregabalin than with placebo (35.4% vs 14.6%, P = 0.04). In summary, baseline mechanical pain threshold tested on dorsal feet did not meaningfully predict the analgesic response to pregabalin in painful CIPN.
Collapse
Affiliation(s)
- Alexander Hincker
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, United States
| | - Karen Frey
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Lesley Rao
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, United States
| | - Nina Wagner-Johnston
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arbi Ben Abdallah
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Benjamin Tan
- Department of Medicine, Washington University School of Medicine, St Louis, MO, United States
| | - Manik Amin
- Department of Medicine, Washington University School of Medicine, St Louis, MO, United States
| | - Tanya Wildes
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St Louis, MO, United States
| | - Rajiv Shah
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, United States
| | - Pall Karlsson
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Section for Stereology and Microscopy, Core Centre for Molecular Morphology, Aarhus University, Aarhus, Denmark
| | - Kristopher Bakos
- Investigation Drug Service, Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO, United States
| | - Katarzyna Kosicka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, United States
| |
Collapse
|
35
|
Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. Pain 2019; 159:884-893. [PMID: 29369966 DOI: 10.1097/j.pain.0000000000001160] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of cancer treatment that significantly compromises quality of life of cancer patients and survivors. Identification of targets for pharmacological intervention to prevent or reverse CIPN is needed. We investigated exchange protein regulated by cAMP (Epac) as a potential target. Epacs are cAMP-binding proteins known to play a pivotal role in mechanical allodynia induced by nerve injury and inflammation. We demonstrate that global Epac1-knockout (Epac1-/-) male and female mice are protected against paclitaxel-induced mechanical allodynia. In addition, spinal cord astrocyte activation and intraepidermal nerve fiber (IENF) loss are significantly reduced in Epac1-/- mice as compared to wild-type mice. Moreover, Epac1-/- mice do not develop the paclitaxel-induced deficits in mitochondrial bioenergetics in the sciatic nerve that are a hallmark of CIPN. Notably, mice with cell-specific deletion of Epac1 in Nav1.8-positive neurons (N-Epac1-/-) also show reduced paclitaxel-induced mechanical allodynia, astrocyte activation, and IENF loss, indicating that CIPN develops downstream of Epac1 activation in nociceptors. The Epac-inhibitor ESI-09 reversed established paclitaxel-induced mechanical allodynia in wild-type mice even when dosing started 10 days after completion of paclitaxel treatment. In addition, oral administration of ESI-09 suppressed spinal cord astrocyte activation in the spinal cord and protected against IENF loss. Ex vivo, ESI-09 blocked paclitaxel-induced abnormal spontaneous discharges in dorsal root ganglion neurons. Collectively, these findings implicate Epac1 in nociceptors as a novel target for treatment of CIPN. This is clinically relevant because ESI-09 has the potential to reverse a debilitating and long-lasting side effect of cancer treatment.
Collapse
|
36
|
Hu S, Huang KM, Adams EJ, Loprinzi CL, Lustberg MB. Recent Developments of Novel Pharmacologic Therapeutics for Prevention of Chemotherapy-Induced Peripheral Neuropathy. Clin Cancer Res 2019; 25:6295-6301. [PMID: 31123053 DOI: 10.1158/1078-0432.ccr-18-2152] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/17/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting toxicity, negatively affecting both quality of life and disease outcomes. To date, there is no proven preventative strategy for CIPN. Although multiple randomized trials have evaluated a variety of pharmacologic interventions for the treatment of CIPN, only duloxetine has shown clear efficacy in a phase III study. The National Cancer Institute's Symptom Management and Health-Related Quality of Life Steering Committee has identified CIPN as a priority for translational research in cancer care. Promising advances in preclinical research have identified several novel preventative and therapeutic targets, which have the potential to transform the care of patients with this debilitating neurotoxicity. Here, we provide an overarching view of emerging strategies and therapeutic targets that are currently being evaluated in CIPN.
