1
|
Lecy E, Linn-Evans ME, Amundsen-Huffmaster SL, Palnitkar T, Patriat R, Chung JW, Noecker AM, Park MC, McIntyre CC, Vitek JL, Cooper SE, Harel N, Johnson MD, MacKinnon CD. Neural pathways associated with reduced rigidity during pallidal deep brain stimulation for Parkinson's disease. J Neurophysiol 2024; 132:953-967. [PMID: 39110516 PMCID: PMC11427047 DOI: 10.1152/jn.00155.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) can markedly reduce muscle rigidity in people with Parkinson's disease (PD); however, the mechanisms mediating this effect are poorly understood. Computational modeling of DBS provides a method to estimate the relative contributions of neural pathway activations to changes in outcomes. In this study, we generated subject-specific biophysical models of GPi DBS (derived from individual 7-T MRI), including pallidal efferent, putamenal efferent, and internal capsule pathways, to investigate how activation of neural pathways contributed to changes in forearm rigidity in PD. Ten individuals (17 arms) were tested off medication under four conditions: off stimulation, on clinically optimized stimulation, and on stimulation specifically targeting the dorsal GPi or ventral GPi. Quantitative measures of forearm rigidity, with and without a contralateral activation maneuver, were obtained with a robotic manipulandum. Clinically optimized GPi DBS settings significantly reduced forearm rigidity (P < 0.001), which aligned with GPi efferent fiber activation. The model demonstrated that GPi efferent axons could be activated at any location along the GPi dorsal-ventral axis. These results provide evidence that rigidity reduction produced by GPi DBS is mediated by preferential activation of GPi efferents to the thalamus, likely leading to a reduction in excitability of the muscle stretch reflex via overdriving pallidofugal output.NEW & NOTEWORTHY Subject-specific computational models of pallidal deep brain stimulation, in conjunction with quantitative measures of forearm rigidity, were used to examine the neural pathways mediating stimulation-induced changes in rigidity in people with Parkinson's disease. The model uniquely included internal, efferent and adjacent pathways of the basal ganglia. The results demonstrate that reductions in rigidity evoked by deep brain stimulation were principally mediated by the activation of globus pallidus internus efferent pathways.
Collapse
Affiliation(s)
- Emily Lecy
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Maria E Linn-Evans
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | | | - Tara Palnitkar
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Remi Patriat
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jae Woo Chung
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Angela M Noecker
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Michael C Park
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, United States
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Scott E Cooper
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
2
|
Ng PR, Bush A, Vissani M, McIntyre CC, Richardson RM. Biophysical Principles and Computational Modeling of Deep Brain Stimulation. Neuromodulation 2024; 27:422-439. [PMID: 37204360 DOI: 10.1016/j.neurom.2023.04.471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) has revolutionized the treatment of neurological disorders, yet the mechanisms of DBS are still under investigation. Computational models are important in silico tools for elucidating these underlying principles and potentially for personalizing DBS therapy to individual patients. The basic principles underlying neurostimulation computational models, however, are not well known in the clinical neuromodulation community. OBJECTIVE In this study, we present a tutorial on the derivation of computational models of DBS and outline the biophysical contributions of electrodes, stimulation parameters, and tissue substrates to the effects of DBS. RESULTS Given that many aspects of DBS are difficult to characterize experimentally, computational models have played an important role in understanding how material, size, shape, and contact segmentation influence device biocompatibility, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Neural activation is dictated by stimulation parameters including frequency, current vs voltage control, amplitude, pulse width, polarity configurations, and waveform. These parameters also affect the potential for tissue damage, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Activation of the neural substrate also is influenced by the encapsulation layer surrounding the electrode, the conductivity of the surrounding tissue, and the size and orientation of white matter fibers. These properties modulate the effects of the electric field and determine the ultimate therapeutic response. CONCLUSION This article describes biophysical principles that are useful for understanding the mechanisms of neurostimulation.
