1
|
Hovah ME, Holzgrabe U. Bivalent and bitopic ligands of the opioid receptors: The prospects of a dual approach. Med Res Rev 2024; 44:2545-2599. [PMID: 38751227 DOI: 10.1002/med.22050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 10/05/2024]
Abstract
Opioid receptors belonging to the class A G-protein coupled receptors (GPCRs) are the targets of choice in the treatment of acute and chronic pain. However, their on-target side effects such as respiratory depression, tolerance and addiction have led to the advent of the 'opioid crisis'. In the search for safer analgesics, bivalent and more recently, bitopic ligands have emerged as valuable tool compounds to probe these receptors. The activity of bivalent and bitopic ligands rely greatly on the allosteric nature of the GPCRs. Bivalent ligands consist of two pharmacophores, each binding to the individual orthosteric binding site (OBS) of the monomers within a dimer. Bitopic or dualsteric ligands bridge the gap between the OBS and the spatially distinct, less conserved allosteric binding site (ABS) through the simultaneous occupation of these two sites. Bivalent and bitopic ligands stabilize distinct conformations of the receptors which ultimately translates into unique signalling and pharmacological profiles. Some of the interesting properties shown by these ligands include improved affinity and/or efficacy, subtype and/or functional selectivity and reduced side effects. This review aims at providing an overview of some of the bivalent and bitopic ligands of the opioid receptors and, their pharmacology in the hope of inspiring the design and discovery of the next generation of opioid analgesics.
Collapse
Affiliation(s)
- Marie Emilie Hovah
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| |
Collapse
|
2
|
Iyer V, Saberi SA, Pacheco R, Sizemore EF, Stockman S, Kulkarni A, Cantwell L, Thakur GA, Hohmann AG. Negative allosteric modulation of CB 1 cannabinoid receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. Neuropharmacology 2024; 257:110052. [PMID: 38936657 PMCID: PMC11261750 DOI: 10.1016/j.neuropharm.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
The direct blockade of CB1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB1. We recently reported that GAT358, a CB1-NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB1-allosteric mechanism of action. Whether a CB1-NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted opioid side-effects remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine in male rats. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar spinal cord. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors in male mice. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception and reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 also produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal cord. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB1-NAM.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Shahin A Saberi
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Romario Pacheco
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Emily Fender Sizemore
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Sarah Stockman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
3
|
Iyer V, Saberi SA, Pacheco R, Sizemore EF, Stockman S, Kulkarni A, Cantwell L, Thakur GA, Hohmann AG. Negative allosteric modulation of cannabinoid CB 1 receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574477. [PMID: 38260598 PMCID: PMC10802405 DOI: 10.1101/2024.01.06.574477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The direct blockade of CB 1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB 1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB 1 . We recently reported that GAT358, a CB 1 -NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB 1 -allosteric mechanism of action. Whether a CB 1 -NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted side-effects of opioids remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar dorsal horn. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception. GAT358 also reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal dorsal horn. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing in mice. Our results support the therapeutic potential of CB 1 -NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB 1 -NAMs. Highlights CB 1 negative allosteric modulator (NAM) GAT358 attenuated morphine tolerance GAT358 reduced morphine-induced slowing of colonic motility but not fecal productionGAT358 was antinociceptive for formalin pain alone and when combined with morphineGAT358 reduced formalin-evoked Fos protein expression in the lumbar spinal cordGAT358 mitigated naloxone precipitated withdrawal after chronic morphine dosing.
Collapse
|
4
|
Yu Y, Tsang QK, Jaramillo-Polanco J, Lomax AE, Vanner SJ, Reed DE. Cannabinoid 1 and mu-Opioid Receptor Agonists Synergistically Inhibit Abdominal Pain and Lack Side Effects in Mice. J Neurosci 2022; 42:6313-6324. [PMID: 35790401 PMCID: PMC9398536 DOI: 10.1523/jneurosci.0641-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
While effective in treating abdominal pain, opioids have significant side effects. Recent legalization of cannabis will likely promote use of cannabinoids as an adjunct or alternative to opioids, despite a lack of evidence. We aimed to investigate whether cannabinoids inhibit mouse colonic nociception, alone or in combination with opioids at low doses. Experiments were performed on C57BL/6 male and female mice. Visceral nociception was evaluated by measuring visceromotor responses (VMR), afferent nerve mechanosensitivity in flat-sheet colon preparations, and excitability of isolated DRG neurons. Blood oxygen saturation, locomotion, and defecation were measured to evaluate side effects. An agonist of cannabinoid 1 receptor (CB1R), arachidonyl-2'-chloroethylamide (ACEA), dose-dependently decreased VMR. ACEA and HU-210 (another CB1R agonist) also attenuated colonic afferent nerve mechanosensitivity. Additionally, HU-210 concentration-dependently decreased DRG neuron excitability, which was reversed by the CB1R antagonist AM-251. Conversely, cannabinoid 2 receptor (CB2R) agonists did not attenuate VMR, afferent nerve mechanosensitivity, or DRG neuron excitability. Combination of subanalgesic doses of CB1R and µ-opioid receptor agonists decreased VMR; importantly, this analgesic effect was preserved after 6 d of twice daily treatment. This combination also attenuated afferent nerve mechanosensitivity and DRG neuron excitability, which was inhibited by neuronal nitric oxide synthase and guanylate cyclase inhibitors. This combination avoided side effects (decreased oxygen saturation and colonic transit) caused by analgesic dose of morphine. Activation of CB1R, but not CB2R, decreased colonic nociception both alone and in synergy with µ-opioid receptor. Thus, CB1R agonists may enable opioid dose reduction and avoid opioid-related side effects.SIGNIFICANCE STATEMENT One of the most cited needs for patients with abdominal pain are safe and effective treatment options. The effectiveness of opioids in the management of abdominal pain is undermined by severe adverse side effects. Therefore, strategies to replace opioids or reduce the doses of opioids to suppress abdominal pain is needed. This study in mice demonstrates that cannabinoid 1 receptor (CB1R) agonists inhibit visceral sensation. Furthermore, a combination of subanalgesic doses of µ-opioid receptor agonist and CB1R agonist markedly reduce abdominal pain without causing the side effects of high-dose opioids. Thus, CB1R agonists, alone or in combination with low-dose opioids, may be a novel and safe treatment strategy for abdominal pain.
