1
|
Li SS, Fang SM, Chen J, Zhang Z, Yu QY. Effects of short-term exposure to volatile pesticide dichlorvos on the olfactory systems in Spodoptera litura: Calcium homeostasis, synaptic plasticity and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161050. [PMID: 36549522 DOI: 10.1016/j.scitotenv.2022.161050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Volatile pesticides are a growing environmental and public health concern. However, little attention has been paid to its olfactory neurotoxic effect on pests and non-target organisms. Dichlorvos is a widely used organophosphorus fumigant that is ubiquitous in the environment. This study aims to explore the mode of action of the volatile dichlorvos-mediated olfactory impairment using a lepidopteran insect Spodoptera litura as a model. It was indicated that electroantennogram amplitudes of the male moths' response to sex pheromones and phenylacetaldehyde were reduced by approximately 20 % after 12-h fumigation exposure. RNA-Sequencing analysis revealed that down-regulation of trypsin and CLIC2 might be responsible for inhibition of odor recognition in the antenna, the peripheral olfactory tissue. In the head, 822 (84.05 %) of the 978 differentially expressed genes (DEGs) were up-regulated, of which seven DEGs encoding transcription factors may mainly modulate the stress-regulatory networks. Combining transcriptome with brain calcium imaging and Annexin V-mCherry staining experiments showed that volatile dichlorvos mainly disrupts Ca2+ homeostasis and synaptic plasticity, induces apoptosis in the central nervous system, and further leads to olfactory dysfunction. Overall, this study highlighted a comprehensive work model for dichlorvos-induced olfactory impairment in S. litura and may provide insights into toxic effects of airborne organophosphates on non-target organisms.
Collapse
Affiliation(s)
- Shu-Shang Li
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
| | - Jie Chen
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System. Front Cell Neurosci 2018; 12:459. [PMID: 30534057 PMCID: PMC6275309 DOI: 10.3389/fncel.2018.00459] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Coagulation and the immune system interact in several physiological and pathological conditions, including tissue repair, host defense, and homeostatic maintenance. This network plays a key role in diseases of the central nervous system (CNS) by involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and molecular pathways (protease activity, complement factors, platelet granule content). Endothelial damage prompts platelet activation and the coagulation cascade as the first physiological step to support the rescue of damaged tissues, a flawed rescuing system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial cells are sensitive to the damage and indeed can release or respond to chemokines and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors (including platelet-derived growth factor, vascular endothelial growth factor, and brain-derived neurotrophic factor) with platelet activation, change in capillary permeability, migration or differentiation of leukocytes. Thrombin, plasmin, activated complement factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular transduction through complement or protease-activated receptors. Impairment of the neuro-immune hemostasis network induces acute or chronic CNS pathologies related to the neurovascular unit, either directly or by the systemic activation of its main steps. Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit, in this review we thoroughly analyzed the influence of neuro-immune hemostasis on these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive and maladaptive plasticity and discuss the relevance of these events in inflammatory, cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the solid reviewed data, we hypothesize a model of neuro-immune hemostatic network based on protein–protein interactions. In addition, we propose that, to better understand and favor the maintenance of adaptive plasticity, it would be useful to construct predictive molecular models, able to enlighten the regulating logic of the complex molecular network, which belongs to different cellular domains. A modeling approach would help to define how nodes of the network interact with basic cellular functions, such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic systems biology models might help to elucidate the fine structure of molecular events generated by blood coagulation and neuro-immune responses in several CNS diseases, thereby opening the way to more effective treatments.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Michele Papa
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
|
4
|
De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases. Int J Mol Sci 2017; 18:E2128. [PMID: 29023416 PMCID: PMC5666810 DOI: 10.3390/ijms18102128] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022] Open
Abstract
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel.
