1
|
Llansola M. Preface for the Vicente Felipo Honorary Issue of Neurochemical Research. Neurochem Res 2024; 49:1421-1426. [PMID: 38641758 DOI: 10.1007/s11064-024-04139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Marta Llansola
- Laboratory of Neurobiology, Principe Felipe Research Center, Valencia, Spain.
| |
Collapse
|
2
|
Aluru N, Krick KS, McDonald AM, Karchner SI. Developmental Exposure to PCB153 (2,2',4,4',5,5'-Hexachlorobiphenyl) Alters Circadian Rhythms and the Expression of Clock and Metabolic Genes. Toxicol Sci 2021; 173:41-52. [PMID: 31621872 DOI: 10.1093/toxsci/kfz217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are highly persistent and ubiquitously distributed environmental pollutants. Based on their chemical structure, PCBs are classified into non-ortho-substituted and ortho-substituted congeners. Non-ortho-substituted PCBs are structurally similar to dioxin and their toxic effects and mode of action are well-established. In contrast, very little is known about the effects of ortho-substituted PCBs, particularly, during early development. The objective of this study is to investigate the effects of exposure to an environmentally prominent ortho-substituted PCB (2,2',4,4',5,5'-hexachlorobiphenyl; PCB153) on zebrafish embryos. We exposed zebrafish embryos to 3 different concentrations of PCB153 starting from 4 to 120 hours post-fertilization (hpf). We quantified gross morphological changes, behavioral phenotypes, gene expression changes, and circadian behavior in the larvae. There were no developmental defects during the exposure period, but starting at 7 dpf, we observed spinal deformity in the 10 μM PCB153 treated group. A total of 633, 2227, and 3378 differentially expressed genes were observed in 0.1 μM (0.036 μg/ml), 1 μM (0.36 μg/ml), and 10 μM (3.6 μg/ml) PCB153-treated embryos, respectively. Of these, 301 genes were common to all treatment groups. KEGG pathway analysis revealed enrichment of genes related to circadian rhythm, FoxO signaling, and insulin resistance pathways. Behavioral analysis revealed that PCB153 exposure significantly alters circadian behavior. Disruption of circadian rhythms has been associated with the development of metabolic and neurological diseases. Thus, understanding the mechanisms of action of environmental chemicals in disrupting metabolism and other physiological processes is essential.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Keegan S Krick
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Adriane M McDonald
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543.,Biology Department, Spelman College, Atlanta, Georgia 30314
| | - Sibel I Karchner
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
3
|
Sun X, Zhan F, Yu RQ, Chen L, Wu Y. Bio-accumulation of organic contaminants in Indo-Pacific humpback dolphins: Preliminary unique features of the brain and testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115511. [PMID: 32892017 DOI: 10.1016/j.envpol.2020.115511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
There is little information about the residue levels and congener composition of organic contaminants (OCs) in cetaceans. In the present study, we investigated the polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the blubber, blood, brain and testes of Indo-Pacific humpback dolphins (Sousa chinensis) stranded in the Pearl River Estuary (PRE), China. The lowest blubber/tissue partition coefficients were found for sum hexachlorocyclohexanes (ΣHCHs) and ΣPAHs, while the highest were in ΣPCBs and sum dichlorodiphenyltrichloroethanes (ΣDDTs), likely attributing to the octanol-water partition features. The low levels of OCs in brain and testes theoretically resulted from the blood-brain barrier, blood-testes barrier, contaminant molecule dimensions and unique lipid compositions in the brain and testes. Compared with other contaminants, the higher mean brain/blood and testes/blood partition coefficients found for mirex, heptachlor, dieldrin and endrin would increase the risks associated with exposure-related toxicity and the bioavailability of contaminants within these tissues. Observations also suggest that as lipid mobilizes from blubber, contaminants may redistribute, leading to elevated tissue (such as brain) concentrations. Therefore, dolphins with less blubber may be more susceptible to health risks. The Indo-Pacific humpback dolphins living in PRE are at great risk due to variety of OCs in indirect contact with non-target organisms, affecting the health of animals (toxic effects and accumulation). Our findings contribute to the knowledge of the potential effects of OCs exposure on developmental neurotoxicity and reproductive damage in marine mammals.
Collapse
Affiliation(s)
- Xian Sun
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fengping Zhan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, 75799, USA
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yuping Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Tarazona S, Bernabeu E, Carmona H, Gómez-Giménez B, García-Planells J, Leonards PEG, Jung S, Conesa A, Felipo V, Llansola M. A Multiomics Study To Unravel the Effects of Developmental Exposure to Endosulfan in Rats: Molecular Explanation for Sex-Dependent Effects. ACS Chem Neurosci 2019; 10:4264-4279. [PMID: 31464424 DOI: 10.1021/acschemneuro.9b00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to low levels of environmental contaminants, including pesticides, induces neurodevelopmental toxicity. Environmental and food contaminants can reach the brain of the fetus, affecting brain development and leading to neurological dysfunction. The pesticide endosulfan is a persistent pollutant, and significant levels still remain detectable in the environment although its use is banned in some countries. In rats, endosulfan exposure during brain development alters motor activity, coordination, learning, and memory, even several months after uptake, and does so in a sex-dependent way. However, the molecular mechanisms driving these effects have not been studied in detail. In this work, we performed a multiomics study in cerebellum from rats exposed to endosulfan during embryonic development. Pregnant rats were orally exposed to a low dose (0.5 mg/kg) of endosulfan, daily, from gestational day 7 to postnatal day 21. The progeny was evaluated for cognitive and motor functions at adulthood. Expression of messenger RNA and microRNA genes, as well as protein and metabolite levels, were measured on cerebellar samples from males and females. An integrative analysis was conducted to identify altered processes under endosulfan effect. Effects between males and females were compared. Pathways significantly altered by endosulfan exposure included the phosphatidylinositol signaling system, calcium signaling, the cGMP-PKG pathway, the inflammatory and immune system, protein processing in the endoplasmic reticulum, and GABA and taurine metabolism. Sex-dependent effects of endosulfan in the omics results that matched sex differences in cognitive and motor tests were found. These results shed light on the molecular basis of impaired neurodevelopment and contribute to the identification of new biomarkers of neurotoxicity.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Elena Bernabeu
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Héctor Carmona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Belén Gómez-Giménez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Javier García-Planells
- IMEGEN, Instituto de Medicina Genómica, S.L. Parc Científic de la Universitat de València, 46980 Paterna, Spain
| | - Pim E. G. Leonards
- Department of Environment & Health, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Stephan Jung
- Proteome Sciences R&D GmbH & Co. KG, 60438 Frankfurt, Germany
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32603, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32603, United States
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
5
|
Lasley SM. The Use of Intracerebral Microdialysis to Elucidate Environmentally Induced Neurotoxic Mechanisms. CURRENT PROTOCOLS IN TOXICOLOGY 2019; 80:e72. [PMID: 30939232 PMCID: PMC6615941 DOI: 10.1002/cptx.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The technique of microdialysis permits the assessment of neurotransmitter activity and the monitoring of other cellular entities in tissue extracellular fluid. The method is widely used for quantifying biogenic amine and amino acid transmitters, peptides, administered drugs, and other molecules in response to various experimental treatments. This article provides an overview of the manner in which the methodology of intracerebral microdialysis is utilized in the field of neurotoxicology to elucidate the actions of environmental agents. The technique is employed in a variety of creative ways to address specific experimental goals involving myriad toxicants. With appropriate consideration of method parameters, investigators have also been able to address mechanistic issues in their studies. These investigations consist of sampling of neurotransmitters in extracellular fluid after various protocols of environmental metal exposure as well as assessments of blood-brain barrier permeability, the detection of reactive oxygen species, and description of the toxicodynamics of environmental agents. The purpose of this examination is not to review the investigational findings, per se, but to highlight the various approaches utilized with this methodology and the experimental questions that have been addressed. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Stephen M Lasley
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, Illinois
| |
Collapse
|
6
|
Gartstein MA, Skinner MK. Prenatal influences on temperament development: The role of environmental epigenetics. Dev Psychopathol 2018; 30:1269-1303. [PMID: 29229018 PMCID: PMC5997513 DOI: 10.1017/s0954579417001730] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review summarizes current knowledge and outlines future directions relevant to questions concerning environmental epigenetics and the processes that contribute to temperament development. Links between prenatal adversity, epigenetic programming, and early manifestations of temperament are important in their own right, also informing our understanding of biological foundations for social-emotional development. In addition, infant temperament attributes represent key etiological factors in the onset of developmental psychopathology, and studies elucidating their prenatal foundations expand our understanding of developmental origins of health and disease. Prenatal adversity can take many forms, and this overview is focused on the environmental effects of stress, toxicants, substance use/psychotropic medication, and nutrition. Dysregulation associated with attention-deficit/hyperactivity-disruptive disorders was noted in the context of maternal substance use and toxicant exposures during gestation, as well as stress. Although these links can be made based on the existing literature, currently few studies directly connect environmental influences, epigenetic programming, and changes in brain development/behavior. The chain of events starting with environmental inputs and resulting in alterations to gene expression, physiology, and behavior of the organism is driven by epigenetics. Epigenetics provides the molecular mechanism of how environmental factors impact development and subsequent health and disease, including early brain and temperament development.