Collapse
Affiliation(s)
- Shuiying Hu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Elizabeth J Adams
- Department of Medical Oncology, The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio
| | | | - Maryam B Lustberg
- Department of Medical Oncology, The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|
37
|
Zhong S, Zhou Z, Liang Y, Cheng X, Li Y, Teng W, Zhao M, Liu C, Guan M, Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: does gut microbiota play a role? Crit Rev Microbiol 2019; 45:369-393. [PMID: 31106639 DOI: 10.1080/1040841x.2019.1608905] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University , Shenyang , PR China
| | - Yifan Liang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Xi Cheng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University , Shenyang , PR China
| | - Weiyu Teng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University , Shenyang , PR China
| | - Chang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Meiting Guan
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Gabapentinoids are frequently used in the management of cancer pain. In recent Cochrane systematic reviews, although there was an abundance of evidence relating to non-cancer pain, only a few studies related to cancer pain. This review summarizes recent randomised controlled trials (RCTs) evaluating the use of gabapentinoids for tumour-related (as monotherapy or part of combination therapy) and treatment-related pain. RECENT FINDINGS For tumour-related pain, ten out of thirteen studies showed statistically significant benefits in favour of gabapentinoids. When used, as part of monotherapy or combination therapy, benefits were observed in five out of six studies evaluating gabapentin, and in six out of eight studies evaluating pregabalin. For treatment-related pain, none of the four studies (two gabapentin, two pregabalin) showed statistically significant benefits in favour of gabapentinoids. Unfortunately, many of the studies included were limited by small sample size, lack of blinding, and inadequate follow-up. SUMMARY More and better quality studies are required, although it may be challenging to accomplish in this patient population. Gabapentinoids may offer benefits to cancer patients with pain, but careful titration and monitoring of adverse effects is necessary.
Collapse
|
39
|
Flatters SJL, Dougherty PM, Colvin LA. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): a narrative review. Br J Anaesth 2019; 119:737-749. [PMID: 29121279 DOI: 10.1093/bja/aex229] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
This review provides an update on the current clinical and preclinical understanding of chemotherapy induced peripheral neuropathy (CIPN). The overview of the clinical syndrome includes a review of its assessment, diagnosis and treatment. CIPN is caused by several widely-used chemotherapeutics including paclitaxel, oxaliplatin, bortezomib. Severe CIPN may require dose reduction, or cessation, of chemotherapy, impacting on patient survival. While CIPN often resolves after chemotherapy, around 30% of patients will have persistent problems, impacting on function and quality of life. Early assessment and diagnosis is important, and we discuss tools developed for this purpose. There are no effective strategies to prevent CIPN, with limited evidence of effective drugs for treating established CIPN. Duloxetine has moderate evidence, with extrapolation from other neuropathic pain states generally being used to direct treatment options for CIPN. The preclinical perspective includes a discussion on the development of clinically-relevant rodent models of CIPN and some of the potentially modifiable mechanisms that have been identified using these models. We focus on the role of mitochondrial dysfunction, oxidative stress, immune cells and changes in ion channels from summary of the latest literature in these areas. Many causal mechanisms of CIPN occur simultaneously and/or can reinforce each other. Thus, combination therapies may well be required for most effective management. More effective treatment of CIPN will require closer links between oncology and pain management clinical teams to ensure CIPN patients are effectively monitored. Furthermore, continued close collaboration between clinical and preclinical research will facilitate the development of novel treatments for CIPN.
