1
|
García-García E, Ramón-Lainez A, Conde-Berriozabal S, Del Toro D, Escaramis G, Giralt A, Masana M, Alberch J, Rodríguez MJ. VPS13A knockdown impairs corticostriatal synaptic plasticity and locomotor behavior in a new mouse model of chorea-acanthocytosis. Neurobiol Dis 2023; 187:106292. [PMID: 37714309 DOI: 10.1016/j.nbd.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chorea-acanthocytosis (ChAc) is an inherited neurodegenerative movement disorder caused by VPS13A gene mutations leading to the absence of protein expression. The striatum is the most affected brain region in ChAc patients. However, the study of the VPS13A function in the brain has been poorly addressed. Here we generated a VPS13A knockdown (KD) model and aimed to elucidate the contribution of VPS13A to synaptic plasticity and neuronal communication in the corticostriatal circuit. First, we infected primary cortical neurons with miR30-shRNA against VPS13A and analyzed its effects on neuronal plasticity. VPS13A-KD neurons showed a higher degree of branching than controls, accompanied by decreased BDNF and PSD-95 levels, indicative of synaptic alterations. We then injected AAV-KD bilaterally in the frontal cortex and two different regions of the striatum of mice and analyzed the effects of VPS13A-KD on animal behavior and synaptic plasticity. VPS13A-KD mice showed modification of the locomotor behavior pattern, with increased exploratory behavior and hyperlocomotion. Corticostriatal dysfunction in VPS13A-KD mice was evidenced by impaired striatal long-term depression (LTD) after stimulation of cortical afferents, which was partially recovered by BDNF administration. VPS13A-KD did not lead to neuronal loss in the cortex or the striatum but induced a decrease in the neuronal release of CX3CL1 and triggered a microglial reaction, especially in the striatum. Notably, CX3CL1 administration partially restored the impaired corticostriatal LTD in VPS13A-KD mice. Our results unveil the involvement of VPS13A in neuronal connectivity modifying BDNF and CX3CL1 release. Moreover, the involvement of VPS13A in synaptic plasticity and motor behavior provides key information to further understand not only ChAc pathophysiology but also other neurological disorders.
Collapse
Affiliation(s)
- Esther García-García
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Alba Ramón-Lainez
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Sara Conde-Berriozabal
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Daniel Del Toro
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Georgia Escaramis
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Ministerio de Ciencia e Innovación, Madrid, Spain.
| | - Albert Giralt
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Mercè Masana
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Jordi Alberch
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, E-08036 Barcelona, Spain.
| | - Manuel J Rodríguez
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| |
Collapse
|
2
|
Fogarty MJ, Dasgupta D, Khurram OU, Sieck GC. Chemogenetic inhibition of TrkB signalling reduces phrenic motor neuron survival and size. Mol Cell Neurosci 2023; 125:103847. [PMID: 36958643 PMCID: PMC10247511 DOI: 10.1016/j.mcn.2023.103847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) signalling through its high-affinity tropomyosin receptor kinase B (TrkB) is known to have potent effects on motor neuron survival and morphology during development and in neurodegenerative diseases. Here, we employed a novel 1NMPP1 sensitive TrkBF616 rat model to evaluate the effect of 14 days inhibition of TrkB signalling on phrenic motor neurons (PhMNs). Adult female and male TrkBF616 rats were divided into 1NMPP1 or vehicle treated groups. Three days prior to treatment, PhMNs in both groups were initially labeled via intrapleural injection of Alexa-Fluor-647 cholera toxin B (CTB). After 11 days of treatment, retrograde axonal uptake/transport was assessed by secondary labeling of PhMNs by intrapleural injection of Alexa-Fluor-488 CTB. After 14 days of treatment, the spinal cord was excised 100 μm thick spinal sections containing PhMNs were imaged using two-channel confocal microscopy. TrkB inhibition reduced the total number of PhMNs by ∼16 %, reduced the mean PhMN somal surface areas by ∼25 %, impaired CTB uptake 2.5-fold and reduced the estimated PhMN dendritic surface area by ∼38 %. We conclude that inhibition of TrkB signalling alone in adult TrkBF616 rats is sufficient to lead to PhMN loss, morphological degeneration and deficits in retrograde axonal uptake/transport.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Debanjali Dasgupta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Goldstein Ferber S, Shoval G, Zalsman G, Mikulincer M, Weller A. Between Action and Emotional Survival During the COVID-19 era: Sensorimotor Pathways as Control Systems of Transdiagnostic Anxiety-Related Intolerance to Uncertainty. Front Psychiatry 2021; 12:680403. [PMID: 34393847 PMCID: PMC8358206 DOI: 10.3389/fpsyt.2021.680403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives: The COVID-19 pandemic and aligned social and physical distancing regulations increase the sense of uncertainty, intensifying the risk for psychopathology globally. Anxiety disorders are associated with intolerance to uncertainty. In this review we describe brain circuits and sensorimotor pathways involved in human reactions to uncertainty. We present the healthy mode of coping with uncertainty and discuss deviations from this mode. Methods: Literature search of PubMed and Google Scholar. Results: As manifestation of anxiety disorders includes peripheral reactions and negative cognitions, we suggest an integrative model of threat cognitions modulated