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel.
| | - Michele Papa
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
5
|
Lee PR, Johnson TP, Gnanapavan S, Giovannoni G, Wang T, Steiner JP, Medynets M, Vaal MJ, Gartner V, Nath A. Protease-activated receptor-1 activation by granzyme B causes neurotoxicity that is augmented by interleukin-1β. J Neuroinflammation 2017; 14:131. [PMID: 28655310 PMCID: PMC5488439 DOI: 10.1186/s12974-017-0901-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/14/2017] [Indexed: 12/05/2022] Open
Abstract
Background The cause of neurodegeneration in progressive forms of multiple sclerosis is unknown. We investigated the impact of specific neuroinflammatory markers on human neurons to identify potential therapeutic targets for neuroprotection against chronic inflammation. Methods Surface immunocytochemistry directly visualized protease-activated receptor-1 (PAR1) and interleukin-1 (IL-1) receptors on neurons in human postmortem cortex in patients with and without neuroinflammatory lesions. Viability of cultured neurons was determined after exposure to cerebrospinal fluid from patients with progressive multiple sclerosis or purified granzyme B and IL-1β. Inhibitors of PAR1 activation and of PAR1-associated second messenger signaling were used to elucidate a mechanism of neurotoxicity. Results Immunohistochemistry of human post-mortem brain tissue demonstrated cells expressing higher amounts of PAR1 near and within subcortical lesions in patients with multiple sclerosis compared to control tissue. Human cerebrospinal fluid samples containing granzyme B and IL-1β were toxic to human neuronal cultures. Granzyme B was neurotoxic through activation of PAR1 and subsequently the phospholipase Cβ-IP3 second messenger system. Inhibition of PAR1 or IP3 prevented granzyme B toxicity. IL-1β enhanced granzyme B-mediated neurotoxicity by increasing PAR1 expression. Conclusions Neurons within the inflamed central nervous system are imperiled because they express more PAR1 and are exposed to a neurotoxic combination of both granzyme B and IL-1β. The effects of these inflammatory mediators may be a contributing factor in the progressive brain atrophy associated with neuroinflammatory diseases. Knowledge of how exposure to IL-1β and granzyme B act synergistically to cause neuronal death yields potential novel neuroprotective treatments for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Paul R Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA.
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| | - Sharmilee Gnanapavan
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Gavin Giovannoni
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Tongguang Wang
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| | - Joseph P Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marie Medynets
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| | - Mark J Vaal
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Valerie Gartner
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room CRC 3-2563, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Shavit-Stein E, Artan-Furman A, Feingold E, Ben Shimon M, Itzekson-Hayosh Z, Chapman J, Vlachos A, Maggio N. Protease Activated Receptor 2 (PAR2) Induces Long-Term Depression in the Hippocampus through Transient Receptor Potential Vanilloid 4 (TRPV4). Front Mol Neurosci 2017; 10:42. [PMID: 28303089 PMCID: PMC5332813 DOI: 10.3389/fnmol.2017.00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Protease activated receptors (PARs) are involved in regulating synaptic transmission and plasticity in the brain. While it is well-accepted that PAR1 mediates long-term potentiation (LTP) of excitatory synaptic strength, the role of PAR2 in synaptic plasticity remains not well-understood. In this study, we assessed the role of PAR2-signaling in plasticity at hippocampal Schaffer collateral-CA1 synapses. Using field potential recordings, we report that PAR2-activation leads to long-term depression (LTD) of synaptic transmission through a protein kinase A -dependent, Transient Receptor Potential Vanilloid 4 -mediated mechanism, which requires the activation of N-methyl-D-aspartate receptors. These results demonstrate that the effects of PAR2 on synaptic plasticity are distinct from what is observed upon PAR1-activation. Thus, we propose that the activation of different classes of PARs, i.e., PAR1 and PAR2, may set the threshold of synaptic plasticity in the hippocampal network by balancing LTP and LTD.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Avital Artan-Furman
- Department of Neurology, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Ekaterina Feingold
- Department of Neurology, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Marina Ben Shimon
- Department of Neurology, The Chaim Sheba Medical CenterTel HaShomer, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | | | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical CenterTel HaShomer, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| | - Andreas Vlachos
- Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University Duesseldorf, Germany
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical CenterTel HaShomer, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel; Talpiot Medical Leadership Program, The Chaim Sheba Medical CenterTel HaShomer, Israel
| |
Collapse
|
7
|
Scholz P, Kalbe B, Jansen F, Altmueller J, Becker C, Mohrhardt J, Schreiner B, Gisselmann G, Hatt H, Osterloh S. Transcriptome Analysis of Murine Olfactory Sensory Neurons during Development Using Single Cell RNA-Seq. Chem Senses 2016; 41:313-23. [PMID: 26839357 DOI: 10.1093/chemse/bjw003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mammalian odor reception is achieved by highly specialized olfactory sensory neurons (OSNs) located in the nasal cavity. Despite their importance for the daily survival of most mammals, the gene expression and regulatory profiles of these single neurons are poorly understood. Here, we report the isolation of individual GFP-labeled OSNs from Olfr73-GFP mice at different developmental stages followed by Next Generation Sequencing, thereby analyzing the detailed transcriptome for the first time. We characterized the repertoire of olfactory receptors (ORs) and found that in addition to the highly and predominant detectable Olfr73, 20 additional ORs were stably detectable at lower transcript levels in adult mice. Additionally, OSNs collected from mice of earlier developmental stages did not show any stable OR patterns. However, more than one predominant OR per OSN was detectable.