Collapse
Affiliation(s)
- Yang Yu
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Quentin K Tsang
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Josue Jaramillo-Polanco
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| |
Collapse
|
5
|
Lipiński PFJ, Matalińska J. Fentanyl Structure as a Scaffold for Opioid/Non-Opioid Multitarget Analgesics. Int J Mol Sci 2022; 23:ijms23052766. [PMID: 35269909 PMCID: PMC8910985 DOI: 10.3390/ijms23052766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
One of the strategies in the search for safe and effective analgesic drugs is the design of multitarget analgesics. Such compounds are intended to have high affinity and activity at more than one molecular target involved in pain modulation. In the present contribution we summarize the attempts in which fentanyl or its substructures were used as a μ-opioid receptor pharmacophoric fragment and a scaffold to which fragments related to non-opioid receptors were attached. The non-opioid ‘second’ targets included proteins as diverse as imidazoline I2 binding sites, CB1 cannabinoid receptor, NK1 tachykinin receptor, D2 dopamine receptor, cyclooxygenases, fatty acid amide hydrolase and monoacylglycerol lipase and σ1 receptor. Reviewing the individual attempts, we outline the chemistry, the obtained pharmacological properties and structure-activity relationships. Finally, we discuss the possible directions for future work.
Collapse
|
6
|
Pirri F, Akbarabadi A, Sadat-Shirazi MS, Nouri Zadeh-Tehrani S, Mahboubi S, Karimi Goudarzi A, Zarrindast MR. Comparison and interaction of morphine and CB1 agonist conditioned place preference in the rat model of early life stress. Int J Dev Neurosci 2021; 81:238-248. [PMID: 33534920 DOI: 10.1002/jdn.10094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Early life stress (ELS) disrupts brain development and subsequently affects physical and psychological health. ELS has been associated with an increased risk of relapse and inadequate treatment response in addicted patients. The current study was designed to find the effect of ELS on the rewarding effect of morphine and cannabinoid and their interaction. Pregnant female Wistar rats were used in this study. On postnatal day 2 (PND2), pups were separated from their mothers for 3 hr daily. This procedure was repeated every day at the same time until PND 14. The control group was kept in the standard nesting way with their mothers. The adult male offspring of maternal separated (MS) and standard nested (SN) rats were used. Using conditioned place preference task (CPP), the rewarding effect of morphine (0.75, 1.25, 2.5, and 5 mg/kg) was evaluated in both MS and SN groups. Besides, the rewarding effect of cannabinoids was investigated using the administration of CB1 receptor agonist (ACPA, 0.25, 0.5, 1 µg/rat) and inverse agonist (AM-251, 30, 60, and 90 ng/rat) in the nucleus accumbens (NAc). To evaluate the interaction between NAc cannabinoidergic system and morphine, the noneffective dose of ACPA and AM-251 were administered with a noneffective dose of morphine (0.75 mg/kg) on both MS and SN animals. Obtained results indicated that MS groups had a leftward shift in the rewarding effect of morphine and conditioned with low doses of morphine. However, they had a rightward shift in the rewarding effect of cannabinoids. In addition, coadministration of noneffective doses of morphine and ACPA potentiate conditioning in both MS and SN groups. Previous evidence shows that ELS induced changes in the brain, especially in the reward circuits. Here, we demonstrated that MS animals are more sensitive to the rewarding effect of morphine compared with SN animals. In addition, ELS disrupts the cannabinoid system and affect the rewarding effect of cannabinoids.
Collapse
Affiliation(s)
- Fardad Pirri
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Sarah Mahboubi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Karimi Goudarzi
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
7
|
Narouze S. Antinociception mechanisms of action of cannabinoid-based medicine: an overview for anesthesiologists and pain physicians. Reg Anesth Pain Med 2020; 46:240-250. [PMID: 33239391 DOI: 10.1136/rapm-2020-102114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Cannabinoid-based medications possess unique multimodal analgesic mechanisms of action, modulating diverse pain targets. Cannabinoids are classified based on their origin into three categories: endocannabinoids (present endogenously in human tissues), phytocannabinoids (plant derived) and synthetic cannabinoids (pharmaceutical). Cannabinoids exert an analgesic effect, peculiarly in hyperalgesia, neuropathic pain and inflammatory states. Endocannabinoids are released on demand from postsynaptic terminals and travels retrograde to stimulate cannabinoids receptors on presynaptic terminals, inhibiting the release of excitatory neurotransmitters. Cannabinoids (endogenous and phytocannabinoids) produce analgesia by interacting with cannabinoids receptors type 1 and 2 (CB1 and CB2), as well as putative non-CB1/CB2 receptors; G protein-coupled receptor 55, and transient receptor potential vanilloid type-1. Moreover, they modulate multiple peripheral, spinal and supraspinal nociception pathways. Cannabinoids-opioids cross-modulation and synergy contribute significantly to tolerance and antinociceptive effects of cannabinoids. This narrative review evaluates cannabinoids' diverse mechanisms of action as it pertains to nociception modulation relevant to the practice of anesthesiologists and pain medicine physicians.
