1
|
Kieu YTH, Yamauchi K, Nguyen MTT, Mitsunaga T. Molecular networking-based discovery of long chain fatty acid bearing iridal triterpenoids with neurite outgrowth promoting activity from Iris domestica rhizomes. Fitoterapia 2025; 183:106499. [PMID: 40154668 DOI: 10.1016/j.fitote.2025.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/16/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The plant family Iridaceae is a rich source of structurally rare iridal-type triterpenoids. In this study, we investigated the structural diversity of iridal triterpenoids contained in the rhizome of Iris domestica using metabolomics-based molecular networking. Guided by MS2 features of iridal triterpenoids obtained from LC-MS2-based molecular networking, two new aliphatic fatty acid ester-bearing monocycloiridal type triterpenoids, named as 16-acetyliridal A (1) and 16-acetyliridal B (2), as well as a known compound (3), were isolated from the rhizomes of I. domestica. The structures of new compounds were elucidated based on the HR-ESIQTOFMS, MS2 fragmentations, and NMR spectroscopy. Compound 2 is the first example of iridal-type homotriterpenoids featuring an unusual acyl moiety at a cyclohexane ring instead of a formyl group that is commonly shared in the iridal triterpenoids. All isolated compounds exhibited a high potency to promote neurite outgrowth activities with or without the supplementation of nerve growth factor on PC12 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Yen Thi Hoang Kieu
- The United Graduate School of Agriculture Science, Gifu University, 1-1 Yanagido, Gifu 501-1132, Japan
| | - Kosei Yamauchi
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Minh Tu Thi Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi 11615, Viet Nam; New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Tohru Mitsunaga
- The United Graduate School of Agriculture Science, Gifu University, 1-1 Yanagido, Gifu 501-1132, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
2
|
Boguś MI, Kazek M. Sex- and Metamorphosis-Related Changes in the Cuticular Lipid Profile of Galleria mellonella Pupae and Adults. INSECTS 2024; 15:965. [PMID: 39769567 PMCID: PMC11678884 DOI: 10.3390/insects15120965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
The majority of insects reproduce sexually. Among the many factors involved in controlling the reproductive process, cuticular lipids play an important role as unique chemical signatures of species, developmental stage, and sex, and participate in mate recognition. An understanding of the sex- and metamorphosis-related fluctuations in the cuticular lipid profiles of harmful insects is necessary to hamper their reproductive process. A GC/MS analysis of the cuticular lipids of the beehive pest Galleria mellonella Linnaeus (Lepidoptera: Pyralidae) revealed 11 FFAs in the male pupae (C8:0, C9:0, C14:0, C15:0, C16:1, C16:0, C17:0, C18:1, C18:0, C20:1, and C21:1) together with another two in the females (C10:0 and C17:1). As metamorphosis progressed, some FFAs disappeared from the pupal cuticle (C8:0 and C17:0 in both sexes, and C10:0, C17:1, and C20:1 only in female pupae) and the levels of the others changed. In adult virgin males and females, C8:0, C17:1, and C17:0 reappeared and two FFAs absent in pupae (C6:0 and C11:0) appeared. In virgin males, C13:0 also appeared (absent in pupae). Copulation resulted in the disappearance of C13:0 and C17:1, decreased the concentrations of C9:0, C11:0, C18:1, and C18:0, and elevated the amounts of C14:0, C16:1, and C16:0 in mated males. In mated females, the concentrations of C11:0, C14:0, C15:0, C16:0, C17:1, and C18:1 increased while C18:1 decreased. Copulation reduced cholesterol levels in mated females, and increased those in males.
Collapse
Affiliation(s)
- Mieczysława I. Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
- Biomibo, 15 Strzygłowska St., 04-872 Warsaw, Poland
| | - Michalina Kazek
- Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, 19 Poleczki St., 02-822 Warsaw, Poland;
| |
Collapse
|
3
|
Dai Y, Wang J, Yang Y, Jin H, Liu F, Liu H, Ho PC, Lin HS. Exploration of Nutraceutical Potentials of Isorhapontigenin, Oxyresveratrol and Pterostilbene: A Metabolomic Approach. Int J Mol Sci 2024; 25:11027. [PMID: 39456808 PMCID: PMC11507072 DOI: 10.3390/ijms252011027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Resveratrol (trans-3,5,4'-trihydroxystilbene, RES) is one of the most well-known natural products with numerous health benefits. To explore the nutraceutical potentials of some dietary RES derivatives including isorhapontigenin (trans-3,5,4'-trihydroxy-3'-methoxystilbene, ISO), oxyresveratrol (trans-3,5,2',4'-tetrahydroxystilbene, OXY) and pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene, PTS), their impacts on metabolism and health were assessed in Sprague Dawley rats after a two-week daily oral administration at the dose of 100 µmol/kg/day. Non-targeted metabolomic analyses were carried out with the liver, heart, brain and plasma samples using gas chromatography-tandem mass spectrometry (GC-MS/MS). Notable in vivo health benefits were observed, as the rats received ISO, PTS or RES showed less body weight gain; the rats received OXY or RES displayed healthier fasting blood glucose levels; while all of the tested stilbenes exhibited cholesterol-lowering effects. Additionally, many important metabolic pathways such as glycolysis, pentose phosphate pathway, tricarboxylic acid cycle and fatty acid oxidation were found to be modulated by the tested stilbenes. Besides the reaffirmation of the well-known beneficial effects of RES in diabetes, obesity, cardiovascular disease and Alzheimer's disease, the metabolomic analyses also suggest the anti-diabetic, cardio-, hepato- and neuro-protective activities of ISO; the anti-diabetic, cardio-, hepato- and neuro-protective effects of OXY; and the anti-aging, anti-inflammatory, cardio-, hepato- and neuro-protective potential of PTS. Interestingly, although these stilbenes share a similar structure, their biological activities appear to be distinct. In conclusion, similarly to RES, ISO, OXY and PTS have emerged as promising candidates for further nutraceutical development.
Collapse
Affiliation(s)
- Yu Dai
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yuhui Yang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Hongrui Jin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Feng Liu
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Hui Liu
- Quality and Standards Academy, Shenzhen Technology University, Shenzhen 518118, China
| | - Paul C. Ho
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Hai-Shu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
4
|
Ohguro H, Watanabe M, Hikage F, Sato T, Nishikiori N, Umetsu A, Higashide M, Ogawa T, Furuhashi M. Fatty Acid-Binding Protein 4-Mediated Regulation Is Pivotally Involved in Retinal Pathophysiology: A Review. Int J Mol Sci 2024; 25:7717. [PMID: 39062961 PMCID: PMC11277531 DOI: 10.3390/ijms25147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperone molecules that are involved in intracellular lipid transportation to specific cellular compartments, stimulate lipid-associated responses such as biological signaling, membrane synthesis, transcriptional regulation, and lipid synthesis. Previous studies have shown that FABP4, a member of this family of proteins that are expressed in adipocytes and macrophages, plays pivotal roles in the pathogenesis of various cardiovascular and metabolic diseases, including diabetes mellitus (DM) and hypertension (HT). Since significant increases in the serum levels of FABP4 were detected in those patients, FABP4 has been identified as a crucial biomarker for these systemic diseases. In addition, in the field of ophthalmology, our group found that intraocular levels of FABP4 (ioFABP4) and free fatty acids (ioFFA) were substantially elevated in patients with retinal vascular diseases (RVDs) including proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), for which DM and HT are also recognized as significant risk factors. Recent studies have also revealed that ioFABP4 plays important roles in both retinal physiology and pathogenesis, and the results of these studies have suggested potential molecular targets for retinal diseases that might lead to future new therapeutic strategies.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
| |
Collapse
|
5
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
6
|
Dunn E, Steinert JR, Stone A, Sahota V, Williams RSB, Snowden S, Augustin H. Medium-Chain Fatty Acids Rescue Motor Function and Neuromuscular Junction Degeneration in a Drosophila Model of Amyotrophic Lateral Sclerosis. Cells 2023; 12:2163. [PMID: 37681895 PMCID: PMC10486503 DOI: 10.3390/cells12172163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterised by progressive degeneration of the motor neurones. An expanded GGGGCC (G4C2) hexanucleotide repeat in C9orf72 is the most common genetic cause of ALS and frontotemporal dementia (FTD); therefore, the resulting disease is known as C9ALS/FTD. Here, we employ a Drosophila melanogaster model of C9ALS/FTD (C9 model) to investigate a role for specific medium-chain fatty acids (MCFAs) in reversing pathogenic outcomes. Drosophila larvae overexpressing the ALS-associated dipeptide repeats (DPRs) in the nervous system exhibit reduced motor function and neuromuscular junction (NMJ) defects. We show that two MCFAs, nonanoic acid (NA) and 4-methyloctanoic acid (4-MOA), can ameliorate impaired motor function in C9 larvae and improve NMJ degeneration, although their mechanisms of action are not identical. NA modified postsynaptic glutamate receptor density, whereas 4-MOA restored defects in the presynaptic vesicular release. We also demonstrate the effects of NA and 4-MOA on metabolism in C9 larvae and implicate various metabolic pathways as dysregulated in our ALS model. Our findings pave the way to identifying novel therapeutic targets and potential treatments for ALS.
