1
|
Cortical Processing of Level Cues for Spatial Hearing is Impaired in Children with Prelingual Deafness Despite Early Bilateral Access to Sound. Brain Topogr 2017; 31:270-287. [DOI: 10.1007/s10548-017-0596-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/25/2017] [Indexed: 01/13/2023]
|
2
|
Lee JK, Kim MJ. The distribution of calbindin-D28k, parvalbumin, and calretinin immunoreactivity in the inferior colliculus of circling mouse. Anat Cell Biol 2017; 50:230-238. [PMID: 29043102 PMCID: PMC5639178 DOI: 10.5115/acb.2017.50.3.230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022] Open
Abstract
The circling mice with tmie gene mutation are known as an animal deafness model, which showed hyperactive circling movement. Recently, the reinvestigation of circling mouse was performed to check the inner ear pathology as a main lesion of early hearing loss. In this trial, the inner ear organs were not so damaged to cause the hearing deficit of circling (cir/cir) mouse at 18 postnatal day (P18) though auditory brainstem response data indicated hearing loss of cir/cir mice at P18. Thus, another mechanism may be correlated with the early hearing loss of cir/cir mice at P18. Hearing loss in the early life can disrupt the ascending and descending information to inferior colliculus (IC) as integration site. There were many reports that hearing loss could result in the changes in Ca2+ concentration by either cochlear ablation or genetic defect. However, little was known to be reported about the correlation between the pathology of IC and Ca2+ changes in circling mice. Therefore, the present study investigated the distribution of calcium-binding proteins (CaBPs), calbindin-D28k, parvalbumin, and calretinin immunoreactivity (IR) in the IC to compare among wild-type (+/+), heterozygous (+/cir), and homozygous (cir/cir) mice by immunohistochemistry. The decreases of CaBPs IR in cir/cir were statistically significant in the neurons as well as neuropil of IC. Thus, this study proposed overall distributional alteration of CaBPs IR in the IC caused by early hearing defect and might be helpful to elucidate the pathology of central auditory disorder related with Ca2+ metabolism.
Collapse
Affiliation(s)
- Jin-Koo Lee
- Department of Pharmacology, Dankook University College of Medicine, Cheonan, Korea
| | - Myeung Ju Kim
- Department of Anatomy, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
3
|
Hasegawa H, Hatano M, Sugimoto H, Ito M, Kawasaki H, Yoshizaki T. The effects of unilateral cochlear ablation on the expression of vesicular glutamate transporter 1 in the lower auditory pathway of neonatal rats. Auris Nasus Larynx 2017; 44:690-699. [PMID: 28238468 DOI: 10.1016/j.anl.2017.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/27/2016] [Accepted: 01/26/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Unilateral cochlear damage has profound effects on the central auditory pathways in the brain. METHODS We examined the effects of unilateral cochlear ablation on VGLUT1 expression in the cochlear nucleus (CN) and the superior olivary complex (SOC) in neonatal rats. RESULTS VGLUT1 expression in the CN subdivisions (the AVCN, the PVCN and the DCN-deep layers) and the SOC (the MnTB, the LSO and the MSO) ipsilateral to the ablated side was significantly suppressed by unilateral cochlear ablation. Interestingly, VGLUT1 expression in the PVCN and the DCN-deep layers contralateral to the ablated side was also reduced. CONCLUSION Our findings indicate that unilateral cochlear ablation affects VGLUT1 expression in the central auditory pathways not only ipsilateral but also contralateral to the ablated side.
Collapse
Affiliation(s)
- Hiroki Hasegawa
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Otolaryngology-Head and Neck Surgery, Kanazawa University, Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Miyako Hatano
- Department of Otolaryngology-Head and Neck Surgery, Kanazawa University, Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Hisashi Sugimoto
- Department of Otolaryngology-Head and Neck Surgery, Kanazawa University, Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Makoto Ito
- Pediatric Otolaryngology, Jichi Children's Medical Center Tochigi, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| | - Tomokazu Yoshizaki
- Department of Otolaryngology-Head and Neck Surgery, Kanazawa University, Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
4
|
Tang Z, Wu L, Xiao Z, Feng X, Sun X, Tang W, Wang J, Jin L. Manganese-enhanced MRI (ME MRI) in evaluation of the auditory pathway in an experimental rat model. NMR IN BIOMEDICINE 2017; 30:e3677. [PMID: 27976435 DOI: 10.1002/nbm.3677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to explore the optimal dose and manner of administration for visualization of the auditory pathway on manganese-enhanced MRI (ME MRI). Twenty-four healthy male Sprague-Dawley rats were randomly divided into three experimental groups (n = 8 for Groups A, B and C). The rats in Groups A, B and C were subjected to MnCl2 injection through the tympanum, inner ear endolymph and perilymph, respectively (0.2 M for four rats and 0.4 M for the others in each group) and observed at 1, 2, 3, 4, 7 and 10 days after the operation with 3.0 T MRI. The signal intensity (SI) and dynamic changes of the auditory pathways at various times, and at two doses through three injection routes, were compared by statistical analysis. Administration of MnCl2 through the perilymph best showed the complete auditory pathway (P < 0.01), whereas administration though the tympanum only demonstrated part of the pathway. The SI was highest at 24 h after administration of the tracer and began to decline at 48 h. The SI of the auditory cortex was higher after the injection of 0.4 M MnCl2 than that of 0.2 M MnCl2 . ME MRI best demonstrated the whole auditory pathway at 24 h after the injection of 0.4 M MnCl2 through the perilymph in the rat, which provided an optimal method for the study of ME MRI of the auditory pathway in the animal model.