by sensorimotor regions: "The Sensorimotor-Cognitive-Integration-Circuit." The model emphasizes autonomic nervous system coupling with the cortex, addressing peripheral anxious reactions to uncertainty, pathways connecting cortical regions and cost-reward evaluation circuits to sensorimotor regions, filtered by the amygdala and basal ganglia. Of special interest are the ascending and descending tracts for sensory-motor crosstalk in healthy and pathological conditions. We include arguments regarding uncertainty in anxiety reactions to the pandemic and derive from our model treatment suggestions which are supported by scientific evidence. Our model is based on systematic control theories and emphasizes the role of goal conflict regulation in health and pathology. We also address anxiety reactions as a spectrum ranging from healthy to pathological coping with uncertainty, and present this spectrum as a transdiagnostic entity in accordance with recent claims and models. Conclusions: The human need for controllability and predictability suggests that anxiety disorders reactive to the pandemic's uncertainties reflect pathological disorganization of top-down bottom-up signaling and neural noise resulting from non-pathological human needs for coherence in life.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Gal Shoval
- Geha Mental Health Center, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Gil Zalsman
- Geha Mental Health Center, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, United States
| | - Mario Mikulincer
- Interdisciplinary Center (IDC) Herzliya, Baruch Ivcher School of Psychology, Herzliya, Israel
| | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
4
|
Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Amirgholami N, Houshmand G, Alboghobeish S. Venlafaxine inhibits naloxone-precipitated morphine withdrawal symptoms: Role of inflammatory cytokines and nitric oxide. Metab Brain Dis 2020; 35:305-313. [PMID: 31630319 DOI: 10.1007/s11011-019-00491-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/10/2019] [Indexed: 12/24/2022]
Abstract
Opioid-induced neuroinflammation plays a role in the development of opioid physical dependence. Moreover, nitric oxide (NO) has been implicated in several oxidative and inflammatory pathologies. Here, we sought to determine whether treatment with venlafaxine during the development of morphine dependence could inhibit naloxone-precipitated withdrawal symptoms. The involvement of neuro-inflammation related cytokines, oxidative stress, and L-arginine (L-arg)-NO pathway in these effects were also investigated. Mice received morphine (50 mg/kg/daily; s.c.), plus venlafaxine (5 and 40 mg/kg, i.p.) once a day for 3 consecutive days. In order to evaluate the possible role of L-arg-NO on the effects caused by venlafaxine, animals received L-arg, L-NAME or aminoguanidine with venlafaxine (40 mg/kg, i.p.) 30 min before each morphine injection for 3 consecutive days. On 4th day of experiment, behavioral signs of morphine-induced physical dependence were evaluated after i.p. naloxone injection. Then, brain levels of tissue necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), brain-derived neurotrophic factor (BDNF), NO and oxidative stress factors including; total thiol, malondialdehyde (MDA) contents and glutathione peroxidase (GPx) activity were determined. Co-administration of venlafaxine (40 mg/kg) with morphine not only inhibited the naloxone-precipitated withdrawal signs including jumping and weight loss, but also reduced the up-regulation of TNF-α, IL-1β, IL-6, NO and MDA contents in mice brain tissue. However, repeated administration of venlafaxine inhibited the decrease in the brain levels of BDNF, total thiol and GPx. Pre-administration of L-NAME and aminoguanidine improved, while L-arg antagonized the venlafaxine-induced effects. These results provide evidences that venlafaxine could be used as a candidate drug to inhibit morphine withdrawal through the involvement of inflammatory cytokines and l-arginine-NO in mice.
Collapse
Affiliation(s)
- Mohammad Taghi Mansouri
- Department of Pharmacology, School of Pharmacy, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anesthesiology, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA.
| | - Bahareh Naghizadeh
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Neda Amirgholami
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Pharmacy, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Venlafaxine prevents morphine antinociceptive tolerance: The role of neuroinflammation and the l -arginine-nitric oxide pathway. Exp Neurol 2018; 303:134-141. [DOI: 10.1016/j.expneurol.2018.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/13/2018] [Accepted: 02/14/2018] [Indexed: 12/25/2022]
|
6
|
Janicijevic SM, Dejanovic SD, Borovcanin M. Interplay of Brain-Derived Neurotrophic Factor and Cytokines in Schizophrenia. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.1515/sjecr-2017-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and plays an important role in neuroplasticity, differentiation and survival of neurons, as well as their function. Neuroinflammation has been explored in the pathophysiology of many mental disorders, such as schizophrenia. Cytokines representing different types of immune responses have an impact on neurogenesis and BDNF expression. Cross-regulation of BDNF and cytokines is accomplished through several signalling pathways. Also, typical and atypical antipsychotic drugs variously modulate the expression of BDNF and serum levels of cytokines, which can possibly be used in evaluation of therapy effectiveness. Comorbidity of metabolic syndrome and atopic diseases has been considered in the context of BDNF and cytokines interplay in schizophrenia.