Collapse
Affiliation(s)
- Ella Dunn
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Joern R. Steinert
- Faculty of Medicine & Health Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (J.R.S.); (A.S.)
| | - Aelfwin Stone
- Faculty of Medicine & Health Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (J.R.S.); (A.S.)
| | - Virender Sahota
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Stuart Snowden
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Hrvoje Augustin
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| |
Collapse
|
7
|
Tarroum M, Alfarraj NS, Al-Qurainy F, Al-Hashimi A, Khan S, Nadeem M, Salih AM, Shaikhaldein HO. Improving the Production of Secondary Metabolites via the Application of Biogenic Zinc Oxide Nanoparticles in the Calli of Delonix elata: A Potential Medicinal Plant. Metabolites 2023; 13:905. [PMID: 37623850 PMCID: PMC10456625 DOI: 10.3390/metabo13080905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The implementation of nanotechnology in the field of plant tissue culture has demonstrated an interesting impact on in vitro plant growth and development. Furthermore, the plant tissue culture accompanying nanoparticles has been showed to be a reliable alternative for the biosynthesis of secondary metabolites. Herein, the effectiveness of zinc oxide nanoparticles (ZnONPs) on the growth of Delonix elata calli, as well as their phytochemical profiles, were investigated. Delonix elata seeds were collected and germinated, and then the plant species was determined based on the PCR product sequence of ITS1 and ITS4 primers. Afterward, the calli derived from Delonix elata seedlings were subjected to 0, 10, 20, 30, 40, and 50 mg/L of ZnONPs. The ZnONPs were biologically synthesized using the Ricinus communis aqueous leaf extract, which acts as a capping and reducing agent, and zinc nitrate solution. The nanostructures of the biogenic ZnONPs were confirmed using different techniques like UV-visible spectroscopy (UV), zeta potential measurement, Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Adding 30 mg/L of ZnONPs to the MS media (containing 2.5 µM 2,4-D and 1 µM BAP) resulted in the highest callus fresh weight (5.65 g) compared to the control and other ZnONP treatments. Similarly, more phenolic accumulation (358.85 µg/g DW) and flavonoid (112.88 µg/g DW) contents were achieved at 30 mg/L. Furthermore, the high-performance liquid chromatography (HPLC) analysis showed significant increments in gallic acid, quercetin, hesperidin, and rutin in all treated ZnONP calli compared to the control. On the other hand, the gas chromatography and mass spectroscopy (GC-MS) analysis of the calli extracts revealed that nine phytochemical compounds were common among all extracts. Moreover, the most predominant compound found in calli treated with 20, 30, 40, and 50 mg/L of ZnONPs was bis(2-ethylhexyl) phthalate, with percentage areas of 27.33, 38.68, 22.66, and 17.98%, respectively. The predominant compounds in the control and in calli treated with 10 mg/L of ZnONPs were octadecanoic acid, 2-propenyl ester and heptanoic acid. In conclusion, in this study, green ZnONPs exerted beneficial effects on Delonix elata calli and improved their production of bioactive compounds, especially at a dose of 30 mg/L.
Collapse
Affiliation(s)
- Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sasayama Y, Mamiya T, Qi J, Shibata T, Uchida K, Nabeshima T, Ojika M. Neuritogenic steroid glycosides from crown-of-thorns starfish: Possible involvement of p38 mitogen-activated protein kinase and attenuation of cognitive impairment in senescence-accelerated mice (SAMP8) by peripheral administration. Bioorg Med Chem 2023; 78:117144. [PMID: 36577328 DOI: 10.1016/j.bmc.2022.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Novel steroid glycosides, acanthasterosides A1, B1, and B3, have been isolated from the crown-of-thorns starfish Acanthaster planci. Acanthasterosides B1 and B3 having two separated xyloses induced neurite outgrowth as like as nerve growth factor (NGF) in the rat pheochromocytoma cell line PC12, whereas acanthasteroside A1, having one xylose, did not induce neurite outgrowth. The acanthasteroside B3 induced neuritogenesis via the significant activation of p38 mitogen-activated protein kinase after the activation of the small G-protein Cdc42 rather than via Ras-MEK-ERK pathway that is predominantly activated by NGF. Following subcutaneous administration, acanthasteroside B3 attenuated cognitive impairment of senescence-accelerated mice (SAMP8) in two different cognitive tests. Liquid chromatography-mass spectrometry-assisted quantitative analysis demonstrated that acanthasteroside B3 could be transported into the brain via the circulatory system in mice. Thus, acanthasteroside B3 (and possibly B1) are a novel class of potential drug candidates for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yumi Sasayama
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takayoshi Mamiya
- Faculty of Pharmacy, Meijo University, Tenpaku-ku, Nagoya 468-8503, Japan
| | - Jianhua Qi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
9
|
Laufer BI, Hasegawa Y, Zhang Z, Hogrefe CE, Del Rosso LA, Haapanen L, Hwang H, Bauman MD, Van de Water J, Taha AY, Slupsky CM, Golub MS, Capitanio JP, VandeVoort CA, Walker CK, LaSalle JM. Multi-omic brain and behavioral correlates of cell-free fetal DNA methylation in macaque maternal obesity models. Nat Commun 2022; 13:5538. [PMID: 36130949 PMCID: PMC9492781 DOI: 10.1038/s41467-022-33162-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Maternal obesity during pregnancy is associated with neurodevelopmental disorder (NDD) risk. We utilized integrative multi-omics to examine maternal obesity effects on offspring neurodevelopment in rhesus macaques by comparison to lean controls and two interventions. Differentially methylated regions (DMRs) from longitudinal maternal blood-derived cell-free fetal DNA (cffDNA) significantly overlapped with DMRs from infant brain. The DMRs were enriched for neurodevelopmental functions, methylation-sensitive developmental transcription factor motifs, and human NDD DMRs identified from brain and placenta. Brain and cffDNA methylation levels from a large region overlapping mir-663 correlated with maternal obesity, metabolic and immune markers, and infant behavior. A DUX4 hippocampal co-methylation network correlated with maternal obesity, infant behavior, infant hippocampal lipidomic and metabolomic profiles, and maternal blood measurements of DUX4 cffDNA methylation, cytokines, and metabolites. We conclude that in this model, maternal obesity was associated with changes in the infant brain and behavior, and these differences were detectable in pregnancy through integrative analyses of cffDNA methylation with immune and metabolic factors.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Casey E Hogrefe
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Lori Haapanen
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Melissa D Bauman
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
| | - Judy Van de Water
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Mari S Golub
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - John P Capitanio
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychology, University of California Davis, Davis, CA, 95616, USA
| | - Catherine A VandeVoort
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Cheryl K Walker
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA.
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA.
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Neurite Outgrowth-Promoting Compounds from Cockscomb Hydrolysate. Nutrients 2022; 14:nu14071422. [PMID: 35406035 PMCID: PMC9002945 DOI: 10.3390/nu14071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Cockscomb hydrolysate was found to have neurite outgrowth-promoting activity in PC12 cells. To investigate the neurite outgrowth-promoting compounds derived from cockscomb hydrolysate, bioassay-guided purification was carried out. Purified active fractions were obtained by liquid–liquid partition, followed by column chromatography. High-performance liquid chromatography and proton nuclear magnetic resonance analyses of the purified active fractions clarified that the main compounds are threonine, alanine, valine, and methionine. By screening for 20 kinds of amino acids, it was shown that valine and methionine, but not threonine and alanine, have neurite outgrowth-promoting activity. The results of activity evaluation of the mixture of amino acids indicated that alanine enhanced the activity of valine and that the mixture of valine and methionine showed a higher ratio of neurite formation than did each of them alone. On the other hand, dipeptides formed by valine and methionine showed weak neurite outgrowth-promoting activity. A mixture of threonine, alanine, valine, and methionine at the same concentrations as those in cockscomb hydrolysate showed neurite outgrowth-promoting activity comparable to that of cockscomb hydrolysate although threonine, alanine, valine, and methionine alone did not show activity at their concentrations in cockscomb hydrolysate. Therefore, the strong neurite outgrowth-promoting activity of cockscomb hydrolysate was considered to be due to the synergistic effect of threonine, alanine, valine, and methionine.
Collapse
|
11
|
Xue K, Lv S, Zhu C. Bringing naturally-occurring saturated fatty acids into biomedical research. J Mater Chem B 2021; 9:6973-6987. [DOI: 10.1039/d1tb00843a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review introduces naturally-occurring saturated fatty acids (NSFAs) and their biomedical applications, including controlled drug release, targeted drug delivery, cancer therapy, antibacterial treatment, and tissue engineering.
Collapse
Affiliation(s)
- Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
12
|
Hori M, Gokita M, Yasue M, Honda T, Kohama T, Mashimo M, Nakamura H, Murayama T. Down-regulation of ceramide kinase via proteasome and lysosome pathways in PC12 cells by serum withdrawal: Its protection by nerve growth factor and role in exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118714. [PMID: 32246947 DOI: 10.1016/j.bbamcr.2020.118714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 01/17/2023]
Abstract
Ceramide kinase (CerK) phosphorylates ceramide to ceramide-1-phosphate (C1P). CerK is highly expressed in the brain, and its association with the neuronal function has been reported. Previous reports showed that the activity of CerK is regulated by post-translational modifications including phosphorylation, whereas the cellular fate of CerK protein and its role in neuronal functions have not been clearly elucidated. Therefore, we investigated these issues in PC12 cells. Treatment with nerve growth factor (NGF) for 6 h increased the formation of C1P but not CerK mRNA. Knockdown of CerK and overexpression of HA-tagged CerK down- and up-regulated the formation of C1P, respectively. In PC12-CerK-HA cells, serum withdrawal caused ubiquitination of CerK-HA protein and down-regulated both CerK-HA protein and C1P formation within 6 h, and these down-regulations were abolished by co-treatments with NGF or proteasome inhibitors such as MG132 and clasto-lactacystin. Microscopic analysis showed that treatment with the proteasome inhibitors increased CerK-HA in puncture structures, possibly endosomes and/or vesicles, in cells. Treatment with the lysosome inhibitors reduced serum withdrawal-induced down-regulation of CerK-HA protein but not C1P formation. When knockdown or overexpression of CerK was performed, Ca2+-induced release of [3H] noradrenaline was reduced or enhanced, respectively, but neurite extension was not modified. There was a positive correlation between noradrenaline release and formation of C1P and/or CerK-HA levels in NGF- and clasto-lactacystin-treated cells. These results suggest that levels of CerK were down-regulated by the ubiquitin/proteasome and lysosome pathways and the former pathway-sensitive pool of CerK was suggested to be linked with exocytosis in PC12 cells.