Collapse
Affiliation(s)
| | - Alan Bush
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Matteo Vissani
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Robert Mark Richardson
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Sridhar K, Evers J, Lowery M. Nonlinear effects at the electrode-tissue interface of deep brain stimulation electrodes. J Neural Eng 2024; 21:016024. [PMID: 38306713 DOI: 10.1088/1741-2552/ad2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Objective.The electrode-tissue interface provides the critical path for charge transfer in neurostimulation therapies and exhibits well-established nonlinear properties at high applied currents or voltages. These nonlinear properties may influence the efficacy and safety of applied stimulation but are typically neglected in computational models. In this study, nonlinear behavior of the electrode-tissue interface impedance was incorporated in a computational model of deep brain stimulation (DBS) to simulate the impact on neural activation and safety considerations.Approach.Nonlinear electrode-tissue interface properties were incorporated in a finite element model of DBS electrodesin vitroandin vivo,in the rat subthalamic nucleus, using an iterative approach. The transition point from linear to nonlinear behavior was determined for voltage and current-controlled stimulation. Predicted levels of neural activation during DBS were examined and the region of linear operation of the electrode was compared with the Shannon safety limit.Main results.A clear transition of the electrode-tissue interface impedance to nonlinear behavior was observed for both current and voltage-controlled stimulation. The transition occurred at lower values of activation overpotential for simulatedin vivothanin vitroconditions (91 mV and 165 mV respectively for current-controlled stimulation; 110 mV and 275 mV for voltage-controlled stimulation), corresponding to an applied current of 30μA and 45μA, or voltage of 330 mV at 1 kHz. The onset of nonlinearity occurred at lower values of the overpotential as frequency was increased. Incorporation of nonlinear properties resulted in activation of a higher proportion of neurons under voltage-controlled stimulation. Under current-controlled stimulation, the predicted transition to nonlinear behavior and Faradaic charge transfer at stimulation amplitudes of 30μA, corresponds to a charge density of 2.29μC cm-2and charge of 1.8 nC, well-below the Shannon safety limit.Significance.The results indicate that DBS electrodes may operate within the nonlinear region at clinically relevant stimulation amplitudes. This affects the extent of neural activation under voltage-controlled stimulation and the transition to Faradaic charge transfer for both voltage- and current-controlled stimulation with important implications for targeting of neural populations and the design of safe stimulation protocols.
Collapse
Affiliation(s)
- K Sridhar
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - J Evers
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - M Lowery
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Lycke R, Kim R, Zolotavin P, Montes J, Sun Y, Koszeghy A, Altun E, Noble B, Yin R, He F, Totah N, Xie C, Luan L. Low-threshold, high-resolution, chronically stable intracortical microstimulation by ultraflexible electrodes. Cell Rep 2023; 42:112554. [PMID: 37235473 PMCID: PMC10592461 DOI: 10.1016/j.celrep.2023.112554] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation are often compromised by adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-nanoelectronic threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 μA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over 8 months at a markedly low charge injection of 0.25 nC/phase. Quantified histological analyses show that chronic ICMS by StimNETs induces no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially selective neuromodulation at low currents, which lessens risk of tissue damage or exacerbation of off-target side effects.
Collapse
Affiliation(s)
- Roy Lycke
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Robin Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Pavlo Zolotavin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Jon Montes
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Yingchu Sun
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Aron Koszeghy
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790 Helsinki, Finland
| | - Esra Altun
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Material Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Brian Noble
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Applied Physics Program, Rice University, Houston, TX 77005, USA
| | - Rongkang Yin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Fei He
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA
| | - Nelson Totah
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00790 Helsinki, Finland; Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
5
|
Evers J, Sridhar K, Liegey J, Brady J, Jahns H, Lowery M. Stimulation-induced changes at the electrode-tissue interface and their influence on deep brain stimulation. J Neural Eng 2022; 19. [PMID: 35728575 DOI: 10.1088/1741-2552/ac7ad6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE During deep brain stimulation (DBS) the electrode-tissue interface forms a critical path between device and brain tissue. Although changes in the electrical double layer and glial scar can impact stimulation efficacy, the effects of chronic DBS on the electrode-tissue interface have not yet been established. APPROACH In this study, we characterised the electrode-tissue interface surrounding chronically implanted DBS electrodes in rats and compared the impedance and histological properties at the electrode interface in animals that received daily stimulation and in those where no stimulation was applied, up to eight weeks post-surgery. A computational model was developed based on the experimental data, which allowed the dispersive electrical properties of the surrounding encapsulation tissue to be estimated. The model was then used to study the effect of stimulation-induced changes in the electrode-tissue interface on the electric field and neural activation during voltage- and current-controlled stimulation. MAIN RESULTS Incorporating the observed changes in simulations in silico, we estimated the frequency-dependent dielectric properties of the electrical double layer and surrounding encapsulation tissue. Through simulations we show how stimulation-induced changes in the properties of the electrode-tissue interface influence the electric field and alter neural activation during voltage-controlled stimulation. A substantial increase in the number of stimulated collaterals, and their distance from the electrode, was observed during voltage-controlled stimulation with stimulated ETI properties. In vitro examination of stimulated electrodes confirmed that high frequency stimulation leads to desorption of proteins at the electrode interface, with a concomitant reduction in impedance. SIGNIFICANCE The demonstration of stimulation-induced changes in the electrode-tissue interface has important implications for future DBS systems including closed-loop systems where the applied stimulation may change over time. Understanding these changes is particularly important for systems incorporating simultaneous stimulation and sensing, which interact dynamically with brain networks.