Collapse
Affiliation(s)
- Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA-99164-4820, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA-99164-4236, USA
| |
Collapse
|
7
|
Olguín N, Müller ML, Rodríguez-Farré E, Suñol C. Neurotransmitter amines and antioxidant agents in neuronal protection against methylmercury-induced cytotoxicity in primary cultures of mice cortical neurons. Neurotoxicology 2018; 69:278-287. [PMID: 30075218 DOI: 10.1016/j.neuro.2018.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022]
Abstract
Methylmercury (MeHg) is an environmental toxicant with detrimental effects on the developing brain and adult nervous system. The main mechanisms identified include oxidative stress, changes in intracellular calcium, mitochondrial changes, inhibition of glutamate uptake, of protein synthesis and disruption of microtubules. However, little is known about mechanisms of protection against MeHg neurotoxicity. We found that resveratrol (10 μM) and ascorbic acid (200 μM) protected MeHg-induced cell death in primary cultures of cortical neurons. In this work, we aimed at finding additional targets that may be related to MeHg mode of action in cell toxicity with special emphasis in cell protection. We wonder whether neurotransmitters may affect the MeHg effects on neuronal death. Our findings show that neurons exposed to low MeHg concentrations exhibit less mortality if co-exposed to 10 μM dopamine (DA). However, DA metabolites, HVA (homovanillic acid) and DOPAC (3,4-dihydroxyphenylacetic acid) are not responsible for such protection. Furthermore, both DA D1 and D2 receptors agonists showed a protective effect against MeHg toxicity. It is striking though that DA receptor antagonists SKF83566 (10 μM) and haloperidol (10 μM) did not inhibit DA protection against MeHg. In addition, the protective effect of 10 μM DA against MeHg-induced toxicity was not affected by additional organochlorine pollutants exposure. Our results also demonstrate that cells exposed to MeHg in presence of 100 μM acetylcholine (ACh), show an increase in cell mortality at the "threshold value" of 100 nM MeHg. Finally, norepinephrine (10 μM) and serotonin (20 μM) also had an effect on cell protection. Altogether, we propose to further investigate the additional mechanisms that may be playing an important role in MeHg-induced cytotoxicity.
Collapse
Affiliation(s)
- Nair Olguín
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC - IDIBAPS, CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marie-Lena Müller
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC - IDIBAPS, CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Eduard Rodríguez-Farré
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC - IDIBAPS, CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Cristina Suñol
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC - IDIBAPS, CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| |
Collapse
|
8
|
Dingemans MML, Kock M, van den Berg M. Mechanisms of Action Point Towards Combined PBDE/NDL-PCB Risk Assessment. Toxicol Sci 2018; 153:215-24. [PMID: 27672163 DOI: 10.1093/toxsci/kfw129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
At present, human risk assessment of the structurally similar non-dioxin-like (NDL) PCBs and polybrominated diphenylethers (PBDEs) is done independently for both groups of compounds. There are however obvious similarities between NDL-PCBs and PBDEs with regard to modulation of the intracellular calcium homeostasis (basal calcium levels, voltage-gated calcium channels, calcium uptake, ryanodine receptor) and thyroid hormone (TH) homeostasis (TH levels and transport). which are mechanisms of action related to neurobehavioral effects (spontaneous activity, habituation and learning ability). There also similarities in agonistic interactions with the hepatic nuclear receptors PXR and CAR. Several effects on developmental (reproductive) processes have also been observed, but results were more dispersed and insufficient to compare both groups of compounds. The available mechanistic information is sufficient to warrant a dose addition model for NDL-PCBs and PBDEs, including their hydroxylated metabolites.Although many of the observed effects are similar from a qualitative point of view for both groups, congener or tissue specific differences have also been found. As this is a source of uncertainty in the combined hazard and risk assessment of these compounds, molecular entities involved in the observed mechanisms and adverse outcomes associated with these compounds need to be identified. The systematical generation of (quantitative) structure-activity information for NDL-PCBs and PBDEs on these targets (including potential non-additive effects) will allow a more realistic risk estimation associated with combined exposure to both groups of compounds during early life. Additional validation studies are needed to quantify these uncertainties for risk assessment of NDL-PCBs and PBDEs.
Collapse
Affiliation(s)
- Milou M L Dingemans
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marjolijn Kock
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin van den Berg
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Gómez-Giménez B, Llansola M, Cabrera-Pastor A, Hernández-Rabaza V, Agustí A, Felipo V. Endosulfan and Cypermethrin Pesticide Mixture Induces Synergistic or Antagonistic Effects on Developmental Exposed Rats Depending on the Analyzed Behavioral or Neurochemical End Points. ACS Chem Neurosci 2018; 9:369-380. [PMID: 29094921 DOI: 10.1021/acschemneuro.7b00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Exposure to pesticides has been associated with neurodevelopmental toxicity. Usually people are exposed to mixtures of pesticides. However, most studies analyze the effects of individual pesticides. Developmental exposure to mixtures of pesticides may result in additive effects or in antagonistic or synergistic effects. The aim of this work was to compare the effects of developmental exposure of rats to cypermethrin or endosulfan with the effects of its mixture on cognitive and motor function and on some underlying mechanisms. Exposure to individual pesticides or the mixture was from gestational day 7 to postnatal day 21. We analyzed the effects, in males and females, on spatial learning and memory, associative learning, anxiety, motor coordination, and spontaneous motor activity. We also analyzed neuroinflammation and NMDA receptor subunits in hippocampus and extracellular GABA in cerebellum. Exposure to the mixture, but not to individual pesticides, impaired spatial memory in males, associative learning in females, and increased motor activity in males and females. This indicates a synergistic effect of cypermethrin and endolsufan exposure on these end points. In contrast, motor coordination was impaired by individual exposure to endosulfan or cypermethrin, associated with increased extracellular GABA in cerebellum, but these effects were prevented in rats exposed to the mixture, indicating an antagonistic effect of cypermethrin and endolsufan exposure on these end points. The results show different interaction modes (synergism or antagonism) of the pesticides, depending on the end point analyzed and the sex of the rats.