Collapse
Affiliation(s)
- Slavica Minic Janicijevic
- Doctor of Medicine, PhD Student at the Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Slavica Djukic Dejanovic
- Department of Psychiatry, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Milica Borovcanin
- Department of Psychiatry, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| |
Collapse
|
7
|
Araújo SES, Mendonça HR, Wheeler NA, Campello-Costa P, Jacobs KM, Gomes FCA, Fox MA, Fuss B. Inflammatory demyelination alters subcortical visual circuits. J Neuroinflammation 2017; 14:162. [PMID: 28821276 PMCID: PMC5562979 DOI: 10.1186/s12974-017-0936-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory demyelinating disease classically associated with axonal damage and loss; more recently, however, synaptic changes have been recognized as additional contributing factors. An anatomical area commonly affected in MS is the visual pathway; yet, changes other than those associated with inflammatory demyelination of the optic nerve, i.e., optic neuritis, have not been described in detail. Methods Adult mice were subjected to a diet containing cuprizone to mimic certain aspects of inflammatory demyelination as seen in MS. Demyelination and inflammation were assessed by real-time polymerase chain reaction and immunohistochemistry. Synaptic changes associated with inflammatory demyelination in the dorsal lateral geniculate nucleus (dLGN) were determined by immunohistochemistry, Western blot analysis, and electrophysiological field potential recordings. Results In the cuprizone model, demyelination was observed in retinorecipient regions of the subcortical visual system, in particular the dLGN, where it was found accompanied by microglia activation and astrogliosis. In contrast, anterior parts of the pathway, i.e., the optic nerve and tract, appeared largely unaffected. Under the inflammatory demyelinating conditions, as seen in the dLGN of cuprizone-treated mice, there was an overall decrease in excitatory synaptic inputs from retinal ganglion cells. At the same time, the number of synaptic complexes arising from gamma-aminobutyric acid (GABA)-generating inhibitory neurons was found increased, as were the synapses that contain the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2B and converge onto inhibitory neurons. These synaptic changes were functionally found associated with a shift toward an overall increase in network inhibition. Conclusions Using the cuprizone model of inflammatory demyelination, our data reveal a novel form of synaptic (mal)adaption in the CNS that is characterized by a shift of the excitation/inhibition balance toward inhibitory network activity associated with an increase in GABAergic inhibitory synapses and a possible increase in excitatory input onto inhibitory interneurons. In addition, our data recognize the cuprizone model as a suitable tool in which to assess the effects of inflammatory demyelination on subcortical retinorecipient regions of the visual system, such as the dLGN, in the absence of overt optic neuritis.
Collapse
Affiliation(s)
- Sheila Espírito Santo Araújo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henrique Rocha Mendonça
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Paula Campello-Costa
- Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Flávia C A Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
8
|
The use of novel selectivity metrics in kinase research. BMC Bioinformatics 2017; 18:17. [PMID: 28056771 PMCID: PMC5217660 DOI: 10.1186/s12859-016-1413-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/07/2016] [Indexed: 11/29/2022] Open
Abstract
Background Compound selectivity is an important issue when developing a new drug. In many instances, a lack of selectivity can translate to increased toxicity. Protein kinases are particularly concerned with this issue because they share high sequence and structural similarity. However, selectivity may be assessed early on using data generated from protein kinase profiling panels. Results To guide lead optimization in drug discovery projects, we propose herein two new selectivity metrics, namely window score (WS) and ranking score (RS). These metrics can be applied to standard in vitro data–including intrinsic enzyme activity/affinity (Ki, IC50 or percentage of inhibition), cell-based potency (percentage of effect, EC50) or even kinetics data (Kd, Kon and Koff). They are both easy to compute and offer different viewpoints from which to consider compound selectivity. Conclusions We performed a comparative analysis of their respective performance on several data sets against already published selectivity metrics and analyzed how they might influence compound selection. Our results showed that the two new metrics bring additional information to prioritize compound selection. Graphical Abstract Two novel metrics were developed to better estimate selectivity of compounds screened on multiple proteins.![]() Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1413-y) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Qiao LY, Shen S, Liu M, Xia C, Kay JC, Zhang QL. Inflammation and activity augment brain-derived neurotrophic factor peripheral release. Neuroscience 2016; 318:114-21. [PMID: 26794594 DOI: 10.1016/j.neuroscience.2016.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) release to nerve terminals in the central nervous system is crucial in synaptic transmission and neuronal plasticity. However, BDNF release peripherally from primary afferent neurons has not been investigated. In the present study, we show that BDNF is synthesized by primary afferent neurons located in the dorsal root ganglia (DRG) in rat, and releases to spinal nerve terminals in response to depolarization or visceral inflammation. In two-compartmented culture that separates DRG neuronal cell bodies and spinal nerve terminals, application of 50mM K(+) to either the nerve terminal or the cell body evokes BDNF release to the terminal compartment. Inflammatory stimulation of the visceral organ (e.g. the urinary bladder) also facilitates an increase in spontaneous BDNF release from the primary afferent neurons to the axonal terminals. In the inflamed viscera, we show that BDNF immunoreactivity is increased in nerve fibers that are immuno-positive to the neuronal marker PGP9.5. Both BDNF and pro-BDNF levels are increased, however, pro-BDNF immunoreactivity is not expressed in PGP9.5-positive nerve-fiber-like structures. Determination of receptor profiles in the inflamed bladder demonstrates that BDNF high affinity receptor TrkB and general receptor p75 expression levels are elevated, with an increased level of TrkB tyrosine phosphorylation/activity. These results suggest a possibility of pro-proliferative effect in the inflamed bladder. Consistently we show that the proliferation marker Ki67 expression levels are enhanced in the inflamed organ. Our results imply that in vivo BDNF release to the peripheral organ is an important event in neurogenic inflammatory state.
