1
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons. Nat Commun 2024; 15:9898. [PMID: 39548079 PMCID: PMC11568329 DOI: 10.1038/s41467-024-54053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we find that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels is likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observe reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Natalie L Macchi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Nicolas L A Dumaire
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Erin N Lessie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
2
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane Lipid Nanodomains Modulate HCN Pacemaker Channels in Nociceptor DRG Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.02.556056. [PMID: 37732182 PMCID: PMC10508734 DOI: 10.1101/2023.09.02.556056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we found that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels was likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observed reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
|
3
|
Al-Khazali HM, Christensen RH, Dodick DW, Chaudhry BA, Melchior AG, Burstein R, Ashina H. Hypersensitivity to BK Ca channel opening in persistent post-traumatic headache. J Headache Pain 2024; 25:102. [PMID: 38890563 PMCID: PMC11186171 DOI: 10.1186/s10194-024-01808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Large conductance calcium-activated potassium (BKCa) channels have been implicated in the neurobiological underpinnings of migraine. Considering the clinical similarities between migraine and persistent post-traumatic headache (PPTH), we aimed to examine whether MaxiPost (a BKCa channel opener) could induce migraine-like headache in persons with PPTH. METHODS This is a randomized double-blind, placebo-controlled, two-way crossover study from September 2023 to December 2023. Eligible participants were adults with PPTH after mild traumatic brain injury who reported having no personal history of migraine. The randomized participants received a single dose of either MaxiPost (0.05 mg/min) or placebo (isotonic saline) that was infused intravenously over 20 minutes. The two experiment sessions were scheduled at least one week apart to avoid potential carryover effects. The primary endpoint was the induction of migraine-like headache after MaxiPost as compared to placebo within 12 hours of drug administration. The secondary endpoint was the area under the curve (AUC) values for headache intensity scores between MaxiPost and placebo over the same 12-hour observation period. RESULTS Twenty-one adult participants (comprising 14 females and 7 males) with PPTH were enrolled and completed both experiment sessions. The proportion of participants who developed migraine-like headache was 11 (52%) of 21 participants after MaxiPost infusion, in contrast to four (19%) participants following placebo (P = .02). Furthermore, the median headache intensity scores, represented by AUC values, were higher following MaxiPost than after placebo (P < .001). CONCLUSIONS Our results indicate that BKCa channel opening can elicit migraine-like headache in persons with PPTH. Thus, pharmacologic blockade of BKCa channels might present a novel avenue for drug discovery. Additional investigations are nonetheless needed to confirm these insights and explore the therapeutic prospects of BKCa channel blockers in managing PPTH. CLINICALTRIALS GOV IDENTIFIER NCT05378074.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, BIDMC Comprehensive Headache Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune H Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - David W Dodick
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Basit Ali Chaudhry
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna G Melchior
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rami Burstein
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Science, 3 Blackfan Circle, Boston, MA, 02215, USA
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
4
|
Maxion A, Kutafina E, Dohrn MF, Sacré P, Lampert A, Tigerholm J, Namer B. A modelling study to dissect the potential role of voltage-gated ion channels in activity-dependent conduction velocity changes as identified in small fiber neuropathy patients. Front Comput Neurosci 2023; 17:1265958. [PMID: 38156040 PMCID: PMC10752960 DOI: 10.3389/fncom.2023.1265958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Patients with small fiber neuropathy (SFN) suffer from neuropathic pain, which is still a therapeutic problem. Changed activation patterns of mechano-insensitive peripheral nerve fibers (CMi) could cause neuropathic pain. However, there is sparse knowledge about mechanisms leading to CMi dysfunction since it is difficult to dissect specific molecular mechanisms in humans. We used an in-silico model to elucidate molecular causes of CMi dysfunction as observed in single nerve fiber recordings (microneurography) of SFN patients. Approach We analyzed microneurography data from 97 CMi-fibers from healthy individuals and 34 of SFN patients to identify activity-dependent changes in conduction velocity. Using the NEURON environment, we adapted a biophysical realistic preexisting CMi-fiber model with ion channels described by Hodgkin-Huxley dynamics for identifying molecular mechanisms leading to those changes. Via a grid search optimization, we assessed the interplay between different ion channels, Na-K-pump, and resting membrane potential. Main results Changing a single ion channel conductance, Na-K-pump or membrane potential individually is not sufficient to reproduce in-silico CMi-fiber dysfunction of unchanged activity-dependent conduction velocity slowing and quicker normalization of conduction velocity after stimulation as observed in microneurography. We identified the best combination of mechanisms: increased conductance of potassium delayed-rectifier and decreased conductance of Na-K-pump and depolarized membrane potential. When the membrane potential is unchanged, opposite changes in Na-K-pump and ion channels generate the same effect. Significance Our study suggests that not one single mechanism accounts for pain-relevant changes in CMi-fibers, but a combination of mechanisms. A depolarized membrane potential, as previously observed in patients with neuropathic pain, leads to changes in the contribution of ion channels and the Na-K-pump. Thus, when searching for targets for the treatment of neuropathic pain, combinations of several molecules in interplay with the membrane potential should be regarded.
Collapse
Affiliation(s)
- Anna Maxion
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
| | - Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Maike F. Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University Aachen, Aachen, Germany
| | - Jenny Tigerholm
- Joint Research Center for Computational Biomedicine, RWTH Aachen, Aachen, Germany
| | - Barbara Namer
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, RWTH Aachen University, Aachen, Germany
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Al-Khazali HM, Christensen RH, Dodick DW, Chaudhry BA, Burstein R, Ashina H. Hypersensitivity to opening of ATP-sensitive potassium channels in post-traumatic headache. Cephalalgia 2023; 43:3331024231210930. [PMID: 37917826 DOI: 10.1177/03331024231210930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVE To investigate whether levcromakalim (a KATP channel opener) induces migraine-like headache in people with persistent post-traumatic headache who had no known history of migraine. METHODS In a randomized, double-blind, placebo-controlled, 2-way crossover trial, participants were randomly assigned to receive a 20-minute continuous intravenous infusion of levcromakalim (50 µg/mL) or placebo (isotonic saline) on two separate experimental days with a 1-week wash-out period in between. The primary endpoint was the difference in incidence of migraine-like headache between levcromakalim and placebo during a 12-hour observational period after infusion start. The secondary endpoint was the difference in area under the curve for baseline-corrected median headache intensity scores between levcromakalim and placebo during the 12-hour observational period. RESULTS A total of 21 participants with persistent post-traumatic headache were randomized and completed the trial. During the 12-hour observational period, 12 (57%) of 21 participants reported experiencing migraine-like headache following the levcromakalim infusion, compared with three after placebo (P = 0.013). Moreover, the baseline-corrected median headache intensity scores were higher following the levcromakalim infusion than after placebo (P = 0.003). CONCLUSION Our findings suggest that KATP channels play an important role in the pathogenesis of migraine-like headache in people with persistent post-traumatic headache. This implies that KATP channel blockers might represent a promising avenue for drug development. Further research is warranted to explore the potential therapeutic benefits of KATP channel blockers in managing post-traumatic headache.Trial Registration: ClinicalTrials.gov Identifier: NCT05243953.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune H Christensen
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David W Dodick
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Basit Ali Chaudhry
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rami Burstein
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Håkan Ashina
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
6
|
Handlin LJ, Dai G. Direct regulation of the voltage sensor of HCN channels by membrane lipid compartmentalization. Nat Commun 2023; 14:6595. [PMID: 37852983 PMCID: PMC10584925 DOI: 10.1038/s41467-023-42363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Ion channels function within a membrane environment characterized by dynamic lipid compartmentalization. Limited knowledge exists regarding the response of voltage-gated ion channels to transmembrane potential within distinct membrane compartments. By leveraging fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET), we visualized the localization of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in membrane domains. HCN4 exhibits a greater propensity for incorporation into ordered lipid domains compared to HCN1. To investigate the conformational changes of the S4 helix voltage sensor of HCN channels, we used dual stop-codon suppression to incorporate different noncanonical amino acids, orthogonal click chemistry for site-specific fluorescence labeling, and transition metal FLIM-FRET. Remarkably, altered FRET levels were observed between VSD sites within HCN channels upon disruption of membrane domains. We propose that the voltage-sensor rearrangements, directly influenced by membrane lipid domains, can explain the heightened activity of pacemaker HCN channels when localized in cholesterol-poor, disordered lipid domains, leading to membrane hyperexcitability and diseases.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO, 63104, USA.
| |
Collapse
|
7
|
Tibbs GR, Uprety R, Warren JD, Beyer NP, Joyce RL, Ferrer MA, Mellado W, Wong VSC, Goldberg DC, Cohen MW, Costa CJ, Li Z, Zhang G, Dephoure NE, Barman DN, Sun D, Ingólfsson HI, Sauve AA, Willis DE, Goldstein PA. An anchor-tether 'hindered' HCN1 inhibitor is antihyperalgesic in a rat spared nerve injury neuropathic pain model. Br J Anaesth 2023; 131:745-763. [PMID: 37567808 PMCID: PMC10541997 DOI: 10.1016/j.bja.2023.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Neuropathic pain impairs quality of life, is widely prevalent, and incurs significant costs. Current pharmacological therapies have poor/no efficacy and significant adverse effects; safe and effective alternatives are needed. Hyperpolarisation-activated cyclic nucleotide-regulated (HCN) channels are causally implicated in some forms of peripherally mediated neuropathic pain. Whilst 2,6-substituted phenols, such as 2,6-di-tert-butylphenol (26DTB-P), selectively inhibit HCN1 gating and are antihyperalgesic, the development of therapeutically tolerable, HCN-selective antihyperalgesics based on their inverse agonist activity requires that such drugs spare the cardiac isoforms and do not cross the blood-brain barrier. METHODS In silico molecular dynamics simulation, in vitro electrophysiology, and in vivo rat spared nerve injury methods were used to test whether 'hindered' variants of 26DTB-P (wherein a hydrophilic 'anchor' is attached in the para-position of 26DTB-P via an acyl chain 'tether') had the desired properties. RESULTS Molecular dynamics simulation showed that membrane penetration of hindered 26DTB-Ps is controlled by a tethered diol anchor without elimination of head group rotational freedom. In vitro and in vivo analysis showed that BP4L-18:1:1, a variant wherein a diol anchor is attached to 26DTB-P via an 18-carbon tether, is an HCN1 inverse agonist and an orally available antihyperalgesic. With a CNS multiparameter optimisation score of 2.25, a >100-fold lower drug load in the brain vs blood, and an absence of adverse cardiovascular or CNS effects, BP4L-18:1:1 was shown to be poorly CNS penetrant and cardiac sparing. CONCLUSIONS These findings provide a proof-of-concept demonstration that anchor-tethered drugs are a new chemotype for treatment of disorders involving membrane targets.