Collapse
Affiliation(s)
- Mayuko Hori
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Midori Gokita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masataka Yasue
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takafumi Kohama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; Research Coordination Group, Research Management Department, DaiichiSankyo RD Novare Co., Ltd., 1016-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
13
|
Hennebelle M, Morgan RK, Sethi S, Zhang Z, Chen H, Grodzki AC, Lein PJ, Taha AY. Linoleic acid-derived metabolites constitute the majority of oxylipins in the rat pup brain and stimulate axonal growth in primary rat cortical neuron-glia co-cultures in a sex-dependent manner. J Neurochem 2020; 152:195-207. [PMID: 31283837 PMCID: PMC6949423 DOI: 10.1111/jnc.14818] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/19/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022]
Abstract
In adult rats, omega-6 linoleic acid (LA, 18:2n-6) serves as a precursor to oxidized LA metabolites (OXLAMs) known to regulate multiple signaling processes in the brain. However, little is known regarding the levels or role(s) of LA and its metabolites during brain development. To address this gap, fatty acids within various brain lipid pools, and their oxidized metabolites (oxylipins) were quantified in brains from 1-day-old male and female pups using gas chromatography and liquid chromatography coupled to tandem mass spectrometry, respectively. Primary neuron-glia co-cultures derived from postnatal day 0-1 male and female rat neocortex were exposed to vehicle (0.1% ethanol), LA, the OXLAM 13-hydroxyoctadecadienoic acid (13-HODE), or prostaglandin E2 at 10-1000 nM for 48 h to test their effects on neuronal morphology. In both male and female pups, LA accounted for 1-3% of fatty acids detected in brain phospholipids and cholesteryl esters. It was not detected in triacylglycerols, and free fatty acids. Unesterified OXLAMs constituted 47-53% of measured unesterified oxylipins in males and females (vs. ~5-7% reported in adult rat brain). Of these, 13-HODE was the most abundant, accounting for 30-33% of measured OXLAMs. Brain fatty acid and OXLAM concentrations did not differ between sexes. LA and 13-HODE significantly increased axonal outgrowth. Separate analyses of cultures derived from male versus female pups revealed that LA at 1, 50, and 1000 nM, significantly increased axonal outgrowth in female but not male cortical neurons, whereas 13-HODE at 100 nM significantly increased axonal outgrowth in male but not female cortical neurons. prostaglandin E2 did not alter neuronal outgrowth in either sex. This study demonstrates that OXLAMs constitute the majority of unesterified oxylipins in the developing rat brain despite low relative abundance of their LA precursor, and highlights a novel role of LA and 13-HODE in differentially influencing neuronal morphogenesis in the developing male and female brain.
Collapse
Affiliation(s)
- Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Rhianna K. Morgan
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Hao Chen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Ahmed S, Busetti A, Fotiadou P, Vincy Jose N, Reid S, Georgieva M, Brown S, Dunbar H, Beurket-Ascencio G, Delday MI, Ettorre A, Mulder IE. In vitro Characterization of Gut Microbiota-Derived Bacterial Strains With Neuroprotective Properties. Front Cell Neurosci 2019; 13:402. [PMID: 31619962 PMCID: PMC6763572 DOI: 10.3389/fncel.2019.00402] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases are disabling, incurable, and progressive conditions characterized by neuronal loss and decreased cognitive function. Changes in gut microbiome composition have been linked to a number of neurodegenerative diseases, indicating a role for the gut-brain axis. Here, we show how specific gut-derived bacterial strains can modulate neuroinflammatory and neurodegenerative processes in vitro through the production of specific metabolites and discuss the potential therapeutic implications for neurodegenerative disorders. A panel of fifty gut bacterial strains was screened for their ability to reduce pro-inflammatory IL-6 secretion in U373 glioblastoma astrocytoma cells. Parabacteroides distasonis MRx0005 and Megasphaera massiliensis MRx0029 had the strongest capacity to reduce IL-6 secretion in vitro. Oxidative stress plays a crucial role in neuroinflammation and neurodegeneration, and both bacterial strains displayed intrinsic antioxidant capacity. While MRx0005 showed a general antioxidant activity on different brain cell lines, MRx0029 only protected differentiated SH-SY5Y neuroblastoma cells from chemically induced oxidative stress. MRx0029 also induced a mature phenotype in undifferentiated neuroblastoma cells through upregulation of microtubule-associated protein 2. Interestingly, short-chain fatty acid analysis revealed that MRx0005 mainly produced C1-C3 fatty acids, while MRx0029 produced C4-C6 fatty acids, specifically butyric, valeric and hexanoic acid. None of the short-chain fatty acids tested protected neuroblastoma cells from chemically induced oxidative stress. However, butyrate was able to reduce neuroinflammation in vitro, and the combination of butyrate and valerate induced neuronal maturation, albeit not to the same degree as the complex cell-free supernatant of MRx0029. This observation was confirmed by solvent extraction of cell-free supernatants, where only MRx0029 methanolic fractions containing butyrate and valerate showed an anti-inflammatory activity in U373 cells and retained the ability to differentiate neuroblastoma cells. In summary, our results suggest that the pleiotropic nature of live biotherapeutics, as opposed to isolated metabolites, could be a promising novel drug class in drug discovery for neurodegenerative disorders.
Collapse
Affiliation(s)
- Suaad Ahmed
- 4D Pharma Research Ltd., Aberdeen, United Kingdom
| | | | | | | | - Sarah Reid
- 4D Pharma Research Ltd., Aberdeen, United Kingdom
| | | | | | | | | | - Margaret I Delday
- 4D Pharma Research Ltd., Aberdeen, United Kingdom.,School of Medicine and Dentistry, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, United Kingdom
| | - Anna Ettorre
- 4D Pharma Research Ltd., Aberdeen, United Kingdom
| | | |
Collapse
|
15
|
Preparation of carboxylic graphene oxide‐composited polypyrrole conduits and their effect on sciatic nerve repair under electrical stimulation. J Biomed Mater Res A 2019; 107:2784-2795. [DOI: 10.1002/jbm.a.36781] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
|
16
|
Migita K, Matsumoto T, Terada K, Ono K, Hara S. Effects of geldanamycin on neurite outgrowth-related proteins and kinases in nerve growth factor-differentiated pheochromocytoma 12 cells. J Pharmacol Sci 2019; 140:255-262. [PMID: 31402210 DOI: 10.1016/j.jphs.2019.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
Heat shock protein 90 (HSP90) antagonists are currently being evaluated as potential anticancer drugs. However, adverse effects related to these drugs, such as fatigue and pain, suggest that they affect neurons. Therefore, to understand the influence of HSP90 inhibitors on neurons, we investigated the effects of geldanamycin, an HSP90 antagonist, on nerve growth factor (NGF)-differentiated pheochromocytoma 12 (PC12) cells, particularly, on the expression and phosphorylation of proteins and kinases in the NGF pathway. Geldanamycin significantly inhibited NGF-induced neurite outgrowth and phosphorylation of Akt and extracellular signal-related kinase 1/2 in PC12 cells. Furthermore, geldanamycin inhibited the phosphorylation of collapsin response mediator protein 2 and the expression of cyclin-dependent kinase 5 in the presence of NGF, but did not significantly affect the expression of glycogen synthase kinase 3β. These results suggest that geldanamycin influences microtubule-binding proteins and kinases relating to neurite outgrowth, thereby inducing neuronal impairment.
Collapse
Affiliation(s)
- Keisuke Migita
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Taichi Matsumoto
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazuhiko Ono
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shuji Hara
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
17
|
Sonnay S, Chakrabarti A, Thevenet J, Wiederkehr A, Christinat N, Masoodi M. Differential Metabolism of Medium-Chain Fatty Acids in Differentiated Human-Induced Pluripotent Stem Cell-Derived Astrocytes. Front Physiol 2019; 10:657. [PMID: 31214043 PMCID: PMC6558201 DOI: 10.3389/fphys.2019.00657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/09/2019] [Indexed: 12/23/2022] Open
Abstract
Medium-chain triglyceride (MCT) ketogenic diets increase ketone bodies, which are believed to act as alternative energy substrates in the injured brain. Octanoic (C8:0) and decanoic (C10:0) acids, which produce ketone bodies through β-oxidation, are used as part of MCT ketogenic diets. Although the ketogenic role of MCT is well-established, it remains unclear how the network metabolism underlying β-oxidation of these medium-chain fatty acids (MCFA) differ. We aim to elucidate basal β-oxidation of these commonly used MCFA at the cellular level. Human-induced pluripotent stem cell-derived (iPSC) astrocytes were incubated with [U-13C]-C8:0 or [U-13C]-C10:0, and the fractional enrichments (FE) of the derivatives were used for metabolic flux analysis. Data indicate higher extracellular concentrations and faster secretion rates of β-hydroxybutyrate (βHB) and acetoacetate (AcAc) with C8:0 than C10:0, and an important contribution from unlabeled substrates. Flux analysis indicates opposite direction of metabolic flux between the MCFA intermediates C6:0 and C8:0, with an important contribution of unlabeled sources to the elongation in the C10:0 condition, suggesting different β-oxidation pathways. Finally, larger intracellular glutathione concentrations and secretions of 3-OH-C10:0 and C6:0 were measured in C10:0-treated astrocytes. These findings reveal MCFA-specific ketogenic properties. Our results provide insights into designing different MCT-based ketogenic diets to target specific health benefits.
Collapse
Affiliation(s)
- Sarah Sonnay
- Lipid Metabolism, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Anirikh Chakrabarti
- Lipid Metabolism, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Jonathan Thevenet
- Mitochondrial Function, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Andreas Wiederkehr
- Mitochondrial Function, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Nicolas Christinat
- Lipid Metabolism, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Mojgan Masoodi
- Lipid Metabolism, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Falomir-Lockhart LJ, Cavazzutti GF, Giménez E, Toscani AM. Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors. Front Cell Neurosci 2019; 13:162. [PMID: 31105530 PMCID: PMC6491900 DOI: 10.3389/fncel.2019.00162] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Fatty acids (FAs) are typically associated with structural and metabolic roles, as they can be stored as triglycerides, degraded by β-oxidation or used in phospholipids’ synthesis, the main components of biological membranes. It has been shown that these lipids exhibit also regulatory functions in different cell types. FAs can serve as secondary messengers, as well as modulators of enzymatic activities and substrates for cytokines synthesis. More recently, it has been documented a direct activity of free FAs as ligands of membrane, cytosolic, and nuclear receptors, and cumulative evidence has emerged, demonstrating its participation in a wide range of physiological and pathological conditions. It has been long known that the central nervous system is enriched with poly-unsaturated FAs, such as arachidonic (C20:4ω-6) or docosohexaenoic (C22:6ω-3) acids. These lipids participate in the regulation of membrane fluidity, axonal growth, development, memory, and inflammatory response. Furthermore, a whole family of low molecular weight compounds derived from FAs has also gained special attention as the natural ligands for cannabinoid receptors or key cytokines involved in inflammation, largely expanding the role of FAs as precursors of signaling molecules. Nutritional deficiencies, and alterations in lipid metabolism and lipid signaling have been associated with developmental and cognitive problems, as well as with neurodegenerative diseases. The molecular mechanism behind these effects still remains elusive. But in the last two decades, different families of proteins have been characterized as receptors mediating FAs signaling. This review focuses on different receptors sensing and transducing free FAs signals in neural cells: (1) membrane receptors of the family of G Protein Coupled Receptors known as Free Fatty Acid Receptors (FFARs); (2) cytosolic transport Fatty Acid-Binding Proteins (FABPs); and (3) transcription factors Peroxisome Proliferator-Activated Receptors (PPARs). We discuss how these proteins modulate and mediate direct regulatory functions of free FAs in neural cells. Finally, we briefly discuss the advantages of evaluating them as potential targets for drug design in order to manipulate lipid signaling. A thorough characterization of lipid receptors of the nervous system could provide a framework for a better understanding of their roles in neurophysiology and, potentially, help for the development of novel drugs against aging and neurodegenerative processes.