Collapse
Affiliation(s)
- Paul Scholz
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Benjamin Kalbe
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Fabian Jansen
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Janine Altmueller
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, NRW, Germany and Institute of Human Genetics, University Hospital Cologne, 50931 Cologne, NRW, Germany
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, NRW, Germany and
| | - Julia Mohrhardt
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Benjamin Schreiner
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Guenter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany
| | - Sabrina Osterloh
- Department of Cell Physiology, Ruhr-University Bochum, 44801 Bochum, NRW, Germany,
| |
Collapse
|
8
|
Li P, Cui Y, Song G, Wang Z, Zhang Q. Phenotypic characteristics of nasal mast cells in a mouse model of allergic rhinitis. ORL J Otorhinolaryngol Relat Spec 2014; 76:303-13. [PMID: 25531303 DOI: 10.1159/000369142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mast cells (MCs) in the nasal respiratory mucosa (NRM) play a triggering role in the pathogenesis of allergic rhinitis (AR). Recent research evidence in mouse models of AR suggests an underlying MC-related allergic response in mouse nasal olfactory mucosa (NOM). OBJECTIVE We sought to investigate the phenotypic characteristics of nasal MCs in a mouse model of AR. METHODS By MC-specific staining and immunohistochemistry, we analyzed the subset, protease and IgE-binding phenotypes of nasal MCs in ovalbumin (OVA)-sensitized unchallenged and challenged mice. RESULTS In OVA-sensitized challenged mice, increased serum OVA-specific IgE levels (p < 0.001) and eosinophil infiltration confirmed AR induction. In addition to constitutive connective tissue MCs, mucosal MCs were induced in NRM and NOM of OVA-sensitized challenged mice. Connective tissue MCs and mucosal MCs in mouse NRM and NOM were positive for mouse MC protease-1, -4, -5, -6, -7 and carboxypeptidase-A3. In line with MCs in NRM, there were increased numbers (p = 0.019) and proportions (p = 0.027) of MCs with surface-bound IgE in NOM of OVA-sensitized challenged mice. CONCLUSION In the setting of AR, MCs in mouse NOM exhibit the same subset, protease and IgE-binding phenotypes as MCs in mouse NRM.
Collapse
Affiliation(s)
- Pu Li
- Department of Otolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
9
|
Wang T, Lee MH, Choi E, Pardo-Villamizar CA, Lee SB, Yang IH, Calabresi PA, Nath A. Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1.3 channel. PLoS One 2012; 7:e43950. [PMID: 22952817 PMCID: PMC3430617 DOI: 10.1371/journal.pone.0043950] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence supports a critical role of T cells in neurodegeneration associated with acute and subacute brain inflammatory disorders. Granzyme B (GrB), released by activated T cells, is a cytotoxic proteinase which may induce perforin-independent neurotoxicity. Here, we studied the mechanism of perforin-independent GrB toxicity by treating primary cultured human neuronal cells with recombinant GrB. GrBactivated the protease-activated receptor (PAR)-1 receptor on the neuronal cell surface leading to decreased intracellular cyclic AMP levels. This was followed by increased expression and translocation of the voltage gated potassium channel, Kv1.3 to the neuronal cell membrane. Similar expression of Kv1.3 was also seen in neurons of the cerebral cortex adjacent to active inflammatory lesions in patients with multiple sclerosis. Kv1.3 expression was followed by activation of Notch-1 resulting in neurotoxicity. Blocking PAR-1, Kv1.3 or Notch-1 activation using specific pharmacological inhibitors or siRNAs prevented GrB-induced neurotoxicity. Furthermore, clofazimine protected against GrB-induced neurotoxicity in rat hippocampus, in vivo. These observations indicate that GrB released from T cells induced neurotoxicity by interacting with the membrane bound Gi-coupled PAR-1 receptor and subsequently activated Kv1.3 and Notch-1. These pathways provide novel targets to treat T cell-mediated neuroinflammatory disorders. Kv1.3 is of particular interest since it is expressed on the cell surface, only under pathological circumstances, and early in the cascade of events making it an attractive therapeutic target.