Collapse
Affiliation(s)
- Gareth R Tibbs
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Rajendra Uprety
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Nicole P Beyer
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Rebecca L Joyce
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew A Ferrer
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | - Zhucui Li
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Noah E Dephoure
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dipti N Barman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Delin Sun
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA; Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Joyce RL, Tibbs GR, David Warren J, Costa CJ, Aromolaran K, Lea Sanford R, Andersen OS, Li Z, Zhang G, Willis DE, Goldstein PA. Probucol is anti-hyperalgesic in a mouse peripheral nerve injury model of neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100141. [PMID: 38099280 PMCID: PMC10719523 DOI: 10.1016/j.ynpai.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 12/17/2023]
Abstract
2,6-di-tert-butylphenol (2,6-DTBP) ameliorates mechanical allodynia and thermal hyperalgesia produced by partial sciatic nerve ligation in mice, and selectively inhibits HCN1 channel gating. We hypothesized that the clinically utilized non-anesthetic dimerized congener of 2,6-DTBP, probucol (2,6-di-tert-butyl-4-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)sulfanylpropan-2-ylsulfanyl]phenol), would relieve the neuropathic phenotype that results from peripheral nerve damage, and that the anti-hyperalgesic efficacy in vivo would correlate with HCN1 channel inhibition in vitro. A single oral dose of probucol (800 mg/kg) relieved mechanical allodynia and thermal hyperalgesia in a mouse spared-nerve injury neuropathic pain model. While the low aqueous solubility of probucol precluded assessment of its possible interaction with HCN1 channels, our results, in conjunction with recent data demonstrating that probucol reduces lipopolysaccharide-induced mechanical allodynia and thermal hyperalgesia, support the testing/development of probucol as a non-opioid, oral antihyperalgesic albeit one of unknown mechanistic action.
Collapse
Affiliation(s)
- Rebecca L. Joyce
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Gareth R. Tibbs
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - J. David Warren
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | | | - Kelly Aromolaran
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - R. Lea Sanford
- Dept. of Physiology & Biophysics, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Olaf S. Andersen
- Dept. of Physiology & Biophysics, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Zhucui Li
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | - Dianna E. Willis
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Peter A. Goldstein
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
- Dept. of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Häfele M, Kreitz S, Ludwig A, Hess A, Wank I. The impact of HCN4 channels on CNS brain networks as a new target in pain development. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1090502. [PMID: 37496803 PMCID: PMC10368246 DOI: 10.3389/fnetp.2023.1090502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
While it is well established that the isoform 2 of the hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN2) plays an important role in the development and maintenance of pain, the role of the closely related HCN4 isoform in the processing of nociceptive signals is not known. HCN4 channels are highly expressed in the thalamus, a region important for stimulus transmission and information processing. We used a brain-specific HCN4-knockout mouse line (HCN4-KO) to explore the role of HCN4 channels in acute nociceptive processing using several behavioral tests as well as a multimodal magnetic resonance imaging (MRI) approach. Functional MRI (fMRI) brain responses were measured during acute peripheral thermal stimulation complemented by resting state (RS) before and after stimulation. The data were analyzed by conventional and graph-theoretical approaches. Finally, high-resolution anatomical brain data were acquired. HCN4-KO animals showed a central thermal, but not a mechanical hypersensitivity in behavioral experiments. The open field analysis showed no significant differences in motor readouts between HCN4-KO and controls but uncovered increased anxiety in the HCN4-KO mice. Thermal stimulus-driven fMRI (s-fMRI) data revealed increased response volumes and response amplitudes for HCN4-KO, most pronounced at lower stimulation temperatures in the subcortical input, the amygdala as well as in limbic/hippocampal regions, and in the cerebellum. These findings could be cross-validated by graph-theoretical analyses. Assessment of short-term RS before and after thermal stimulation revealed that stimulation-related modulations of the functional connectivity only occurred in control animals. This was consistent with the finding that the hippocampus was found to be smaller in HCN4-KO. In summary, the deletion of HCN4 channels impacts on processing of acute nociception, which is remarkably manifested as a thermal hypersensitive phenotype. This was mediated by the key regions hypothalamus, somatosensory cortex, cerebellum and the amygdala. As consequence, HCN4-KO mice were more anxious, and their brain-wide RS functional connectivity could not be modulated by thermal nociceptive stimulation.
Collapse
Affiliation(s)
- Maximilian Häfele
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Ludwig
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU NeW—Research Center for New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Isabel Wank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Wojciechowski MN, Schreiber S, Jose J. A Novel Flow Cytometry-Based Assay for the Identification of HCN4 CNBD Ligands. Pharmaceuticals (Basel) 2023; 16:ph16050710. [PMID: 37242492 DOI: 10.3390/ph16050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are promising therapeutic targets because of their association with the genesis of several diseases. The identification of selective compounds that alter cAMP-induced ion channel modulation by binding to the cyclic nucleotide-binding domain (CNBD) will facilitate HCN channel-specific drug development. In this study, a fast and protein purification-free ligand-binding approach with a surface-displayed HCN4 C-Linker-CNBD on E. coli is presented. 8-Fluo-cAMP ligand binding was monitored by single-cell analysis via flow cytometry, and a Kd-value of 173 ± 46 nM was determined. The Kd value was confirmed by ligand depletion analysis and equilibrium state measurements. Applying increasing concentrations of cAMP led to a concentration-dependent decrease in fluorescence intensity, indicating a displacement of 8-Fluo-cAMP. A Ki-value of 8.5 ± 2 µM was determined. The linear relationship of IC50 values obtained for cAMP as a function of ligand concentration confirmed the competitive binding mode: IC50: 13 ± 2 µM/16 ± 3 µM/23 ± 1 µM/27 ± 1 µM for 50 nM/150 nM/250 nM/500 nM 8-Fluo-cAMP. A similar competitive mode of binding was confirmed for 7-CH-cAMP, and an IC50 value of 230 ± 41 nM and a Ki of 159 ± 29 nM were determined. Two established drugs were tested in the assay. Ivabradine, an approved HCN channel pore blocker and gabapentin, is known to bind to HCN4 channels in preference to other isoforms with an unknown mode of action. As expected, ivabradine had no impact on ligand binding. In addition, gabapentin had no influence on 8-Fluo-cAMP's binding to HCN4-CNBD. This is the first indication that gabapentin is not interacting with this part of the HCN4 channel. The ligand-binding assay as described can be used to determine binding constants for ligands such as cAMP and derivatives. It could also be applied for the identification of new ligands binding to the HCN4-CNBD.
Collapse
Affiliation(s)
- Magdalena N Wojciechowski
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Sebastian Schreiber
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| |
Collapse
|
11
|
Involvement of Potassium Channel Signalling in Migraine Pathophysiology. Pharmaceuticals (Basel) 2023; 16:ph16030438. [PMID: 36986537 PMCID: PMC10057509 DOI: 10.3390/ph16030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Migraine is a primary headache disorder ranked as the leading cause of years lived with disability among individuals younger than 50 years. The aetiology of migraine is complex and might involve several molecules of different signalling pathways. Emerging evidence implicates potassium channels, predominantly ATP-sensitive potassium (KATP) channels and large (big) calcium-sensitive potassium (BKCa) channels in migraine attack initiation. Basic neuroscience revealed that stimulation of potassium channels activated and sensitized trigeminovascular neurons. Clinical trials showed that administration of potassium channel openers caused headache and migraine attack associated with dilation of cephalic arteries. The present review highlights the molecular structure and physiological function of KATP and BKCa channels, presents recent insights into the role of potassium channels in migraine pathophysiology, and discusses possible complementary effects and interdependence of potassium channels in migraine attack initiation.