Collapse
Affiliation(s)
- Belén Gómez-Giménez
- Laboratorio
de Neurobiología, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Marta Llansola
- Laboratorio
de Neurobiología, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Andrea Cabrera-Pastor
- Laboratorio
de Neurobiología, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Vicente Hernández-Rabaza
- Laboratorio
de Neurobiología, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
- Department
of Biomedical Sciences, Cardenal Herrera University-CEU, CEU Universities, Avda del Pozo s/n, Alfara del Patriarca 46115, Spain
| | - Ana Agustí
- Laboratorio
de Neurobiología, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Vicente Felipo
- Laboratorio
de Neurobiología, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| |
Collapse
|
10
|
Ballester F, Iñiguez C, Murcia M, Guxens M, Basterretxea M, Rebagliato M, Vioque J, Lertxundi A, Fernandez-Somoano A, Tardon A, Sunyer J, Llop S. Prenatal exposure to mercury and longitudinally assessed fetal growth: Relation and effect modifiers. ENVIRONMENTAL RESEARCH 2018; 160:97-106. [PMID: 28968527 DOI: 10.1016/j.envres.2017.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/06/2017] [Accepted: 09/16/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Prenatal mercury exposure has been related to reductions in anthropometry at birth. Levels of mercury have been reported as being relatively elevated in the Spanish population. OBJECTIVE To investigate the relation between prenatal exposure to mercury and fetal growth. METHODS Study subjects were pregnant women and their newborns (n:1867) participating in a population-based birth cohort study set up in four Spanish regions from the INMA Project. Biparietal diameter (BPD), femur length (FL), abdominal circumference (AC), and estimated fetal weight (EFW) were measured by ultrasounds at 12, 20, and 34 weeks of gestation. Size at and growth between these points were assessed by standard deviation (SD) scores adjusted for constitutional characteristics. Total mercury (T-Hg) was determined in cord blood. Associations were investigated by linear regression models, adjusted by sociodemographic, environmental, nutritional - including four seafood groups - and lifestyle-related variables in each sub-cohort. Final estimates were obtained using meta-analysis. Effect modification by sex, seafood intake and polychlorinated biphenyl (PCB) congener 153 concentration was assessed. RESULTS Geometric mean of cord blood T-Hg was 8.2μg/L. All the estimates of the association between prenatal Hg and growth from 0 to 12 weeks showed reductions in SD-scores, which were only statistically significant for BPD. A doubling of cord blood T-Hg was associated with a 0.58% reduction in size of BPD at week 12 (95% confidence interval -CI-: - 1.10, - 0.07). Size at week 34 showed estimates suggestive of a small reduction in EFW, i.e., a doubling of T-Hg levels was associated with a reduction of 0.38% (95% CI: - 0.91, 0.15). An interaction between PCB153 and T-Hg was found, with statistically significant negative associations of T-Hg with AC and EFW in late pregnancy among participants with PCB153 below the median. CONCLUSIONS Exposure to mercury during pregnancy was associated with early reductions in BPD. Moreover, an antagonism with PCB 153 was observed with noteworthy reductions late in pregnancy in AC and EFW in the group with lower PCB153.
Collapse
Affiliation(s)
- Ferran Ballester
- Nursing School, Universitat de València, Valencia, Spain; FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain.
| | - Carmen Iñiguez
- FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Mario Murcia
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Mikel Basterretxea
- Public Health Division of Gipuzkoa, San Sebastián, Spain; Health Research Institute (BIODONOSTIA), San Sebastián, Spain
| | - Marisa Rebagliato
- FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Medicine Department, Universitat Jaume I, Castelló de la Plana, Spain
| | - Jesús Vioque
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universidad del País Vasco, Spain
| | - Ana Fernandez-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; IUOPA, Departamento de Medicina, Universidad de Oviedo, Spain
| | - Adonina Tardon
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Jordi Sunyer
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Sabrina Llop
- FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
11
|
Gandhi N, Drouillard KG, Arhonditsis GB, Gewurtz SB, Bhavsar SP. Are Fish Consumption Advisories for the Great Lakes Adequately Protective against Chemical Mixtures? ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:586-593. [PMID: 27697747 PMCID: PMC5381969 DOI: 10.1289/ehp104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/24/2016] [Accepted: 07/12/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND The North American Great Lakes are home to > 140 types of fish and are famous for recreational and commercial fishing. However, the presence of toxic substances has resulted in the issuance of fish consumption advisories that are typically based on the most restrictive contaminant. OBJECTIVES We investigated whether these advisories, which typically neglect the existence of a mixture of chemicals and their possible additive adverse effects, are adequately protective of the health of humans consuming fish from the Canadian waters of the Great Lakes. METHODS Using recent fish contaminant monitoring data collected by the government of Ontario, Canada, we simulated advisories using most-restrictive-contaminant (one-chem) and multi-contaminant additive effect (multi-chem) approaches. The advisories from the two simulations were compared to determine if there is any deficiency in the currently issued advisories. RESULTS Approximately half of the advisories currently issued are potentially not adequately protective. Of the four Great Lakes studied, the highest percentage of advisories affected are in Lake Ontario if an additive effect is considered. Many fish that are popular for consumption, such as walleye, salmon, bass and trout, would have noticeably more stringent advisories. CONCLUSIONS Improvements in the advisories may be needed to ensure that the health of humans consuming fish from the Great Lakes is protected. In this region, total polychlorinated biphenyls (PCBs) and mercury are the major contaminants causing restrictions on consuming fish, whereas dioxins/furans, toxaphene, and mirex/photomirex are of minor concern. Regular monitoring of most organochlorine pesticides and metals in fish can be discontinued.