Collapse
Affiliation(s)
- Zuohua Tang
- Department of Radiology, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Lingjie Wu
- Department of Otolaryngology, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zebin Xiao
- Department of Radiology, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology, Eye and ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Radiotherapy, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Lixin Jin
- Siemens Ltd. Healthcare Sector, Shanghai, China
| |
Collapse
|
5
|
Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage. Neural Plast 2016; 2016:2162105. [PMID: 26881094 PMCID: PMC4736999 DOI: 10.1155/2016/2162105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/19/2022] Open
Abstract
It is increasingly appreciated that cochlear pathology is accompanied by adaptive responses in the central auditory system. The cause of cochlear pathology varies widely, and it seems that few commonalities can be drawn. In fact, despite intricate internal neuroplasticity and diverse external symptoms, several classical injury models provide a feasible path to locate responses to different peripheral cochlear lesions. In these cases, hair cell damage may lead to considerable hyperactivity in the central auditory pathways, mediated by a reduction in inhibition, which may underlie some clinical symptoms associated with hearing loss, such as tinnitus. Homeostatic plasticity, the most discussed and acknowledged mechanism in recent years, is most likely responsible for excited central activity following cochlear damage.
Collapse
|
6
|
Wang HC, Bergles DE. Spontaneous activity in the developing auditory system. Cell Tissue Res 2015; 361:65-75. [PMID: 25296716 PMCID: PMC7046314 DOI: 10.1007/s00441-014-2007-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Spontaneous electrical activity is a common feature of sensory systems during early development. This sensory-independent neuronal activity has been implicated in promoting their survival and maturation, as well as growth and refinement of their projections to yield circuits that can rapidly extract information about the external world. Periodic bursts of action potentials occur in auditory neurons of mammals before hearing onset. This activity is induced by inner hair cells (IHCs) within the developing cochlea, which establish functional connections with spiral ganglion neurons (SGNs) several weeks before they are capable of detecting external sounds. During this pre-hearing period, IHCs fire periodic bursts of Ca(2+) action potentials that excite SGNs, triggering brief but intense periods of activity that pass through auditory centers of the brain. Although spontaneous activity requires input from IHCs, there is ongoing debate about whether IHCs are intrinsically active and their firing periodically interrupted by external inhibitory input (IHC-inhibition model), or are intrinsically silent and their firing periodically promoted by an external excitatory stimulus (IHC-excitation model). There is accumulating evidence that inner supporting cells in Kölliker's organ spontaneously release ATP during this time, which can induce bursts of Ca(2+) spikes in IHCs that recapitulate many features of auditory neuron activity observed in vivo. Nevertheless, the role of supporting cells in this process remains to be established in vivo. A greater understanding of the molecular mechanisms responsible for generating IHC activity in the developing cochlea will help reveal how these events contribute to the maturation of nascent auditory circuits.