Collapse
Affiliation(s)
- Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
8
|
Iyer V, Slivicki RA, Thomaz AC, Crystal JD, Mackie K, Hohmann AG. The cannabinoid CB 2 receptor agonist LY2828360 synergizes with morphine to suppress neuropathic nociception and attenuates morphine reward and physical dependence. Eur J Pharmacol 2020; 886:173544. [PMID: 32896549 DOI: 10.1016/j.ejphar.2020.173544] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
The opioid crisis has underscored the urgent need to identify safe and effective therapeutic strategies to overcome opioid-induced liabilities. We recently reported that LY2828360, a slowly signaling G protein-biased cannabinoid CB2 receptor agonist, suppresses neuropathic nociception and attenuates the development of tolerance to the opioid analgesic morphine in paclitaxel-treated mice. Whether beneficial effects of LY2828360 are dependent upon the presence of a pathological pain state are unknown and its impact on unwanted opioid-induced side-effects have never been investigated. Here, we asked whether LY2828360 would produce synergistic anti-allodynic effects with morphine in a paclitaxel model of chemotherapy-induced neuropathic pain and characterized its impact on opioid-induced reward and other unwanted side-effects associated with chronic opioid administration. Isobolographic analysis revealed that combinations of LY2828360 and morphine produced synergistic anti-allodynic effects in suppressing paclitaxel-induced mechanical allodynia. In wildtype (WT) mice, LY2828360 blocked morphine-induced reward in a conditioned place preference assay without producing reward or aversion when administered alone. The LY2828360-induced attenuation of morphine-induced reward was absent in CB2 knockout (CB2KO) mice. In the absence of a neuropathic pain state, LY2828360 partially attenuated naloxone-precipitated opioid withdrawal in morphine-dependent WT mice, and this withdrawal was itself markedly exacerbated in CB2KO mice. Moreover, LY2828360 did not reliably alter morphine-induced slowing of colonic transit or attenuate tolerance to morphine antinociceptive efficacy in the hot plate test of acute nociception. Our results suggest that cannabinoid CB2 receptor activation enhances the therapeutic properties of opioids while attenuating unwanted side-effects such as reward and dependence that occur with sustained opioid treatment.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Richard A Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ana C Thomaz
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Genome, Cellular and Developmental Biology Program, Indiana University, Bloomington, IN, USA
| | - Jonathon D Crystal
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ken Mackie
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Genome, Cellular and Developmental Biology Program, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Genome, Cellular and Developmental Biology Program, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
9
|
Ozdemir E. The Role of the Cannabinoid System in Opioid Analgesia and Tolerance. Mini Rev Med Chem 2020; 20:875-885. [DOI: 10.2174/1389557520666200313120835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/29/2019] [Accepted: 02/01/2020] [Indexed: 11/22/2022]
Abstract
Opioid receptor agonist drugs, such as morphine, are very effective for treating chronic and severe pain; but, tolerance can develop with long-term use. Although there is a lot of information about the pathophysiological mechanisms of opioid tolerance, it is still not fully clarified. Suggested mechanisms for opioid tolerance include opioid receptor desensitisation, reduction of sensitivity G-proteins, activation of Mitogen-Activated Protein Kinase (MAPK), altered intracellular signaling pathway including nitric oxide, and activation of mammalian Target of Rapamycin (mTOR). One way to reduce opioid tolerance and increase the analgesic potential is to use low doses. Combination of cannabinoids with opioids has been shown to manifest the reduction of the opioid dose. Experimental studies revealed an interaction of the endocannabinoid system and opioid antinociception. Cannabinoid and opioid receptor systems use common pathways in the formation of analgesic effect and demonstrate their activity via G Protein Coupled Receptors (GPCR). Cannabinoid drugs modulate opioid analgesic activity at a number of distinct levels within the cell, ranging from direct receptor associations to post-receptor interactions through shared signal transduction pathways. This review summarizes the data indicating that with combining cannabinoids and opioids drugs may be able to produce long-term analgesic effects, while preventing the opioid analgesic tolerance.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, School of Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
10
|
Lin X, Dhopeshwarkar AS, Huibregtse M, Mackie K, Hohmann AG. Slowly Signaling G Protein-Biased CB 2 Cannabinoid Receptor Agonist LY2828360 Suppresses Neuropathic Pain with Sustained Efficacy and Attenuates Morphine Tolerance and Dependence. Mol Pharmacol 2017; 93:49-62. [PMID: 29192123 DOI: 10.1124/mol.117.109355] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/06/2017] [Indexed: 01/07/2023] Open
Abstract
The CB2 cannabinoid agonist LY2828360 lacked both toxicity and efficacy in a clinical trial for osteoarthritis. Whether LY2828360 suppresses neuropathic pain has not been reported, and its signaling profile is unknown. In vitro, LY2828360 was a slowly acting but efficacious G protein-biased CB2 agonist, inhibiting cAMP accumulation and activating extracellular signal-regulated kinase 1/2 signaling while failing to recruit arrestin, activate inositol phosphate signaling, or internalize CB2 receptors. In wild-type (WT) mice, LY2828360 (3 mg/kg per day i.p. × 12 days) suppressed chemotherapy-induced neuropathic pain produced by paclitaxel without producing tolerance. Antiallodynic efficacy of LY2828360 was absent in CB2 knockout (KO) mice. Morphine (10 mg/kg per day i.p. × 12 days) tolerance developed in CB2KO mice but not in WT mice with a history of LY2828360 treatment (3 mg/kg per day i.p. × 12 days). LY2828360-induced antiallodynic efficacy was preserved in WT mice previously rendered tolerant to morphine (10 mg/kg per day i.p. × 12 days), but it was absent in morphine-tolerant CB2KO mice. Coadministration of LY2828360 (0.1 mg/kg per day i.p. × 12 days) with morphine (10 mg/kg per day × 12 days) blocked morphine tolerance in WT but not in CB2KO mice. WT mice that received LY2828360 coadministered with morphine exhibited a trend (P = 0.055) toward fewer naloxone-precipitated jumps compared with CB2KO mice. In conclusion, LY2828360 is a slowly signaling, G protein-biased CB2 agonist that attenuates chemotherapy-induced neuropathic pain without producing tolerance and may prolong effective opioid analgesia while reducing opioid dependence. LY2828360 may be useful as a first-line treatment in chemotherapy-induced neuropathic pain and may be highly efficacious in neuropathic pain states that are refractive to opioid analgesics.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Amey S Dhopeshwarkar