Collapse
Affiliation(s)
- L Y Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - S Shen
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - M Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - C Xia
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - J C Kay
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Q L Zhang
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| |
Collapse
|
10
|
Pro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors. J Neurosci 2015; 34:13516-34. [PMID: 25274828 DOI: 10.1523/jneurosci.2069-14.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Although the role of mature BDNF on GABAergic synaptogenesis and maintenance has been well studied, an important question still unanswered is whether secreted proBDNF might affect GABAergic neurotransmission. Here, we have used 14 d in vitro primary culture of hippocampal neurons and ex vivo preparations from rats to study the function of proBDNF in regulation of GABAAR trafficking and activity. We demonstrate that proBDNF impairs GABAergic transmission by the activation of two distinct pathways: (1) a RhoA-Rock-PTEN pathway that decreases the phosphorylation levels of GABAAR, thus affecting receptor function and triggering endocytosis and degradation of internalized receptors, and (2) a JAK-STAT-ICER pathway leading to the repression of GABAARs synthesis. These effects lead to the diminution of GABAergic synapses and are correlated with a decrease in GABAergic synaptic currents. These results revealed new functions for proBDNF-p75 neurotrophin receptor signaling pathway in the control of the efficacy of GABAergic synaptic activity by regulating the trafficking and synthesis of GABAARs at inhibitory synapses.
Collapse
|
11
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
12
|
Bai WF, Xu WC, Feng Y, Huang H, Li XP, Deng CY, Zhang MS. Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons. Cytotherapy 2013; 15:961-70. [DOI: 10.1016/j.jcyt.2013.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/08/2013] [Indexed: 12/21/2022]
|
13
|
Chen SL, Lee SY, Chang YH, Chen SH, Chu CH, Tzeng NS, Lee IH, Chen PS, Yeh TL, Huang SY, Yang YK, Lu RB, Hong JS. Inflammation in patients with schizophrenia: the therapeutic benefits of risperidone plus add-on dextromethorphan. J Neuroimmune Pharmacol 2012; 7:656-64. [PMID: 22730040 PMCID: PMC3611097 DOI: 10.1007/s11481-012-9382-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/11/2012] [Indexed: 12/30/2022]
Abstract
UNLABELLED Increasing evidence suggests that inflammation contributes to the etiology and progression of schizophrenia. Molecules that initiate inflammation, such as virus- and toxin-induced cytokines, are implicated in neuronal degeneration and schizophrenia-like behavior. Using therapeutic agents with anti-inflammatory or neurotrophic effects may be beneficial for treating schizophrenia. One hundred healthy controls and 95 Han Chinese patients with schizophrenia were tested in this double-blind study. Their PANSS scores, plasma interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and brain-derived neurotrophic factor (BDNF) levels were measured before and after pharmacological treatment. Pretreatment, plasma levels of IL-1β and TNF-α were significantly higher in patients with schizophrenia than in controls, but plasma BDNF levels were significantly lower. Patients were treated with the atypical antipsychotic risperidone (Risp) only or with Risp+ dextromethorphan (DM). PANSS scores and plasma IL-1β levels significantly decreased, but plasma TNF-α and BDNF levels significantly increased after 11 weeks of Risp treatment. Patients in the Risp+ DM group showed a greater and earlier reduction of symptoms than did those in the Risp-only group. Moreover, Risp+ DM treatment attenuated Risp-induced plasma increases in TNF-α. Patients with schizophrenia had a high level of peripheral inflammation and a low level of peripheral BDNF. Long-term Risp treatment attenuated inflammation and potentiated the neurotrophic function but also produced a certain degree of toxicity. Risp+ DM was more beneficial and less toxic than Risp-only treatment. CLINICAL TRIAL REGISTRATION Protocol Record: HR-93-50; TRIAL REGISTRATION NUMBER NCT01189006; URL: http://www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Shiou-Lan Chen
- Institute of Behavioral Medicine, University Hospital
- Department of Psychiatry, National Cheng Kung University Hospital
- Addiction Research Center, National Cheng Kung University
| | - Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University Hospital
- Addiction Research Center, National Cheng Kung University
- Department of Psychiatry, Tainan Hospital, Department of Health, Executive Yuan, Tainan
| | - Yun-Hsuan Chang
- Institute of Behavioral Medicine, University Hospital
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University
| | - Shih-Heng Chen
- Department of Psychiatry, National Cheng Kung University Hospital
- Addiction Research Center, National Cheng Kung University
| | - Chun-Hsieh Chu
- Department of Psychiatry, National Cheng Kung University Hospital
- Addiction Research Center, National Cheng Kung University
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - I-Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital
- Addiction Research Center, National Cheng Kung University
| | - Po-See Chen
- Department of Psychiatry, National Cheng Kung University Hospital
- Addiction Research Center, National Cheng Kung University
| | - Tzung Lieh Yeh
- Department of Psychiatry, National Cheng Kung University Hospital
- Addiction Research Center, National Cheng Kung University
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital
- Addiction Research Center, National Cheng Kung University
- Department of Psychiatry, Tainan Hospital, Department of Health, Executive Yuan, Tainan
| | - Ru-Band Lu
- Institute of Behavioral Medicine, University Hospital
- Department of Psychiatry, National Cheng Kung University Hospital
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University
- Addiction Research Center, National Cheng Kung University
- Department of Psychiatry, Tainan Hospital, Department of Health, Executive Yuan, Tainan