Collapse
Affiliation(s)
- Tongguang Wang
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elliot Choi
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Sung Bin Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - In Hong Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Singapore Institute for Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Avindra Nath
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wainford RD, Kapusta DR. Functional selectivity of central Gα-subunit proteins in mediating the cardiovascular and renal excretory responses evoked by central α(2) -adrenoceptor activation in vivo. Br J Pharmacol 2012; 166:210-20. [PMID: 21895632 DOI: 10.1111/j.1476-5381.2011.01662.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Activation of brain α(2) -adrenoceptors in conscious rodents decreases heart rate (HR) and mean arterial blood pressure (MAP) and increases urine output and urinary sodium excretion. In vitro, α(2) -adrenoceptor stimulation activates Gα(i(1-3)) , Gα(o) and Gα(s) -subunit protein-gated signal transduction pathways. Here we have investigated whether these same Gα-subunit protein-gated pathways mediate the cardiovascular and renal excretory responses to central α(2) -adrenoceptor activation in conscious Sprague-Dawley rats. EXPERIMENTAL APPROACH Rats were pre-treated by intracerebroventricular injection (i.c.v.) with an oligodeoxynucleotide (ODN) targeted to a Gα(i1) , Gα(i2) , Gα(i3) , Gα(o) , Gα(s) or a scrambled (SCR) ODN sequence (25 µg, 24 h). On the day of study, the α(2) -adrenoceptor agonist guanabenz (50 µg) or saline vehicle, was injected i.c.v. into ODN-pre-treated conscious rats. MAP and HR were recorded, and urine was collected for 150 min. KEY RESULTS In vehicle- and SCR ODN-pre-treated rats, i.c.v. guanabenz decreased MAP and HR, and produced marked diuretic and natriuretic responses. Selective ODN-mediated down-regulation of brain Gα(i2) -subunit proteins abolished the central guanabenz-induced hypotension and natriuresis. In contrast, following selective Gα(s) down-regulation, the characteristic hypotensive response to i.c.v. guanabenz was converted to an immediate increase in MAP. The bradycardic and diuretic responses to i.c.v. guanabenz were not blocked by pre-treatment with any ODN. CONCLUSIONS AND IMPLICATIONS There was functional selectivity of Gα(i2) and Gα(s) subunit protein-gated signal transduction pathways in mediating the hypotensive and natriuretic, but not bradycardic or diuretic, responses evoked by central α(2) -adrenoceptor activation in vivo.
Collapse
Affiliation(s)
- R D Wainford
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | | |
Collapse
|
11
|
Li J, Kanju P, Patterson M, Chew WL, Cho SH, Gilmour I, Oliver T, Yasuda R, Ghio A, Simon SA, Liedtke W. TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:784-93. [PMID: 21245013 PMCID: PMC3114812 DOI: 10.1289/ehp.1002807] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/20/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND Human respiratory epithelia function in airway mucociliary clearance and barrier function and have recently been implicated in sensory functions. OBJECTIVE We investigated a link between chronic obstructive pulmonary disease (COPD) pathogenesis and molecular mechanisms underlying Ca2+ influx into human airway epithelia elicited by diesel exhaust particles (DEP). METHODS AND RESULTS Using primary cultures of human respiratory epithelial (HRE) cells, we determined that these cells possess proteolytic signaling machinery, whereby proteinase-activated receptor-2 (PAR-2) activates Ca2+-permeable TRPV4, which leads to activation of human respiratory disease-enhancing matrix metalloproteinase-1 (MMP-1), a signaling cascade initiated by diesel exhaust particles (DEP), a globally relevant air pollutant. Moreover, we observed ciliary expression of PAR-2, TRPV4, and phospholipase-Cβ3 in human airway epithelia and their DEP-enhanced protein-protein complex formation. We also found that the chronic obstructive pulmonary disease (COPD)-predisposing TRPV4P19S variant enhances Ca2+ influx and MMP 1 activation, providing mechanistic linkage between man-made air pollution and human airway disease. CONCLUSION DEP evoked protracted Ca2+ influx via TRPV4, enhanced by the COPD-predisposing human genetic polymorphism TRPV4P19S. This mechanism reprograms maladaptive inflammatory and extracellular-matrix-remodeling responses in human airways. The novel concept of air pollution-responsive ciliary signal transduction from PAR-2 to TRPV4 in human respiratory epithelia will accelerate rationally targeted therapies, possibly via the inhalatory route.