Collapse
Affiliation(s)
- J Evers
- School of Electrical and Electronic Engineering, University College Dublin, Engineering Building, UCD Belfield, Dublin, Dublin, 4, IRELAND
| | - K Sridhar
- School of Electrical and Electronic Engineering, University College Dublin, Engineering Building, UCD Belfield, Dublin, Dublin, 4, IRELAND
| | - J Liegey
- School of Electrical and Electronic Engineering, University College Dublin, Engineering Building, UCD Belfield, Dublin, Dublin, 4, IRELAND
| | - J Brady
- School of Veterinary Medicine, University College Dublin, Veterinary Science Center, Dublin, 4, IRELAND
| | - H Jahns
- School of Veterinary Medicine, University College Dublin, Veterinary Science Center, Dublin, 4, IRELAND
| | - M Lowery
- School of Electrical, Electronic & Mechancial Engineering, University College Dublin, Engineering & Materials Science Centre, Belfield, Dublin 4, Dublin, 4, IRELAND
| |
Collapse
|
6
|
Wårdell K, Nordin T, Vogel D, Zsigmond P, Westin CF, Hariz M, Hemm S. Deep Brain Stimulation: Emerging Tools for Simulation, Data Analysis, and Visualization. Front Neurosci 2022; 16:834026. [PMID: 35478842 PMCID: PMC9036439 DOI: 10.3389/fnins.2022.834026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/01/2022] [Indexed: 01/10/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established neurosurgical procedure for movement disorders that is also being explored for treatment-resistant psychiatric conditions. This review highlights important consideration for DBS simulation and data analysis. The literature on DBS has expanded considerably in recent years, and this article aims to identify important trends in the field. During DBS planning, surgery, and follow up sessions, several large data sets are created for each patient, and it becomes clear that any group analysis of such data is a big data analysis problem and has to be handled with care. The aim of this review is to provide an update and overview from a neuroengineering perspective of the current DBS techniques, technical aids, and emerging tools with the focus on patient-specific electric field (EF) simulations, group analysis, and visualization in the DBS domain. Examples are given from the state-of-the-art literature including our own research. This work reviews different analysis methods for EF simulations, tractography, deep brain anatomical templates, and group analysis. Our analysis highlights that group analysis in DBS is a complex multi-level problem and selected parameters will highly influence the result. DBS analysis can only provide clinically relevant information if the EF simulations, tractography results, and derived brain atlases are based on as much patient-specific data as possible. A trend in DBS research is creation of more advanced and intuitive visualization of the complex analysis results suitable for the clinical environment.