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Lu RB, Chen SL, Lee SY, Chang YH, Chen SH, Chu CH, Tzeng NS, Lee IH, Chen PS, Yeh TL, Huang SY, Yang YK, Hong JS. Neuroprotective and neurogenesis agent for treating bipolar II disorder: add-on memantine to mood stabilizer works. Med Hypotheses 2012; 79:280-3. [PMID: 22677298 PMCID: PMC3622707 DOI: 10.1016/j.mehy.2012.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/18/2012] [Accepted: 04/27/2012] [Indexed: 12/29/2022]
Abstract
Bipolar disorder, characterized by a dysregulation of mood, impulsivity, risky behavior and interpersonal problems, is a recurrent and often becomes chronic psychiatric illness. However, bipolar subtypes are not often recognized in psychiatric settings, especially bipolar II subtype, until Akiskal and Angst made clear definition to bipolar I (BP-I) and bipolar II (BP-II) disorder in 1999. More and more studies, not only on family inheritance, diagnosis, but also on disease process have been reported that BP-I and BP-II are two different disorders with distinct pathological mechanisms. In general, patients with BP-II express less symptoms and have shorter hypomania stages than BP-I. According to a longitudinal research, patients with BP-II have poor recovery than do BP-I patients. Memantine used to be recognized as a noncompetitive N-methyl-d-aspartate receptor antagonist. However, it was found to have neuroprotective and neurogenesis effect in several neurodegenerative diseases in the past years. We found that memantine could inhibit brain inflammatory response through its action on neuroglial cells and provide neurotrophic effect. The above evidences of benefit on auto-immune system with memantine would support that memantine as add-on therapy to valproate might be more effective than valproate alone on improvement of the neuron degeneration in bipolar disorders. Review articles indicate that not only the mood stabilizers provide with good neuroprotection, but the memantine also have conspicuous anti-autoimmune and neurogenesis effect. Therefore, we propose that drugs with neuroprotective effect and neurotrophic effect may treat neurodegenerative diseases including BP-II. The combination treatment of mood stabilizers memantine may not only augment and improve the remedy for bipolar disorders, but also repair the damaged neurons and neurogenesis through activation of astroglial cell and release of neurotrophic factors.
Collapse
Affiliation(s)
- Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital & College of Medicine, National Cheng Kung University
- Institute of Behavioral Medicine, National Cheng Kung University
- Division of Clinical Psychology, Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University
| | - Shiou-Lan Chen
- Department of Psychiatry, National Cheng Kung University Hospital & College of Medicine, National Cheng Kung University
- Institute of Behavioral Medicine, National Cheng Kung University
| | - Sheng-Yu Lee
- Institute of Behavioral Medicine, National Cheng Kung University
| | - Yun-Hsuan Chang
- Department of Psychiatry, National Cheng Kung University Hospital & College of Medicine, National Cheng Kung University
- Division of Clinical Psychology, Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University
| | - Shih-Heng Chen
- Department of Psychiatry, National Cheng Kung University Hospital & College of Medicine, National Cheng Kung University
- Institute of Behavioral Medicine, National Cheng Kung University
| | - Chun-Hsieh Chu
- Department of Psychiatry, National Cheng Kung University Hospital & College of Medicine, National Cheng Kung University
- Institute of Behavioral Medicine, National Cheng Kung University
| | | | - I Hui Lee
- Institute of Behavioral Medicine, National Cheng Kung University
| | - Po See Chen
- Institute of Behavioral Medicine, National Cheng Kung University
| | - Tzung Lieh Yeh
- Department of Psychiatry, National Cheng Kung University Hospital & College of Medicine, National Cheng Kung University
- Institute of Behavioral Medicine, National Cheng Kung University
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, NIEHS/NIH, USA
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital & College of Medicine, National Cheng Kung University
- Institute of Behavioral Medicine, National Cheng Kung University
| | | |
Collapse
|
15
|
Chen SL, Tao PL, Chu CH, Chen SH, Wu HE, Tseng LF, Hong JS, Lu RB. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats. J Neuroimmune Pharmacol 2012; 7:444-53. [PMID: 22205542 PMCID: PMC3611110 DOI: 10.1007/s11481-011-9337-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/18/2011] [Indexed: 12/23/2022]
Abstract
Opioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction. Memantine, an Alzheimer's disease medication, has neuroprotective effects in vitro and in vivo. In this study, we evaluated whether a low dose of memantine prevents opioid-induced drug-seeking behavior in rats and analyzed its mechanism. A conditioned-place-preference test was used to investigate the morphine-induced drug-seeking behaviors in rats. We found that a low-dose (0.2-1 mg/kg) of subcutaneous memantine significantly attenuated the chronic morphine-induced place-preference in rats. To clarify the effects of chronic morphine and low-dose memantine, serum and brain levels of cytokines and brain-derived neurotrophic factor (BDNF) were measured. After 6 days of morphine treatment, cytokine (IL-1β, IL-6) levels had significantly increased in serum; IL-1β and IL-6 mRNA levels had significantly increased in the nucleus accumbens and medial prefrontal cortex, both addiction-related brain areas; and BDNF levels had significantly decreased, both in serum and in addiction-related brain areas. Pretreatment with low-dose memantine significantly attenuated chronic morphine-induced increases in serum and brain cytokines. Low-dose memantine also significantly potentiated serum and brain BDNF levels. We hypothesize that neuronal inflammation and BDNF downregulation are related to the progression of opioid addiction. We hypothesize that the mechanism low-dose memantine uses to attenuate morphine-induced addiction behavior is its anti-inflammatory and neurotrophic effects.