Collapse
Affiliation(s)
- Han Chin Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
7
|
Chen Z, Yuan W. Central plasticity and dysfunction elicited by aural deprivation in the critical period. Front Neural Circuits 2015; 9:26. [PMID: 26082685 PMCID: PMC4451366 DOI: 10.3389/fncir.2015.00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/13/2015] [Indexed: 12/31/2022] Open
Abstract
The acoustic signal is crucial for animals to obtain information from the surrounding environment. Like other sensory modalities, the central auditory system undergoes adaptive changes (i.e., plasticity) during the developmental stage as well as other stages of life. Owing to its plasticity, auditory centers may be susceptible to various factors, such as medical intervention, variation in ambient acoustic signals and lesion of the peripheral hearing organ. There are critical periods during which auditory centers are vulnerable to abnormal experiences. Particularly in the early postnatal development period, aural inputs are essential for functional maturity of auditory centers. An aural deprivation model, which can be achieved by attenuating or blocking the peripheral acoustic afferent input to the auditory center, is ideal for investigating plastic changes of auditory centers. Generally, auditory plasticity includes structural and functional changes, some of which can be irreversible. Aural deprivation can distort tonotopic maps, disrupt the binaural integration, reorganize the neural network and change the synaptic transmission in the primary auditory cortex or at lower levels of the auditory system. The regulation of specific gene expression and the modified signal pathway may be the deep molecular mechanism of these plastic changes. By studying this model, researchers may explore the pathogenesis of hearing loss and reveal plastic changes of the auditory cortex, facilitating the therapeutic advancement in patients with severe hearing loss. After summarizing developmental features of auditory centers in auditory deprived animals and discussing changes of central auditory remodeling in hearing loss patients, we aim at stressing the significant of an early and well-designed auditory training program for the hearing rehabilitation.
Collapse
Affiliation(s)
- Zhiji Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Southwest Hospital, Third Military Medical University Chongqing, China
| | - Wei Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Southwest Hospital, Third Military Medical University Chongqing, China
| |
Collapse
|
8
|
Maskey D, Kim HG, Suh MW, Roh GS, Kim MJ. Alteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg. Int J Mol Med 2014; 34:409-19. [PMID: 24866721 PMCID: PMC4094587 DOI: 10.3892/ijmm.2014.1784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 11/24/2022] Open
Abstract
The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region is susceptible to chronic exposure to RF radiation, which may affect the function of the central auditory system.
Collapse
Affiliation(s)
- Dhiraj Maskey
- Department of Anatomy, Dankook University College of Medicine, Cheonan-si, Chungnam, Republic of Korea
| | - Hyung Gun Kim
- Department of Pharmacology, Dankook University College of Medicine, Cheonan-si, Chungnam, Republic of Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology, Seoul National University Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongsang, Republic of Korea
| | - Myeung Ju Kim
- Department of Anatomy, Dankook University College of Medicine, Cheonan-si, Chungnam, Republic of Korea
| |
Collapse
|
9
|
Grande G, Negandhi J, Harrison RV, Wang LY. Remodelling at the calyx of Held-MNTB synapse in mice developing with unilateral conductive hearing loss. J Physiol 2014; 592:1581-600. [PMID: 24469075 DOI: 10.1113/jphysiol.2013.268839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Structure and function of central synapses are profoundly influenced by experience during developmental sensitive periods. Sensory synapses, which are the indispensable interface for the developing brain to interact with its environment, are particularly plastic. In the auditory system, moderate forms of unilateral hearing loss during development are prevalent but the pre- and postsynaptic modifications that occur when hearing symmetry is perturbed are not well understood. We investigated this issue by performing experiments at the large calyx of Held synapse. Principal neurons of the medial nucleus of the trapezoid body (MNTB) are innervated by calyx of Held terminals that originate from the axons of globular bushy cells located in the contralateral ventral cochlear nucleus. We compared populations of synapses in the same animal that were either sound deprived (SD) or sound experienced (SE) after unilateral conductive hearing loss (CHL). Middle ear ossicles were removed 1 week prior to hearing onset (approx. postnatal day (P) 12) and morphological and electrophysiological approaches were applied to auditory brainstem slices taken from these mice at P17-19. Calyces in the SD and SE MNTB acquired their mature digitated morphology but these were structurally more complex than those in normal hearing mice. This was accompanied by bilateral decreases in initial EPSC amplitude and synaptic conductance despite the CHL being unilateral. During high-frequency stimulation, some SD synapses displayed short-term depression whereas others displayed short-term facilitation followed by slow depression similar to the heterogeneities observed in normal hearing mice. However SE synapses predominantly displayed short-term facilitation followed by slow depression which could be explained in part by the decrease in release probability. Furthermore, the excitability of principal cells in the SD MNTB had increased significantly. Despite these unilateral changes in short-term plasticity and excitability, heterogeneities in the spiking fidelity among the population of both SD and SE synapses showed similar continuums to those in normal hearing mice. Our study suggests that preservations in the heterogeneity in spiking fidelity via synaptic remodelling ensures symmetric functional stability which is probably important for retaining the capability to maximally code sound localization cues despite moderate asymmetries in hearing experience.