Collapse
Affiliation(s)
- Karin Wårdell
- Neuroengineering Lab, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Teresa Nordin
- Neuroengineering Lab, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Dorian Vogel
- Neuroengineering Lab, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Peter Zsigmond
- Department of Neurosurgery and Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Carl-Fredrik Westin
- Neuroengineering Lab, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Marwan Hariz
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Clinical Sciences, Neuroscience, Ume University, Umeå, Sweden
| | - Simone Hemm
- Neuroengineering Lab, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
7
|
Butenko K, Bahls C, Rienen UV. Evaluation of Epistemic Uncertainties for Bipolar Deep Brain Stimulation in Rodent Models. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2136-2140. [PMID: 31946323 DOI: 10.1109/embc.2019.8857910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rodent models are widely used in research on deep brain stimulation (DBS) for testing hypotheses of the action mechanism. However, differences in anatomy and technology for DBS in humans and rodents might lead to a non-identical effect on the neural activity. Particularly, strong deviations can be introduced by epistemic uncertainties related to the electrode implantation. In this study, the influence of encapsulation layer properties and implantation precision on axonal activation is quantified using polynomial chaos expansion. In order to improve the efficiency of computations, three truncation methods for the signal frequency spectrum are proposed and evaluated, allowing a tenfold speedup in the particular study. The results of uncertainty quantification on the axonal activity inside the targeted nucleus suggest a major effect of the encapsulation thickness, while the precision of implantation is found to be crucial due to possible direct activation in neighboring structures.
Collapse
|
8
|
Lu CW, Malaga KA, Chou KL, Chestek CA, Patil PG. High density microelectrode recording predicts span of therapeutic tissue activation volumes in subthalamic deep brain stimulation for Parkinson disease. Brain Stimul 2020; 13:412-419. [DOI: 10.1016/j.brs.2019.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
|
9
|
Carvallo A, Modolo J, Benquet P, Lagarde S, Bartolomei F, Wendling F. Biophysical Modeling for Brain Tissue Conductivity Estimation Using SEEG Electrodes. IEEE Trans Biomed Eng 2019; 66:1695-1704. [DOI: 10.1109/tbme.2018.2877931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Yousif N, Vaizey CJ, Maeda Y. Mapping the current flow in sacral nerve stimulation using computational modelling. Healthc Technol Lett 2019; 6:8-12. [PMID: 30881693 PMCID: PMC6407445 DOI: 10.1049/htl.2018.5030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/02/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022] Open
Abstract
Sacral nerve stimulation (SNS) is an established treatment for faecal incontinence involving the implantation of a quadripolar electrode into a sacral foramen, through which an electrical stimulus is applied. Little is known about the induced spread of electric current around the SNS electrode and its effect on adjacent tissues, which limits optimisation of this treatment. The authors constructed a 3-dimensional imaging based finite element model in order to calculate and visualise the stimulation induced current and coupled this to biophysical models of nerve fibres. They investigated the impact of tissue inhomogeneity, electrode model choice and contact configuration and found a number of effects. (i) The presence of anatomical detail changes the estimate of stimulation effects in size and shape. (ii) The difference between the two models of electrodes is minimal for electrode contacts of the same length. (iii) Surprisingly, in this arrangement of electrode and neural fibre, monopolar and bipolar stimulation induce a similar effect. (iv) Interestingly when the active contact is larger, the volume of tissue activated reduces. This work establishes a protocol to better understand both therapeutic and adverse stimulation effects and in the future will enable patient-specific adjustments of stimulation parameters.