Collapse
Affiliation(s)
- Lisandro Jorge Falomir-Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gian Franco Cavazzutti
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ezequiel Giménez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Andrés Martín Toscani
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
19
|
Xue J, Wu T, Li J, Zhu C, Xia Y. Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angew Chem Int Ed Engl 2019; 58:3948-3951. [PMID: 30681757 PMCID: PMC7758907 DOI: 10.1002/anie.201814474] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Controlling the outgrowth of neurites is important for enhancing the repair of injured nerves and understanding the development of nervous systems. Herein we report a simple strategy for enhancing the outgrowth of neurites through a unique integration of topographical guidance and a chemical cue. We use electrospray to easily functionalize the surface of a substrate with microparticles of natural fatty acids at a controllable density. Through a synergistic effect from the surface roughness arising from the microparticles and the chemical cue offered by the fatty acids, the outgrowth of neurites from PC12 cells is greatly enhanced. We also functionalize the surfaces of uniaxially aligned, electrospun microfibers with the microparticles and further demonstrate that the substrates can guide and enhance directional outgrowth of neurites from both PC12 multicellular spheroids and chick embryonic dorsal root ganglia bodies.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Jianhua Li
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
20
|
Xue J, Wu T, Li J, Zhu C, Xia Y. Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Jianhua Li
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and BiochemistrySchool of Chemical and Biomolecular EngineeringGeorgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
21
|
Xie K, Ngo S, Rong J, Sheppard A. Modulation of mitochondrial respiration underpins neuronal differentiation enhanced by lutein. Neural Regen Res 2019; 14:87-99. [PMID: 30531082 PMCID: PMC6262990 DOI: 10.4103/1673-5374.243713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lutein is a dietary carotenoid of particular nutritional interest as it is preferentially taken up by neural tissues. Often linked with beneficial effects on vision, a broader role for lutein in neuronal differentiation has emerged recently, although the underlying mechanisms for these effects are not yet clear. The purpose of this study was to investigate the effect of lutein on neuronal differentiation and explore the associated underpinning mechanisms. We found that lutein treatment enhanced the differentiation of SH-SY5Y cells, specifically increasing neuronal arborization and expression of the neuronal process filament protein microtubule-associated protein 2. This effect was mediated by the intracellular phosphoinositide-3-kinase (PI3K) signaling pathway. While PI3K activity is a known trigger of neuronal differentiation, more recently it has also been shown to modulate the metabolic state of cells. Our analysis of bioenergetics found that lutein treatment increased glucose consumption, rates of glycolysis and enhanced respiratory activity of mitochondrial complexes. Concomitantly, the generation of reactive oxygen species was increased (consistent with previous reports that reactive oxygen species promote neuronal differentiation), as well as the production of the key metabolic intermediate acetyl-CoA, an essential determinant of epigenetic status in the cell. We suggest that lutein-stimulated neuronal differentiation is mediated by PI3K-dependent modulation of mitochondrial respiration and signaling, and that the consequential metabolic shifts initiate epigenetically dependent transcriptomic reprogramming in support of this morphogenesis. These observations support the potential importance of micronutrients supplementation to neurogenesis, both during normal development and in regenerative repair.
Collapse
Affiliation(s)
- Kui Xie
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Sherry Ngo
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jing Rong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Allan Sheppard
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Sherman SP, Bang AG. High-throughput screen for compounds that modulate neurite growth of human induced pluripotent stem cell-derived neurons. Dis Model Mech 2018; 11:dmm.031906. [PMID: 29361516 PMCID: PMC5894944 DOI: 10.1242/dmm.031906] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023] Open
Abstract
Development of technology platforms to perform compound screens of human induced pluripotent stem cell (hiPSC)-derived neurons with relatively high throughput is essential to realize their potential for drug discovery. Here, we demonstrate the feasibility of high-throughput screening of hiPSC-derived neurons using a high-content, image-based approach focused on neurite growth, a process that is fundamental to formation of neural networks and nerve regeneration. From a collection of 4421 bioactive small molecules, we identified 108 hit compounds, including 37 approved drugs, that target molecules or pathways known to regulate neurite growth, as well as those not previously associated with this process. These data provide evidence that many pathways and targets known to play roles in neurite growth have similar activities in hiPSC-derived neurons that can be identified in an unbiased phenotypic screen. The data also suggest that hiPSC-derived neurons provide a useful system to study the mechanisms of action and off-target activities of the approved drugs identified as hits, leading to a better understanding of their clinical efficacy and toxicity, especially in the context of specific human genetic backgrounds. Finally, the hit set we report constitutes a sublibrary of approved drugs and tool compounds that modulate neurites. This sublibrary will be invaluable for phenotypic analyses and interrogation of hiPSC-based disease models as probes for defining phenotypic differences and cellular vulnerabilities in patient versus control cells, as well as for investigations of the molecular mechanisms underlying human neurite growth in development and maintenance of neuronal networks, and nerve regeneration. Summary: High-throughput, small molecule screening of hiPSC-derived neurons using a high-content, image-based approach focused on neurite growth identified hit compounds, including approved drugs, which target molecules or pathways known to regulate neurite growth.
Collapse
Affiliation(s)
- Sean P Sherman
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute La Jolla, CA 92037, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Peñalver P, Belmonte-Reche E, Adán N, Caro M, Mateos-Martín ML, Delgado M, González-Rey E, Morales JC. Alkylated resveratrol prodrugs and metabolites as potential therapeutics for neurodegenerative diseases. Eur J Med Chem 2018; 146:123-138. [PMID: 29407944 DOI: 10.1016/j.ejmech.2018.01.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 11/17/2022]
Abstract
Resveratrol is a naturally occurring stilbene which has shown promising results as treatment for several neurodegenerative diseases. However, its application is limited due to its low efficacy and bioavailability. Here, we have designed and synthesized alkylated resveratrol prodrugs combining structural modification to improve antioxidant and anti-inflammatory properties and the preparation of prodrugs to extend drug bioavailability. For comparison we also studied resveratrol prodrugs and alkylated resveratrol derivatives. Methylated and butylated resveratrol derivatives showed the best in vitro neuroprotective and anti-inflammatory activity. The glucosyl- and glucosyl-acyl- prodrugs of these derivatives showed lower toxicity on zebra fish embryo. When neuroprotection was examined on pentylenetetrazole challenged zebra fish, they were capable of reverting neuronal damage but to a lower extent than resveratrol. Nevertheless, 3-O-(6'-O-octanoyl)-β-d-glucopyranoside resveratrol (compound 8) recovered AChE activity over 100% whereas resveratrol only up to 92%. In a 3-nitropropionic acid mice model of Huntington's disease, resveratrol derivative 8 delayed the onset and reduced the severity of HD-like symptoms, by improving locomotor activity and protecting against weight loss. Its effects involved an equal antioxidant but better anti-inflammatory profile than resveratrol as shown by SOD2 expression in brain tissue and circulating levels of IL-6 (11 vs 18 pg/mL), respectively. Finally, the octanoyl chain in compound 8 could be playing a role in inflammation and neuronal development indicating it could be acting as a double-drug, instead of as a prodrug.
Collapse
Affiliation(s)
- Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Efres Belmonte-Reche
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Norma Adán
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Marta Caro
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - María Luisa Mateos-Martín
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Mario Delgado
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Elena González-Rey
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain.
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain.
| |
Collapse
|
24
|
Novohradsky V, Zanellato I, Marzano C, Pracharova J, Kasparkova J, Gibson D, Gandin V, Osella D, Brabec V. Epigenetic and antitumor effects of platinum(IV)-octanoato conjugates. Sci Rep 2017. [PMID: 28623355 PMCID: PMC5473904 DOI: 10.1038/s41598-017-03864-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We present the anticancer properties of cis, cis, trans-[Pt(IV)(NH3)2Cl2(OA)2] [Pt(IV)diOA] (OA = octanoato), Pt(IV) derivative of cisplatin containing two OA units appended to the axial positions of a six-coordinate Pt(IV) center. Our results demonstrate that Pt(IV)diOA is a potent cytotoxic agent against many cancer cell lines (the IC50 values are approximately two orders of magnitude lower than those of clinically used cisplatin or Pt(IV) derivatives with biologically inactive axial ligands). Importantly, Pt(IV)diOA overcomes resistance to cisplatin, is significantly more potent than its branched Pt(IV) valproato isomer and exhibits promising in vivo antitumor activity. The potency of Pt(IV)diOA is a consequence of several factors including enhanced cellular accumulation correlating with enhanced DNA platination and cytotoxicity. Pt(IV)diOA induces DNA hypermethylation and reduces mitochondrial membrane potential in cancer cells at levels markedly lower than the IC50 value of free OA suggesting the synergistic action of platinum and OA moieties. Collectively, the remarkable antitumor effects of Pt(IV)diOA are a consequence of the enhanced cellular uptake which makes it possible to simultaneously accumulate high levels of both cisplatin and OA in cells. The simultaneous dual action of cisplatin and OA by different mechanisms in tumor cells may result in a markedly enhanced and unique antitumor effects of Pt(IV) prodrugs.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265, Brno, Czech Republic
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Universita del Piemonte Orientale, "A. Avogadro"Viale T. Michel 11, 15121, Alessandria, Italy
| | - Cristina Marzano
- Dipartimento di Scienze del Farmaco, Universita di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Jitka Pracharova
- Department of Biophysics, Centre of the Region Hana for Biotechnological Agricultural Research, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146, Olomouc, Czech Republic
| | - Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265, Brno, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, 91120, Israel
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Universita del Piemonte Orientale, "A. Avogadro"Viale T. Michel 11, 15121, Alessandria, Italy.