Collapse
Affiliation(s)
- Nilima Gandhi
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ken G. Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - George B. Arhonditsis
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sarah B. Gewurtz
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Satyendra P. Bhavsar
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Cabrera-Pastor A, Malaguarnera M, Taoro-Gonzalez L, Llansola M, Felipo V. Extracellular cGMP Modulates Learning Biphasically by Modulating Glycine Receptors, CaMKII and Glutamate-Nitric Oxide-cGMP Pathway. Sci Rep 2016; 6:33124. [PMID: 27634333 PMCID: PMC5025658 DOI: 10.1038/srep33124] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/22/2016] [Indexed: 01/06/2023] Open
Abstract
It has been proposed that extracellular cGMP modulates the ability to learn a Y maze task, but the underlying mechanisms remained unknown. Here we show that extracellular cGMP, at physiological concentrations, modulates learning in the Y maze in a biphasic way by modulating the glutamate-nitric oxide-cGMP pathway in cerebellum. Extracellular cGMP reduces glycine receptors activation inducing a voltage-dependent calcium-channels-mediated increase of calcium in Purkinje neurons. This calcium increase modulates CaMKII phosphorylation in a biphasic way. When basal calcium concentration is low extracellular cGMP reduces CaMKII phosphorylation, increasing nitric oxide synthase activity, the glutamate-NO-cGMP pathway function and learning ability. When basal calcium is normal extracellular cGMP increases CaMKII phosphorylation, reducing nitric oxide synthase activity, the pathway function and learning. These data unveil new mechanisms modulating learning in the Y maze and likely other learning types which may be therapeutic targets to improve learning in pathological situations associated with altered cGMP levels.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Michele Malaguarnera
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Marta Llansola
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| |
Collapse
|
13
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1338] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
14
|
Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy. Neurochem Int 2014; 88:15-9. [PMID: 25447766 DOI: 10.1016/j.neuint.2014.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/11/2014] [Accepted: 10/29/2014] [Indexed: 12/13/2022]
Abstract
The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy.
Collapse
|
15
|
Pellacani C, Tagliaferri S, Caglieri A, Goldoni M, Giordano G, Mutti A, Costa LG. Synergistic interactions between PBDEs and PCBs in human neuroblastoma cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:418-27. [PMID: 22434561 DOI: 10.1002/tox.21768] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 05/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants. Exposure to these chemicals has been associated with developmental neurotoxicity, endocrine dysfunction, and reproductive disorders. Humans and wildlife are generally exposed to a mixture of these environmental pollutants, highlighting the need to evaluate the potential effects of combined exposures. In this study, we investigated the cytotoxic effects of the combined exposure to two PBDEs and two PCBs in a human neuronal cell line. 2,2',4,4'-Tetrabromodiphenyl ether, 2,2',4,4',5-pentabromodiphenyl ether, PCB-126 (3,3',4,4',5-pentachlorobiphenyl; a dioxin-like PCB), and PCB-153 (2,2',4,4',5,5'-hexachlorobiphenyl; a non-dioxin-like PCB) were chosen, because their concentrations are among the highest in human tissues and the environment. The results suggest that the nature of interactions is related to the PCB structure. Mixtures of PCB-153 and both PBDEs had a prevalently synergistic effect. In contrast, mixtures of each PBDE congener with PCB-126 showed additive effects at threshold concentrations, and synergistic effects at higher concentrations. These results emphasize the concept that the toxicity of xenobiotics may be affected by possible interactions, which may be of significance given the common coexposures to multiple contaminants.
Collapse
Affiliation(s)
- C Pellacani
- Department of Human Anatomy, Pharmacology, and Forensic Sciences, University of Parma Medical School, Via Volturno 39, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Gonzalez-Usano A, Cauli O, Agusti A, Felipo V. Pregnenolone sulfate restores the glutamate-nitric-oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. ACS Chem Neurosci 2014; 5:100-5. [PMID: 24256194 PMCID: PMC3930995 DOI: 10.1021/cn400168y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
Around 40% of cirrhotic patients show minimal hepatic encephalopathy (MHE), with mild cognitive impairment which reduces their quality of life and life span. Treatment of MHE is unsatisfactory, and there are no specific treatments for the neurological alterations in MHE. Hyperammonemia is the main contributor to neurological alterations in MHE. New agents acting on molecular targets involved in brain mechanisms leading to neurological alterations are needed to treat MHE. Chronic hyperammonemia impairs learning of a Y-maze task by impairing the glutamate-nitric-oxide (NO)-cGMP pathway in cerebellum, in part by enhancing GABA(A) receptor activation, which also induces motor in-coordination. Acute pregnenolone sulfate (PregS) restores the glutamate-NO-cGMP pathway in hyperammonemic rats. This work aimed to assess whether chronic treatment of hyperammonemic rats with PregS restores (1) motor coordination; (2) extracellular GABA in cerebellum; (3) learning of the Y-maze task; (4) the glutamate-NO-cGMP pathway in cerebellum. Chronic intracerebral administration of PregS normalizes motor coordination likely due to extracellular GABA reduction. PregS restores learning ability by restoring the glutamate-NO-cGMP pathway, likely due to both enhanced NMDA receptor activation and reduced GABA(A) receptor activation. Similar treatments would improve cognitive and motor alterations in patients with MHE.
Collapse
Affiliation(s)
- Alba Gonzalez-Usano
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Omar Cauli
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Ana Agusti
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| |
Collapse
|
17
|
Influence of prenatal exposure to environmental pollutants on human cord blood levels of glutamate. Neurotoxicology 2013; 40:102-10. [PMID: 24361731 DOI: 10.1016/j.neuro.2013.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/21/2022]
Abstract
Some chemicals released into the environment, including mercury and some organochlorine compounds (OCs), are suspected to have a key role on subclinical brain dysfunction in childhood. Alteration of the glutamatergic system may be one mechanistic pathway. We aimed to determine whether mercury and seven OCs, including PCBs 138, 153, and 180, DDT and DDE, hexachlorobenzene (HCB), and beta-hexachlorocyclohexane (β-HCH) influence the cord levels of two excitatory amino acids, glutamate and aspartate. Second, we evaluated if this association was mediated by glutamate uptake measured in human placental membranes. The study sample included 40 newborns from a Spanish cohort selected according to cord mercury levels. We determined the content of both amino acids in cord blood samples by means of HPLC and assessed their associations with the contaminants using linear regression analyses, and the effect of the contaminants on glutamate uptake by means of [(3)H]-aspartate binding in human placenta samples. PCB138, β-HCH, and the sum of the three PCBs and seven OCs showed a significant negative association with glutamate levels (decrease of 51, 24, 56 and 54%, respectively, in glutamate levels for each 10-fold increase in the contaminant concentration). Mercury did not show a significant correlation neither with glutamate nor aspartate levels in cord blood, however a compensatory effect between T-Hg and both PCB138, and 4,4'-DDE was observed. The organo-metallic derivative methylmercury completely inhibited glutamate uptake in placenta while PCB138 and β-HCH partially inhibited it (IC50 values: 4.9±0.8 μM, 14.2±1.2 nM and 6.9±2.9 nM, respectively). We conclude that some environmental toxicants may alter the glutamate content in the umbilical cord blood, which might underlie alterations in human development.