Collapse
|
12
|
Al‐Karagholi MA, Hakbilen CC, Ashina M. The role of high-conductance calcium-activated potassium channel in headache and migraine pathophysiology. Basic Clin Pharmacol Toxicol 2022; 131:347-354. [PMID: 36028922 PMCID: PMC9826089 DOI: 10.1111/bcpt.13787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Migraine is a common, neurovascular headache disorder with a complex molecular interplay. The involvement of ion channels in the pathogenesis of migraine gathered considerable attention with the findings that different ion channels subfamilies are expressed in trigeminovascular system, the physiological substrate of migraine pain, and several ion channel openers investigated in clinical trials with diverse primary endpoints caused headache as a frequent side effect. High-conductance (big) calcium-activated potassium (BKCa ) channel is expressed in the cranial arteries and the trigeminal pain pathway. Recent clinical research revealed that infusion of BKCa channel opener MaxiPost caused vasodilation, headache and migraine attack. Thus, BKCa channel is involved in pathophysiological mechanisms underlying headache and migraine, and targeting BKCa channel presents a new potential strategy for migraine treatment.
Collapse
Affiliation(s)
- Mohammad Al‐Mahdi Al‐Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Cemile Ceren Hakbilen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
13
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Jansen LAR, Forster LA, Smith XL, Rubaharan M, Murphy AZ, Baro DJ. Changes in peripheral HCN2 channels during persistent inflammation. Channels (Austin) 2021; 15:165-179. [PMID: 33423595 PMCID: PMC7808421 DOI: 10.1080/19336950.2020.1870086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/01/2023] Open
Abstract
Nociceptor sensitization following nerve injury or inflammation leads to chronic pain. An increase in the nociceptor hyperpolarization-activated current, Ih, is observed in many models of pathological pain. Pharmacological blockade of Ih prevents the mechanical and thermal hypersensitivity that occurs during pathological pain. Alterations in the Hyperpolarization-activated Cyclic Nucleotide-gated ion channel 2 (HCN2) mediate Ih-dependent thermal and mechanical hyperalgesia. Limited knowledge exists regarding the nature of these changes during chronic inflammatory pain. Modifications in HCN2 expression and post-translational SUMOylation have been observed in the Complete Freund's Adjuvant (CFA) model of chronic inflammatory pain. Intra-plantar injection of CFA into the rat hindpaw induces unilateral hyperalgesia that is sustained for up to 14 days following injection. The hindpaw is innervated by primary afferents in lumbar DRG, L4-6. Adjustments in HCN2 expression and SUMOylation have been well-documented for L5 DRG during the first 7 days of CFA-induced inflammation. Here, we examine bilateral L4 and L6 DRG at day 1 and day 3 post-CFA. Using L4 and L6 DRG cryosections, HCN2 expression and SUMOylation were measured with immunohistochemistry and proximity ligation assays, respectively. Our findings indicate that intra-plantar injection of CFA elicited a bilateral increase in HCN2 expression in L4 and L6 DRG at day 1, but not day 3, and enhanced HCN2 SUMOylation in ipsilateral L6 DRG at day 1 and day 3. Changes in HCN2 expression and SUMOylation were transient over this time course. Our study suggests that HCN2 is regulated by multiple mechanisms during CFA-induced inflammation.
Collapse
Affiliation(s)
- L-A. R. Jansen
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - L. A. Forster
- Department of Biology, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - X. L. Smith
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - M. Rubaharan
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - A. Z. Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - D. J. Baro
- Department of Biology, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
15
|
Bernard Healey SA, Scholtes I, Abrahams M, McNaughton PA, Menon DK, Lee MC. Role of hyperpolarization-activated cyclic nucleotide-gated ion channels in neuropathic pain: a proof-of-concept study of ivabradine in patients with chronic peripheral neuropathic pain. Pain Rep 2021; 6:e967. [PMID: 34712888 PMCID: PMC8547924 DOI: 10.1097/pr9.0000000000000967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/11/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel receptors mediate neuropathic pain in preclinical models. Here, exploratory analysis reveals a dose-dependent reduction in pain with HCN blockade in patients with neuropathic pain. Introduction: Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels mediate repetitive action potential firing in the heart and nervous system. The HCN2 isoform is expressed in nociceptors, and preclinical studies suggest a critical role in neuropathic pain. Ivabradine is a nonselective HCN blocker currently available for prescription for cardiac indications. Mouse data suggest that ivabradine in high concentrations is equianalgesic with gabapentin. We sought to translate these findings to patients with chronic peripheral neuropathic pain. Objectives: We sought to translate these findings to patients with chronic peripheral neuropathic pain. Methods: We adopted an open-label design, administering increasing doses of ivabradine to target a heart rate of 50 to 60 BPM, up to a maximum of 7.5 mg twice daily. All participants scored their pain on an 11-point numerical rating scale (NRS). Results: Seven (7) participants received the drug and completed the study. There was no significant treatment effect on the primary endpoint, the difference between the mean score at baseline and at maximum dosing (mean reduction = 0.878, 95% CI = −2.07 to 0.31, P = 0.1). Exploratory analysis using linear mixed models, however, revealed a highly significant correlation between ivabradine dose and pain scores (χ2(1) = 74.6, P < 0.001), with a reduction of 0.12 ± 0.01 (SEM) NRS points per milligram. The 2 participants with painful diabetic neuropathy responded particularly well. Conclusion: This suggests that ivabradine may be efficacious at higher doses, particularly in patients with diabetic neuropathic pain. Importantly, participants reported no adverse effects. These data suggest that ivabradine, a peripherally restricted drug (devoid of central nervous system side effects), is well tolerated in patients with chronic neuropathic pain. Ivabradine is now off-patent, and its analgesic potential merits further investigation in clinical trials.
Collapse
Affiliation(s)
| | - Ingrid Scholtes
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Mark Abrahams
- Pain Service, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Michael C Lee
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Zhong W, Darmani NA. The HCN Channel Blocker ZD7288 Induces Emesis in the Least Shrew ( Cryptotis parva). Front Pharmacol 2021; 12:647021. [PMID: 33995059 PMCID: PMC8117105 DOI: 10.3389/fphar.2021.647021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Subtypes (1-4) of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in the central and peripheral nervous systems, as well as the cells of smooth muscles in many organs. They mainly serve to regulate cellular excitability in these tissues. The HCN channel blocker ZD7288 has been shown to reduce apomorphine-induced conditioned taste aversion on saccharin preference in rats suggesting potential antinausea/antiemetic effects. Currently, in the least shew model of emesis we find that ZD7288 induces vomiting in a dose-dependent manner, with maximal efficacies of 100% at 1 mg/kg (i.p.) and 83.3% at 10 µg (i.c.v.). HCN channel subtype (1-4) expression was assessed using immunohistochemistry in the least shrew brainstem dorsal vagal complex (DVC) containing the emetic nuclei (area postrema (AP), nucleus tractus solitarius and dorsal motor nucleus of the vagus). Highly enriched HCN1 and HCN4 subtypes are present in the AP. A 1 mg/kg (i.p.) dose of ZD7288 strongly evoked c-Fos expression and ERK1/2 phosphorylation in the shrew brainstem DVC, but not in the in the enteric nervous system in the jejunum, suggesting a central contribution to the evoked vomiting. The ZD7288-evoked c-Fos expression exclusively occurred in tryptophan hydroxylase 2-positive serotonin neurons of the dorsal vagal complex, indicating activation of serotonin neurons may contribute to ZD7288-induced vomiting. To reveal its mechanism(s) of emetic action, we evaluated the efficacy of diverse antiemetics against ZD7288-evoked vomiting including the antagonists/inhibitors of: ERK1/2 (U0126), L-type Ca2+ channel (nifedipine); store-operated Ca2+ entry (MRS 1845); T-type Ca2+ channel (Z944), IP3R (2-APB), RyR receptor (dantrolene); the serotoninergic type 3 receptor (palonosetron); neurokinin 1 receptor (netupitant), dopamine type 2 receptor (sulpride), and the transient receptor potential vanilloid 1 receptor agonist, resiniferatoxin. All tested antiemetics except sulpride attenuated ZD7288-evoked vomiting to varying degrees. In sum, ZD7288 has emetic potential mainly via central mechanisms, a process which involves Ca2+ signaling and several emetic receptors. HCN channel blockers have been reported to have emetic potential in the clinic since they are currently used/investigated as therapeutic candidates for cancer therapy related- or unrelated-heart failure, pain, and cognitive impairment.
Collapse
Affiliation(s)
| | - N. A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
17
|
Al-Karagholi MAM, Ghanizada H, Nielsen CAW, Hougaard A, Ashina M. Opening of ATP sensitive potassium channels causes migraine attacks with aura. Brain 2021; 144:2322-2332. [PMID: 33768245 DOI: 10.1093/brain/awab136] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/14/2022] Open
Abstract
Migraine afflicts more than one billion individuals worldwide and is a leading cause of years lived with disability. In about a third of individuals with migraine aura occur in relation to migraine headache. The common pathophysiological mechanisms underlying migraine headache and migraine aura are yet to be identified. Based on recent data, we hypothesized that levcromakalim, an ATP-sensitive potassium channel opener, would trigger migraine attacks with aura in migraine with aura patients.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anders Hougaard
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Danish Headache Knowledge Center, Rigshospitalet - Glostrup, Valdemar Hansens Vej 5, DK-2600 Glostrup, Denmark
| |
Collapse
|
18
|
Yongning Z, Xianguang L, Hengling C, Su C, Fang L, Chenhong L. The hyperpolarization-activated cyclic nucleotide-gated channel currents contribute to oxaliplatin-induced hyperexcitability of DRG neurons. Somatosens Mot Res 2020; 38:11-19. [PMID: 33092457 DOI: 10.1080/08990220.2020.1834376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Humans are likely to experience mechanical allodynia and cold hyperalgesia after oxaliplatin intravenous injection. The mechanism by which oxaliplatin leads to these side effects is unknown. Since the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are involved in the automatic depolarization of action potentials, we speculated that HCN channels are involved in oxaliplatin-induced hyperalgesia through action potentials. Our results showed that the density of HCN channel currents and the excitability of dorsal root ganglion neurons both increased after oxaliplatin perfusion at the cellular level. The neuronal hyperexcitability could be alleviated by ivabradine. Ivabradine inhibited oxaliplatin-induced mechanical allodynia and cold hyperalgesia at the individual rat level. Oxaliplatin enhanced the function of HCN channels, which in turn promoted the automatic depolarization of action potentials. The acceleration of automatic depolarization excited the neurons and caused more rapid firing of action potentials. Therefore, the HCN channel is a potential therapeutic target for the hyperalgesia induced by oxaliplatin.