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Megan Huibregtse
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| | - Andrea G Hohmann
- Psychological and Brain Sciences (X.L., A.S.D., M.H., K.M., A.G.H.), Program in Neuroscience (K.M., A.G.H.), and Gill Center for Biomolecular Science (K.M., A.G.H.), Indiana University, Bloomington, Indiana
| |
Collapse
|
11
|
Marcus DJ, Henderson-Redmond AN, Gonek M, Zee ML, Farnsworth JC, Amin RA, Andrews MJ, Davis BJ, Mackie K, Morgan DJ. Mice expressing a "hyper-sensitive" form of the CB1 cannabinoid receptor (CB1) show modestly enhanced alcohol preference and consumption. PLoS One 2017; 12:e0174826. [PMID: 28426670 PMCID: PMC5398885 DOI: 10.1371/journal.pone.0174826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 11/17/2022] Open
Abstract
We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6%) but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg), morphine (10 mg/kg), and cocaine (10 mg/kg), demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model.
Collapse
Affiliation(s)
- David J. Marcus
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Angela N. Henderson-Redmond
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Maciej Gonek
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Michael L. Zee
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Jill C. Farnsworth
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Randa A. Amin
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Mary-Jeanette Andrews
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Brian J. Davis
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Ken Mackie
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Daniel J. Morgan
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| |
Collapse
|
12
|
Ostadhadi S, Haj-Mirzaian A, Nikoui V, Kordjazy N, Dehpour AR. Involvement of opioid system in antidepressant-like effect of the cannabinoid CB1receptor inverse agonist AM-251 after physical stress in mice. Clin Exp Pharmacol Physiol 2016; 43:203-12. [DOI: 10.1111/1440-1681.12518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Sattar Ostadhadi
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Brain and Spinal Cord Injury Research Center; Neuroscience Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Vahid Nikoui
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Nastaran Kordjazy
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Ahmad-Reza Dehpour
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Brain and Spinal Cord Injury Research Center; Neuroscience Institute; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
13
|
Altun A, Yildirim K, Ozdemir E, Bagcivan I, Gursoy S, Durmus N. Attenuation of morphine antinociceptive tolerance by cannabinoid CB1 and CB2 receptor antagonists. J Physiol Sci 2015; 65:407-15. [PMID: 25894754 PMCID: PMC10717898 DOI: 10.1007/s12576-015-0379-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Cannabinoid CB1 and CB2 receptor antagonists may be useful for their potential to increase or prolong opioid analgesia while attenuating the development of opioid tolerance. The aim of this study was to investigate the effects of AM251 (a selective CB1 antagonist) and JTE907 (a selective CB2 antagonist) on morphine analgesia and tolerance in rats. Adult male Wistar albino rats weighing 205-225 g were used in these experiments. To constitute morphine tolerance, we used a 3 day cumulative dosing regimen. After the last dose of morphine was injected on day 4, morphine tolerance was evaluated by analgesia tests. The analgesic effects of morphine (5 mg/kg), ACEA (a CB1 receptor agonist, 5 mg/kg), JWH-015 (a CB2 receptor agonist, 5 mg/kg), AM251 (1 mg/kg) and JTE907 (5 mg/kg) were considered at 30-min intervals (0, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests. Our findings indicate that ACEA and JWH907 significantly increased morphine analgesia and morphine antinociceptive tolerance in the analgesia tests. In contrast, the data suggested that AM251 and JTE907 significantly attenuated the expression of morphine tolerance. In conclusion, we observed that co-injection of AM251 and JTE907 with morphine attenuated expression of tolerance to morphine analgesic effects and decreased the morphine analgesia.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Antagonists/pharmacology
- Dioxoles/pharmacology
- Dose-Response Relationship, Drug
- Drug Tolerance
- Male
- Morphine/pharmacology
- Nociception/drug effects
- Pain Threshold/drug effects
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Quinolones/pharmacology
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Ahmet Altun
- Departments of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Kemal Yildirim
- Departments of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ercan Ozdemir
- Department of Physiology, Cumhuriyet University School of Medicine, 58140 Sivas, Turkey
| | - Ihsan Bagcivan
- Departments of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Sinan Gursoy
- Department of Anesthesiology and Reanimation, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Nedim Durmus
- Departments of Pharmacology Hacettepe, University School of Medicine, Ankara, Turkey
| |
Collapse
|
14
|
Nimczick M, Decker M. New Approaches in the Design and Development of Cannabinoid Receptor Ligands: Multifunctional and Bivalent Compounds. ChemMedChem 2015; 10:773-86. [DOI: 10.1002/cmdc.201500041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 12/22/2022]
|
15
|
Njoo C, Heinl C, Kuner R. In vivo SiRNA transfection and gene knockdown in spinal cord via rapid noninvasive lumbar intrathecal injections in mice. J Vis Exp 2014. [PMID: 24686916 DOI: 10.3791/51229] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This report describes a step-by-step guide to the technique of acute intrathecal needle injections in a noninvasive manner, i.e. independent of catheter implantation. The technical limitation of this surgical technique lies in the finesse of the hands. The injection is rapid, especially for a trained experimenter, and since tissue disruption with this technique is minimal, repeated injections are possible; moreover immune reaction to foreign tools (e.g. catheter) does not occur, thereby giving a better and more specific read out of spinal cord modulation. Since the application of the substance is largely limited to the target region of the spinal cord, drugs do not need to be applied in large dosages, and more importantly unwanted effects on other tissue, as observed with a systemic delivery, could be circumvented(1,2). Moreover, we combine this technique with in vivo transfection of nucleic acid with the help of polyethylenimine (PEI) reagent(3), which provides tremendous versatility for studying spinal functions via delivery of pharmacological agents as well as gene, RNA, and protein modulators.