Collapse
|
18
|
Cauli O, Piedrafita B, Llansola M, Felipo V. Gender differential effects of developmental exposure to methyl-mercury, polychlorinated biphenyls 126 or 153, or its combinations on motor activity and coordination. Toxicology 2013; 311:61-8. [DOI: 10.1016/j.tox.2012.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/15/2012] [Accepted: 11/27/2012] [Indexed: 11/17/2022]
|
19
|
De Boever P, Wens B, Boix J, Felipo V, Schoeters G. Perinatal Exposure to Purity-Controlled Polychlorinated Biphenyl 52, 138, or 180 Alters Toxicogenomic Profiles in Peripheral Blood of Rats after 4 Months. Chem Res Toxicol 2013; 26:1159-67. [DOI: 10.1021/tx300510v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Patrick De Boever
- Unit Environmental Risk and
Health, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek,
Belgium
| | - Britt Wens
- Unit Environmental Risk and
Health, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol, Belgium
| | - Jordi Boix
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Avenida
Autopista del Saler 16, 46012 Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Avenida
Autopista del Saler 16, 46012 Valencia, Spain
| | - Greet Schoeters
- Unit Environmental Risk and
Health, Flemish Institute for Technological Research (VITO), Industriezone Vlasmeer 7, 2400 Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp,
Belgium
- Department of Environmental
Medicine, University of Southern Denmark, J.B. Winslowsvej 17A, 5100 Odense, Denmark
| |
Collapse
|
20
|
Gandhi DN, Panchal GM, Dhull DK. Influence of Gestational Exposure on the Effects of Prenatal Exposure to Methyl Mercury on Postnatal Development in Rat: a Preliminary Evaluation. Cent Eur J Public Health 2013; 21:30-5. [DOI: 10.21101/cejph.a3773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Hassauer M, Kaiser E, Schneider K, Schuhmacher‐Wolz U. Collate the literature on toxicity data on mercury in experimental animals and humans (Part I – Data on organic mercury). ACTA ACUST UNITED AC 2012. [DOI: 10.2903/sp.efsa.2012.en-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Hassauer
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Eva Kaiser
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Klaus Schneider
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | | |
Collapse
|
22
|
Forns J, Torrent M, Garcia-Esteban R, Grellier J, Gascon M, Julvez J, Guxens M, Grimalt JO, Sunyer J. Prenatal exposure to polychlorinated biphenyls and child neuropsychological development in 4-year-olds: an analysis per congener and specific cognitive domain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 432:338-43. [PMID: 22750179 DOI: 10.1016/j.scitotenv.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 05/22/2023]
Abstract
Polychlorinated biphenyls (PCB) are synthetic organochlorine compounds with potential neurotoxic effects. Although negative effects on neuropsychological development have been observed in previous studies on PCB exposure, there are inconsistencies in these effects at current exposure levels of these compounds which are much lower than for previous generations. This study aimed to disentangle the effects of prenatal and postnatal PCB exposure on neuropsychological development at 4 years of age. This study is based on a population-based birth cohort design established in Menorca (Spain) as part of the INMA [Environment and Childhood] Project. We assessed general neuropsychological development using the McCarthy Scales of Children's Abilities (MCSA). A total of 422 4-year old children were assessed with the MCSA. Levels of PCBs were measured in cord blood (n=405) and in blood samples taken at 4 years (n=285). We found no statistically significant effects of the sum of prenatal PCBs on MCSA scores. Nevertheless, individual congener analyses yielded significant detrimental effects of prenatal PCB153 on the majority of MCSA scores, while no effects were reported for other congeners. The levels of PCBs at 4 years of age were not associated with neuropsychological development. Thus, prenatal exposure to low-level concentrations of PCBs, particularly PCB153, was associated with an overall deleterious effect on neuropsychological development at 4 years of age, including negative effects on executive function, verbal functions and visuospatial abilities, but not on motor development.
Collapse
Affiliation(s)
- Joan Forns
- Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, 08003 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boix J, Cauli O. Alteration of serotonin system by polychlorinated biphenyls exposure. Neurochem Int 2012; 60:809-16. [PMID: 22426201 DOI: 10.1016/j.neuint.2012.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/18/2012] [Accepted: 03/03/2012] [Indexed: 11/27/2022]
Abstract
Although commercial production of polychlorinated biphenyls (PCBs) was banned in 1979, PCBs continue to be an environmental and health concern due to their high bioaccumulation and slow degradation rates. In fact, PCBs are still present in our food supply (fish, meat, and dairy products). In laboratory animals, exposure to single PCB congener or to mixtures of different congeners induces a variety of physiological alterations. PCBs cross the placenta and even exposure at low level is harmful for the foetus by leading to neurodevelopment alterations. Serotonin system which regulates many physiological functions from platelet activation to high cerebral processes and neurodevelopment is one of the targets of PCBs toxicity. The effects of PCBs exposure on serotonin system have been investigated although to a lesser extent compared to its effect in other neurotransmitter systems. This review provides a summary of the results concerning the impact of PCBs exposure (in vitro and in vivo) on serotonin system. Further research is needed to correlate specific deficits with PCB-induced changes in the serotonin system.
Collapse
Affiliation(s)
- Jordi Boix
- Physiology Department, Otago School of Medical Science, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
24
|
Cabrera-Pastor A, Llansola M, Reznikov V, Boix J, Felipo V. Differential effects of chronic hyperammonemia on modulation of the glutamate-nitric oxide-cGMP pathway by metabotropic glutamate receptor 5 and low and high affinity AMPA receptors in cerebellum in vivo. Neurochem Int 2012; 61:63-71. [PMID: 22521775 DOI: 10.1016/j.neuint.2012.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/27/2012] [Accepted: 04/05/2012] [Indexed: 01/06/2023]
Abstract
Previous studies show that chronic hyperammonemia impairs learning ability of rats by impairing the glutamate-nitric oxide (NO)-cyclic guanosine mono-phosphate (cGMP) pathway in cerebellum. Three types of glutamate receptors cooperate in modulating the NO-cGMP pathway: metabotropic glutamate receptor 5 (mGluR5), (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptors. The aim of this work was to assess whether hyperammonemia alters the modulation of this pathway by mGluR5 and AMPA receptors in cerebellum in vivo. The results support that in control rats: (1) low AMPA concentrations (0.1mM) activate nearly completely Ca(2+)-permeable (glutamate receptor subunit 2 (GluR2)-lacking) AMPA receptors and the NO-cGMP pathway; (2) higher AMPA concentrations (0.3 mM) also activate Ca(2+)-impermeable (GluR2-containing) AMPA receptors, leading to activation of NMDA receptors and of NO-cGMP pathway. Moreover, the data support that chronic hyperammonemia: (1) reduces glutamate release and activation of the glutamate-NO-cGMP pathway by activation of mGluR5; (2) strongly reduces the direct activation by AMPA receptors of the NO-cGMP pathway, likely due to reduced entry of Ca(2+) through GluR2-lacking, high affinity AMPA receptors; (3) strongly increases the indirect activation of the NO-cGMP pathway by high affinity AMPA receptors, likely due to increased entry of Na(+) through GluR2-lacking AMPA receptors and NMDA receptors activation; (4) reduces the indirect activation of the NO-cGMP pathway by low affinity AMPA receptors, likely due to reduced activation of NMDA receptors.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Av. Autopista del Saler, 16, 46012 Valencia, Spain.