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265, Brno, Czech Republic.
| |
Collapse
|
25
|
Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE. Sodium Octanoate Modulates the Innate Immune Response of Bovine Mammary Epithelial Cells through the TLR2/P38/JNK/ERK1/2 Pathway: Implications during Staphylococcus aureus Internalization. Front Cell Infect Microbiol 2017; 7:78. [PMID: 28361042 PMCID: PMC5350129 DOI: 10.3389/fcimb.2017.00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/27/2017] [Indexed: 12/19/2022] Open
Abstract
Bovine mammary epithelial cells (bMECs) contribute to mammary gland defense against invading pathogens, such as Staphylococcus aureus (intracellular facultative), which is recognized by TLR2. In a previous report, we showed that sodium octanoate [NaO, a medium chain fatty acid (C8)] induces (0.25 mM) or inhibits (1 mM) S. aureus internalization into bMECs and differentially regulates the innate immune response (IIR). However, the molecular mechanisms have not been described, which was the aim of this study. The results showed that α5β1 integrin membrane abundance (MA) was increased in 0.25 mM NaO-treated cells, but TLR2 or CD36 MA was not modified. When these receptors were blocked individually, 0.25 mM NaO-increased S. aureus internalization was notably reduced. Interestingly, in this condition, the IIR of the bMECs was impaired because MAPK (p38, JNK, and ERK1/2) phosphorylation and the activation of transcription factors related to these pathways were decreased. In addition, the 1 mM NaO treatment induced TLR2 MA, but neither the integrin nor CD36 MA was modified. The reduction in S. aureus internalization induced by 1 mM NaO was increased further when TLR2 was blocked. In addition, the phosphorylation levels of the MAPKs increased, and 13 transcriptional factors related to the IIR were slightly activated (CBF, CDP, c-Myb, AP-1, Ets-1/Pea-3, FAST-1, GAS/ISRE, AP-2, NFAT-1, OCT-1, RAR/DR-5, RXR/DR-1, and Stat-3). Moreover, the 1 mM NaO treatment up-regulated gene expression of IL-8 and RANTES and secretion of IL-1β. Notably, when 1 mM NaO-treated bMECs were challenged with S. aureus, the gene expression of IL-8 and IL-10 increased, while IL-1β secretion was reduced. In conclusion, our results showed that α5β1 integrin, TLR2 and CD36 are involved in 0.25 mM NaO-increased S. aureus internalization in bMECs. In addition, 1 mM NaO activates bMECs via the TLR2 signaling pathways (p38, JNK, and ERK1/2), which improves IIR before S. aureus invasion. Additionally, NaO (1 mM) might exert anti-inflammatory effects after bacterial internalization.
Collapse
Affiliation(s)
- Nayeli Alva-Murillo
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de OcampoSahuayo, Mexico
| | - Alejandra Ochoa-Zarzosa
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de HidalgoMorelia, Mexico
| | - Joel E. López-Meza
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de HidalgoMorelia, Mexico
| |
Collapse
|
26
|
Furukawa S. [Basic Research on Neurotrophic Factors and Its Application to Medical Uses]. YAKUGAKU ZASSHI 2016; 135:1213-26. [PMID: 26521870 DOI: 10.1248/yakushi.15-00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The author has studied nerve growth factor (NGF) and its family of neurotrophic factors (neurotrophins) for over 40 years. During the first 20 years, my laboratory established a highly sensitive enzyme immunoassay for NGF and analyzed the regulatory mechanism of NGF synthesis in cultured primary cells. Fibroblast cells cultured from peripheral organs such as the heart and astrocytes from the brain produced a substantial amount of NGF in a growth-dependent manner. Furthermore, synthesis of NGF in these cells could be upregulated by catechol compounds including catecholamines. This observation might explain a physiological relation between the level of NGF mRNA and the density of innervation in the peripheral sympathetic nervous systems. Over the subsequent 20 years, my laboratory investigated the physiological functions of neurotrophic factors, including neurotrophins, during development or post-injury and found that brain-derived neurotrophic factor (BDNF) plays a role in the formation of the laminar structure of the cerebral cortex. In addition, my laboratory discovered that endogenous glial cell line-derived neurotrophic factor (GDNF) contributes to the amelioration of motor activity after spinal cord injury. Therefore we aimed to develop low-molecular weight compounds that generate neurotrophic factor-like intracellular signals to protect or ameliorate neurological/psychiatric diseases. 2-Decenoic acid derivatives and other similar molecules could protect or ameliorate in animal models of mood disorders such as depression and enhance recovery from spinal cord injury-induced motor paralysis. Compounds that can generate neurotrophin-like signals in neurons are expected to be developed as therapeutic drugs for certain neurological or psychiatric disorders.
Collapse
Affiliation(s)
- Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctinal Analysis, Gifu Pharmaceutical University
| |
Collapse
|
27
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
28
|
Cueno ME, Kamio N, Seki K, Kurita-Ochiai T, Ochiai K. High butyric acid amounts induce oxidative stress, alter calcium homeostasis, and cause neurite retraction in nerve growth factor-treated PC12 cells. Cell Stress Chaperones 2015; 20:709-13. [PMID: 25808460 PMCID: PMC4463921 DOI: 10.1007/s12192-015-0584-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 01/11/2023] Open
Abstract
Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC1(2) cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H(2)O(2), catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.
Collapse
Affiliation(s)
- Marni E. Cueno
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Noriaki Kamio
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Keisuke Seki
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| | - Tomoko Kurita-Ochiai
- />Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba 271-8587 Japan
| | - Kuniyasu Ochiai
- />Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310 Japan
| |
Collapse
|
29
|
Smith RC, O'Bryan LM, Mitchell PJ, Leung D, Ghanem M, Wilson JM, Hanson JC, Sossick S, Cooper J, Huang L, Merchant KM, Lu J, O'Neill MJ. Increased brain bio-distribution and chemical stability and decreased immunogenicity of an engineered variant of GDNF. Exp Neurol 2015; 267:165-76. [PMID: 25771799 DOI: 10.1016/j.expneurol.2015.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/05/2015] [Accepted: 03/06/2015] [Indexed: 01/22/2023]
Abstract
Several lines of evidence indicate that Glial cell line-derived neurotrophic factor (GDNF) is a trophic factor for dopaminergic neurons. Direct parenchymal administration of GDNF is robustly neuroprotective and neurorestorative in multiple neurotoxin-based animal models (rat and non-human primate (NHP)) of Parkinson's Disease (PD), suggesting its potential as a therapeutic agent. Although small, open-label clinical trials of intra-putamenal administration of bacteria-derived, full length, wild type GDNF (GDNFwt) were efficacious in improving standardized behavioral scores, a double-blinded, randomized controlled trial failed to do so. We hypothesize that the lack of clinical efficacy of GDNFwt in the larger randomized trial was due to poor bio-distribution in the putamen and/or poor chemical stability while in the delivery device for prolonged time periods at 37°C. The development of neutralizing antibodies in some patients may also have been a contributing factor. GDNFv is an engineered form of GDNFwt, expressed and purified from mammalian cells, designed to overcome these limitations, including removal of the N-terminal heparin-binding domain to improve its diffusivity in brain parenchyma by reducing its binding to extracellular matrix (ECM), and key amino acid substitutions to improve chemical stability. Intra-striatal administration of a single injection of GDNFv in the rat produced significantly greater brain distribution than GDNFwt, consistent with reduced binding to ECM. Using liquid chromatography/mass spectrometry (LS/MS) methods GDNFv was shown to have improved chemical stability compared to GDNFwt when stored at 37°C for 4weeks. In addition, GDNFv resulted in lower predicted clinical immunogenicity compared to GDNFwt, as demonstrated by reduced CD4+ T cell proliferation and reduced IL-2-induced secretion in peripheral blood mononucleated cells collected from volunteers representing the world's major histocompatibility complex (MHC) haplotypes. GDNFv was demonstrated to be pharmacologically equivalent to GDNFwt in the key parameters in vitro of GFRα1 receptor binding, c-Ret phosphorylation, neurite outgrowth, and in vivo in its ability to increase dopamine turnover (DA). GDNFv protected dopamine nerve terminals and neurons in a 6-hydroxy-dopamine (6-OHDA) rat model. In summary, we empirically demonstrate the superior properties of GDNFv compared to GDNFwt through enhanced bio-distribution and chemical stability concurrently with decreased predicted clinical immunogenicity while maintaining pharmacological and neurotrophic activity. These data indicate that GDNFv is an improved version of GDNF suitable for clinical assessment as a targeted regenerative therapy for PD.