Collapse
Affiliation(s)
- Giovanbattista Grande
- Corresponding Author L.-Y. Wang, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, Canada M5G 1X8.
| | | | | | | |
Collapse
|
10
|
Wallace MM, Kavianpour SM, Gabriele ML. Ephrin-B2 reverse signaling is required for topography but not pattern formation of lateral superior olivary inputs to the inferior colliculus. J Comp Neurol 2013; 521:1585-97. [PMID: 23042409 DOI: 10.1002/cne.23243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/05/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Graded and modular expressions of Eph-ephrins are known to provide positional information for the formation of topographic maps and patterning in the developing nervous system. Previously we have shown that ephrin-B2 is expressed in a continuous gradient across the tonotopic axis of the central nucleus of the inferior colliculus (CNIC), whereas patterns are discontinuous and modular in the lateral cortex of the IC (LCIC). The present study explores the involvement of ephrin-B2 signaling in the development of projections to the CNIC and LCIC arising from the lateral superior olivary nuclei (LSO) prior to hearing onset. Anterograde and retrograde fluorescent tracing methods in neonatal fixed tissue preparations were used to compare topographic mapping and the establishment of LSO layers/modules in wild-type and ephrin-B2(lacZ/+) mice (severely compromised reverse signaling). At birth, pioneer LSO axons occupy the ipsilateral IC in both groups but are delayed contralaterally in ephrin-B2(lacZ/+) mutants. By the onset of hearing, both wild-type and mutant projections form discernible layers bilaterally in the CNIC and modular arrangements within the ipsilateral LCIC. In contrast, ephrin-B2(lacZ/+) mice lack a reliable topography in LSO-IC projections, suggesting that fully functional ephrin-B2 reverse signaling is required for normal projection mapping. Taken together, these ephrin-B2 findings paired with known coexpression of EphA4 suggest the importance of these signaling proteins in establishing functional auditory circuits prior to experience.
Collapse
Affiliation(s)
- Matthew M Wallace
- Department of Biology, MSC 7801, James Madison University, Harrisonburg, Virginia 22807, USA
| | | | | |
Collapse
|
11
|
Kotak VC, Takesian AE, MacKenzie PC, Sanes DH. Rescue of inhibitory synapse strength following developmental hearing loss. PLoS One 2013; 8:e53438. [PMID: 23326429 PMCID: PMC3543446 DOI: 10.1371/journal.pone.0053438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022] Open
Abstract
Inhibitory synapse dysfunction may contribute to many developmental brain disorders, including the secondary consequences of sensory deprivation. In fact, developmental hearing loss leads to a profound reduction in the strength of inhibitory postsynaptic currents (IPSCs) in the auditory cortex, and this deficit persists into adulthood. This finding is consistent with the general theory that the emergence of mature synaptic properties requires activity during development. Therefore, we tested the prediction that inhibitory strength can be restored following developmental hearing loss by boosting GABAergic transmission in vivo. Conductive or sensorineural hearing loss was induced surgically in gerbils prior to hearing onset and GABA agonists were then administered for one week. IPSCs were subsequently recorded from pyramidal neurons in a thalamocortical brain slice preparation. Administration of either a GABAA receptor a1 subunit specific agonist (zolpidem), or a selective GABA reuptake inhibitor (SGRI), rescued IPSC amplitude in hearing loss animals. Furthermore, this restoration persisted in adults, long after drug treatment ended. In contrast, a GABAB receptor agonist baclofen did not restore inhibitory strength. IPSCs could also be restored when SGRI administration began 3 weeks after sensory deprivation. Together, these results demonstrate long-lasting restoration of cortical inhibitory strength in the absence of normal experience. This suggests that in vivo GABAA receptor activation is sufficient to promote maturation, and this principle may extend to other developmental disorders associated with diminished inhibitory function.
Collapse
Affiliation(s)
- Vibhakar C Kotak
- Center for Neural Science, New York University, New York, New York, United States of America.