| | | | | | | | | |
Collapse
|
25
|
Berg K, Puntervoll P, Klungsøyr J, Goksøyr A. Brain proteome alterations of Atlantic cod (Gadus morhua) exposed to PCB 153. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:206-217. [PMID: 21762652 DOI: 10.1016/j.aquatox.2011.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 05/31/2023]
Abstract
Polychlorinated biphenyls (PCBs) are still widespread environmental pollutants that bioaccumulate and biomagnify in the aquatic food chains despite the ban on their production. They constitute a class of 209 possible congeners with different chlorination pattern of the biphenyl ring structure resulting in many different toxicities and mechanisms of toxicity. The neurotoxicity of PCBs is relatively poorly understood, and biomarkers for their neurotoxic effects are lacking. We have carried out a proteomic analysis of brain tissue from Atlantic cod (Gadus morhua) exposed to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153, ortho-substituted and non-coplanar), a previously demonstrated neurotoxic congener and the most prevalent congener in biological samples. The fish received 0, 0.5, 2 and 8 mg/kg PCB 153 by intraperitoneal injection, half of the dose on the first day and the second half after one week, and were exposed for two weeks in total. Using a 2-DE approach we found 56 protein spots to be 20% or more (≤ 0.8-fold or ≥ 1.2-fold) significantly different between at least one of the three PCB 153-exposed groups and the control group, and 27 of these were identified by MALDI-TOF MS and MS/MS. Approximately 80% of the differentially regulated proteins may be associated with a non stressor-specific response and/or have previously been classified as notoriously differentially regulated in 2-DE/MS based proteomics studies, such as alterations/responses in energy metabolism, cytoskeleton, protein synthesis, protein degradation (ubiquitin-proteasome system), cellular growth, cycle and death (14-3-3 protein), and (surprisingly) axon guidance (dihydropyrimidinase-like 2 (=collapsin response mediator protein 2, CRMP-2)). The six remaining affected proteins include the strongest up-regulated protein, pyridoxal kinase (essential for synthesis of neurotransmitters such as dopamine, serotonin and GABA), nicotinamide phosphoribosyl-transferase (involved in protection against axonal degeneration) and protein phosphatase 1 (controls brain recovery by synaptic plasticity). The last three of these six proteins (deltex, Rab14 and sorting nexin 6) may preliminarily identify involvement of the Notch signaling pathway and endosomal function in PCB 153-induced neurotoxicity. Our findings constitute novel clues for further research on PCB 153 mode of action in brain, and a proper selection of proteins may, following validation, be applicable in a panel of biomarkers for aquatic environmental monitoring.
Collapse
Affiliation(s)
- Karin Berg
- Department of Molecular Biology, University of Bergen, PB 7803, N-5020 Bergen, Norway.
| | | | | | | |
Collapse
|
26
|
Tofighi R, Wan Ibrahim WN, Rebellato P, Andersson PL, Uhlén P, Ceccatelli S. Non-dioxin-like polychlorinated biphenyls interfere with neuronal differentiation of embryonic neural stem cells. Toxicol Sci 2011; 124:192-201. [PMID: 21908764 DOI: 10.1093/toxsci/kfr221] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Developmental exposure to food contaminants, such as polychlorinated biphenyls (PCBs), has been considered as a possible cause of neurodevelopmental disorders. We have investigated the effects of noncytotoxic concentrations of PCBs 153 and 180 on spontaneous differentiation of rat embryonic neural stem cells (NSCs). Upon removal of basic fibroblast growth factor to induce spontaneous differentiation, cells were exposed to 100 nM of the selected PCBs for 48 h and analyzed after 5 days. Both PCBs 153 and 180 induced a significant increase in the number of neurite-bearing Tuj1-positive cells with a concomitant decrease in proliferating cells, as detected by FUCCI transfection and EdU staining. Measurements of spontaneous Ca²⁺ oscillations showed a decreased number of cells with Ca²⁺ activity after PCB exposure, further confirming the increase in neuronal cells. Conversely, exposure to methylmercury (MeHg), which we evaluated in parallel, led to an increased number of cells with Ca²⁺ activity, in agreement with the previously observed inhibition of neuronal differentiation. Analysis with quantitative PCR of the Notch pathway revealed that PCBs have a repressive action on Notch signaling, whereas MeHg activates it. Altogether, the data indicate that nanomolar concentrations of the selected non-dioxin-like PCBs and MeHg interfere in opposite directions with neuronal spontaneous differentiation of NSCs through Notch signaling. Combined exposures to PCBs and MeHg resulted in an induction of apoptosis and an antagonistic interaction on spontaneous neuronal differentiation. NSCs are further proven to be a valuable in vitro model to identify potential developmental neurotoxicants.
Collapse
Affiliation(s)
- Roshan Tofighi
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Johansen EB, Knoff M, Fonnum F, Lausund PL, Walaas SI, Wøien G, Sagvolden T. Postnatal exposure to PCB 153 and PCB 180, but not to PCB 52, produces changes in activity level and stimulus control in outbred male Wistar Kyoto rats. Behav Brain Funct 2011; 7:18. [PMID: 21615898 PMCID: PMC3126714 DOI: 10.1186/1744-9081-7-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 05/26/2011] [Indexed: 12/28/2022] Open
Abstract
Background Polychlorinated biphenyls (PCBs) are a class of organic compounds that bioaccumulate due to their chemical stability and lipophilic properties. Humans are prenatally exposed via trans-placental transfer, through breast milk as infants, and through fish, seafood and fatty foods as adolescents and adults. Exposure has several reported effects ranging from developmental abnormalities to cognitive and motor deficiencies. In the present study, three experimental groups of rats were orally exposed to PCBs typically found in human breast milk and then behaviorally tested for changes in measures of stimulus control (percentage lever-presses on the reinforcer-producing lever), activity level (responses with IRTs > 0.67 s), and responses with short IRTs (< 0.67 s). Methods Male offspring from Wistar Kyoto (WKY/NTac) dams purchased pregnant from Taconic Farms (Germantown, NY) were orally given PCB at around postnatal day 8, 14, and 20 at a dose of 10 mg/kg body weight at each exposure. Three experimental groups were exposed either to PCB 52, PCB 153, or PCB 180. A fourth group fed corn oil only served as controls. From postnatal day 25, for 33 days, the animals were tested for behavioral changes using an operant procedure. Results PCB exposure did not produce behavioral changes during training when responding was frequently reinforced using a variable interval 3 s schedule. When correct responses were reinforced on a variable interval 180 s schedule, animals exposed to PCB 153 or PCB 180 were less active than controls and animals exposed to PCB 52. Stimulus control was better in animals exposed to PCB 180 than in controls and in the PCB 52 group. Also, the PCB 153 and PCB 180 groups had fewer responses with short IRTs than the PCB 52 group. No effects of exposure to PCB 52 were found when compared to controls. Conclusions Exposure to PCBs 153 and 180 produced hypoactivity that continued at least five weeks after the last exposure. No effects of exposure to PCB 52 were observed.
Collapse
Affiliation(s)
- Espen Borgå Johansen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
28
|
Daubié S, Bisson JF, Lalonde R, Schroeder H, Rychen G. Neurobehavioral and physiological effects of low doses of polybrominated diphenyl ether (PBDE)-99 in male adult rats. Toxicol Lett 2011; 204:57-63. [PMID: 21524696 DOI: 10.1016/j.toxlet.2011.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/27/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants. Because of their high lipophilicity and persistence, PBDEs bioaccumulate in all abiotic and biological matrices. The aim of this study was to investigate the long-term neurobehavioral and physiological effects of exposure to environmental doses of PBDE-99 in adult rats. Rats received a daily administration of PBDE-99 for 90 days by oral gavage at 0.15, 1.5 and 15μg/kg, doses which are relevant of human exposure. Before and after the 90 days of exposure, behavioral tests including the open-field and the elevated plus-maze tests for locomotor activity and anxiety, and the Morris water maze for spatial learning were conducted. Physiological measures such as body weight, food and water consumption, organs weight, hepatic enzymes levels and PBDE-99 concentration in adipose tissue were also evaluated at the end of exposure. There was no effect on body weight, food and water consumption, organs weight, hepatic enzymes levels despite rising PBDE-99 concentration in adipose tissue with the doses tested. Moreover, there was no effect on locomotor activity and exploration, and spatial learning. Deleterious effects of PBDE-99 at high doses have often been highlighted in many studies after an acute dose whereas exposure during 90 days at realistic doses would have no significant effect in adult rats.