Collapse
Affiliation(s)
| | - Patrick Kanju
- Department of Medicine and
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Michael Patterson
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Wei-Leong Chew
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Seung-Hyun Cho
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Ian Gilmour
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Tim Oliver
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Ryohei Yasuda
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Andrew Ghio
- U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA
| | - Sidney A. Simon
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Wolfgang Liedtke
- Department of Medicine and
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
- Address correspondence to W. Liedtke, Duke University Center for Translational Neuroscience, Box 2900, Durham, NC 27710 USA. Telephone: (919) 684-0058. Fax: (919) 684-6514. E-mail:
| |
Collapse
|
12
|
Simón D, Martín-Bermejo MJ, Gallego-Hernández MT, Pastrana E, García-Escudero V, García-Gómez A, Lim F, Díaz-Nido J, Avila J, Moreno-Flores MT. Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration. Glia 2011; 59:1458-71. [PMID: 21626571 DOI: 10.1002/glia.21189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/27/2011] [Indexed: 01/02/2023]
Abstract
Olfactory ensheathing glia (OEG) cells are known to facilitate repair following axotomy of adult neurons, although the molecular mechanisms involved are not fully understood. We previously identified plasminogen activator inhibitor-1 (PAI-1), proteinase-activated receptor-1 (PAR-1), and thrombomodulin (TM) as candidates to regulate rat OEG-dependent axonal regeneration. In this study, we have validated the involvement of these proteins in promoting axonal regeneration by immortalized human OEGs. We studied the effect of silencing these proteins in OEGs on their capacity to promote the regeneration of severed adult retinal ganglion cells (RGCs) axons. Our results support the role of glial PAI-1 as a downstream effector of PAR-1 in promoting axon regeneration. In contrast, we found that TM inhibits OEG induced-axonal regeneration. We also assessed the signaling pathways downstream of PAR-1 that might modulate PAI-1 expression, observing that specifically inhibiting Gα(i), Rho kinase, or PLC and PKC downregulated the expression of PAI-1 in OEGs, with a concomitant reduction in OEG-dependent axon regeneration in adult RGCs. Our findings support an important role for the thrombin system in regulating adult axonal regeneration by OEGs.
Collapse
Affiliation(s)
- Diana Simón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang P, Jiang Y, Wang Y, Shyy JY, DeFea KA. Beta-arrestin inhibits CAMKKbeta-dependent AMPK activation downstream of protease-activated-receptor-2. BMC BIOCHEMISTRY 2010; 11:36. [PMID: 20858278 PMCID: PMC2955585 DOI: 10.1186/1471-2091-11-36] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 09/21/2010] [Indexed: 01/03/2023]
Abstract
Background Proteinase-activated-receptor-2 (PAR2) is a seven transmembrane receptor that can activate two separate signaling arms: one through Gαq and Ca2+ mobilization, and a second through recruitment of β-arrestin scaffolds. In some cases downstream targets of the Gαq/Ca2+ signaling arm are directly inhibited by β-arrestins, while in other cases the two pathways are synergistic; thus β-arrestins act as molecular switches capable of modifying the signal generated by the receptor. Results Here we demonstrate that PAR2 can activate adenosine monophosphate-activated protein kinase (AMPK), a key regulator of cellular energy balance, through Ca2+-dependent Kinase Kinase β (CAMKKβ), while inhibiting AMPK through interaction with β-arrestins. The ultimate outcome of PAR2 activation depended on the cell type studied; in cultured fibroblasts with low endogenous β-arrestins, PAR2 activated AMPK; however, in primary fat and liver, PAR2 only activated AMPK in β-arrestin-2-/- mice. β-arrestin-2 could be co-immunoprecipitated with AMPK and CAMKKβ under baseline conditions from both cultured fibroblasts and primary fat, and its association with both proteins was increased by PAR2 activation. Addition of recombinant β-arrestin-2 to in vitro kinase assays directly inhibited phosphorylation of AMPK by CAMKKβ on Thr172. Conclusions Studies have shown that decreased AMPK activity is associated with obesity and Type II Diabetes, while AMPK activity is increased with metabolically favorable conditions and cholesterol lowering drugs. These results suggest a role for β-arrestin in the inhibition of AMPK signaling, raising the possibility that β-arrestin-dependent PAR2 signaling may act as a molecular switch turning a positive signal to AMPK into an inhibitory one.