Collapse
Affiliation(s)
- Rosamund C Smith
- Eli Lilly & Co., Biotechnology Discovery Research, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Linda M O'Bryan
- Eli Lilly & Co., Biotechnology Discovery Research, Lilly Corporate Center, Indianapolis, IN 46285, USA. o'
| | - Pamela J Mitchell
- Eli Lilly & Co., Biotechnology Discovery Research, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Donmienne Leung
- Eli Lilly & Co., Lilly Biotechnology Center, 10300 Campus Point Dr, Suite 200, San Diego, CA 92121, USA.
| | - Mahmoud Ghanem
- Eli Lilly & Co., Biotechnology Discovery Research, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Jonathan M Wilson
- Eli Lilly & Co., Tailored Therapeutics, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Jeff C Hanson
- Eli Lilly & Co., Information Technology, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Sandra Sossick
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK.
| | - Jane Cooper
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK.
| | - Lihua Huang
- Eli Lilly & Co., Bioproduct Research and Development, Indianapolis, IN 46285, USA.
| | - Kalpana M Merchant
- Eli Lilly & Co., Tailored Therapeutics, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Jirong Lu
- Eli Lilly & Co., Biotechnology Discovery Research, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Michael J O'Neill
- Eli Lilly & Co. Ltd, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK.
| |
Collapse
|
30
|
Wlaź P, Socała K, Nieoczym D, Żarnowski T, Żarnowska I, Czuczwar SJ, Gasior M. Acute anticonvulsant effects of capric acid in seizure tests in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:110-6. [PMID: 25445478 DOI: 10.1016/j.pnpbp.2014.10.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023]
Abstract
Capric acid (CA10) is a 10-carbon medium-chain fatty acid abundant in the medium-chain triglyceride ketogenic diet (MCT KD). The purpose of this study was to characterize acute anticonvulsant effects of CA10 across several seizure tests in mice. Anticonvulsant effects of orally (p.o.) administered CA10 were assessed in the maximal electroshock seizure threshold (MEST), 6-Hz seizure threshold, and intravenous pentylenetetrazole (i.v. PTZ) seizure tests in mice. Acute effects of CA10 on motor coordination were assessed in the grip and chimney tests. Plasma and brain concentrations of CA10 were measured. Co-administration studies with CA10 and another abundant medium-chain fatty acid, caprylic acid (CA8) were performed. CA10 showed significant and dose-dependent anticonvulsant properties by increasing seizure thresholds in the 6-Hz and MEST seizure tests; it was ineffective in the i.v. PTZ seizure test. At higher doses than those effective in the 6-Hz and MEST seizure tests, CA10 impaired motor performance in the grip and chimney tests. An enhanced anticonvulsant response in the 6-Hz seizure test was produced when CA8 and CA10 were co-administered. An acute p.o. administration of CA10 resulted in dose-proportional increases in its plasma and brain concentrations. CA10 exerted acute anticonvulsant effects at doses that produce plasma exposures comparable to those reported in epileptic patients on the MCT KD. An enhanced anticonvulsant effect is observed when CA10 and the other main constituent of the MCT KD, CA8, were co-administered. Thus, acute anticonvulsant properties of CA10 and CA8 may influence the overall clinical efficacy of the MCT KD.
Collapse
Affiliation(s)
- Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Iwona Żarnowska
- Department of Pediatric Neurology, Medical University, Lublin, Poland
| | | | - Maciej Gasior
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Jeon S, Kim Y, Chung IW, Kim YS. Clozapine induces chloride channel-4 expression through PKA activation and modulates CDK5 expression in SH-SY5Y and U87 cells. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:168-73. [PMID: 25246152 DOI: 10.1016/j.pnpbp.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/22/2014] [Accepted: 09/11/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Second-generation antipsychotic drugs, such as clozapine, were reported to enhance neurite outgrowth by nerve growth factor in PC12 cells. The authors previously showed that chloride channel 4 (CLC-4) is responsible for nerve growth factor-induced neurite outgrowth in neuronal cells. In this study, we examined whether clozapine induces CLC-4 in neuroblastoma and glioma cells. METHODS The effect of clozapine on CLC-4 expression was examined in neuroblastoma (SH-SY5Y) and glioma (U87) cells. To investigate the signaling pathway responsible for clozapine-induced CLC-4 expression, the phosphorylation of cAMP response element-binding protein (CREB), which binds CRE in the promoter of the human CLC-4 gene, was examined. To identify the target of clozapine induced CLC-4, CLC-4 siRNA was introduced to neuroblastoma and glioma cells for functional knockdown. RESULTS We observed that clozapine increased CLC-4 expression in both SH-SY5Y and U87 cells. Clozapine induced CREB phosphorylation, but in the presence of inhibitor of protein kinase A (an upstream kinase of CREB) clozapine-induced CLC-4 expression was suppressed. Finally, we found that CLC-4 knockdown suppressed clozapine-induced cyclin-dependent kinase 5 (CDK5) expression in SH-SY5Y and U-87 cells suggesting CDK5 as potential molecular target of clozapine induced CLC-4 expression. CONCLUSIONS The results of the present study suggest that clozapine's therapeutic effect may include the induction of CLC-4 which is dependent on CREB activation via PKA. We also found that functional knockdown of CLC-4 resulted in reduction of CDK5 expression, which may also be implicated in clozapine's therapeutic effect.
Collapse
Affiliation(s)
- Songhee Jeon
- Dongguk University Research Institute of Biotechnology, 27-3, Phildong 3, Joong-gu, Seoul, 100-715
| | - Yeni Kim
- Department of Child Psychiatry, National Center for Child and Adolescent Psychiatry, Seoul National Hospital, Seoul, 143-711
| | - In-Won Chung
- Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773; Institute of Clinical Psychopharmacology, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773
| | - Yong Sik Kim
- Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773; Institute of Clinical Psychopharmacology, Dongguk University International Hospital, Goyang-si, Gyeonggi-do, 410-773.
| |
Collapse
|
32
|
Formoso K, Billi SC, Frasch AC, Scorticati C. Tyrosine 251 at the C-terminus of neuronal glycoprotein M6a is critical for neurite outgrowth. J Neurosci Res 2014; 93:215-29. [PMID: 25242528 DOI: 10.1002/jnr.23482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/12/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022]
Abstract
Neuronal glycoprotein M6a is involved in neuronal plasticity, promoting neurite and filopodia outgrowth and, likely, synaptogenesis. Polymorphisms in the human M6a gene GPM6A have recently been associated with mental illnesses such as schizophrenia, bipolar disorders, and claustrophobia. Nevertheless, the molecular bases underlying these observations remain unknown. We have previously documented that, to induce filopodia formation, M6a depends on the association of membrane lipid microdomains and the activation of Src and mitogen-activated protein kinase kinases. Here, in silico analysis of the phosphorylation of tyrosine 251 (Y251) at the C-terminus of M6a showed that it could be a target of Src kinases. We examined whether phosphorylation of M6a at Y251 affects neurite and filopodia outgrowth and the targets involved in its signal propagation. This work provides evidence that the Src kinase family and the phosphatidylinositide 3-kinase (PI3K), but not Ras, participate in M6a signal cascade leading to neurite/filopodia outgrowth in hippocampal neurons and murine neuroblastoma N2a cells. Phosphorylation of M6a at Y251 is essential only for neurite outgrowth by the PI3K/AKT-mediated pathway and, moreover, rescues the inhibition caused by selective Src inhibitor and external M6a monoclonal antibody treatment. Thus, we suggest that phosphorylation of M6a at Y251 is critical for a specific stage of neuronal development and triggers redundant signaling pathways leading to neurite extension.
Collapse
Affiliation(s)
- Karina Formoso
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
33
|
Intrastrain comparison of the chemical composition and antioxidant activity of an edible mushroom, Pleurotus giganteus, and its potent neuritogenic properties. ScientificWorldJournal 2014; 2014:378651. [PMID: 25121118 PMCID: PMC4121195 DOI: 10.1155/2014/378651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/24/2014] [Indexed: 01/15/2023] Open
Abstract
Two strains of Pleurotus giganteus (commercial and wild) were tested for their ability to induce neurite outgrowth in rat pheochromocytoma (PC12) and mouse neuroblastoma-2a (N2a) cells. Treatment with the mushroom extracts resulted in neuronal differentiation and neuronal elongation, but not nerve growth factor (NGF) production. Linoleic acid (4.5–5.0%, w/w) which is a major fatty acid present in the ethanol extract promoted NGF biosynthesis when augmented with low concentration of NGF (5 ng/mL). The two strains of mushroom were found to be high in protein (154–192 g kg−1), total polysaccharides, phenolics, and flavonoids as well as vitamins B1, B2, and B3. The total phenolics present in the mushroom extracts were positively correlated to the antioxidant activity (free radical scavenging, ferric reducing power, and lipid peroxidation inhibition). To conclude, P. giganteus could potentially be used in well-balanced diet and as a source of dietary antioxidant to promote neuronal health.
Collapse
|
34
|
c-Jun N-terminal kinase in synergistic neurite outgrowth in PC12 cells mediated through P90RSK. BMC Neurosci 2013; 14:153. [PMID: 24330599 PMCID: PMC4029309 DOI: 10.1186/1471-2202-14-153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 12/05/2013] [Indexed: 12/02/2022] Open
Abstract
Background Synergistic multi-ligand treatments that can induce neuronal differentiation offer valuable strategies to regulate and modulate neurite outgrowth. Whereas the signaling pathways mediating single ligand-induced neurite outgrowth, such as Akt, extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (P38), have been extensively studied, the mechanisms underlying multi-ligand synergistic neurite outgrowth are poorly understood. In an attempt to gain insight into synergistic neurite outgrowth, PC12 cells were treated with one of three combinations: pituitary adenylate cyclase-activating peptide (PACAP) with epidermal growth factor (EP), basic fibroblast growth factor (FP), or nerve growth factor (NP) and then challenged with the appropriate kinase inhibitors to assess the signaling pathways involved in the process. Results Response surface analyses indicated that synergistic neurite outgrowth was regulated by distinct pathways in these systems. Synergistic increases in the phosphorylation of Erk and JNK, but not Akt or P38, were observed with the three growth factor-PACAP combinations. Unexpectedly, we identified a synergistic increase in JNK phosphorylation, which was involved in neurite outgrowth in the NP and FP, but not EP, systems. Inhibition of JNK using the SP600125 inhibitor reduced phosphorylation of 90 kDa ribosomal S6 kinase (P90RSK) in the NP and FP, but not EP, systems. This suggested the involvement of P90RSK in mediating the differential effects of JNK in synergistic neurite outgrowth. Conclusions Taken together, these findings reveal the involvement of distinct signaling pathways in regulating neurite outgrowth in response to different synergistic growth factor-PACAP treatments. Our findings demonstrate a hitherto unrecognized mechanism of JNK-P90RSK in mediating synergistic neurite outgrowth induced by the co-treatment of growth factors and PACAP.