Collapse
Affiliation(s)
- Stéphanie Daubié
- URAFPA, INRA UC340, Nancy Université, BP 172, 54505 Vandoeuvre-lès-Nancy Cedex, France.
| | | | | | | | | |
Collapse
|
29
|
Lilienthal H, Heikkinen P, Andersson PL, van der Ven LTM, Viluksela M. Auditory Effects of Developmental Exposure to Purity-Controlled Polychlorinated Biphenyls (PCB52 and PCB180) in Rats. Toxicol Sci 2011; 122:100-11. [DOI: 10.1093/toxsci/kfr077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
30
|
Developmental exposure to methylmercury and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) affects cerebral dopamine D1-like and D2-like receptors of weanling and pubertal rats. Arch Toxicol 2011; 85:1281-94. [DOI: 10.1007/s00204-011-0660-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/25/2011] [Indexed: 11/25/2022]
|
31
|
Boix J, Cauli O, Leslie H, Felipo V. Differential long-term effects of developmental exposure to polychlorinated biphenyls 52, 138 or 180 on motor activity and neurotransmission. Gender dependence and mechanisms involved. Neurochem Int 2010; 58:69-77. [PMID: 21056608 DOI: 10.1016/j.neuint.2010.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 11/26/2022]
Abstract
Developmental exposure to polychlorinated biphenyls (PCBs) induces motor alterations in humans by unknown mechanisms. It remains unclear whether: (a) all non-dioxin-like (NDL) PCBs are neurotoxic or it depends on the grade of chlorination; (b) they have different neurotoxicity mechanisms; (c) they affect differently males and females. The aims of this work were to assess: (1) whether perinatal exposure to 3 NDL-PCBs with different grades of chlorination, (PCBs 52, 138 or 180) affects differentially motor activity in adult rats; (2) whether the effects are different in males or females and (3) the mechanisms involved in impaired motor activity. Rats were exposed to PCBs from gestational day 7 to post-natal day 21. Experiments were performed when the rats were 4 months-old. PCB52 did not affect motor activity, PCB180 reduced it in males but not in females and PCB138 reduced activity both in males and females. PCB52 or 138 did not affect extracellular dopamine in nucleus accumbens (NAcc). PCB180 increased it both in males and females. Extracellular glutamate in NAcc was reduced by the three PCBs. Activation of metabotropic glutamate receptors (mGluRs) in NAcc increased extracellular dopamine in control rats and in those exposed to PCB52 and reduced dopamine in rats exposed to PCB180. In rats exposed to PCB138 activation of mGluRs increases dopamine in females and reduces it in males. The opposite changes were observed for glutamate. mGluRs activation reduced extracellular glutamate in control rats and in those exposed to PCB52 and increased glutamate in rats exposed to PCB180. In rats exposed to PCB138 activation of mGluRs reduces glutamate in females and increases it in males. The data support that different NDL-PCBs affect differently motor activity. Increased glutamate release in NAcc following activation of mGluRs would be involved in reduced dopamine release and reduced motor activity in rats exposed to PCB138 or 180.
Collapse
Affiliation(s)
- Jordi Boix
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
32
|
Long-term effects of developmental exposure to low doses of PCB 126 and methylmercury. Toxicol Lett 2010; 197:38-45. [DOI: 10.1016/j.toxlet.2010.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/27/2010] [Indexed: 11/23/2022]
|
33
|
Boix J, Cauli O, Felipo V. Developmental exposure to polychlorinated biphenyls 52, 138 or 180 affects differentially learning or motor coordination in adult rats. Mechanisms involved. Neuroscience 2010; 167:994-1003. [PMID: 20223283 DOI: 10.1016/j.neuroscience.2010.02.068] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/08/2010] [Accepted: 02/24/2010] [Indexed: 11/28/2022]
Abstract
Exposure to polychlorinated biphenyls (PCBs) during pregnancy and lactation leads to cognitive impairment and motor disorders in children by mechanisms which remain unknown. It also remains unclear whether different non-dioxin-like PCBs have similar or different mechanisms of neurotoxicity. The main aims of this work were: (1) to assess whether developmental exposure to non-dioxin-like-PCBs 52, 138 or 180 affect cognitive function or motor coordination in 3-4 months-old rats; (2) to shed light on the underlying mechanisms. Female rats were treated with PCBs (1 mg/kg day) in food from gestational-day 7 to postnatal-day 21. The ability to learn a Y maze conditional discrimination task was reduced in rats exposed to PCBs 138 or 180, but not in rats exposed to PCB52. The function of the glutamate-nitric oxide-cGMP pathway (NMDA-induced increase in extracellular cGMP) in cerebellum in vivo was reduced by 33-59% in rats exposed to PCBs 138 or 180, but not by PCB52. The amount of NR1 subunit of NMDA receptors was reduced by 41-49% in rats exposed to PCBs 138 or 180, but not by PCB 52. PCB52 but not 138 or 180 increases extracellular GABA in cerebellum and impairs motor coordination. The effects were similar in males and females. Developmental exposure to different non-dioxin-like PCBs induces different behavioural alterations by different mechanisms. PCB52 impairs motor coordination but not learning while PCB138 or 180 impair learning but not motor coordination. These data are consistent with the following possible mechanisms: (1) developmental exposure to PCBs 138 or 180 reduces the amount of NMDA receptors in cerebellum, which would contribute to reduced function of the glutamate-NO-cGMP pathway, which, in turn, would be a main contributor to the impairment of the ability to learn the Y maze task. (2) Developmental exposure to PCB52 increases extracellular GABA in cerebellum, which would contribute to motor coordination impairment.