Collapse
Affiliation(s)
| | - Celine Heinl
- Institute for Pharmacology, University of Heidelberg
| | - Rohini Kuner
- Institute for Pharmacology, University of Heidelberg
| |
Collapse
|
16
|
Desroches J, Bouchard JF, Gendron L, Beaulieu P. Involvement of cannabinoid receptors in peripheral and spinal morphine analgesia. Neuroscience 2014; 261:23-42. [DOI: 10.1016/j.neuroscience.2013.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/27/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
17
|
Fernández-Fernández C, Callado LF, Girón R, Sánchez E, Erdozain AM, López-Moreno JA, Morales P, Rodríguez de Fonseca F, Fernández-Ruiz J, Goya P, Meana JJ, Martín MI, Jagerovic N. Combining rimonabant and fentanyl in a single entity: preparation and pharmacological results. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:263-77. [PMID: 24591816 PMCID: PMC3934591 DOI: 10.2147/dddt.s55045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Based on numerous pharmacological studies that have revealed an interaction between cannabinoid and opioid systems at the molecular, neurochemical, and behavioral levels, a new series of hybrid molecules has been prepared by coupling the molecular features of two wellknown drugs, ie, rimonabant and fentanyl. The new compounds have been tested for their affinity and functionality regarding CB1 and CB2 cannabinoid and μ opioid receptors. In [35S]-GTPγS (guanosine 5′-O-[gamma-thio]triphosphate) binding assays from the post-mortem human frontal cortex, they proved to be CB1 cannabinoid antagonists and μ opioid antagonists. Interestingly, in vivo, the new compounds exhibited a significant dual antagonist action on the endocannabinoid and opioid systems.
Collapse
Affiliation(s)
| | - Luis F Callado
- Departamento de Farmacología, Universidad del Pais Vasco, UPV/EHU, CIBERSAM, Leioa, Spain
| | - Rocío Girón
- Departamento de Farmacología y Nutrición, Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Eva Sánchez
- Departamento de Farmacología y Nutrición, Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Amaia M Erdozain
- Departamento de Farmacología, Universidad del Pais Vasco, UPV/EHU, CIBERSAM, Leioa, Spain
| | | | | | | | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, CIBERNED, IRYCIS, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, CSIC, Madrid, Spain
| | - J Javier Meana
- Departamento de Farmacología, Universidad del Pais Vasco, UPV/EHU, CIBERSAM, Leioa, Spain
| | - M Isabel Martín
- Departamento de Farmacología y Nutrición, Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | | |
Collapse
|
18
|
Raffa RB, Pergolizzi JV. Opioid-Induced Hyperalgesia: Is It Clinically Relevant for the Treatment of Pain Patients? Pain Manag Nurs 2013; 14:e67-83. [DOI: 10.1016/j.pmn.2011.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 11/15/2022]
|
19
|
Naour ML, Akgün E, Yekkirala A, Lunzer MM, Powers MD, Kalyuzhny AE, Portoghese PS. Bivalent ligands that target μ opioid (MOP) and cannabinoid1 (CB1) receptors are potent analgesics devoid of tolerance. J Med Chem 2013; 56:5505-13. [PMID: 23734559 PMCID: PMC3849126 DOI: 10.1021/jm4005219] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Given that μ opioid (MOP) and canabinoid (CB1) receptors are colocalized in various regions of the central nervous system and have been reported to associate as heteromer (MOP-CB1) in cultured cells, the possibility of functional, endogenous MOP-CB1 in nociception and other pharmacologic effects has been raised. As a first step in investigating this possibility, we have synthesized a series of bivalent ligands 1-5 that contain both μ agonist and CB1 antagonist pharmacophores for use as tools to study the functional interaction between MOP and CB1 receptors in vivo. Immunofluorescent studies on HEK293 cells coexpressing both receptors suggested 5 (20-atom spacer) to be the only member of the series that bridges the protomers of the heteromer. Antinociceptive testing in mice revealed 5 to be the most potent member of the series. As neither a mixture of monovalent ligands 9 + 10 nor bivalents 2-5 produced tolerance in mice, MOR-CB1 apparently is not an important target for reducing tolerance.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Drug Design
- Drug Tolerance
- Endocytosis/drug effects
- Fluorescent Antibody Technique
- HEK293 Cells
- Humans
- Injections, Intraventricular
- Injections, Spinal
- Ligands
- Male
- Mice, Inbred ICR
- Models, Chemical
- Molecular Structure
- Pain/physiopathology
- Pain/prevention & control
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Morgan Le Naour
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Ajay Yekkirala
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Mike D. Powers
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| | - Alexander E. Kalyuzhny
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455
| | - Philip S. Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
20
|
Yan H, Yu LC. Expression of calcitonin gene-related peptide receptor subunits in cultured neurons following morphine treatment. Neurosci Lett 2013; 544:52-5. [DOI: 10.1016/j.neulet.2013.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 12/14/2022]
|
21
|
Seely KA, Brents LK, Franks LN, Rajasekaran M, Zimmerman SM, Fantegrossi WE, Prather PL. AM-251 and rimonabant act as direct antagonists at mu-opioid receptors: implications for opioid/cannabinoid interaction studies. Neuropharmacology 2012; 63:905-15. [PMID: 22771770 DOI: 10.1016/j.neuropharm.2012.06.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/04/2012] [Accepted: 06/22/2012] [Indexed: 11/16/2022]