Collapse
|
35
|
Zhang HY, Yamakawa YI, Matsuya Y, Toyooka N, Tohda C, Awale S, Li F, Kadota S, Tezuka Y. Synthesis of long-chain fatty acid derivatives as a novel anti-Alzheimer's agent. Bioorg Med Chem Lett 2013; 24:604-8. [PMID: 24360558 DOI: 10.1016/j.bmcl.2013.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/20/2013] [Accepted: 12/02/2013] [Indexed: 11/29/2022]
Abstract
In order to develop new drugs for Alzheimer's disease, we prepared 17 fatty acid derivatives with different chain lengths and different numbers and positions of double bonds by using Wittig reaction and stereospecific hydrogenation of triple bonds as key reactions. Among them, (4Z,15Z)-octadecadienoic acid (10) and (23Z,34Z)-heptatriacontadienoic acid (16) showed the most potent neurite outgrowth activities on Aβ(25-35)-treated rat cortical neurons, which activities were comparable to that of a positive control, NGF. Both fatty acids 10 and 16 possess two (Z)-double bonds at the n-3 and n-14 positions, which might be important for the neurite outgrowth activity.
Collapse
Affiliation(s)
- Hong-Yan Zhang
- Division of Natural Products Chemistry, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yu-ichiro Yamakawa
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yuji Matsuya
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Naoki Toyooka
- Graduate School of Science and Technology for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | - Chihiro Tohda
- Division of Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Suresh Awale
- Frontier Research Core for Life Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Feng Li
- Research Promotion Office, Joint Usage/Research Center for Science-Based Natural Medicine, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Shigetoshi Kadota
- Division of Natural Products Chemistry, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yasuhiro Tezuka
- Division of Natural Products Chemistry, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| |
Collapse
|
36
|
Shinohara H, Fukumitsu H, Seto A, Furukawa S. Medium-chain fatty acid-containing dietary oil alleviates the depression-like behaviour in mice exposed to stress due to chronic forced swimming. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Karelina K, Hansen KF, Choi YS, DeVries AC, Arthur JSC, Obrietan K. MSK1 regulates environmental enrichment-induced hippocampal plasticity and cognitive enhancement. Learn Mem 2012; 19:550-60. [PMID: 23077336 DOI: 10.1101/lm.025775.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmental enrichment (EE) has marked beneficial effects on cognitive capacity. Given the possibility that this form of neuronal plasticity could function via the actuation of the same cellular signaling pathways that underlie learning/memory formation, we examined whether the MAPK cascade effector, mitogen/stress-activated kinase 1 (MSK1), could play a role in this process. MSK1 functions as a key signaling intermediate that couples changes in neuronal activity into inducible gene expression, neuronal plasticity, and learning/memory. Here, we show that MSK1 is expressed in excitatory cell layers of the hippocampus, progenitor cells of the subgranular zone (SGZ), and adult-born immature neurons. MSK1(-/-) mice exhibit reduced spinogenesis and decreased dendritic branching complexity in hippocampal neurons, compared with WT mice. Further, in MSK1(-/-) mice, progenitor cell proliferation within the SGZ was significantly reduced and, correspondingly, the number of immature neurons within the dentate gyrus was significantly reduced. Consistent with prior work, MSK1(-/-) mice displayed deficits in both spatial and recognition memory tasks. Strikingly, cognitive enhancement resulting from a 40-d period of EE was markedly reduced in MSK1(-/-) animals. MSK1(-/-) mice exhibited reduced levels of EE-induced spinogenesis and SGZ progenitor proliferation. Taken together, these data reveal that MSK1 serves as a critical regulator of hippocampal physiology and function and that MSK1 serves as a key conduit by which enriching stimuli augment cellular plasticity and cognition.
Collapse
Affiliation(s)
- Kate Karelina
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
38
|
Tanaka Y, Fukumitsu H, Soumiya H, Yoshimura S, Iwama T, Furukawa S. 2-decenoic acid ethyl ester, a compound that elicits neurotrophin-like intracellular signals, facilitating functional recovery from cerebral infarction in mice. Int J Mol Sci 2012; 13:4968-4981. [PMID: 22606023 PMCID: PMC3344259 DOI: 10.3390/ijms13044968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 02/07/2023] Open
Abstract
In our previous study, we found that trans-2-decenoic acid ethyl ester (DAEE), a derivative of a medium-chain fatty acid, elicits neurotrophin-like signals including the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in cultured mouse cortical neurons. Here, we examined the efficacy of intraperitoneal administration of DAEE on the treatment of a mouse model of the cerebral infarction caused by unilateral permanent middle cerebral artery occlusion (PMCAO). DAEE-treatment (100 μg/kg body weight injected at 0.5, 24, 48, 72 h after PMCAO) significantly restored the mice from PMCAO-induced neurological deficits including motor paralysis when evaluated 48, 72, and 96 h after the PMCAO. Furthermore, DAEE facilitated the phosphorylation of ERK1/2 on the infarction side of the brain when analyzed by Western immunoblot analysis, and it enhanced the number of phosphorylated ERK1/2-positive cells in the border areas between the infarction and non-infarction regions of the cerebral cortex, as estimated immunohistochemically. As the infarct volume remained unchanged after DAEE-treatment, it is more likely that DAEE improved the neurological condition through enhanced neuronal functions of the remaining neurons in the damaged areas rather than by maintaining neuronal survival. These results suggest that DAEE has a neuro-protective effect on cerebral infarction.
Collapse
Affiliation(s)
- Yoshitaka Tanaka
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; E-Mails: (S.Y.); (T.I.)
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
| | - Hitomi Soumiya
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
| | - Shinichi Yoshimura
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; E-Mails: (S.Y.); (T.I.)
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; E-Mails: (S.Y.); (T.I.)
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-58-230-8100; Fax: +81-58-230-8105
| |
Collapse
|
39
|
Wlaź P, Socała K, Nieoczym D, Łuszczki JJ, Zarnowska I, Zarnowski T, Czuczwar SJ, Gasior M. Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology 2011; 62:1882-9. [PMID: 22210332 DOI: 10.1016/j.neuropharm.2011.12.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/02/2011] [Accepted: 12/10/2011] [Indexed: 12/14/2022]
Abstract
The purpose of the present study was to evaluate the acute anticonvulsant effects of caprylic acid (CA), the main constituent of the medium-chain triglyceride ketogenic diet (MCT KD), in seizure tests typically used in screening for potential antiepileptic drugs in mice. Pharmacodynamic and pharmacokinetic interactions between CA and valproate (VPA) were also investigated. CA (p.o.) and VPA (i.p.) were administered 30 min before testing. Acute effects on motor coordination were assessed in the chimney test. Total plasma and brain concentrations of CA and VPA, when administered alone or in combination, were determined by high performance liquid chromatography. CA (10-30 mmol/kg) increased the threshold for i.v. pentylenetetrazole-induced myoclonic and clonic convulsions, but not tonic convulsions. CA (5-30 mmol/kg) increased the threshold for 6-Hz psychomotor seizures but was ineffective in the maximal electroshock seizure threshold test. CA (10-60 mmol/kg p.o.) impaired motor performance in the chimney test (TD(50) value, 58.4 mmol/kg). Increasing doses of CA (5-30 mmol/kg) produced proportional increases in plasma and brain exposure with constant brain/plasma partitioning. CA increased anticonvulsant potency of VPA in the maximal electroshock seizure and 6-Hz seizure tests. Co-administration of CA and VPA had no effect on brain and plasma concentrations of either compound. In summary, CA exerts acute anticonvulsant effects and potentiates the anticonvulsant effect of VPA at doses that result in plasma exposures comparable to those reported in epileptic patients on the MCT KD. Thus, this acute anticonvulsant property of CA may benefit and add to the overall clinical efficacy of the MCT KD.
Collapse
Affiliation(s)
- Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Awale S, Tohda C, Tezuka Y, Miyazaki M, Kadota S. Protective Effects of Rosa damascena and Its Active Constituent on Aβ(25-35)-Induced Neuritic Atrophy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:131042. [PMID: 19789212 PMCID: PMC3162985 DOI: 10.1093/ecam/nep149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/30/2009] [Indexed: 12/04/2022]
Abstract
Dementia is a clinical syndrome characterized by multiple cognitive deficits and causes progressive neurodegeneration leading eventually to death. The incidence of dementia is increasing worldwide with the increase in ageing population. However, no effective treatment is available yet. It has been hypothesized that drugs activating neurite outgrowth might induce neuronal reconstruction and help in the recovery of brain function. Working on this hypothesis, we recently observed that the chloroform extract of the Rosa damascena significantly induced the neurite outgrowth activity and inhibited the Aβ(25–35)-induced atrophy and cell death. Further workup led the isolation of a very long polyunsaturated fatty acid having molecular formula C37H64O2 as an active constituent. The structure of this compound was established by extensive analysis of fragmentations observed in EI-MS mode. The isolated compound protected Aβ(25–35)-induced atrophy and displayed strong neurite outgrowth activity. The length of dendrite in the cells treated with this compound were comparable to those of nerve growth factor (NGF) treated cells.
Collapse
Affiliation(s)
- Suresh Awale
- Division of Natural Products Chemistry, Research Center for Ethnomedicine, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
41
|
2-Decenoic acid ethyl ester, a derivative of unsaturated medium-chain fatty acids, facilitates functional recovery of locomotor activity after spinal cord injury. Neuroscience 2010; 171:1377-85. [DOI: 10.1016/j.neuroscience.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/02/2010] [Indexed: 01/09/2023]
|
42
|
Fazeli G, Oli RG, Schupp N, Stopper H. The role of the dopamine transporter in dopamine-induced DNA damage. Brain Pathol 2010; 21:237-48. [PMID: 20875051 DOI: 10.1111/j.1750-3639.2010.00440.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The neurotransmitter dopamine causes DNA damage, oxidative stress and is involved in the pathology of neurological diseases. To elucidate this potential link we investigated the mechanism of dopamine-induced DNA damage. We studied the role of the dopamine transporter (DAT) in MDCK and MDCK-DAT cells, containing the human DAT gene. After treatment with dopamine, only MDCK-DAT cells showed elevated chromosomal damage and dopamine uptake. Although stimulation of dopamine type 2 receptor (D(2)R) with quinpirole in the absence of dopamine did not induce genotoxicity in rat neuronal PC12 cells, interference with D(2)R signaling by inhibition of G-proteins, phosphoinositide 3 kinase and extracellular signal-regulated kinases reduced dopamine-induced genotoxicity and affected the ability of DAT to take up dopamine. Furthermore, the D(2)R antagonist sulpiride inhibited the dopamine-induced migration of DAT from cytosol to cell membrane. To determine whether oxidation of dopamine by monoamine oxidase (MAO) is relevant in its genotoxicity, we inhibited MAO, which reduced the formation of micronuclei and of the oxidative DNA adduct 8-oxodG. Overall, dopamine exerted its genotoxicity in vitro upon transport into the cells and oxidation by MAO. D(2)R signaling was involved in the genotoxicity of dopamine by affecting activation and cell surface expression of DAT and hence modulating dopamine uptake.