Collapse
Affiliation(s)
- Shiou-Lan Chen
- Department of Psychiatry, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Luh Tao
- Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Hsien Chu
- Department of Psychiatry, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Shih-Heng Chen
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Hsiang-En Wu
- Dept. of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leon F. Tseng
- Dept. of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jau-Shyong Hong
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ru-Band Lu
- Department of Psychiatry, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
16
|
Huang Y, Ko H, Cheung ZH, Yung KKL, Yao T, Wang JJ, Morozov A, Ke Y, Ip NY, Yung WH. Dual actions of brain-derived neurotrophic factor on GABAergic transmission in cerebellar Purkinje neurons. Exp Neurol 2012; 233:791-8. [PMID: 22178325 DOI: 10.1016/j.expneurol.2011.11.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/18/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
Abstract
The ability to regulate inhibitory synapses is a critical feature of the nervous system and a growing body of evidence indicates that brain-derived neurotrophic factor (BDNF) acutely modulates the efficacy of GABA synaptic transmission. Although the neuronal potassium-chloride cotransporter 2 (KCC2) has been implied in this BDNF-induced ionic plasticity, the reports about actions of BDNF on GABA signaling remain conflicting. Here we show dual effects of BDNF on GABAergic synaptic transmission in Purkinje neurons in rat cerebellar slices. BDNF decreased the amplitude of evoked outward IPSCs postsynaptically. It induced a depolarizing shift in the reversal potential (E(IPSC)), which reduced the driving force for outward IPSCs. However, in the absence of KCC2 activity, BDNF directly potentiated rather than inhibited GABA(A) receptor, which was reflected by an increase in the amplitude of outward IPSCs. This action of BDNF coincided with its effect in increasing the amplitude of inward IPSCs. Furthermore, an interaction between GABA(A) receptor and KCC2 was revealed by co-immunoprecipitation. The effects of BDNF on both GABA(A) receptor and KCC2 were dependent on TrkB and also activation of cyclin-dependent kinase 5 (Cdk5). However, only the effect of BDNF on KCC2 activity was dependent on a rise of intracellular calcium. Taken together, these data highlight distinct actions of BDNF on KCC2 and GABA(A) receptor in the regulation of GABAergic synaptic transmission.
Collapse
Affiliation(s)
- Ying Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Avila ME, Sepúlveda FJ, Burgos CF, Moraga-Cid G, Parodi J, Moon RT, Aguayo LG, Opazo C, De Ferrari GV. Canonical Wnt3a modulates intracellular calcium and enhances excitatory neurotransmission in hippocampal neurons. J Biol Chem 2010; 285:18939-47. [PMID: 20404321 PMCID: PMC2881816 DOI: 10.1074/jbc.m110.103028] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/16/2010] [Indexed: 11/06/2022] Open
Abstract
A role for Wnt signal transduction in the development and maintenance of brain structures is widely acknowledged. Recent studies have suggested that Wnt signaling may be essential for synaptic plasticity and neurotransmission. However, the direct effect of a Wnt protein on synaptic transmission had not been demonstrated. Here we show that nanomolar concentrations of purified Wnt3a protein rapidly increase the frequency of miniature excitatory synaptic currents in embryonic rat hippocampal neurons through a mechanism involving a fast influx of calcium from the extracellular space, induction of post-translational modifications on the machinery involved in vesicle exocytosis in the presynaptic terminal leading to spontaneous Ca(2+) transients. Our results identify the Wnt3a protein and a member of its complex receptor at the membrane, the low density lipoprotein receptor-related protein 6 (LRP6) coreceptor, as key molecules in neurotransmission modulation and suggest cross-talk between canonical and Wnt/Ca(2+) signaling in central neurons.