Collapse
Affiliation(s)
- S J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - P M Dougherty
- Division of Anaesthesia, Critical Care and Pain Medicine, Department of Pain Medicine Research, The University of Texas M.D. Anderson Cancer Centre, Houston, TX, USA
| | - L A Colvin
- Department of Anaesthesia, Critical Care & Pain Medicine, University of Edinburgh, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| |
Collapse
|
40
|
Chen Y, Chen SR, Chen H, Zhang J, Pan HL. Increased α2δ-1-NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy-induced neuropathic pain. J Neurochem 2018; 148:252-274. [PMID: 30431158 DOI: 10.1111/jnc.14627] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Painful peripheral neuropathy is a severe and difficult-to-treat neurological complication associated with cancer chemotherapy. Although chemotherapeutic drugs such as paclitaxel are known to cause tonic activation of presynaptic NMDA receptors (NMDARs) to potentiate nociceptive input, the molecular mechanism involved in this effect is unclear. α2δ-1, commonly known as a voltage-activated calcium channel subunit, is a newly discovered NMDAR-interacting protein and plays a critical role in NMDAR-mediated synaptic plasticity. Here we show that paclitaxel treatment in rats increases the α2δ-1 expression level in the dorsal root ganglion and spinal cord and the mRNA levels of GluN1, GluN2A, and GluN2B in the spinal cord. Paclitaxel treatment also potentiates the α2δ-1-NMDAR interaction and synaptic trafficking in the spinal cord. Strikingly, inhibiting α2δ-1 trafficking with pregabalin, disrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus-interfering peptide, or α2δ-1 genetic ablation fully reverses paclitaxel treatment-induced presynaptic NMDAR-mediated glutamate release from primary afferent terminals to spinal dorsal horn neurons. In addition, intrathecal injection of pregabalin or α2δ-1 C-terminus-interfering peptide and α2δ-1 knockout in mice markedly attenuate paclitaxel-induced pain hypersensitivity. Our findings indicate that α2δ-1 is required for paclitaxel-induced tonic activation of presynaptic NMDARs at the spinal cord level. Targeting α2δ-1-bound NMDARs, not the physiological α2δ-1-free NMDARs, may be a new strategy for treating chemotherapy-induced neuropathic pain. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Youfang Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Sutherland AM, Nicholls J, Bao J, Clarke H. Overlaps in pharmacology for the treatment of chronic pain and mental health disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:290-297. [PMID: 30055217 DOI: 10.1016/j.pnpbp.2018.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
Abstract
There is significant overlap in the pharmacological management of pain and psychological disorders. Appropriate treatment of patients' comorbid psychological disorders, including sleep disturbances often leads to an improvement in reported pain intensity. The three first line agents for neuropathic pain include tricyclic antidepressants and serotonin norepinephrine reuptake inhibitors which are medications originally developed as antidepressants. The other first line medication for chronic neuropathic pain are anticonvulsant medications initially brought to the market-place for the treatment of epilepsy and are also now being used for the treatment of anxiety disorders and substance withdrawal symptoms. The efficacy of opioids for chronic pain is contentious, but it is agreed that the patients at highest risk for opioid misuse and addiction are patients with underlying psychological disorders who use opioids for their euphoric effects. Similarly, benzodiazepines may present a problem in patients with chronic pain, as up to one third of patients with pain are concomitantly prescribed benzodiazepines, and when combined with other sedating analgesic medications they put patients at increased risk for adverse events and polysubstance misuse. Finally, there is growing evidence for the efficacy of cannabis for treating neuropathic pain, but the consumption of cannabis has been associated with increased risk of psychosis in adolescents, and may be associated with an increased risk for developing bipolar disorder and anxiety disorders. The use of cannabis is associated with an increased risk of substance misuse in both adolescents and adults. In this narrative review, we examine the evidence for the use of several medications used for the treatment of both pain and psychological disorders, and their proposed mechanisms of action, in addition to special concerns for patients with comorbid pain and psychological disorders.
Collapse
Affiliation(s)
- Ainsley M Sutherland
- Department of Anesthesia, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith Nicholls
- Pain Research Unit, Department of Anesthesia and Pain Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - James Bao
- Pain Research Unit, Department of Anesthesia and Pain Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Hance Clarke
- Pain Research Unit, Department of Anesthesia and Pain Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada; Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
42
|
Al-Massri KF, Ahmed LA, El-Abhar HS. Mesenchymal stem cells therapy enhances the efficacy of pregabalin and prevents its motor impairment in paclitaxel-induced neuropathy in rats: Role of Notch1 receptor and JAK/STAT signaling pathway. Behav Brain Res 2018; 360:303-311. [PMID: 30543902 DOI: 10.1016/j.bbr.2018.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023]
Abstract
Peripheral neuropathy is a common adverse effect observed during the use of paclitaxel (PTX) as chemotherapy. The present investigation was directed to estimate the modulatory effect of bone marrow derived mesenchymal stem cells (BM-MSCs) on pregabalin (PGB) treatment in PTX-induced peripheral neuropathy. Neuropathic pain was induced in rats by injecting PTX (2 mg/kg, i.p) 4 times every other day. Rats were then treated with PGB (30 mg/kg/day, p.o.) for 21 days with or without a single intravenous administration of BM-MSCs. At the end of experiment, behavioral and motor abnormalities were assessed. Animals were then sacrificed for measurement of total antioxidant capacity (TAC), nerve growth factor (NGF), nuclear factor kappa B p65 (NF-κB p65), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and active caspase-3 in the sciatic nerve. Moreover, protein expressions of Notch1 receptor, phosphorylated Janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK) were estimated. Finally, histological examinations were performed to assess severity of sciatic nerve damage and for estimation of BM-MSCs homing. Combined PGB/BM-MSCs therapy provided an additional improvement toward reducing PTX-induced oxidative stress, neuro-inflammation, and apoptotic markers. Interestingly, BM-MSCs therapy effectively prevented motor impairment observed by PGB treatment. Combined therapy also induced a significant increase in cell homing and prevented PTX-induced sciatic nerve damage in histological examination. The present study highlights a significant role for BM-MSCs in enhancing treatment potential of PGB and reducing its motor side effects when used as therapy in the management of peripheral neuropathy.