Abstract
Mu-opioid and CB1-cannabinoid agonists produce analgesia; however, adverse effects limit use of drugs in both classes. Additive or synergistic effects resulting from concurrent administration of low doses of mu- and CB1-agonists may produce analgesia with fewer side effects. Synergism potentially results from interaction between mu-opioid receptors (MORs) and CB1 receptors (CB1Rs). AM-251 and rimonabant are CB1R antagonist/inverse agonists employed to validate opioid-cannabinoid interactions, presumed to act selectively at CB1Rs. Therefore, the potential for direct action of these antagonists at MORs is rarely considered. This study determined if AM-251 and/or rimonabant directly bind and modulate the function of MORs. Surprisingly, AM-251 and rimonabant, but not a third CB1R inverse agonist AM-281, bind with mid-nanomolar affinity to human MORs with a rank order of affinity (K(i)) of AM-251 (251 nM) > rimonabant (652 nM) > AM281 (2135 nM). AM-251 and rimonabant, but not AM-281, also competitively antagonize morphine induced G-protein activation in CHO-hMOR cell homogenates (K(b) = 719 or 1310 nM, respectively). AM-251 and rimonabant block morphine inhibition of cAMP production, while only AM-251 elicits cAMP rebound in CHO-hMOR cells chronically exposed to morphine. AM-251 and rimonabant (10 mg/kg) attenuate morphine analgesia, whereas the same dose of AM-281 produces little effect. Therefore, in addition to high CB1R affinity, AM-251 and rimonabant bind to MORs with mid-nanomolar affinity and at higher doses may affect morphine analgesia via direct antagonism at MORs. Such CB1-independent of these antagonists effects may contribute to reported inconsistencies when CB1/MOR interactions are examined via pharmacological methods in CB1-knockout versus wild-type mice.
Collapse
Affiliation(s)
- Kathryn A Seely
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Rezayof A, Sardari M, Zarrindast MR, Nayer-Nouri T. Functional interaction between morphine and central amygdala cannabinoid CB1 receptors in the acquisition and expression of conditioned place preference. Behav Brain Res 2011; 220:1-8. [PMID: 21262265 DOI: 10.1016/j.bbr.2011.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/17/2022]
Abstract
The present study was done to determine whether cannabinoid CB1 receptors of the central amygdala (CeA) are implicated in morphine-induced place preference. Using a 3-day schedule of conditioning, it was found that subcutaneous (s.c.) administration of morphine (2, 4 and 6 mg/kg) caused a significant dose-dependent conditioned place preference (CPP) in male Wistar rats. Intra-CeA microinjection of the cannabinoid CB1 receptor agonist arachidonylcyclopropylamide (ACPA; 0.5, 2.5 and 5 ng/rat) dose-dependently potentiated the morphine (2mg/kg)-induced CPP. Furthermore, the administration of ACPA (5 ng/rat, intra-CeA) alone induced a significant CPP. It should be considered that the higher dose of ACPA (5 ng/rat, intra-CeA) in combination with morphine decreased locomotor activity on the testing phase. On the other hand, intra-CeA microinjection of the cannabinoid CB1 receptor antagonist AM251 (120 ng/rat) alone induced a significant conditioned place aversion (CPA). Moreover, intra-CeA microinjection of AM251 (90 and 120 ng/rat) inhibited the morphine-induced place preference with a significant interaction. Intra-CeA microinjection of AM251 reversed the effect of ACPA on morphine response. Interestingly, microinjection of ACPA (2.5 and 5 ng/rat) or AM251 (60-120 ng/rat) into the CeA increased or decreased the expression of morphine (6 mg/kg)-induced place preference respectively. These observations provide evidence that cannabinoid CB1 receptors of the CeA are involved in mediating reward and these receptors are also implicated in the acquisition and expression of morphine-induced CPP.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | | | | |
Collapse
|
23
|
Saper JR, Lake AE, Bain PA, Stillman MJ, Rothrock JF, Mathew NT, Hamel RL, Moriarty M, Tietjen GE. A Practice Guide for Continuous Opioid Therapy for Refractory Daily Headache: Patient Selection, Physician Requirements, and Treatment Monitoring. Headache 2010; 50:1175-93. [DOI: 10.1111/j.1526-4610.2010.01733.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Edens E, Massa A, Petrakis I. Novel pharmacological approaches to drug abuse treatment. Curr Top Behav Neurosci 2010; 3:343-86. [PMID: 21161760 DOI: 10.1007/7854_2009_29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of pharmacologic addiction treatment is expanding rapidly. While there are currently several FDA-approved medications for nicotine, alcohol, and opiate dependence, research into novel pharmacological approaches for these and additional substances is legion. Each drug of abuse, while sharing a common final neural pathway of increasing dopaminergic tone, has unique and individual characteristics that are important in developing improved and varied treatments. In this chapter, we discuss such research and present the neurobiological underpinnings of these explorations. In general, addiction treatment is focused on four areas: (1) reducing withdrawal discomfort, (2) diminishing cravings, (3) blocking rewarding effects of the drug, and (4) treating comorbidities, such as depression or ADHD. We present current ideas in pharmacologic research for nicotine, alcohol, cannabis, stimulants, and opiates.