Collapse
Affiliation(s)
- Zhang Yongning
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumour Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, P.R. China
| | - Lin Xianguang
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumour Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, P.R. China
| | - Chen Hengling
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumour Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, P.R. China
| | - Chen Su
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumour Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, P.R. China
| | - Luo Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Li Chenhong
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumour Diagnosis & Treatment, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, P.R. China
| |
Collapse
|
19
|
Al-Karagholi MAM, Ghanizada H, Nielsen CAW, Skandarioon C, Snellman J, Lopez Lopez C, Hansen JM, Ashina M. Opening of BKCa channels alters cerebral hemodynamic and causes headache in healthy volunteers. Cephalalgia 2020; 40:1145-1154. [DOI: 10.1177/0333102420940681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction Preclinical data implicate large conductance calcium-activated potassium (BKCa) channels in the pathogenesis of headache and migraine, but the exact role of these channels is still unknown. Here, we investigated whether opening of BKCa channels would cause headache and vascular effects in healthy volunteers. Methods In a randomized, double-blind, placebo-controlled, cross-over study, 21 healthy volunteers aged 18–39 years were randomly allocated to receive an intravenous infusion of 0.05 mg/min BKCa channel opener MaxiPost and placebo on two different days. The primary endpoints were the difference in incidence of headache and the difference in area under the curve (AUC) for headache intensity scores (0–12 hours) and for middle cerebral artery blood flow velocity (VMCA) (0–2 hours) between MaxiPost and placebo. The secondary endpoints were the differences in area under the curve for superficial temporal artery and radial artery diameter (0–2 hours) between MaxiPost and placebo. Results Twenty participants completed the study. Eighteen participants (90%) developed headache after MaxiPost compared with six (30%) after placebo ( p = 0.0005); the difference of incidence is 60% (95% confidence interval 36–84%). The area under the curve for headache intensity (AUC0–12 hours, p = 0.0003), for mean VMCA (AUC0–2 hours, p = 0.0001), for superficial temporal artery diameter (AUC0–2 hours, p = 0.003), and for radial artery diameter (AUC0–2 hours, p = 0.03) were significantly larger after MaxiPost compared to placebo. Conclusion MaxiPost caused headache and dilation in extra- and intracerebral arteries. Our findings suggest a possible role of BKCa channels in headache pathophysiology in humans. ClinicalTrials.gov, ID: NCT03887325.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Camilla Skandarioon
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | | | | | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
20
|
Al-Karagholi MAM, Ghanizada H, Hansen JM, Aghazadeh S, Skovgaard LT, Olesen J, Ashina M. Extracranial activation of ATP-sensitive potassium channels induces vasodilation without nociceptive effects. Cephalalgia 2019; 39:1789-1797. [DOI: 10.1177/0333102419888490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction Levcromakalim opens ATP-sensitive potassium channels (KATP channel) and induces head pain in healthy volunteers and migraine headache in migraine patients, but no pain in other parts of the body. KATP channels are expressed in C- and Aδ-fibers, and these channels might directly activate nociceptors and thereby evoke pain in humans. Methods To assess the local effect of KATP channel opening in trigeminal and extra-trigeminal regions, we performed a crossover, double-blind, placebo-controlled study in healthy volunteers. Participants received intradermal and intramuscular injections of levcromakalim and placebo in the forehead and the forearms. Results Intradermal and intramuscular injections of levcromakalim did not evoke more pain compared to placebo in the forehead ( p > 0.05) and the forearms ( p > 0.05). Intradermal injection of levcromakalim caused more flare ( p < 0.001 ), skin temperature increase ( p < 0.001), and skin blood flow increase ( p < 0.001) compared to placebo in the forehead and the forearms. Conclusion These findings suggest that it is unlikely that levcromakalim induces head pain by direct activation of peripheral neurons.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Sameera Aghazadeh
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Lene Theil Skovgaard
- Department of Biostatistics, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Glostrup Research Park, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
21
|
Lainez S, Tsantoulas C, Biel M, McNaughton PA. HCN3 ion channels: roles in sensory neuronal excitability and pain. J Physiol 2019; 597:4661-4675. [PMID: 31290157 DOI: 10.1113/jp278211] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/08/2019] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS HCN ion channels conducting the Ih current control the frequency of firing in peripheral sensory neurons signalling pain. Previous studies have demonstrated a major role for the HCN2 subunit in chronic pain but the potential involvement of HCN3 in pain has not been investigated. HCN3 was found to be widely expressed in all classes of sensory neurons (small, medium, large) where it contributes to Ih . HCN3 deletion increased the firing rate of medium but not small, sensory neurons. Pain sensitivity both acutely and following neuropathic injury was largely unaffected by HCN3 deletion, with the exception of a small decrease of mechanical hyperalgesia in response to a pinprick. We conclude that HCN3 plays little role in either acute or chronic pain sensation. ABSTRACT HCN ion channels govern the firing rate of action potentials in the pacemaker region of the heart and in pain-sensitive (nociceptive) nerve fibres. Intracellular cAMP promotes activation of the HCN4 and HCN2 isoforms, whereas HCN1 and HCN3 are relatively insensitive to cAMP. HCN2 modulates action potential firing rate in nociceptive neurons and plays a critical role in all modes of inflammatory and neuropathic pain, although the role of HCN3 in nociceptive excitability and pain is less studied. Using antibody staining, we found that HCN3 is expressed in all classes of somatosensory neurons. In small nociceptive neurons, genetic deletion of HCN2 abolished the voltage shift of the Ih current carried by HCN isoforms following cAMP elevation, whereas the voltage shift was retained following deletion of HCN3, consistent with the sensitivity of HCN2 but not HCN3 to cAMP. Deletion of HCN3 had little effect on the evoked firing frequency in small neurons but enhanced the firing of medium-sized neurons, showing that HCN3 makes a significant contribution to the input resistance only in medium-sized neurons. Genetic deletion of HCN3 had no effect on acute thresholds to heat or mechanical stimuli in vivo and did not affect inflammatory pain measured with the formalin test. Nerve-injured HCN3 knockout mice exhibited similar levels of mechanical allodynia and thermal hyperalgesia to wild-type mice but reduced mechanical hyperalgesia in response to a pinprick. These results show that HCN3 makes some contribution to excitability, particularly in medium-sized neurons, although it has no major influence on acute or neuropathic pain processing.
Collapse
Affiliation(s)
- Sergio Lainez
- Wolfson Centre for Age-Related Research, King's College London, Guy's Campus, London, UK
| | | | - Martin Biel
- Center for Integrated Protein Science (CIPS-M) and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Research, King's College London, Guy's Campus, London, UK
| |
Collapse
|
22
|
A randomised, double-blind, placebo-controlled crossover trial of the influence of the HCN channel blocker ivabradine in a healthy volunteer pain model: an enriched population trial. Pain 2019; 160:2554-2565. [DOI: 10.1097/j.pain.0000000000001638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Miyake S, Higuchi H, Honda-Wakasugi Y, Fujimoto M, Kawai H, Nagatsuka H, Maeda S, Miyawaki T. Locally injected ivabradine inhibits carrageenan-induced pain and inflammatory responses via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. PLoS One 2019; 14:e0217209. [PMID: 31125368 PMCID: PMC6534329 DOI: 10.1371/journal.pone.0217209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Background Recently, attention has been focused on the role of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the mechanism of and as a treatment target for neuropathic and inflammatory pain. Ivabradine, a blocker of HCN channels, was demonstrated to have an effect on neuropathic pain in an animal model. Therefore, in the present study, we evaluated the effect of ivabradine on inflammatory pain, and under the hypothesis that ivabradine can directly influence inflammatory responses, we investigated its effect in in vivo and in vitro studies. Methods After approval from our institution, we studied male Sprague–Dawley rats aged 8 weeks. Peripheral inflammation was induced by the subcutaneous injection of carrageenan into the hindpaw of rats. The paw-withdrawal threshold (pain threshold) was evaluated by applying mechanical stimulation to the injected site with von Frey filaments. Ivabradine was subcutaneously injected, combined with carrageenan, and its effect on the pain threshold was evaluated. In addition, we evaluated the effects of ivabradine on the accumulation of leukocytes and TNF-alpha expression in the injected area of rats. Furthermore, we investigated the effects of ivabradine on LPS-stimulated production of TNF-alpha in incubated mouse macrophage-like cells. Results The addition of ivabradine to carrageenan increased the pain threshold lowered by carrageenan injection. Both lamotrigine and forskolin, activators of HCN channels, significantly reversed the inhibitory effect of ivabradine on the pain threshold. Ivabradine inhibited the carrageenan-induced accumulation of leukocytes and TNF-alpha expression in the injected area. Furthermore, ivabradine significantly inhibited LPS-stimulated production of TNF-alpha in the incubated cells. Conclusion The results of the present study demonstrated that locally injected ivabradine is effective against carrageenan-induced inflammatory pain via HCN channels. Its effect was considered to involve not only an action on peripheral nerves but also an anti-inflammatory effect.