Collapse
Affiliation(s)
- Khaled F Al-Massri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
43
|
Wu FZ, Xu WJ, Deng B, Liu SD, Deng C, Wu MY, Gao Y, Jia LQ. Wen-Luo-Tong Decoction Attenuates Paclitaxel-Induced Peripheral Neuropathy by Regulating Linoleic Acid and Glycerophospholipid Metabolism Pathways. Front Pharmacol 2018; 9:956. [PMID: 30233366 PMCID: PMC6127630 DOI: 10.3389/fphar.2018.00956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious dose-limiting toxicity of many anti-neoplastic agents, especially paclitaxel, and oxaliplatin. Up to 62% of patients receiving paclitaxel regimens turn out to develop CIPN. Unfortunately, there are so few agents proved effective for prevention or management of CIPN. The reason for the current situation is that the mechanisms of CIPN are still not explicit. Traditional Chinese Medicine (TCM) has unique advantages for dealing with complex diseases. Wen-Luo-Tong (WLT) is a TCM ointment for topical application. It has been applied for prevention and management of CIPN clinically for more than 10 years. Previous animal experiments and clinical studies had manifested the availability of WLT. However, due to the unclear mechanisms of WLT, further transformation has been restricted. To investigate the therapeutic mechanisms of WLT, a metabolomic method on the basis of UPLC- MS was developed in this study. Multivariate analysis techniques, such as principal component analysis (PCA) and partial least squares discriminate analysis (PLS-DA), were applied to observe the disturbance in the metabolic state of the paclitaxel-induced peripheral neuropathy (PIPN) rat model, as well as the recovering tendency of WLT treatment. A total of 19 significant variations associated with PIPN were identified as biomarkers. Results of pathway analysis indicated that the metabolic disturbance of pathways of linoleic acid (LA) metabolism and glycerophospholipid metabolism. WLT attenuated mechanical allodynia and rebalanced the metabolic disturbances of PIPN by primarily regulating LA and glycerophospholipid metabolism pathway. Further molecular docking analysis showed some ingredients of WLT, such as hydroxysafflor yellow A (HSYA), icariin, epimedin B and 4-dihydroxybenzoic acid (DHBA), had high affinity to plenty of proteins within these two pathways.