Collapse
Affiliation(s)
- Ping Wang
- Division of Biomedical Sciences University of California Riverside, California, USA
| | | | | | | | | |
Collapse
|
14
|
Grade S, Agasse F, Bernardino L, Silva CG, Cortes L, Malva JO. Functional identification of neural stem cell-derived oligodendrocytes by means of calcium transients elicited by thrombin. Rejuvenation Res 2010; 13:27-37. [PMID: 20230276 DOI: 10.1089/rej.2009.0889] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current immunosuppressive treatments for central nervous system demyelinating diseases fail to prevent long-term motor and cognitive decline in patients. Excitingly, glial cell transplantation arises as a promising complementary strategy to challenge oligodendrocytes loss occurring in myelination disorders. A potential source of new oligodendrocytes is the subventricular zone (SVZ) pool of multipotent neural stem cells. However, this approach has been handicapped by the lack of functional methods for identification and pharmacological analysis of differentiating oligodendrocytes, prior to transplantation. In this study, we questioned whether SVZ-derived oligodendrocytes could be functionally discriminated due to intracellular calcium level ([Ca(2+)](i)) variations following KCl, histamine, and thrombin stimulations. Previously, we have shown that SVZ-derived neurons and immature cells can be discriminated on the basis of their selective [Ca(2+)](i) rise upon KCl and histamine stimulation, respectively. Herein, we demonstrate that O4+ and proteolipid protein-positive (PLP+) oligodendrocytes do not respond to these stimuli, but display a robust [Ca(2+)](i) rise following thrombin stimulation, whereas other cell types are thrombin-insensitive. Thrombin-induced Ca(2+) increase in oligodendrocytes is mediated by protease-activated receptor-1 (PAR-1) activation and downstream signaling through G(q/11) and phospholipase C (PLC), resulting in Ca(2+) recruitment from intracellular compartments. This method allows the analysis of functional properties of oligodendrocytes in living SVZ cultures, which is of major interest for the development of effective grafting strategies in the demyelinated brain. Additionally, it opens new perspectives for the search of new pro-oligodendrogenic factors to be used prior grafting.
Collapse
Affiliation(s)
- Sofia Grade
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
15
|
McCoy KL, Traynelis SF, Hepler JR. PAR1 and PAR2 couple to overlapping and distinct sets of G proteins and linked signaling pathways to differentially regulate cell physiology. Mol Pharmacol 2010; 77:1005-15. [PMID: 20215560 PMCID: PMC2879918 DOI: 10.1124/mol.109.062018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/09/2010] [Indexed: 01/02/2023] Open
Abstract
The protease-activated receptors (PAR1 and PAR2) are unusual G protein-coupled receptors that are activated by distinct serine proteases and are coexpressed in many different cell types. Limited recent evidence suggests these closely related receptors regulate different physiological outputs in the same cell, although little is known about the comparative signaling pathways used by these receptors. Here we report that PAR1 and PAR2 couple to overlapping and distinct sets of G proteins to regulate receptor-specific signaling pathways involved in cell migration. In functionally PAR-null COS-7 cells, ectopically expressed PAR1 and PAR2 both form stable complexes with G alpha(q), G alpha(11), G alpha(14), G alpha(12), and G alpha(13). It is surprising that PAR1 but not PAR2 coupled to G alpha(o), G alpha(i1), and G alpha(i2). Consistent with these observations, PAR1 and PAR2 stimulation of inositol phosphate production and RhoA activation was blocked by specific inhibitors of G(q/11) and G(12/13) signaling, respectively. Both receptors stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, but only PAR1 inhibited adenylyl cyclase activity, and pertussis toxin blocked PAR1 effects on both adenylyl cyclase and ERK1/2 signaling. Neu7 astrocytes express native PAR1 and PAR2 receptors that activate inositol phosphate, RhoA, and ERK1/2 signaling. However, only PAR1 inhibited adenylyl cyclase activity. PAR1 and PAR2 also stimulate Neu7 cell migration. PAR1 effects on ERK1/2 phosphorylation and cell migration were blocked both by pertussis toxin and by the mitogen-activated protein kinase kinase/ERK inhibitor [1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126)], whereas PAR2 effects were only blocked by U0126. These studies demonstrate that PAR1 and PAR2 physically and functionally link to overlapping and distinct profiles of G proteins to differentially regulate downstream signaling pathways and cell physiology.