Collapse
Affiliation(s)
- Saki Miyake
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Higuchi
- Department of Dental Anesthesiology, Okayama University Hospital, Okayama, Japan
| | - Yuka Honda-Wakasugi
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Maki Fujimoto
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shigeru Maeda
- Department of Dental Anesthesiology, Okayama University Hospital, Okayama, Japan
| | - Takuya Miyawaki
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| |
Collapse
|
24
|
He JT, Li XY, Zhao X, Liu X. Hyperpolarization-activated and cyclic nucleotide-gated channel proteins as emerging new targets in neuropathic pain. Rev Neurosci 2019; 30:639-649. [PMID: 30768426 DOI: 10.1515/revneuro-2018-0094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 01/14/2023]
Abstract
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are activated during hyperpolarization, and there is an inward flow of current, which is termed as hyperpolarization-activated current, Ih. Initially, these channels were identified on the pacemaker cells of the heart. Nowadays, these are identified on different regions of the nervous system, including peripheral nerves, dorsal root ganglia, dorsal horns, and different parts of the brain. There are four different types of HCN channels (HCN1–HCN4); however, HCN1 and HCN2 are more prominent. A large number of studies have shown that peripheral nerve injury increases the amplitude of Ih current in the neurons of the spinal cord and the brain. Moreover, there is an increase in the expression of HCN1 and HCN2 protein channels in peripheral axons and the spinal cord and brain regions in experimental models of nerve injury. Studies have also documented the pain-attenuating actions of selective HCN inhibitors, such as ivabradine and ZD7288. Moreover, certain drugs with additional HCN-blocking activities have also shown pain-attenuating actions in different pain models. There have been few studies documenting the relationship of HCN channels with other mediators of pain. Nevertheless, it may be proposed that the HCN channel activity is modulated by endogenous opioids and cyclo-oxygenase-2, whereas the activation of these channels may modulate the actions of substance P and the expression of spinal N-methyl-D-aspartate receptor subunit 2B to modulate pain. The present review describes the role and mechanisms of HCN ion channels in the development of neuropathic pain.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology , China-Japan Union Hospital, Jilin University , Changchun 130033, Jilin Province , China
| | - Xiao-Yan Li
- Department of Neurology , China-Japan Union Hospital, Jilin University , Changchun 130033, Jilin Province , China
| | - Xin Zhao
- Department of Paediatrics , The First Hospital of Jilin University , Changchun 130021, Jilin Province , China
| | - Xiaoliang Liu
- Cancer Center, The First Hospital of Jilin University , 126 Xiantai Street , Changchun 130033, Jilin Province , China
| |
Collapse
|
25
|
Joyce RL, Beyer NP, Vasilopoulos G, Woll KA, Hall AC, Eckenhoff RG, Barman DN, Warren JD, Tibbs GR, Goldstein PA. Alkylphenol inverse agonists of HCN1 gating: H-bond propensity, ring saturation and adduct geometry differentially determine efficacy and potency. Biochem Pharmacol 2019; 163:493-508. [PMID: 30768926 DOI: 10.1016/j.bcp.2019.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND PURPOSE In models of neuropathic pain, inhibition of HCN1 is anti-hyperalgesic. 2,6-di-iso-propyl phenol (propofol) and its non-anesthetic congener, 2,6-di-tert-butyl phenol, inhibit HCN1 channels by stabilizing closed state(s). EXPERIMENTAL APPROACH Using in vitro electrophysiology and kinetic modeling, we systematically explore the contribution of ligand architecture to alkylphenol-channel coupling. KEY RESULTS When corrected for changes in hydrophobicity (and propensity for intra-membrane partitioning), the decrease in potency upon 1-position substitution (NCO∼OH >> SH >>> F) mirrors the ligands' H-bond acceptor (NCO > OH > SH >>> F) but not donor profile (OH > SH >>> NCO∼F). H-bond elimination (OH to F) corresponds to a ΔΔG of ∼4.5 kCal mol-1 loss of potency with little or no disruption of efficacy. Substitution of compact alkyl groups (iso-propyl, tert-butyl) with shorter (ethyl, methyl) or more extended (sec-butyl) adducts disrupts both potency and efficacy. Ring saturation (with the obligate loss of both planarity and π electrons) primarily disrupts efficacy. CONCLUSIONS AND IMPLICATIONS A hydrophobicity-independent decrement in potency at higher volumes suggests the alkylbenzene site has a volume of ≥800 Å3. Within this, a relatively static (with respect to ligand) H-bond donor contributes to initial binding with little involvement in generation of coupling energy. The influence of π electrons/ring planarity and alkyl adducts on efficacy reveals these aspects of the ligand present towards a face of the channel that undergoes structural changes during opening. The site's characteristics suggest it is "druggable"; introduction of other adducts on the ring may generate higher potency inverse agonists.
Collapse
Affiliation(s)
| | | | | | - Kellie A Woll
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Adam C Hall
- Smith College, Northampton, MA, United States
| | - Roderic G Eckenhoff
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | | | | | | |
Collapse
|
26
|
HCN Channels: New Therapeutic Targets for Pain Treatment. Molecules 2018; 23:molecules23092094. [PMID: 30134541 PMCID: PMC6225464 DOI: 10.3390/molecules23092094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are highly regulated proteins which respond to different cellular stimuli. The HCN currents (Ih) mediated by HCN1 and HCN2 drive the repetitive firing in nociceptive neurons. The role of HCN channels in pain has been widely investigated as targets for the development of new therapeutic drugs, but the comprehensive design of HCN channel modulators has been restricted due to the lack of crystallographic data. The three-dimensional structure of the human HCN1 channel was recently reported, opening new possibilities for the rational design of highly-selective HCN modulators. In this review, we discuss the structural and functional properties of HCN channels, their pharmacological inhibitors, and the potential strategies for designing new drugs to block the HCN channel function associated with pain perception.
Collapse
|
27
|
Djouhri L, Smith T, Ahmeda A, Alotaibi M, Weng X. Hyperpolarization-activated cyclic nucleotide-gated channels contribute to spontaneous activity in L4 C-fiber nociceptors, but not Aβ-non-nociceptors, after axotomy of L5-spinal nerve in the rat in vivo. Pain 2018; 159:1392-1402. [PMID: 29578948 DOI: 10.1097/j.pain.0000000000001224] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peripheral neuropathic pain associated with partial nerve injury is believed to be driven partly by aberrant spontaneous activity (SA) in both injured and uninjured dorsal root ganglion (DRG) neurons. The underlying ionic mechanisms are not fully understood, but hyperpolarization-activated cyclic nucleotide-gated (HCN) channels which underlie the excitatory Ih current have been implicated in SA generation in axotomized A-fiber neurons after L5-spinal nerve ligation/axotomy (SNL/SNA). Here, using a modified model of SNA (mSNA) which involves, in addition to L5-SNA, loose ligation of the L4-spinal nerve with neuroinflammation-inducing chromic gut, we examined whether HCN channels also contribute to SA in the adjacent L4-neurons. Intracellular recordings from L4-DRG neurons in control rats, and L4-DRG neurons in mSNA rats were made using in vivo voltage- and current-clamp techniques. Compared with control, L4 C-nociceptors and Aβ-low-threshold mechanoreceptors (LTMs) exhibited SA 7 days after mSNA. This was accompanied, in C-nociceptors, by a significant increase in Ih amplitude, the percentage of Ih-expressing neurons, and Ih activation rate. Hyperpolarization-activated cyclic nucleotide-gated channel blockade with ZD7288 (10 mg/kg, intravenously) suppressed SA in C-nociceptors, but not Aβ-LTMs, and caused in C-nociceptors, membrane hyperpolarization and a decrease in Ih activation rate. Furthermore, intraplantar injection of ZD7288 (100 μM) was found to be as effective as gabapentin (positive control) in attenuating cold hypersensitivity in mSNA rats. These findings suggest that HCN channels contribute to nerve injury-induced SA in L4 C-nociceptors, but not Aβ-LTMs, and that ZD7288 exerts its analgesic effects by altering Ih activation properties and/or causing membrane hyperpolarization in L4 C-nociceptors.
Collapse
Affiliation(s)
- Laiche Djouhri
- Department of Physiology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Clinical and Molecular Pharmacology, Institute of Translational Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Trevor Smith
- Wolfson CARD, Neurorestoration Group, King's College London, London, United Kingdom
| | - Ahmad Ahmeda
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alotaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Xiechuan Weng
- State Key Laboratory of Proteomics, Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Protein kinase A regulates inflammatory pain sensitization by modulating HCN2 channel activity in nociceptive sensory neurons. Pain 2018; 158:2012-2024. [PMID: 28767511 DOI: 10.1097/j.pain.0000000000001005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several studies implicated cyclic adenosine monophosphate (cAMP) as an important second messenger for regulating nociceptor sensitization, but downstream targets of this signaling pathway which contribute to neuronal plasticity are not well understood. We used a Cre/loxP-based strategy to disable the function of either HCN2 or PKA selectively in a subset of peripheral nociceptive neurons and analyzed the nociceptive responses in both transgenic lines. A near-complete lack of sensitization was observed in both mutant strains when peripheral inflammation was induced by an intradermal injection of 8br-cAMP. The lack of HCN2 as well as the inhibition of PKA eliminated the cAMP-mediated increase of calcium transients in dorsal root ganglion neurons. Facilitation of Ih via cAMP, a hallmark of the Ih current, was abolished in neurons without PKA activity. Collectively, these results show a significant contribution of both genes to inflammatory pain and suggest that PKA-dependent activation of HCN2 underlies cAMP-triggered neuronal sensitization.