Collapse
Affiliation(s)
- Fei-Ze Wu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Juan Xu
- Research Center for Chinese Medical Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Deng
- Department of Traditional Chinese Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Si-da Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Deng
- Department of Traditional Chinese Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Meng-Yu Wu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Gao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Qun Jia
- Department of Traditional Chinese Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
44
|
Yu YP, Gong N, Kweon TD, Vo B, Luo ZD. Gabapentin prevents synaptogenesis between sensory and spinal cord neurons induced by thrombospondin-4 acting on pre-synaptic Ca v α 2 δ 1 subunits and involving T-type Ca 2+ channels. Br J Pharmacol 2018; 175:2348-2361. [PMID: 29338087 PMCID: PMC5980510 DOI: 10.1111/bph.14149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Nerve injury induces concurrent up-regulation of the voltage-gated calcium channel subunit Cav α2 δ1 and the extracellular matrix protein thrombospondin-4 (TSP4) in dorsal root ganglia and dorsal spinal cord, leading to the development of a neuropathic pain state. Interactions of these proteins promote aberrant excitatory synaptogenesis that contributes to neuropathic pain state development through unknown mechanisms. We investigated the contributions of Cav α2 δ1 subunits and TSP4 to synaptogenesis, and the pathways involved in vitro, and whether treatment with gabapentin could block this process and pain development in vivo. EXPERIMENTAL APPROACH A co-culture system of sensory and spinal cord neurons was used to study the contribution from each protein to synaptogenesis and the pathway(s) involved. Anti-synaptogenic actions of gabapentin were studied in TSP4-injected mice. KEY RESULTS Only presynaptic, but not postsynaptic, Cav α2 δ1 subunits interacted with TSP4 to initiate excitatory synaptogenesis through a pathway modulated by T-type calcium channels. Cav α2 δ1 /TSP4 interactions were not required for maintenance of already formed synapses. In vivo, early, but not delayed, treatment with low-dose gabapentin blocked this pathway and the development of the pain state. CONCLUSIONS AND IMPLICATIONS Cav α2 δ1 /TSP4 interactions were critical for the initiation, but not for the maintenance, of abnormal synapse formation between sensory and spinal cord neurons. This process was blocked by early, but was not reversed by delayed, treatment with gabapentin. Early intervention with gabapentin may prevent the development of injury-induced chronic pain, resulting from Cav α2 δ1 /TSP4-initiated abnormal synapse formation. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Yanhui Peter Yu
- Department of PharmacologyUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Nian Gong
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Tae Dong Kweon
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Benjamin Vo
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Z David Luo
- Department of PharmacologyUniversity of California, Irvine School of MedicineIrvineCAUSA
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| |
Collapse
|
45
|
Abstract
Injury to or disease of the nervous system can invoke chronic and sometimes intractable neuropathic pain. Many parallel, interdependent, and time-dependent processes, including neuroimmune interactions at the peripheral, supraspinal, and spinal levels, contribute to the etiology of this "disease of pain." Recent work emphasizes the roles of colony-stimulating factor 1, ATP, and brain-derived neurotrophic factor. Excitatory processes are enhanced, and inhibitory processes are attenuated in the spinal dorsal horn and throughout the somatosensory system. This leads to central sensitization and aberrant processing such that tactile and innocuous thermal information is perceived as pain (allodynia). Processes involved in the onset of neuropathic pain differ from those involved in its long-term maintenance. Opioids display limited effectiveness, and less than 35% of patients derive meaningful benefit from other therapeutic approaches. We thus review promising therapeutic targets that have emerged over the last 20 years, including Na+, K+, Ca2+, hyperpolarization-activated cyclic nucleotide-gated channels, transient receptor potential channel type V1 channels, and adenosine A3 receptors. Despite this progress, the gabapentinoids retain their status as first-line treatments, yet their mechanism of action is poorly understood. We outline recent progress in understanding the etiology of neuropathic pain and show how this has provided insights into the cellular actions of pregabalin and gabapentin. Interactions of gabapentinoids with the α2δ-1 subunit of voltage-gated Ca2+ channels produce multiple and neuron type-specific actions in spinal cord and higher centers. We suggest that drugs that affect multiple processes, rather than a single specific target, show the greatest promise for future therapeutic development.
Collapse
Affiliation(s)
- Sascha R A Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| | - Peter A Smith
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| |
Collapse
|
46
|
Mason BJ, Quello S, Shadan F. Gabapentin for the treatment of alcohol use disorder. Expert Opin Investig Drugs 2017; 27:113-124. [PMID: 29241365 DOI: 10.1080/13543784.2018.1417383] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Alcohol misuse is the fifth leading risk factor for premature death and disability worldwide. Fewer than 10% of afflicted Americans receive pharmacological treatment for alcohol use disorder. Gabapentin is a calcium channel GABAergic modulator that is widely used for pain. Studies showing reduced drinking and decreased craving and alcohol-related disturbances in sleep and affect in the months following alcohol cessation suggest therapeutic potential for alcohol use disorder. Areas covered: Human laboratory and clinical studies assessing gabapentin for alcohol use disorder are reviewed. Data were obtained by searching for English peer-reviewed articles on PubMed, reference lists of identified articles, and trials registered on clinicaltrials.gov. Additionally, the mechanism of action of gabapentin specific to alcohol use disorder, and studies of gabapentin for alcohol withdrawal and non-alcohol substance use disorders are summarized. Expert opinion: Alcohol use disorder represents a challenge and large, unmet medical need. Evidence from single-site studies lend support to the safety and efficacy of gabapentin as a novel treatment for alcohol use disorder, with unique benefits for alcohol-related insomnia and negative affect, relative to available treatments. Proprietary gabapentin delivery systems may open a path to pivotal trials and registration of gabapentin as a novel treatment for alcohol use disorder.