Collapse
Affiliation(s)
- Miguel E. Avila
- From the Departments of Biochemistry and Molecular Biology and
| | - Fernando J. Sepúlveda
- Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción P.O. Box 4070386, Chile
| | | | - Gustavo Moraga-Cid
- Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción P.O. Box 4070386, Chile
| | - Jorge Parodi
- Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción P.O. Box 4070386, Chile
| | - Randall T. Moon
- Howard Hughes Medical Institute, Department of Pharmacology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington 98195, and
| | - Luis G. Aguayo
- Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción P.O. Box 4070386, Chile
| | - Carlos Opazo
- Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción P.O. Box 4070386, Chile
| | - Giancarlo V. De Ferrari
- From the Departments of Biochemistry and Molecular Biology and
- the Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andrés Bello, Santiago P.O. Box 8370134, Chile
| |
Collapse
|
18
|
Sepulveda FJ, Bustos FJ, Inostroza E, Zúñiga FA, Neve RL, Montecino M, van Zundert B. Differential roles of NMDA Receptor Subtypes NR2A and NR2B in dendritic branch development and requirement of RasGRF1. J Neurophysiol 2010; 103:1758-70. [PMID: 20107120 DOI: 10.1152/jn.00823.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are known to regulate axonal refinement and dendritic branching. However, because NMDARs are abundantly present as tri-heteromers (e.g., NR1/NR2A/NR2B) during development, the precise role of the individual subunits NR2A and NR2B in these processes has not been elucidated. Ventral spinal cord neurons (VSCNs) provide a unique opportunity to address this problem, because the expression of both NR2A and NR2B (but not NR1) is downregulated in culture. Exogenous NR2A or NR2B were introduced into these naturally NR2-null neurons at 4 DIV, and electrophysiological recordings at 11 DIV confirmed that synaptic NR1NR2A receptors and NR1NR2B receptors were formed, respectively. Analysis of the dendritic architecture showed that introduction of NR2B, but not NR2A, dramatically increased the number of secondary and tertiary dendritic branches of VSCNs. Whole cell patch-clamp recordings further indicated that the newly formed branches in NR2B-expressing neurons were able to establish functional synapses because the frequency of miniature AMPA-receptor synaptic currents was increased. Using previously described mutants, we also found that disruption of the interaction between NR2B and RasGRF1 dramatically impaired dendritic branch formation in VSCNs. The differential role of the NR2A and NR2B subunits and the requirement for RasGRF1 in regulating branch formation was corroborated in hippocampal cultures. We conclude that the association between NR1NR2B-receptors and RasGRF1 is needed for dendritic branch formation in VSCNs and hippocampal neurons in vitro. The dominated NR2A expression and the limited interactions of this subunit with the signaling protein RasGRF1 may contribute to the restricted dendritic arbor development in the adult CNS.
Collapse
Affiliation(s)
- Fernando J Sepulveda
- Dept. of Physiopathology, Faculty of Biological Sciences, Univ. of Concepción, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
19
|
Trzaska KA, King CC, Li KY, Kuzhikandathil EV, Nowycky MC, Ye JH, Rameshwar P. Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J Neurochem 2009; 110:1058-69. [PMID: 19493166 DOI: 10.1111/j.1471-4159.2009.06201.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of dopamine (DA) neurons from stem cells holds great promise in the treatment of Parkinson's disease and other neural disease associated with dysfunction of DA neurons. Mesenchymal stem cells (MSCs) derived from the adult bone marrow show plasticity with regards to generating cells of other germ layers. In addition to reduced ethical concerns, MSCs could be transplanted across allogeneic barriers, making them desirable stem cells for clinical applications. We have reported on the generation of DA cells from human MSCs using sonic hedgehog (SHH), fibroblast growth factor 8 and basic fibroblast growth factor. Despite the secretion of DA, the cells did not show evidence of functional neurons, and were therefore designated DA progenitors. Here, we report on the role of brain-derived neurotrophic factor (BDNF) in the maturation of the MSC-derived DA progenitors. 9-day induced MSCs show significant tropomyosin-receptor-kinase B expression, which correlate with its ligand, BDNF, being able to induce functional maturation. The latter was based on Ca2+ imaging analyses and electrophysiology. BDNF-treated cells showed the following: increases in intracellular Ca2+ upon depolarization and after stimulation with the neurotransmitters acetylcholine and GABA and, post-synaptic currents by electrophysiological analyses. In addition, BDNF induced increased DA release upon depolarization. Taken together, these results demonstrate the crucial role for BDNF in the functional maturation of MSC-derived DA progenitors.