Collapse
|
29
|
Bernal L, Roza C. Hyperpolarization-activated channels shape temporal patterns of ectopic spontaneous discharge in C-nociceptors after peripheral nerve injury. Eur J Pain 2018; 22:1377-1387. [PMID: 29635758 DOI: 10.1002/ejp.1226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Neuropathic pain is thought to be mediated by aberrant impulses from sensitized primary afferents, and the temporal summation of the discharges might also influence nociceptive processing. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (Ih current) generate rhythmic activity in neurons within the central nervous system and contribute to nociceptors excitability in neuropathic pain. METHODS We searched for single fibres with ectopic spontaneous discharges from an in vitro preparation in mice containing a neuroma formed in a peripheral branch of the saphenous nerve together with the undamaged branches. RESULTS Both damaged (axotomized) and undamaged fibres (putative intact) developed ectopic spontaneous activity with different temporal spike trains: Clock-like, Irregular or Bursts. The Ih current blocker, ZD7288, significantly suppressed ectopic spontaneous discharges in nociceptive fibres (3/5 Aδ- and 24/31 C-units and 1 nonclassified) by 64%. Additionally, ZD7288 changed the spike patterns of 5/7 Clock-like and 3/4 Burst units to Irregular. Exogenous cAMP produced a significant ~65% increase in the ectopic firing in 5 Irregular fibres, which was restored by ZD7288. In six additional fibres (three Clock-like and three Irregular), exogenous cAMP had no further effect, but co-application with ZD7288 decreased their discharge by half. These units showed significant higher levels of discharges than the cAMP-sensitive ones. CONCLUSIONS Our data suggest that HCN channels modulate ectopic spontaneous firing in C-nociceptors and shape their temporal patterns of discharge which will, ultimately, modify the nociceptive message received and processed by second-order neurons. SIGNIFICANCE We show an involvement of HCN channels in the modulation of ectopic spontaneous discharges from C-nociceptors. This finding exposes a mechanism of nociceptive transmission enhancement and highlights the clinical relevance of peripheral HCN blockade for spontaneous pain relief during neuropathy.
Collapse
Affiliation(s)
- L Bernal
- Department of Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - C Roza
- Department of Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
30
|
Abstract
Injury to or disease of the nervous system can invoke chronic and sometimes intractable neuropathic pain. Many parallel, interdependent, and time-dependent processes, including neuroimmune interactions at the peripheral, supraspinal, and spinal levels, contribute to the etiology of this "disease of pain." Recent work emphasizes the roles of colony-stimulating factor 1, ATP, and brain-derived neurotrophic factor. Excitatory processes are enhanced, and inhibitory processes are attenuated in the spinal dorsal horn and throughout the somatosensory system. This leads to central sensitization and aberrant processing such that tactile and innocuous thermal information is perceived as pain (allodynia). Processes involved in the onset of neuropathic pain differ from those involved in its long-term maintenance. Opioids display limited effectiveness, and less than 35% of patients derive meaningful benefit from other therapeutic approaches. We thus review promising therapeutic targets that have emerged over the last 20 years, including Na+, K+, Ca2+, hyperpolarization-activated cyclic nucleotide-gated channels, transient receptor potential channel type V1 channels, and adenosine A3 receptors. Despite this progress, the gabapentinoids retain their status as first-line treatments, yet their mechanism of action is poorly understood. We outline recent progress in understanding the etiology of neuropathic pain and show how this has provided insights into the cellular actions of pregabalin and gabapentin. Interactions of gabapentinoids with the α2δ-1 subunit of voltage-gated Ca2+ channels produce multiple and neuron type-specific actions in spinal cord and higher centers. We suggest that drugs that affect multiple processes, rather than a single specific target, show the greatest promise for future therapeutic development.
Collapse
Affiliation(s)
- Sascha R A Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| | - Peter A Smith
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| |
Collapse
|
31
|
Xie RG, Chu WG, Hu SJ, Luo C. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States. Int J Mol Sci 2018; 19:ijms19010161. [PMID: 29303989 PMCID: PMC5796110 DOI: 10.3390/ijms19010161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022] Open
Abstract
Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - Wen-Guang Chu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - San-Jue Hu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
32
|
Kovalchuk MO, Franssen H, Van Schelven LJ, Sleutjes BTHM. Comparing excitability at 37°C versus at 20°C: Differences between motor and sensory axons. Muscle Nerve 2017; 57:574-580. [DOI: 10.1002/mus.25960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Maria O. Kovalchuk
- Department of Neurology and Neurosurgery, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Hessel Franssen
- Department of Neurology and Neurosurgery, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Leonard J. Van Schelven
- Department of Medical Technology and Clinical PhysicsUniversity Medical Center UtrechtUtrecht the Netherlands
| | - Boudewijn T. H. M. Sleutjes
- Department of Neurology and Neurosurgery, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht The Netherlands
| |
Collapse
|
33
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
34
|
Weerasinghe D, Menon P, Vucic S. Hyperpolarization-activated cyclic-nucleotide-gated channels potentially modulate axonal excitability at different thresholds. J Neurophysiol 2017; 118:3044-3050. [PMID: 28904107 DOI: 10.1152/jn.00576.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels mediate differences in sensory and motor axonal excitability at different thresholds in animal models. Importantly, HCN channels are responsible for voltage-gated inward rectifying (Ih) currents activated during hyperpolarization. The Ih currents exert a crucial role in determining the resting membrane potential and have been implicated in a variety of neurological disorders, including neuropathic pain. In humans, differences in biophysical properties of motor and sensory axons at different thresholds remain to be elucidated and could provide crucial pathophysiological insights in peripheral neurological diseases. Consequently, the aim of this study was to characterize sensory and motor axonal function at different threshold. Median nerve motor and sensory axonal excitability studies were undertaken in 15 healthy subjects (45 studies in total). Tracking targets were set to 20, 40, and 60% of maximum for sensory and motor axons. Hyperpolarizing threshold electrotonus (TEh) at 90-100 ms was significantly increased in lower threshold sensory axons times (F = 11.195, P < 0.001). In motor axons, the hyperpolarizing current/threshold (I/V) gradient was significantly increased in lower threshold axons (F = 3.191, P < 0.05). The minimum I/V gradient was increased in lower threshold motor and sensory axons. In conclusion, variation in the kinetics of HCN isoforms could account for the findings in motor and sensory axons. Importantly, assessing the function of HCN channels in sensory and motor axons of different thresholds may provide insights into the pathophysiological processes underlying peripheral neurological diseases in humans, particularly focusing on the role of HCN channels with the potential of identifying novel treatment targets.NEW & NOTEWORTHY Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels, which underlie inward rectifying currents (Ih), appear to mediate differences in sensory and motor axonal properties. Inward rectifying currents are increased in lower threshold motor and sensory axons, although different HCN channel isoforms appear to underlie these changes. While faster activating HCN channels seem to underlie Ih changes in sensory axons, slower activating HCN isoforms appear to be mediating the differences in Ih conductances in motor axons of different thresholds. The differences in HCN gating properties could explain the predilection for dysfunction of sensory and motor axons in specific neurological diseases.
Collapse
Affiliation(s)
| | - Parvathi Menon
- Department of Neurology, Westmead Hospital, Sydney, Australia; and.,Westmead Clinical School, The University of Sydney, Sydney, Australia
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Sydney, Australia; and .,Westmead Clinical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
35
|
Tae HS, Smith KM, Phillips AM, Boyle KA, Li M, Forster IC, Hatch RJ, Richardson R, Hughes DI, Graham BA, Petrou S, Reid CA. Gabapentin Modulates HCN4 Channel Voltage-Dependence. Front Pharmacol 2017; 8:554. [PMID: 28871229 PMCID: PMC5566583 DOI: 10.3389/fphar.2017.00554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Gabapentin (GBP) is widely used to treat epilepsy and neuropathic pain. There is evidence that GBP can act on hyperpolarization-activated cation (HCN) channel-mediated Ih in brain slice experiments. However, evidence showing that GBP directly modulates HCN channels is lacking. The effect of GBP was tested using two-electrode voltage clamp recordings from human HCN1, HCN2, and HCN4 channels expressed in Xenopus oocytes. Whole-cell recordings were also made from mouse spinal cord slices targeting either parvalbumin positive (PV+) or calretinin positive (CR+) inhibitory neurons. The effect of GBP on Ih was measured in each inhibitory neuron population. HCN4 expression was assessed in the spinal cord using immunohistochemistry. When applied to HCN4 channels, GBP (100 μM) caused a hyperpolarizing shift in the voltage of half activation (V1/2) thereby reducing the currents. Gabapentin had no impact on the V1/2 of HCN1 or HCN2 channels. There was a robust increase in the time to half activation for HCN4 channels with only a small increase noted for HCN1 channels. Gabapentin also caused a hyperpolarizing shift in the V1/2 of Ih measured from HCN4-expressing PV+ inhibitory neurons in the spinal dorsal horn. Gabapentin had minimal effect on Ih recorded from CR+ neurons. Consistent with this, immunohistochemical analysis revealed that the majority of CR+ inhibitory neurons do not express somatic HCN4 channels. In conclusion, GBP reduces HCN4 channel-mediated currents through a hyperpolarized shift in the V1/2. The HCN channel subtype selectivity of GBP provides a unique tool for investigating HCN4 channel function in the central nervous system. The HCN4 channel is a candidate molecular target for the acute analgesic and anticonvulsant actions of GBP.