Collapse
Affiliation(s)
- Kelly L McCoy
- Department of Pharmacology, Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
16
|
Davydova ON, Yakovlev AA. Protease-activated receptors and neuroplasticity: Protease-activated receptors as a possible target for cathepsin B. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Guo H, Singh I, Wang Y, Deane R, Barrett T, Fernández JA, Chow N, Griffin JH, Zlokovic BV. Neuroprotective activities of activated protein C mutant with reduced anticoagulant activity. Eur J Neurosci 2009; 29:1119-30. [PMID: 19302148 PMCID: PMC2692517 DOI: 10.1111/j.1460-9568.2009.06664.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anticoagulant activated protein C (APC) protects neurons and endothelium via protease activated receptor (PAR)1, PAR3 and endothelial protein C receptor. APC is neuroprotective in stroke models. Bleeding complications may limit the pharmacologic utility of APC. Here, we compared the 3K3A-APC mutant with 80% reduced anticoagulant activity and wild-type (wt)-APC. Murine 3K3A-APC compared with wt-APC protected mouse cortical neurons from N-methyl-D-aspartate-induced apoptosis with twofold greater efficacy and more potently reduced N-methyl-D-aspartate excitotoxic lesions in vivo. Human 3K3A-APC protected human brain endothelial cells (BECs) from oxygen/glucose deprivation with 1.7-fold greater efficacy than wt-APC. 3K3A-APC neuronal protection required PAR1 and PAR3, as shown by using PAR-specific blocking antibodies and PAR1- and PAR3-deficient cells and mice. BEC protection required endothelial protein C receptor and PAR1. In neurons and BECs, 3K3A-APC blocked caspase-9 and -3 activation and induction of p53, and decreased the Bax/Bcl-2 pro-apoptotic ratio. After distal middle cerebral artery occlusion (dMCAO) in mice, murine 3K3A-APC compared with vehicle given 4:00 h after dMCAO improved the functional outcome and reduced the infarction volume by 50% within 3 days. 3K3A-APC compared with wt-APC multi-dosing therapy at 12:00 h, 1, 3, 5 and 7 days after dMCAO significantly improved functional recovery and reduced the infarction volume by 75% and 38%, respectively, within 7 days. The wt-APC, but not 3K3A-APC, significantly increased the risk of intracerebral bleeding as indicated by a 50% increase in hemoglobin levels in the ischemic hemisphere. Thus, 3K3A-APC offers a new approach for safer and more efficacious treatments of neurodegenerative disorders and stroke with APC.