Collapse
Affiliation(s)
- Barbara J Mason
- a Pearson Center for Alcoholism and Addiction Research , The Scripps Research Institute , La Jolla , CA , USA
| | - Susan Quello
- a Pearson Center for Alcoholism and Addiction Research , The Scripps Research Institute , La Jolla , CA , USA
| | - Farhad Shadan
- b Division of Hospital Medicine , Scripps Clinic and Scripps Green Hospital , La Jolla , CA , USA
| |
Collapse
|
47
|
Espinosa-Juárez JV, Jaramillo-Morales OA, López-Muñoz FJ. Haloperidol Decreases Hyperalgesia and Allodynia Induced by Chronic Constriction Injury. Basic Clin Pharmacol Toxicol 2017; 121:471-479. [PMID: 28654186 DOI: 10.1111/bcpt.12839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/21/2017] [Indexed: 01/12/2023]
Abstract
Neuropathic pain has proven to be a difficult condition to treat, so investigational therapy has been sought that may prove useful, such as the use of sigma-1 antagonists. Haloperidol (HAL) is a compound that shows a high affinity with these receptors, acting as an antagonist. Therefore, the objective of this study was to demonstrate its effect in an experimental model of neuropathic pain and corroborate its antagonistic action of the sigma-1 receptors under these conditions. BD-1063 was used as a sigma-1 antagonist control, and gabapentin (Gbp) was used as a positive control. The antihyperalgesic and anti-allodynic effects of the drugs were determined after single-dose trials. In every case, the effects increased in a dose-dependent manner. HAL had the same efficacy as both BD-1063 and Gbp. In the analysis of pharmacological potency, in which the ED50 were compared, HAL was the most potent drug of all. The effect of HAL on chronic constriction injury (CCI) rats was reversed by the sigma-1 agonist (PRE-084). HAL reversed the hyperalgesic and allodynic effects of PRE-084 in naïve rats. The dopamine antagonist, (-)-sulpiride, showed no effect in CCl rats. These results suggest that HAL presents an antinociceptive effect via sigma-1 receptor antagonism at the spinal level in the CCl model.
Collapse
|
48
|
Espinosa-Juárez JV, Jaramillo-Morales OA, Navarrete-Vázquez G, Melo-Hernández LA, Déciga-Campos M, López-Muñoz FJ. N-(2-morpholin-4-yl-ethyl)-2-(1naphthyloxy)acetamide inhibits the chronic constriction injury-generated hyperalgesia via the antagonism of sigma-1 receptors. Eur J Pharmacol 2017; 812:1-8. [PMID: 28648406 DOI: 10.1016/j.ejphar.2017.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 11/17/2022]
Abstract
The most used therapeutic treatment to relieve neuropathic pain is that of neuromodulators such as anti-epileptics or anti-depressants; however, there are alternatives that may be potentially useful. The sigma-1 receptor is a therapeutic target that has shown favorable results at preclinical levels. The aim of this study was to evaluate the anti-hyperalgesic effect of N-(2-morpholin-4-yl-ethyl)-2-(1-naphthyloxy) acetamide (NMIN) in a chronic constriction injury model (CCI) and compare it both a sigma-1 antagonist (BD-1063) and also Gabapentin, as well as determine its possible role as an antagonist of sigma-1 receptors. The anti-hyperalgesic effects of Gabapentin (10.0, 17.8, 31.6, 56.2 and 100mg/kg, s.c.), BD-1063 (5.6, 10.0, 17.8, 31.6 and 56.2mg/kg, s.c.) and NMIN (31.6, 10.0, 316mg/kg and 562mg/kg, s.c.) were determined after single-doses, using the von Frey test in the CCI model. NMIN had the same efficacy as BD-1063, but both show less efficacy than Gabapentin. In an analysis of pharmacological potency, the ED50 were compared with it being found that BD-1063 is the most potent drug, followed by Gabapentin and NMIN. The anti-hyperalgesic effect of NMIN on CCI rats was reversed by (+)-pentazocine (s.c. route) and by PRE-084 (i.t. route), both sigma-1 agonists. Furthermore, NMIN reversed the hyperalgesic effect of PRE-084 in naïve rats. These results suggest that NMIN has an anti-hyperalgesic effect on the CCI model, and that one of its mechanisms of action is as a sigma-1 antagonist, being a significant role the blocking of these receptors at the spinal level.