Collapse
Affiliation(s)
- Han-Shen Tae
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Kelly M Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, CallaghanNSW, Australia.,Hunter Medical Research Institute, New Lambton HeightsNSW, Australia
| | - A Marie Phillips
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia.,School of BioSciences, The University of Melbourne, ParkvilleVIC, Australia
| | - Kieran A Boyle
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | - Melody Li
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Ian C Forster
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Robert J Hatch
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Robert Richardson
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - David I Hughes
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle, CallaghanNSW, Australia.,Hunter Medical Research Institute, New Lambton HeightsNSW, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
36
|
Liu DL, Wang X, Chu WG, Lu N, Han WJ, Du YK, Hu SJ, Bai ZT, Wu SX, Xie RG, Luo C. Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current ( I h) in large-diameter dorsal root ganglion neurons. Mol Pain 2017; 13:1744806917707127. [PMID: 28587505 PMCID: PMC5466279 DOI: 10.1177/1744806917707127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cervical radiculopathic pain is a very common symptom that may occur with cervical
spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain
and is inadequately treated with current therapies. However, the precise mechanisms
underlying cervical radiculopathic pain-associated mechanical allodynia have remained
elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal
root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in
mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic
changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these
changes are yet to be known. With combination of patch-clamp recording,
immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon
chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root
ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability.
Quantitative analysis of hyperpolarization-activated cation current
(Ih) revealed that Ih was
greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic
pain rats. This increased Ih was supported by the enhanced
expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3
in large dorsal root ganglion neurons. Blockade of Ih with
selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated
with cervical radiculopathic pain. This study sheds new light on the functional plasticity
of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel
mechanism that could underlie the mechanical allodynia associated with cervical
radiculopathy.
Collapse
Affiliation(s)
- Da-Lu Liu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,2 Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xu Wang
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,3 Research Center for Resource Polypeptide Drugs and College of Life Sciences, Yanan University, Yanan, China
| | - Wen-Guang Chu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Na Lu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,4 ART Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Wen-Juan Han
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Yi-Kang Du
- 5 The First Brigade, Fourth Military Medical University, Xi'an, China
| | - San-Jue Hu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Zhan-Tao Bai
- 3 Research Center for Resource Polypeptide Drugs and College of Life Sciences, Yanan University, Yanan, China
| | - Sheng-Xi Wu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Rou-Gang Xie
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
37
|
HCN2 ion channels: basic science opens up possibilities for therapeutic intervention in neuropathic pain. Biochem J 2016; 473:2717-36. [DOI: 10.1042/bcj20160287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/18/2016] [Indexed: 01/22/2023]
Abstract
Nociception — the ability to detect painful stimuli — is an invaluable sense that warns against present or imminent damage. In patients with chronic pain, however, this warning signal persists in the absence of any genuine threat and affects all aspects of everyday life. Neuropathic pain, a form of chronic pain caused by damage to sensory nerves themselves, is dishearteningly refractory to drugs that may work in other types of pain and is a major unmet medical need begging for novel analgesics. Hyperpolarisation-activated cyclic nucleotide (HCN)-modulated ion channels are best known for their fundamental pacemaker role in the heart; here, we review data demonstrating that the HCN2 isoform acts in an analogous way as a ‘pacemaker for pain’, in that its activity in nociceptive neurons is critical for the maintenance of electrical activity and for the sensation of chronic pain in pathological pain states. Pharmacological block or genetic deletion of HCN2 in sensory neurons provides robust pain relief in a variety of animal models of inflammatory and neuropathic pain, without any effect on normal sensation of acute pain. We discuss the implications of these findings for our understanding of neuropathic pain pathogenesis, and we outline possible future opportunities for the development of efficacious and safe pharmacotherapies in a range of chronic pain syndromes.
Collapse
|
38
|
Characteristics of hyperpolarization-activated cyclic nucleotide-gated channels in dorsal root ganglion neurons at different ages and sizes. Neuroreport 2016; 26:981-7. [PMID: 26379059 DOI: 10.1097/wnr.0000000000000455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In rat's sensory neurons, hyperpolarization-activated inward currents (Ih) play an essential role in mediating action potentials and contributing to neuronal excitability. Classified by the size of neurons and ages, we studied the Ih and transcription levels of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels using electrophysiology and the single-cell RT-PCR. In voltage-clamp studies, Ih and half-maximal activation voltage (V1/2) changed with age and size. An analysis of all HCN subtypes in dorsal root ganglion (DRG) neurons by single-cell RT-PCR was carried out. HCN1 and HCN3 in medium-small elderly neurons had a weak expression. HCN2 in newborns and HCN4 in elderly rats also had a weak expression. The aim of this study is to examine the age-related Ih and HCN channels subunits in different ages and sizes of DRG neurons. The results would be significant in understanding the physiological and pathophysiological function of different sizes of DRG neurons in different age periods.
Collapse
|
39
|
Tibbs GR, Posson DJ, Goldstein PA. Voltage-Gated Ion Channels in the PNS: Novel Therapies for Neuropathic Pain? Trends Pharmacol Sci 2016; 37:522-542. [DOI: 10.1016/j.tips.2016.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/24/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
|
40
|
Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain. Sci Rep 2015; 5:16713. [PMID: 26577374 PMCID: PMC4649360 DOI: 10.1038/srep16713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron’s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensitivity. Amongst nociceptive DRG neurons, a mechanically sensitive neuron, isolectin B4 negative Aδ-type (IB4− Aδ) DRG neuron displays spontaneous activity with hyperexcitability after chronic compression of cervical DRGs. Focal mechanical stimulation on somata of IB4- Aδ neuron induces abnormal hypersensitivity. Upregulated HCN1 and HCN3 channels and increased Ih current on this subset of primary nociceptors underlies the spontaneous activity together with neuronal mechanical hypersensitivity, which further contributes to the behavioral mechanical hypersensitivity associated with CRP. This study sheds new light on the functional plasticity of a specific subset of nociceptive DRG neurons to mechanical stimulation and reveals a novel mechanism that could underlie the mechanical hypersensitivity associated with cervical radiculopathy.
Collapse
|
41
|
Cordeiro Matos S, Zhang Z, Séguéla P. Peripheral Neuropathy Induces HCN Channel Dysfunction in Pyramidal Neurons of the Medial Prefrontal Cortex. J Neurosci 2015; 35:13244-56. [PMID: 26400952 PMCID: PMC6605438 DOI: 10.1523/jneurosci.0799-15.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 01/28/2023] Open
Abstract
Neuropathic pain is a debilitating condition for which the development of effective treatments has been limited by an incomplete understanding of its molecular basis. The cationic current Ih mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels plays an important role in pain by facilitating ectopic firing and hyperexcitability in DRG neurons, however little is known regarding the role of Ih in supraspinal pain pathways. The medial prefrontal cortex (mPFC), which is reported to be involved in the affective aspects of pain, exhibits high HCN channel expression. Using the spared nerve injury (SNI) model of neuropathic pain in Long-Evans rats and patch-clamp recordings in layer II/III pyramidal neurons of the contralateral mPFC, we observed a hyperpolarizing shift in the voltage-dependent activation of Ih in SNI neurons, whereas maximal Ih remained unchanged. Accordingly, SNI mPFC pyramidal neurons exhibited increased input resistance and excitability, as well as facilitated glutamatergic mGluR5-mediated persistent firing, compared with sham neurons. Moreover, intracellular application of bromo-cAMP abolished the hyperpolarizing shift in the voltage-dependent activation of Ih observed in SNI neurons, whereas protein kinase A (PKA) inhibition further promoted this shift in both SNI and sham neurons. Behaviorally, acute HCN channel blockade by local injection of ZD7288 in the mPFC of SNI rats induced a decrease in cold allodynia. These findings suggest that changes in the cAMP/PKA axis in mPFC neurons underlie alterations to HCN channel function, which can influence descending inhibition of pain pathways in neuropathic conditions. Significance statement: Recent studies investigating the role of the medial prefrontal cortex (mPFC) in neuropathic pain have led to an increased awareness of how affective and cognitive factors can influence pain perception. It is therefore imperative that we advance our understanding of the involvement of supraspinal pain pathways. Our electrophysiological and behavioral results support an important role for hyperpolarization-activated cyclic nucleotide-gated channels and the cAMP/protein kinase A signaling axis in promoting hyperexcitability and persistent firing in pyramidal neurons of the mPFC in neuropathic animals. These findings offer novel insights, with potential therapeutic implications, into pathophysiological mechanisms underlying the abnormal contribution of layer II/III prefrontal pyramidal neurons to chronic pain states.