| | | | | | | |
Collapse
|
12
|
Hatano M, Ito M, Yoshizaki T, Kelly JB. Changes in projections to the inferior colliculus following early hearing loss in rats. Hear Res 2012; 287:57-66. [DOI: 10.1016/j.heares.2012.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/06/2012] [Accepted: 03/26/2012] [Indexed: 11/16/2022]
|
13
|
Time course of neuronal and synaptic plasticity in dorsal cochlear nucleus of guinea pig following chronic kanamycin-induced deafness. Brain Res 2010; 1328:118-29. [DOI: 10.1016/j.brainres.2010.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/16/2010] [Accepted: 01/20/2010] [Indexed: 01/26/2023]
|
14
|
Normal hearing is required for the emergence of long-lasting inhibitory potentiation in cortex. J Neurosci 2010; 30:331-41. [PMID: 20053914 DOI: 10.1523/jneurosci.4554-09.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Long-term synaptic plasticity is a putative mechanism for learning in adults. However, there is little understanding of how synaptic plasticity mechanisms develop or whether their maturation depends on experience. Since inhibitory synapses are particularly malleable to sensory stimulation, long-lasting potentiation of inhibitory synapses was characterized in auditory thalamocortical slices. Intracortical high-frequency electrical stimulation led to a 67% increase in inhibitory synaptic currents. In the absence of stimulation, inhibitory potentiation was induced by a brief exposure to exogenous brain-derived neurotrophic factor (BDNF). BDNF exposure occluded any additional potentiation by high-frequency afferent stimulation, suggesting that BDNF signaling is sufficient to account for inhibitory potentiation. Moreover, inhibitory potentiation was reduced significantly by extracellular application of a BDNF scavenger or by intracellular blockade of BDNF receptor [tropomyosin-related kinase B (TrkB)] signaling. In contrast, glutamatergic or GABAergic antagonists did not prevent the induction of inhibitory potentiation. Since BDNF and TrkB expression are influenced strongly by activity, we predicted that inhibitory potentiation would be diminished by manipulations that decrease central auditory activity, such as hearing loss. Two forms of hearing loss were examined: conductive hearing loss in which the cochleae are not damaged or sensorineural hearing loss in which both cochleae are removed. Both forms of hearing loss were found to reduce significantly the magnitude of inhibitory potentiation. These data indicate that early experience is necessary for the normal development of BDNF-mediated long-lasting inhibitory potentiation, which may be associated with perceptual deficits at later ages.
Collapse
|
15
|
Sanes DH, Bao S. Tuning up the developing auditory CNS. Curr Opin Neurobiol 2009; 19:188-99. [PMID: 19535241 DOI: 10.1016/j.conb.2009.05.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/19/2009] [Accepted: 05/27/2009] [Indexed: 01/05/2023]
Abstract
Although the auditory system has limited information processing resources, the acoustic environment is infinitely variable. To properly encode the natural environment, the developing central auditory system becomes somewhat specialized through experience-dependent adaptive mechanisms that operate during a sensitive time window. Recent studies have demonstrated that cellular and synaptic plasticity occurs throughout the central auditory pathway. Acoustic-rearing experiments can lead to an over-representation of the exposed sound frequency, and this is associated with specific changes in frequency discrimination. These forms of cellular plasticity are manifest in brain regions, such as midbrain and cortex, which interact through feed-forward and feedback pathways. Hearing loss leads to a profound re-weighting of excitatory and inhibitory synaptic gain throughout the auditory CNS, and this is associated with an over-excitability that is observed in vivo. Further behavioral and computational analyses may provide insights into how theses cellular and systems plasticity effects underlie the development of cognitive functions such as speech perception.
Collapse
Affiliation(s)
- Dan H Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, United States.
| | | |
Collapse
|
16
|
Takesian AE, Kotak VC, Sanes DH. Developmental hearing loss disrupts synaptic inhibition: implications for auditory processing. FUTURE NEUROLOGY 2009; 4:331-349. [PMID: 20161214 PMCID: PMC2716048 DOI: 10.2217/fnl.09.5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hearing loss during development leads to central deficits that persist even after the restoration of peripheral function. One key class of deficits is due to changes in central inhibitory synapses, which play a fundamental role in all aspects of auditory processing. This review focuses on the anatomical and physiological alterations of inhibitory connections at several regions within the central auditory pathway following hearing loss. Such aberrant inhibitory synaptic function may be linked to deficits in encoding binaural and spectral cues. Understanding the cellular changes that occur at inhibitory synapses following hearing loss may provide specific loci that can be targeted to improve function.
Collapse
Affiliation(s)
- Anne E Takesian
- Center for Neural Science, New York, University, NY 10003, USA, Tel.: +1 212 998 3914, Fax: +1 212 995 4011,
| | - Vibhakar C Kotak
- Center for Neural Science, New York, University, NY 10003, USA, Tel.: +1 212 998 3916, Fax: +1 212 995 4011,
| | - Dan H Sanes
- Center for Neural Science & Department of Biology, New York, University, NY 10003, USA, Tel.: +1 212 998 3924, Fax: +1 212 998 4348,
| |
Collapse
|
17
|
Malmierca M, Storm-Mathisen J, Cant N, Irvine D. From cochlea to cortex: A tribute to Kirsten Kjelsberg Osen. Neuroscience 2008. [DOI: 10.1016/j.neuroscience.2008.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|