Collapse
Affiliation(s)
| | | | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | | | - Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, IPN, Ciudad de México, Mexico.
| | | |
Collapse
|
49
|
Widerström-Noga E. Neuropathic Pain and Spinal Cord Injury: Phenotypes and Pharmacological Management. Drugs 2017; 77:967-984. [PMID: 28451808 DOI: 10.1007/s40265-017-0747-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic neuropathic pain is a complicated condition after a spinal cord injury (SCI) that often has a lifelong and significant negative impact on life after the injury; therefore, improved pain management is considered a significant and unmet need. Neuropathic pain mechanisms are heterogeneous and the difficulty in determining their individual contribution to specific pain types may contribute to poor treatment outcomes in this population. Thus, identifying human neuropathic pain phenotypes based on pain symptoms, somatosensory changes, or cognitive and psychosocial factors that reflect specific spinal cord or brain mechanisms of neuropathic pain is an important goal. Once a pain phenotype can be reliably replicated, its relationship with biomarkers and clinical treatment outcomes can be analyzed, and thereby facilitate translational research and further the mechanistic understanding of individual differences in the pain experience and in clinical trial outcomes. The present article will discuss clinical aspects of SCI-related neuropathic pain, neuropathic pain phenotypes, pain mechanisms, potential biomarkers and pharmacological interventions, and progress regarding how defining neuropathic pain phenotypes may lead to more targeted treatments for these difficult pain conditions.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA. .,Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
50
|
Rapacz A, Kamiński K, Obniska J, Koczurkiewicz P, Pękala E, Filipek B. Analgesic, antiallodynic, and anticonvulsant activity of novel hybrid molecules derived from N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide and 2-(2,5-dioxopyrrolidin-1-yl)butanamide in animal models of pain and epilepsy. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:567-579. [PMID: 28188357 PMCID: PMC5411412 DOI: 10.1007/s00210-017-1358-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/01/2017] [Indexed: 01/25/2023]
Abstract
The purpose of the present study was to examine the analgesic activity of six novel hybrid molecules, which demonstrated in the previous research anticonvulsant activity in the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole seizure (scPTZ) tests in mice. The antinociceptive properties were estimated in three models of pain in mice—the hot plate test, the formalin test, and in the oxaliplatin-induced neuropathy. Moreover, extended anticonvulsant studies were carried out and the antiseizure activity was investigated in the 6-Hz test. Considering drug safety evaluation, the influence of compounds on locomotor activity and contextual memory were checked. Furthermore, chosen molecules were tested in vitro for potential hepatotoxicity. To explain the probable mechanism of action, the radioligand binding assays were performed. In both phases of formalin test, analgesic activity demonstrated compounds 4, 8, and 9. These agents relieved also mechanical allodynia in oxaliplatin-induced model of neuropathic pain. At active doses, they did not influence locomotor activity of mice. Moreover, for compounds 8 and 9, no deleterious effect on memory was observed, but compound 4 might induce memory deficits. All tested compounds (4, 5, 8, 9, 15, and 16) inhibited psychomotor seizures with the ED50 values = 24.66–47.21 mg/kg. The binding studies showed that compound 4 only at the high concentrations revealed the effective binding to the neuronal sodium channels and moderately binding to the L-type calcium (verapamil site) channels and NMDA receptors. The present preclinical results proved that novel hybrid molecules demonstrate very promising anticonvulsant and analgesic activity.
Collapse
Affiliation(s)
- Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|