Collapse
Affiliation(s)
- J Boix
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Avda Autopista del Saler, 16, 46012 Valencia, Spain
| | | | | |
Collapse
|
34
|
Montoliu C, Rodrigo R, Monfort P, Llansola M, Cauli O, Boix J, Elmlili N, Agusti A, Felipo V. Cyclic GMP pathways in hepatic encephalopathy. Neurological and therapeutic implications. Metab Brain Dis 2010; 25:39-48. [PMID: 20195723 DOI: 10.1007/s11011-010-9184-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/20/2009] [Indexed: 01/16/2023]
Abstract
Cyclic GMP (cGMP) modulates important cerebral processes including some forms of learning and memory. cGMP pathways are strongly altered in hyperammonemia and hepatic encephalopathy (HE). Patients with liver cirrhosis show reduced intracellular cGMP in lymphocytes, increased cGMP in plasma and increased activation of soluble guanylate cyclase by nitric oxide (NO) in lymphocytes, which correlates with minimal HE assessed by psychometric tests. Activation of soluble guanylate cyclase by NO is also increased in cerebral cortex, but reduced in cerebellum, from patients who died with HE. This opposite alteration is reproduced in vivo in rats with chronic hyperammonemia or HE. A main pathway modulating cGMP levels in brain is the glutamate-NO-cGMP pathway. The function of this pathway is impaired both in cerebellum and cortex of rats with hyperammonemia or HE. Impairment of this pathway is responsible for reduced ability to learn some types of tasks. Restoring the pathway and cGMP levels in brain restores learning ability. This may be achieved by administering phosphodiesterase inhibitors (zaprinast, sildenafil), cGMP, anti-inflammatories (ibuprofen) or antagonists of GABAA receptors (bicuculline). These data support that increasing cGMP by safe pharmacological means may be a new therapeutic approach to improve cognitive function in patients with minimal or clinical HE.
Collapse
Affiliation(s)
- Carmina Montoliu
- Fundación Investigación Hospital Clínico de Valencia, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Early developmental effects of separate or combined perinatal exposure to methylmercury (MeHg) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) in the rat. Int J Occup Med Environ Health 2009; 22:89-105. [PMID: 19617190 DOI: 10.2478/v10001-009-0015-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Methylmercury (MeHg) and polychlorinated biphenyls (PCBs) are ubiquitous and persistent environmental pollutants and food contaminants. Both are neurotoxic, especially for the developing nervous system. MATERIAL AND METHODS Female rats were exposed from day 7 of pregnancy up to day 21 after the delivery to MeHg in drinking water, PCB 153 per os or MeHg+PCB 153. Assessment of the exposure effects in mothers included food and water intake, body weight and reproduction success. Assessment of the progeny comprised determination of body weight, time of pinna detachment, eye opening, incisor eruption, and the negative geotaxis, grip strength and righting reflex. RESULTS The following effects of the exposures were observed: A) MeHg: 0.5 mg/kg/day - no effect on maternal health status and reproduction. In the progeny: faster incisor eruption and hastened negative geotaxis development. MeHg 2.0 mg/kg/day: In mothers: signs of MeHg toxicity (reduced food intake and body weight, ataxia) during lactation. In the progeny: reduced rate of body weight increase, accelerated incisor eruption but delayed development of the righting reflex. B) PCB 153 exposure: 1.0 mg/kg/day: no effect on maternal health status, reproduction success or morphological and physical development of the progeny; 5.0 mg/kg/day: no effect on maternal health status and reproduction. In the progeny: accelerated growth in females, faster pinna detachment and incisor eruption but delayed development of the grip strength. C) MeHg+PCB153 exposure: none overt effect was noted in mothers or in their progeny. CONCLUSION The results confirm the ability of a low level perinatal exposure to MeHg or PCB 153 to affect the early development in the rat. They have not provided, however, an evidence of a synergistic interaction of these contaminants. To the contrary, the results suggest that, at least under the conditions prevailing in the present study, MeHg and PCB 153 interact antagonistically.
Collapse
|
36
|
Fonnum F, Mariussen E. Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J Neurochem 2009; 111:1327-47. [DOI: 10.1111/j.1471-4159.2009.06427.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Llansola M, Hernandez-Viadel M, Erceg S, Montoliu C, Felipo V. Increasing the function of the glutamate-nitric oxide-cyclic guanosine monophosphate pathway increases the ability to learn a Y-maze task. J Neurosci Res 2009; 87:2351-5. [PMID: 19326454 DOI: 10.1002/jnr.22064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors play a crucial role in learning. However, the molecular mechanisms by which NMDA receptors contribute to learning processes are not known in detail. Activation of NMDA receptors leads to increased calcium in the postsynaptic neuron. Calcium binds to calmodulin and activates neuronal nitric oxide synthase, increasing nitric oxide (NO), which activates soluble guanylate cyclase, increasing cGMP. Part of this cGMP is released to the extracellular space. Several reports indicate that impairment of this glutamate-NO-cGMP pathway reduces the ability to learn a Y-maze conditional discrimination task by rats. The aim of this work was to assess whether enhancing the function of this pathway increases the ability to learn this task. Prenatal exposure to the polybrominated diphenylether PBDE-99 during embryonic days 2-9 or 11-19 enhances the function of the glutamate-NO-cGMP pathway in cerebellum in vivo as assessed by microdialysis in freely moving rats. This was associated with an increase in the ability to learn the Y-maze task. Rats prenatally exposed to PBDE need fewer trials than control rats to learn the Y-maze task. These results show that the function of the glutamate-NO-cGMP modulates the ability of rats to learn the Y-maze task, that the function of the pathway under physiological conditions is not optimal for learning, and that performance in the Y-maze task may be improved by enhancing slightly the function of the pathway and cGMP formation.
Collapse
Affiliation(s)
- Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | | | | | | | | |
Collapse
|
38
|
Montie EW, Reddy CM, Gebbink WA, Touhey KE, Hahn ME, Letcher RJ. Organohalogen contaminants and metabolites in cerebrospinal fluid and cerebellum gray matter in short-beaked common dolphins and Atlantic white-sided dolphins from the western North Atlantic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2345-2358. [PMID: 19375836 DOI: 10.1016/j.envpol.2009.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/13/2009] [Accepted: 03/19/2009] [Indexed: 05/27/2023]
Abstract
Concentrations of several congeners and classes of organohalogen contaminants (OHCs) and/or their metabolites, namely organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), hydroxylated-PCBs (OH-PCBs), methylsulfonyl-PCBs (MeSO(2)-PCBs), polybrominated diphenyl ether (PBDE) flame retardants, and OH-PBDEs, were measured in cerebrospinal fluid (CSF) of short-beaked common dolphins (n = 2), Atlantic white-sided dolphins (n = 8), and gray seal (n = 1) from the western North Atlantic. In three Atlantic white-sided dolphins, cerebellum gray matter (GM) was also analyzed. The levels of OCs, PCBs, MeSO(2)-PCBs, PBDEs, and OH-PBDEs in cerebellum GM were higher than the concentrations in CSF. 4-OH-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) was the only detectable OH-PCB congener present in CSF. The sum (Sigma) OH-PCBs/Sigma PCB concentration ratio in CSF was approximately two to three orders of magnitude greater than the ratio in cerebellum GM for dolphins.
Collapse
Affiliation(s)
- Eric W Montie
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Poli D, Caglieri A, Goldoni M, Castoldi AF, Coccini T, Roda E, Vitalone A, Ceccatelli S, Mutti A. Single step determination of PCB 126 and 153 in rat tissues by using solid phase microextraction/gas chromatography–mass spectrometry: Comparison with solid phase extraction and liquid/liquid extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:773-83. [DOI: 10.1016/j.jchromb.2009.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 12/16/2008] [Accepted: 02/03/2009] [Indexed: 11/30/2022]
|
40
|
Neurobehavioural functions in adult progeny of rat mothers exposed to methylmercury or 2,2', 4,4', 5,5'-hexachlorobiphenyl (PCB 153) alone or their combination during gestation and lactation. Int J Occup Med Environ Health 2009; 22:277-91. [DOI: 10.2478/v10001-009-0020-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|