Collapse
Affiliation(s)
- Katarzyna A Trzaska
- Department of Medicine-Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Trophic factor-induced intracellular calcium oscillations are required for the expression of postsynaptic acetylcholine receptors during synapse formation between Lymnaea neurons. J Neurosci 2009; 29:2167-76. [PMID: 19228969 DOI: 10.1523/jneurosci.4682-08.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nervous system functions in all animals rely upon synaptic connectivity that is established during early development. Whereas cell-cell signaling plays a critical role in establishing synapse specificity, the involvement of extrinsic growth factors cannot, however, be undermined. We have previously demonstrated that trophic factors are required for excitatory but not inhibitory synapse formation between Lymnaea neurons. Moreover, in the absence of trophic factors, neurons from a number of species establish inappropriate inhibitory synapses, which can, however, be corrected by the addition of trophic factors. The precise site of trophic factor actions (presynaptic versus postsynaptic) and the underlying mechanisms remain, however, undefined. Here, we provide the first direct evidence that the trophic factor-mediated excitatory synapse formation involves activity-induced calcium (Ca(2+)) oscillations in the postsynaptic left pedal dorsal 1 (LPeD1) but not the presynaptic visceral dorsal 4 (VD4, cholinergic) neuron. These oscillations involved Ca(2+) influx through voltage-gated Ca(2+) channels and required receptor tyrosine kinase activity which was essential for the expression of excitatory, nicotinic acetylcholine receptors in the postsynaptic cell during synapse formation. We also demonstrate that selectively blocking the electrical activity presynaptically did not perturb trophic factor-induced synapse formation between the paired cells, whereas hyperpolarizing the postsynaptic cell prevented appropriate synaptogenesis between VD4 and LPeD1 cells. Together, our data underscore the importance of extrinsic trophic factors in regulating the electrical activity of the postsynaptic but not the presynaptic cell and that the resulting Ca(2+) oscillations are essential for the expression of postsynaptic receptors during specific synapse formation.
Collapse
|
21
|
Soril LJ, Ramer LM, McPhail LT, Kaan TK, Ramer MS. Spinal brain-derived neurotrophic factor governs neuroplasticity and recovery from cold-hypersensitivity following dorsal rhizotomy. Pain 2008; 138:98-110. [DOI: 10.1016/j.pain.2007.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 11/07/2007] [Accepted: 11/19/2007] [Indexed: 12/22/2022]
|
22
|
Larrucea C, Castro P, Sepulveda FJ, Wandersleben G, Roa J, Aguayo LG. Sustained increase of Ca+2 oscillations after chronic TRPV1 receptor activation with capsaicin in cultured spinal neurons. Brain Res 2008; 1218:70-6. [DOI: 10.1016/j.brainres.2008.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/10/2008] [Accepted: 04/18/2008] [Indexed: 12/17/2022]
|
23
|
Davis MI. Ethanol-BDNF interactions: still more questions than answers. Pharmacol Ther 2008; 118:36-57. [PMID: 18394710 DOI: 10.1016/j.pharmthera.2008.01.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 01/02/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has emerged as a regulator of development, plasticity and, recently, addiction. Decreased neurotrophic activity may be involved in ethanol-induced neurodegeneration in the adult brain and in the etiology of alcohol-related neurodevelopmental disorders. This can occur through decreased expression of BDNF or through inability of the receptor to transduce signals in the presence of ethanol. In contrast, recent studies implicate region-specific up-regulation of BDNF and associated signaling pathways in anxiety, addiction and homeostasis after ethanol exposure. Anxiety and depression are precipitating factors for substance abuse and these disorders also involve region-specific changes in BDNF in both pathogenesis and response to pharmacotherapy. Polymorphisms in the genes coding for BDNF and its receptor TrkB are linked to affective, substance abuse and appetitive disorders and therefore may play a role in the development of alcoholism. This review summarizes historical and pre-clinical data on BDNF and TrkB as it relates to ethanol toxicity and addiction. Many unresolved questions about region-specific changes in BDNF expression and the precise role of BDNF in neuropsychiatric disorders and addiction remain to be elucidated. Resolution of these questions will require significant integration of the literature on addiction and comorbid psychiatric disorders that contribute to the development of alcoholism.
Collapse
Affiliation(s)
- Margaret I Davis
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Medrihan L, Tantalaki E, Aramuni G, Sargsyan V, Dudanova I, Missler M, Zhang W. Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. J Neurophysiol 2007; 99:112-21. [PMID: 18032561 DOI: 10.1152/jn.00826.2007] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rett syndrome is a neurodevelopmental disorder caused by mutations in the transcriptional repressor methyl-CpG-binding protein 2 (MeCP2) and represents the leading genetic cause for mental retardation in girls. MeCP2-mutant mice have been generated to study the molecular mechanisms of the disease. It was suggested that an imbalance between excitatory and inhibitory neurotransmission is responsible for the behavioral abnormalities, although it remained largely unclear which synaptic components are affected and how cellular impairments relate to the time course of the disease. Here, we report that MeCP2 KO mice present an imbalance between inhibitory and excitatory synaptic transmission in the ventrolateral medulla already at postnatal day 7. Focusing on the inhibitory synaptic transmission we show that GABAergic, but not glycinergic, synaptic transmission is strongly depressed in MeCP2 KO mice. These alterations are presumably due to both decreased presynaptic gamma-aminobutyric acid (GABA) release with reduced levels of the vesicular inhibitory transmitter transporter and reduced levels of postsynaptic GABA(A)-receptor subunits alpha2 and alpha4. Our data indicate that in the MeCP2 -/y mice specific synaptic molecules and signaling pathways are impaired in the brain stem during early postnatal development. These observations mandate the search for more refined diagnostic tools and may provide a rationale for the timing of future therapeutic interventions in Rett patients.
Collapse
Affiliation(s)
- L Medrihan
- Center for Physiology and Pathophysiology, Georg-August University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|