Collapse
Affiliation(s)
- Steven Cordeiro Matos
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zizhen Zhang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
42
|
Djouhri L, Al Otaibi M, Kahlat K, Smith T, Sathish J, Weng X. Persistent hindlimb inflammation induces changes in activation properties of hyperpolarization-activated current (Ih) in rat C-fiber nociceptors in vivo. Neuroscience 2015; 301:121-33. [PMID: 26047727 DOI: 10.1016/j.neuroscience.2015.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
A hallmark of chronic inflammation is hypersensitivity to noxious and innocuous stimuli. This inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive dorsal root ganglion (DRG) neurons innervating inflamed tissue, although the underlying ionic mechanisms are not fully understood. However, we have previously shown that the nociceptor hyperexcitability is associated with increased expression of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) protein and hyperpolarization-activated current (Ih) in C-nociceptors. Here we used in vivo voltage-clamp and current-clamp recordings, in deeply anesthetized rats, to determine whether activation properties of Ih in these C-nociceptors also change following persistent (not acute) hindlimb inflammation induced by complete Freund's adjuvant (CFA). Recordings were made from lumbar (L4/L5) C-nociceptive DRG neurons. Behavioral sensory testing was performed 5-7days after CFA treatment, and all the CFA-treated group showed significant behavioral signs of mechanical and heat hypersensitivity, but not spontaneous pain. Compared with control, C-nociceptors recorded 5-7days after CFA showed: (a) a significant increase in the incidence of spontaneous activity (from ∼5% to 26%) albeit at low rate (0.14±0.08Hz (Mean±SEM); range, 0.01-0.29Hz), (b) a significant increase in the percentage of neurons expressing Ih (from 35%, n=43-84%, n=50) based on the presence of voltage "sag" of >10%, and (c) a significant increase in the conductance (Gh) of the somatic channels conducting Ih along with the corresponding Ih,Ih, activation rate, but not voltage dependence, in C-nociceptors. Given that activation of Ih depolarizes the neuronal membrane toward the threshold of action potential generation, these changes in Ih kinetics in CFA C-nociceptors may contribute to their hyperexcitability and thus to pain hypersensitivity associated with persistent inflammation.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - M Al Otaibi
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - K Kahlat
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - T Smith
- Wolfson CARD, Neurorestoration Group, Hodgkin Building, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - J Sathish
- Department of Molecular and Clinical Pharmacology;Sherrington Buildings, University of Liverpool, L69 3GE, UK
| | - X Weng
- Department of Neurobiology and State Key Laboratory of Proteomics, Beijing Institute of B Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
43
|
Smith T, Al Otaibi M, Sathish J, Djouhri L. Increased expression of HCN2 channel protein in L4 dorsal root ganglion neurons following axotomy of L5- and inflammation of L4-spinal nerves in rats. Neuroscience 2015; 295:90-102. [DOI: 10.1016/j.neuroscience.2015.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/28/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
|
44
|
Cho Y, Kim Y, Moozhayil S, Yang E, Bae Y. The expression of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and HCN2 in the rat trigeminal ganglion, sensory root, and dental pulp. Neuroscience 2015; 291:15-25. [DOI: 10.1016/j.neuroscience.2015.01.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
45
|
DiFrancesco JC, DiFrancesco D. Dysfunctional HCN ion channels in neurological diseases. Front Cell Neurosci 2015; 6:174. [PMID: 25805968 PMCID: PMC4354400 DOI: 10.3389/fncel.2015.00071] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/18/2015] [Indexed: 11/25/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current) in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation, and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials, and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic, and physiopathological aspects.
Collapse
Affiliation(s)
- Jacopo C DiFrancesco
- Department of Neurophysiology, Foundation Neurological Institute C. Besta Milano, Italy ; Department of Neurology, San Gerardo Hospital and Laboratory of Neurobiology, Milan Center for Neuroscience, University of Milano-Bicocca Monza, Italy
| | - Dario DiFrancesco
- The PaceLab, Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
46
|
Herrmann S, Schnorr S, Ludwig A. HCN channels--modulators of cardiac and neuronal excitability. Int J Mol Sci 2015; 16:1429-47. [PMID: 25580535 PMCID: PMC4307311 DOI: 10.3390/ijms16011429] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/31/2014] [Indexed: 01/06/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a family of cation channels activated by hyperpolarized membrane potentials and stimulated by intracellular cyclic nucleotides. The four members of this family, HCN1-4, show distinct biophysical properties which are most evident in the kinetics of activation and deactivation, the sensitivity towards cyclic nucleotides and the modulation by tyrosine phosphorylation. The four isoforms are differentially expressed in various excitable tissues. This review will mainly focus on recent insights into the functional role of the channels apart from their classic role as pacemakers. The importance of HCN channels in the cardiac ventricle and ventricular hypertrophy will be discussed. In addition, their functional significance in the peripheral nervous system and nociception will be examined. The data, which are mainly derived from studies using transgenic mice, suggest that HCN channels contribute significantly to cellular excitability in these tissues. Remarkably, the impact of the channels is clearly more pronounced in pathophysiological states including ventricular hypertrophy as well as neural inflammation and neuropathy suggesting that HCN channels may constitute promising drug targets in the treatment of these conditions. This perspective as well as the current therapeutic use of HCN blockers will also be addressed.
Collapse
Affiliation(s)
- Stefan Herrmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Sabine Schnorr
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
47
|
Contribution of hyperpolarization-activated channels to heat hypersensitivity and ongoing activity in the neuritis model. Neuroscience 2014; 284:87-98. [PMID: 25290015 DOI: 10.1016/j.neuroscience.2014.08.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/29/2022]
Abstract
Neuritis can cause pain hypersensitivities in the absence of axonal degeneration. Such hypersensitivities are reputed to be maintained by ongoing activity into the spinal cord, which, in the neuritis model, is mainly generated from intact C-fiber neurons. The hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels has been implicated in nerve injury-induced pain hypersensitivities. The present study has examined the role of these channels in the development of heat and mechanical hypersensitivities in the neuritis model. The systemic administration of the HCN-specific blocker ZD7288 produced a reversal of heat but not mechanical hypersensitivity within one hour post-administration. Recordings from C-fiber neurons were performed to determine whether ZD7288 acts by inhibiting ongoing activity. ZD7288 (0.5mM) caused a 44.1% decrease in the ongoing activity rate following its application to the neuritis site. Immunohistochemical examination of the HCN2 channel subtype within the L5 dorsal root ganglia revealed an increase in expression in neuronal cell bodies of all sizes post-neuritis. In conclusion, HCN channels contribute to the development of neuritis-induced heat hypersensitivity and ongoing activity. Drugs that target HCN channels may be beneficial in the treatment of neuropathic pain in patients with nerve inflammation.
Collapse
|
48
|
Young GT, Emery EC, Mooney ER, Tsantoulas C, McNaughton PA. Inflammatory and neuropathic pain are rapidly suppressed by peripheral block of hyperpolarisation-activated cyclic nucleotide-gated ion channels. Pain 2014; 155:1708-1719. [PMID: 24861581 DOI: 10.1016/j.pain.2014.05.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/30/2014] [Accepted: 05/19/2014] [Indexed: 01/06/2023]
Abstract
Previous studies have shown that hyperpolarisation-activated cyclic nucleotide-gated (HCN)-2 ion channels regulate the firing frequency of nociceptive sensory neurons and thus play a central role in both inflammatory and neuropathic pain conditions. Here we use ivabradine, a clinically approved anti-anginal agent that blocks all HCN channel isoforms approximately equally, to investigate the effect on inflammatory and neuropathic pain of HCN ion channel block. We show that ivabradine does not have major off-target effects on a sample group of Na, Ca, and K ion channels, and that it is peripherally restricted because it is a substrate for the P-glycoprotein (PgP) multidrug transporter that is expressed in the blood-brain barrier. Its effects are therefore likely to be due to an action on HCN ion channels in peripheral sensory neurons. Using patch clamp electrophysiology, we found that ivabradine was a use-dependent blocker of native HCN channels expressed in small sensory neurons. Ivabradine suppressed the action potential firing that is induced in nociceptive neurons by elevation of intracellular cAMP. In the formalin model of inflammatory pain, ivabradine reduced pain behaviour only in the second (inflammatory) phase. In nerve injury and chemotherapy models of neuropathic pain, we observed rapid and effective analgesia as effective as that with gabapentin. We conclude that both inflammatory and neuropathic pain are rapidly inhibited by blocking HCN-dependent repetitive firing in peripheral nociceptive neurons.
Collapse
Affiliation(s)
- Gareth T Young
- Department of Pharmacology, University of Cambridge, Cambridge, UK Wolfson Centre for Age-Related Research, King's College London, Guy's Campus, London Bridge, London, UK
| | | | | | | | | |
Collapse
|
49
|
Shields SD. Conditional deletion of HCN2 from primary afferents uncovers the heterogeneity of inflammatory hypersensitivity. Pain 2014; 155:1051-1052. [PMID: 24602996 DOI: 10.1016/j.pain.2014.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Shannon D Shields
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA Rehabilitation Research Center, Veterans' Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
50
|
Noh S, Kumar N, Bukhanova N, Chen Y, Stemkowsi P, Smith P. The heart-rate-reducing agent, ivabradine, reduces mechanical allodynia in a rodent model of neuropathic pain. Eur J Pain 2014; 18:1139-47. [DOI: 10.1002/j.1532-2149.2014.00460.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2014] [Indexed: 11/07/2022]
Affiliation(s)
- S. Noh
- Department of Pharmacology and Centre for Neuroscience; University of Alberta; Edmonton Canada
| | - N. Kumar
- Department of Pharmacology and Centre for Neuroscience; University of Alberta; Edmonton Canada
| | - N. Bukhanova
- Department of Pharmacology and Centre for Neuroscience; University of Alberta; Edmonton Canada
| | - Y. Chen
- Department of Pharmacology and Centre for Neuroscience; University of Alberta; Edmonton Canada
| | - P.L. Stemkowsi
- Department of Pharmacology and Centre for Neuroscience; University of Alberta; Edmonton Canada
| | - P.A. Smith
- Department of Pharmacology and Centre for Neuroscience; University of Alberta; Edmonton Canada
| |
Collapse
|