Collapse
Affiliation(s)
- Ellen Edens
- West Haven Veterans Administration Medical Center, West Haven, CT 06516, USA
| | | | | |
Collapse
|
25
|
Identification of candidate genes and gene networks specifically associated with analgesic tolerance to morphine. J Neurosci 2009; 29:5295-307. [PMID: 19386926 DOI: 10.1523/jneurosci.4020-08.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic morphine administration may alter the expression of hundreds to thousands of genes. However, only a subset of these genes is likely involved in analgesic tolerance. In this report, we used a behavior genetics strategy to identify candidate genes specifically linked to the development of morphine tolerance. Two inbred genotypes [C57BL/6J (B6), DBA2/J (D2)] and two reciprocal congenic genotypes (B6D2, D2B6) with the proximal region of chromosome 10 (Chr10) introgressed into opposing backgrounds served as the behavior genetic filter. Tolerance after therapeutically relevant doses of morphine developed most rapidly in the B6 followed by the B6D2 genotype and did not develop in the D2 mice and only slightly in the D2B6 animals indicating a strong influence of the proximal region of Chr10 in the development of tolerance. Gene expression profiling and pattern matching identified 64, 53, 86, and 123 predisposition genes and 81, 96, 106, and 82 tolerance genes in the periaqueductal gray (PAG), prefrontal cortex, temporal lobe, and ventral striatum, respectively. A potential gene network was identified in the PAG in which 19 of the 34 genes were strongly associated with tolerance. Eleven of the network genes were found to reside in quantitative trait loci previously associated with morphine-related behaviors, whereas seven were predictive of tolerance (morphine-naive condition). Overall, the genes modified by chronic morphine administration show a strong presence in canonical pathways representative of neuroadaptation. A potentially significant role for the micro-RNA and epigenetic mechanisms in response to chronic administration of pharmacologically relevant doses of morphine was highlighted by candidate genes Dicer and H19.
Collapse
|
26
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
27
|
Saper JR, Lake AE. Continuous opioid therapy (COT) is rarely advisable for refractory chronic daily headache: limited efficacy, risks, and proposed guidelines. Headache 2008; 48:838-49. [PMID: 18549361 DOI: 10.1111/j.1526-4610.2008.01153.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intractable pain, headache or otherwise, is a devastating and life-controlling experience. The need to effectively and aggressively control pain is a fundamental tenet of clinical care. In the past several years, increasing advocacy for continuous opioid therapy has become an important, if not controversial, theme in the development of treatment guidelines and teaching programs. Ironically, the increasing willingness of physicians to prescribe scheduled opioids for their headache and pain patients has occurred in the absence of compelling data demonstrating efficacy or long-term safety. To the contrary, two meta-analyses on chronic noncancer pain (CNCP) and one long-term uncontrolled study on headache patients demonstrate a relatively small number of patients benefiting from the treatment. Recent neuroscience data on the effects of opioids on the brain raise serious concern for long-term safety and also provide the basis for the mechanism by which chronic opioid use might induce progression of headache frequency and severity. Significant adverse effects, including influence on sexual hormonal balances, physical and psychological dependence, the development of opioid-induced hyperalgesia, and cardiac arrhythmia and sudden death that can be seen with standard dosages of methadone, make a strong argument against widespread use of continuous opioid therapy (COT) in otherwise healthy young and middle-aged headache patients. We believe that COT should be used in rare circumstances for chronic headache patients, and propose initial guidelines for selecting patients and monitoring treatment. The physician should be well versed in the details of opioid prescribing, administration, and monitoring, and should be prepared to discontinue opioids when clinical justification, patient behavior, or failure to achieve therapeutic goals make discontinuance necessary.
Collapse
Affiliation(s)
- Joel R Saper
- Michigan Head-Pain & Neurological Institute, Ann Arbor, MI, USA
| | | |
Collapse
|
28
|
Repeated cannabinoid injections into the rat periaqueductal gray enhance subsequent morphine antinociception. Neuropharmacology 2008; 55:1219-25. [PMID: 18723035 DOI: 10.1016/j.neuropharm.2008.07.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 01/02/2023]
Abstract
Cannabinoids and opiates inhibit pain, in part, by activating the periaqueductal gray (PAG). Evidence suggests this activation occurs through distinct mechanisms. If the antinociceptive mechanisms are distinct, then cross-tolerance between opioids and cannabinoids should not develop. This hypothesis was tested by measuring the antinociceptive effect of microinjecting morphine into the ventrolateral PAG of rats pretreated with the cannabinoid HU-210 for two days. Male Sprague-Dawley rats were injected twice a day for two days with vehicle (0.4 microL), morphine (5 microg/0.4 microL), HU-210 (5 microg/0.4 microL), or morphine combined with HU-210 into the ventrolateral PAG. Repeated injections of morphine caused a rightward shift in the morphine dose-response curve on Day 3 (i.e., tolerance developed). No tolerance was evident in rats pretreated with morphine combined with HU-210. In rats pretreated with HU-210 alone, morphine antinociception was enhanced. This enhancement was blocked by pretreating rats with the cannabinoid receptor antagonist AM-251, and it also disappeared when rats were tested one week later. Acute microinjection of HU-210 into the PAG antagonized morphine antinociception, suggesting that HU-210-induced enhancement of morphine antinociception is a compensatory response. As hypothesized, there was no evidence of cross-tolerance between morphine and HU-210. In fact, cannabinoid pretreatment enhanced the antinociceptive effect of microinjecting morphine into the ventrolateral PAG. These findings suggest that alternating opioid and cannabinoid treatment could be therapeutically advantageous by preventing the development of tolerance and enhancing morphine antinociception.