Collapse
Affiliation(s)
- Huang Guo
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Itender Singh
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Yaoming Wang
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Rashid Deane
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - Theresa Barrett
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| | - José A. Fernández
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Nienwen Chow
- ZZ Biotech Research Laboratory, Rochester, NY, USA
| | - John H. Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Berislav V. Zlokovic
- Departments for Neurosurgery and Neurology, Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Box 670, Rochester, NY 14642, USA
| |
Collapse
|
18
|
Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 2007; 153 Suppl 1:S263-82. [PMID: 18059329 DOI: 10.1038/sj.bjp.0707507] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteinases like thrombin, trypsin and tissue kallikreins are now known to regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1-4) via exposure of a tethered receptor-triggering ligand. On their own, short synthetic PAR-selective PAR-activating peptides (PAR-APs) mimicking the tethered ligand sequences can activate PARs 1, 2 and 4 and cause physiological responses both in vitro and in vivo. Using the PAR-APs as sentinel probes in vivo, it has been found that PAR activation can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (both central and peripheral nervous system) and can promote cancer metastasis and invasion. In general, responses triggered by PARs 1, 2 and 4 are in keeping with an innate immune inflammatory response, ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased or decreased nociception. Further, PARs have been implicated in a number of disease states, including cancer and inflammation of the cardiovascular, respiratory, musculoskeletal, gastrointestinal and nervous systems. In addition to activating PARs, proteinases can cause hormone-like effects by other signalling mechanisms, like growth factor receptor activation, that may be as important as the activation of PARs. We, therefore, propose that the PARs themselves, their activating serine proteinases and their associated signalling pathways can be considered as attractive targets for therapeutic drug development. Thus, proteinases in general must now be considered as 'hormone-like' messengers that can signal either via PARs or other mechanisms.
Collapse
|
19
|
Wautier F, Wislet-Gendebien S, Chanas G, Rogister B, Leprince P. Regulation of nestin expression by thrombin and cell density in cultures of bone mesenchymal stem cells and radial glial cells. BMC Neurosci 2007; 8:104. [PMID: 18053121 PMCID: PMC2231362 DOI: 10.1186/1471-2202-8-104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 11/30/2007] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Bone marrow stromal cells and radial glia are two stem cell types with neural phenotypic plasticity. Bone marrow mesenchymal stem cells can differentiate into osteocytes, chondrocytes and adipocytes, but can also differentiate into non-mesenchymal cell, i.e. neural cells in appropriate in vivo and in vitro experimental conditions. Likewise, radial glial cells are the progenitors of many neurons in the developing cortex, but can also generate astrocytes. Both cell types express nestin, an intermediate filament protein which is the hallmark of neural precursors. RESULTS In this study, we demonstrate that thrombin, a multifunctional serine protease, stimulates the growth of radial glial cells (RG) and mesenchymal stem cells (MSCs) in a dose-dependent manner. In RG, the mitogenic effect of thrombin is correlated with increased expression of nestin but in MSCs, this mitogenic effect is associated with nestin down-regulation. Both cell types express the PAR-1 type receptor for Thrombin and the effect of Thrombin on both cell types can be mimicked by its analogue TRAP-6 activating specifically this receptor subtype or by serum which contains various amount of thrombin. Moreover, we also demonstrate that serum deprivation-induced expression of nestin in MSCs is inhibited by high cell density (> 50,000 cells/cm2). CONCLUSION This work shows that thrombin stimulates the growth of both RG and MSCs and that nestin expression by MSCs and RG is regulated in opposite manner by thrombin in vitro. Thrombin effect is thus associated in both cell types with a proliferating, undifferentiated state but in RG this involves the induction of nestin expression, a marker of immaturity for neural progenitors. In MSCs however, nestin expression, as it corresponds to a progression from the mesenchymal "undifferentiated", proliferating phenotype toward acquisition of a neural fate, is inhibited by the mitogenic signal.
Collapse
Affiliation(s)
- Franz Wautier
- Center for Cellular and Molecular Neurobiology, University of Liège, CHU B36, Avenue de l'Hôpital, 1, B-4000 Liège, Belgium
| | - Sabine Wislet-Gendebien
- Center for Cellular and Molecular Neurobiology, University of Liège, CHU B36, Avenue de l'Hôpital, 1, B-4000 Liège, Belgium
| | - Grazyna Chanas
- Center for Cellular and Molecular Neurobiology, University of Liège, CHU B36, Avenue de l'Hôpital, 1, B-4000 Liège, Belgium
| | - Bernard Rogister
- Center for Cellular and Molecular Neurobiology, University of Liège, CHU B36, Avenue de l'Hôpital, 1, B-4000 Liège, Belgium
- Department of Neurology, University of Liège, CHU B35, B-4000 Liège, Belgium
- Department of Biochemistry and Cell Physiology, University of Liège, CHU B35, B-4000 Liège, Belgium
| | - Pierre Leprince
- Center for Cellular and Molecular Neurobiology, University of Liège, CHU B36, Avenue de l'Hôpital, 1, B-4000 Liège, Belgium
| |
Collapse
|