Collapse
Affiliation(s)
- Gholamreza Fazeli
- Department of Toxicology, University of Wuerzburg, Versbacherstr. 9, Wuerzburg, Germany
| | | | | | | |
Collapse
|
43
|
Akpa MM, Point F, Sawadogo S, Radenne A, Mounier C. Inhibition of insulin and T3-induced fatty acid synthase by hexanoate. Lipids 2010; 45:997-1009. [PMID: 20811782 DOI: 10.1007/s11745-010-3465-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/06/2010] [Indexed: 12/30/2022]
Abstract
Fatty acid synthase (FAS) is responsible for the de novo synthesis of palmitate and stearate. This enzyme is activated by insulin and T(3), and inhibited by fatty acids. In this study, we show that insulin and T(3) have an inducing effect on FAS enzymatic activity, which is synergetic when both hormones are present. Octanoate and hexanoate specifically inhibit this hormonal effect. A similar inhibitory effect is observed at the level of protein expression. Transient transfections in HepG2 cells revealed that hexanoate inhibits, at least in part, FAS at a transcriptional level targeting the T(3) response element (TRE) on the FAS promoter. The effect of C6 on FAS expression cannot be attributed to a modification of insulin receptor activation or to a decrease in T(3) entry in the cells. Using bromo-hexanoate, we determined that hexanoate needs to undergo a transformation in order to have an effect. When incubating cells with triglyceride-hexanoate or carnitine-hexanoate, no effect on the enzymatic activity induced by insulin and T(3) is observed. A similar result was obtained when cells were incubated with betulinic acid, an inhibitor of the diacylglycerol acyltransferase. However, the incubation of cells with Triacsin C, a general inhibitor of acyl-CoA synthetases, completely reversed the inhibitory effect of hexanoate. Our results suggest that in hepatic cells, hexanoate needs to be activated into a CoA derivative in order to inhibit the insulin and T(3)-induced FAS expression. This effect is partially transcriptional, targeting the TRE on the FAS promoter.
Collapse
Affiliation(s)
- Murielle M Akpa
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
44
|
Gao D, Nong S, Huang X, Lu Y, Zhao H, Lin Y, Man Y, Wang S, Yang J, Li J. The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J Biol Chem 2010; 285:29965-73. [PMID: 20647313 DOI: 10.1074/jbc.m110.128694] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Elevated plasma free fatty acid (FFA) levels in obesity may play a pathogenic role in the development of insulin resistance. However, molecular mechanisms linking FFA to insulin resistance remain poorly understood. Oxidative stress acts as a link between FFA and hepatic insulin resistance. NADPH oxidase 3 (NOX3)-derived reactive oxygen species (ROS) may mediate the effect of TNF-α on hepatocytes, in particular the drop in cellular glycogen content. In the present study, we define the critical role of NOX3-derived ROS in insulin resistance in db/db mice and HepG2 cells treated with palmitate. The db/db mice displayed increased serum FFA levels, excess generation of ROS, and up-regulation of NOX3 expression, accompanied by increased lipid accumulation and impaired glycogen content in the liver. Similar results were obtained from palmitate-treated HepG2 cells. The exposure of palmitate elevated ROS production and NOX3 expression and, in turn, increased gluconeogenesis and reduced glycogen content in HepG2 cells. We found that palmitate induced hepatic insulin resistance through JNK and p38(MAPK) pathways, which are rescued by siRNA-mediated NOX3 reduction. In conclusion, our data demonstrate a critical role of NOX3-derived ROS in palmitate-induced insulin resistance in hepatocytes, indicating that NOX3 is the predominant source of palmitate-induced ROS generation and that NOX3-derived ROS may drive palmitate-induced hepatic insulin resistance through JNK and p38(MAPK) pathways.
Collapse
Affiliation(s)
- Dan Gao
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yasui H, Ito N, Yamamori T, Nakamura H, Okano J, Asanuma T, Nakajima T, Kuwabara M, Inanami O. Induction of neurite outgrowth by α-phenyl-N-tert-butylnitrone through nitric oxide release and Ras-ERK pathway in PC12 cells. Free Radic Res 2010; 44:645-54. [DOI: 10.3109/10715761003692537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Khodosevich K, Monyer H. Signaling involved in neurite outgrowth of postnatally born subventricular zone neurons in vitro. BMC Neurosci 2010; 11:18. [PMID: 20146799 PMCID: PMC2831042 DOI: 10.1186/1471-2202-11-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/10/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neurite outgrowth is a key process during neuronal migration and differentiation. Complex intracellular signaling is involved in the initiation of neurite protrusion and subsequent elongation. Although, in general many constituents of the machinery involved in this multi-stage process are common for neurons in distinct brain areas, there are notable differences between specific neuronal subtypes. RESULTS We analyzed key intracellular components of neurite outgrowth signaling in postnatally born subventricular zone (SVZ) neurons in vitro. We showed that inhibitors of PI3K, Akt1, PKCzeta and small GTPases significantly reduced neurite outgrowth. Transfection of SVZ-derived neurons with inactive forms of Rac1 or Cdc42 also decreased neurite length whereas transfection with constitutively active forms of Rac1, Cdc42 or Akt1 as well as with full-length PI3K or PKCzeta increased neurite length. PI3K, Akt1 and PKCzeta acted upstream of the small GTPases Rac1 and Cdc42, which in turn modulate lamellipodia formation of SVZ-derived neurons. CONCLUSION We showed the involvement of PI3K/Akt1/PKCzeta/Rac1/Cdc42 pathway in neurite outgrowth of postnatally born SVZ neurons.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Department of Clinical Neurobiology, Interdisciplinary Center for Neuroscience, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | | |
Collapse
|
47
|
Makino A, Iinuma M, Fukumitsu H, Soumiya H, Furukawa Y, Furukawa S. 2-Decenoic acid ethyl ester possesses neurotrophin-like activities to facilitate intracellular signals and increase synapse-specific proteins in neurons cultured from embryonic rat brain. Biomed Res 2010; 31:379-86. [DOI: 10.2220/biomedres.31.379] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Read DE, Gorman AM. Involvement of Akt in neurite outgrowth. Cell Mol Life Sci 2009; 66:2975-84. [PMID: 19504044 PMCID: PMC11115732 DOI: 10.1007/s00018-009-0057-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 02/06/2023]
Abstract
The regulation of neuronal differentiation and neurite outgrowth is essential during development of the nervous system and is crucial in developing therapies to promote axon regeneration after nerve injury or in neurodegenerative diseases. The serine/threonine kinase Akt has been well documented to promote neuronal survival. More recently Akt has also been revealed as key mediator of several aspects of neurite outgrowth, including elongation, branching and calibre. Downstream of Akt, several substrates have been identified that are likely to play key roles in Akt-mediated neurite outgrowth, such as glycogen synthase kinase 3beta, peripherin, mammalian target of rapamycin and delta-catenin. The physical interaction between Akt and Hsp27, another protein that has been linked with neurite outgrowth, may also be significant in the process of neurite outgrowth. This review will unite and discuss the research to date that has examined the functionality of Akt in neuronal differentiation during development and neurite outgrowth.
Collapse
Affiliation(s)
- Danielle E. Read
- Cell Death and Survival Group, Department of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Adrienne M. Gorman
- Cell Death and Survival Group, Department of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| |
Collapse
|
49
|
Williams B, Dwyer DS. Structure-based discovery of low molecular weight compounds that stimulate neurite outgrowth and substitute for nerve growth factor. J Neurochem 2009; 110:1876-84. [PMID: 19627449 PMCID: PMC2753211 DOI: 10.1111/j.1471-4159.2009.06291.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Olanzapine, an atypical antipsychotic drug, was previously shown to protect neuronal cells against nutrient deprivation and to enhance neurite outgrowth. In an effort to identify small molecules with greater potency, the structure of olanzapine was used as a template to search commercially available chemical inventories for compounds with similar features. These compounds were evaluated for their ability to protect cells against glutamine deprivation and low-serum conditions. Positive compounds, 'hits' from initial screening, were then tested for stimulation of neurite outgrowth, alone and in combination with suboptimum concentrations of nerve growth factor (NGF). Numerous neuroprotective compounds (mw < 550 Da) were identified that significantly stimulated neurite outgrowth in PC12 cells. These included 4', 6'-diamidino-2-phenylindole, a nuclear stain; staurosporine, an antibiotic and kinase inhibitor; and 2-phenylamino-adenosine, an adenosine analog. The small molecules were comparable with NGF, and in fact, replaced NGF in outgrowth assays. Pharmacophore analysis of the hits led to the design and synthesis of an active compound, LSU-D84, which represented an initial lead for drug discovery efforts.
Collapse
Affiliation(s)
- Britney Williams
- Departments of Psychiatry, and Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Donard S. Dwyer
- Departments of Psychiatry, and Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
50
|
Abstract
Regeneration following axonal injury of the adult peripheral sensory nervous system is heavily influenced by factors located in a neuron's extracellular environment. These factors include neurotrophins, such as Nerve Growth Factor (NGF) and the extracellular matrix, such as laminin. The presence of these molecules in the peripheral nervous system (PNS) is a major contributing factor for the dichotomy between regenerative capacities of central vs. peripheral neurons. Although PNS neurons are capable of spontaneous regeneration, this response is critically dependent on many different factors including the type, location and severity of the injury. In this article, we will focus on the plasticity of adult dorsal root ganglion (DRG) sensory neurons and how trophic factors and the extracellular environment stimulate the activation of intracellular signaling cascades that promote axonal growth in adult dorsal root ganglion neurons.
Collapse
|