Collapse
|
29
|
Abstract
A remarkable amount of literature has been generated demonstrating the functional similarities between the endogenous opioid and cannabinoid systems. Anatomical, biochemical and molecular data support the existence of reciprocal interactions between these two systems related to several pharmacological responses including reward, cognitive effects, and the development of tolerance and dependence. However, the assessment of the bidirectionality of these effects has been difficult due to their variety and complexity. Reciprocal interactions have been well established for the development of physical dependence. Cross-tolerance and cross-sensitization, although not always bidirectional, are also supported by a number of evidence, while less data have been gathered regarding the relationship of these systems in cognition and emotion. Nevertheless, the most recent advances in cannabinoid-opioid cross-modulation have been made in the area of drug craving and relapse processes. The present review is focused on the latest developments in the cannabinoid-opioid cross-modulation of their behavioural effects and the possible neurobiological substrates involved.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/physiopathology
- Cannabinoid Receptor Modulators/physiology
- Cannabinoids/pharmacology
- Cognition/drug effects
- Cognition/physiology
- Drug Tolerance
- Emotions/drug effects
- Emotions/physiology
- Endorphins/physiology
- Humans
- Marijuana Abuse/physiopathology
- Motivation
- Narcotics/pharmacology
- Neurotransmitter Agents/metabolism
- Opioid-Related Disorders/physiopathology
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/physiology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
- Substance Withdrawal Syndrome/physiopathology
Collapse
Affiliation(s)
- Patricia Robledo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Spain
| | | | | | | |
Collapse
|
30
|
Boctor SY, Martinez JL, Koek W, France CP. The cannabinoid CB1 receptor antagonist AM251 does not modify methamphetamine reinstatement of responding. Eur J Pharmacol 2007; 571:39-43. [PMID: 17628534 PMCID: PMC2148070 DOI: 10.1016/j.ejphar.2007.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/24/2007] [Accepted: 06/04/2007] [Indexed: 11/15/2022]
Abstract
Cannabinoid CB(1) receptor antagonists can decrease methamphetamine self-administration. This study examined whether the CB(1) receptor antagonist AM251 [N-(piperidin-1-yl)-5-(4-indophonyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] modifies reinstatement in rats that previously self-administered methamphetamine. Rats (n=10) self-administered methamphetamine (0.1 mg/kg/infusion) under a fixed ratio 2 schedule. Non-contingent methamphetamine (0.01-1.78 mg/kg, i.v.) yielded responding for saline (reinstatement) that was similar to responding for self-administered methamphetamine. AM251 (0.032-0.32, i.v.) did not affect methamphetamine-induced reinstatement but significantly attenuated Delta(9)-tetrahydrocannabinol (2.0 mg/kg, i.p.)-induced hypothermia. These data fail to support a role for endogenous cannabinoids or cannabinoid CB(1) receptors in reinstatement and, therefore, relapse to stimulant abuse.
Collapse
Affiliation(s)
- Sherin Y. Boctor
- Cajal Neuroscience Institute, Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Joe L. Martinez
- Cajal Neuroscience Institute, Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Wouter Koek
- Departments of Pharmacology and Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Charles P. France
- Departments of Pharmacology and Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
31
|
Abul-Husn NS, Sutak M, Milne B, Jhamandas K. Augmentation of spinal morphine analgesia and inhibition of tolerance by low doses of mu- and delta-opioid receptor antagonists. Br J Pharmacol 2007; 151:877-87. [PMID: 17502848 PMCID: PMC2014123 DOI: 10.1038/sj.bjp.0707277] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Ultralow doses of naltrexone, a non-selective opioid antagonist, have previously been found to augment acute morphine analgesia and block the development of tolerance to this effect. Since morphine tolerance is dependent on the activity of micro and delta receptors, the present study investigated the effects of ultralow doses of antagonists selective for these receptor types on morphine analgesia and tolerance in tests of thermal and mechanical nociception. EXPERIMENTAL APPROACH Effects of intrathecal administration of mu-receptor antagonists, CTOP (0.01 ng) or CTAP (0.001 ng), or a delta-receptor antagonist, naltrindole (0.01 ng), on spinal morphine analgesia and tolerance were evaluated using the tail-flick and paw-pressure tests in rats. KEY RESULTS Both micro and delta antagonists augmented analgesia produced by a sub-maximal (5 microg) or maximal (15 microg) dose of morphine. Administration of the antagonists with morphine (15 microg) for 5 days inhibited the progressive decline of analgesia and prevented the loss of morphine potency. In animals exhibiting tolerance to morphine, administration of the antagonists with morphine produced a recovery of the analgesic response and restored morphine potency. CONCLUSIONS AND IMPLICATIONS Combining ultralow doses of micro- or delta-receptor antagonists with spinal morphine augmented the acute analgesic effects, inhibited the induction of chronic tolerance and reversed established tolerance. The remarkably similar effects of micro- and delta-opioid receptor antagonists on morphine analgesia and tolerance are interpreted in terms of blockade of the latent excitatory effects of the agonist that limit expression of its full activity.
Collapse
Affiliation(s)
- N S Abul-Husn
- Department of Pharmacology and Toxicology, Queen's University Kingston, Ontario, Canada
| | - M Sutak
- Department of Pharmacology and Toxicology, Queen's University Kingston, Ontario, Canada
- Department of Anesthesiology, Queen's University Kingston, Ontario, Canada
| | - B Milne
- Department of Pharmacology and Toxicology, Queen's University Kingston, Ontario, Canada
- Department of Anesthesiology, Queen's University Kingston, Ontario, Canada
| | - K Jhamandas
- Department of Pharmacology and Toxicology, Queen's University Kingston, Ontario, Canada
- Department of Anesthesiology, Queen's University Kingston, Ontario, Canada
- Author for correspondence:
| |
Collapse
|