Collapse
Affiliation(s)
- Nada Yousif
- School of Engineering and Technology, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | | | - Yasuko Maeda
- Sir Alan Parks Physiology Unit, St Mark's Hospital, London, HA1 3UJ, UK.,Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
11
|
Peña E, Zhang S, Patriat R, Aman JE, Vitek JL, Harel N, Johnson MD. Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways. J Neural Eng 2018; 15:066020. [PMID: 30211697 PMCID: PMC6424118 DOI: 10.1088/1741-2552/aae12f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The effectiveness of deep brain stimulation (DBS) therapy strongly depends on precise surgical targeting of intracranial leads and on clinical optimization of stimulation settings. Recent advances in surgical targeting, multi-electrode designs, and multi-channel independent current-controlled stimulation are poised to enable finer control in modulating pathways within the brain. However, the large stimulation parameter space enabled by these technologies also poses significant challenges for efficiently identifying the most therapeutic DBS setting for a given patient. Here, we present a computational approach for programming directional DBS leads that is based on a non-convex optimization framework for neural pathway targeting. APPROACH The algorithm integrates patient-specific pre-operative 7 T MR imaging, post-operative CT scans, and multi-objective particle swarm optimization (MOPSO) methods using dominance based-criteria and incorporating multiple neural pathways simultaneously. The algorithm was evaluated on eight patient-specific models of subthalamic nucleus (STN) DBS to identify electrode configurations and stimulation amplitudes to optimally activate or avoid six clinically relevant pathways: motor territory of STN, non-motor territory of STN, internal capsule, superior cerebellar peduncle, thalamic fasciculus, and hyperdirect pathway. MAIN RESULTS Across the patient-specific models, single-electrode stimulation showed significant correlations across modeled pathways, particularly for motor and non-motor STN efferents. The MOPSO approach was able to identify multi-electrode configurations that achieved improved targeting of motor STN efferents and hyperdirect pathway afferents than that achieved by any single-electrode monopolar setting at equivalent power levels. SIGNIFICANCE These results suggest that pathway targeting with patient-specific model-based optimization algorithms can efficiently identify non-trivial electrode configurations for enhancing activation of clinically relevant pathways. However, the results also indicate that inter-pathway correlations can limit selectivity for certain pathways even with directional DBS leads.
Collapse
Affiliation(s)
- Edgar Peña
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Simeng Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Remi Patriat
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Joshua E. Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
12
|
Slopsema JP, Peña E, Patriat R, Lehto LJ, Gröhn O, Mangia S, Harel N, Michaeli S, Johnson MD. Clinical deep brain stimulation strategies for orientation-selective pathway activation. J Neural Eng 2018; 15:056029. [PMID: 30095084 DOI: 10.1088/1741-2552/aad978] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study investigated stimulation strategies to increase the selectivity of activating axonal pathways within the brain based on their orientations relative to clinical deep brain stimulation (DBS) lead implants. APPROACH Previous work has shown how varying electrode shape and controlling the primary electric field direction through preclinical electrode arrays can produce orientation-selective axonal stimulation. Here, we significantly extend those results using computational models to evaluate the degree to which clinical DBS leads can direct stimulus-induced electric fields and generate orientation-selective activation of fiber pathways in the brain. Orientation-selective pulse paradigms were evaluated in conceptual models and in patient-specific models of subthalamic nucleus (STN)-DBS for treating Parkinson's disease. MAIN RESULTS Single-contact monopolar or two-contact bipolar stimulation through clinical DBS leads with cylindrical electrodes primarily activated axons orientated parallel to the lead. Conversely, multi-contact monopolar stimulation with a cathode-leading pulse waveform selectively activated axons perpendicular to the DBS lead. Clinical DBS leads with segmented rows of electrodes and a single current source provided additional angular resolution for activating axons oriented 0°, ±22.5°, ±45°, ±67.5°, or 90° relative to the lead shaft. Employing multiple independent current sources to deliver unequal amounts of current through these leads further increased the angular resolution of activation relative to the lead shaft. The patient-specific models indicated that multi-contact cathode configurations, which are rarely used in clinical practice, could increase activation of the hyperdirect pathway collaterals projecting into STN (a putative therapeutic target), while minimizing direct activation of the corticospinal tract of internal capsule, which can elicit sensorimotor side-effects when stimulated. SIGNIFICANCE When combined with patient-specific tissue anisotropy and patient-specific anatomical morphologies of neural pathways responsible for therapy and side effects, orientation-selective DBS approaches show potential to significantly improve clinical outcomes of DBS therapy for a range of existing and investigational clinical indications.
Collapse
Affiliation(s)
- Julia P Slopsema
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Alonso F, Vogel D, Johansson J, Wårdell K, Hemm S. Electric Field Comparison between Microelectrode Recording and Deep Brain Stimulation Systems-A Simulation Study. Brain Sci 2018; 8:brainsci8020028. [PMID: 29415442 PMCID: PMC5836047 DOI: 10.3390/brainsci8020028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
The success of deep brain stimulation (DBS) relies primarily on the localization of the implanted electrode. Its final position can be chosen based on the results of intraoperative microelectrode recording (MER) and stimulation tests. The optimal position often differs from the final one selected for chronic stimulation with the DBS electrode. The aim of the study was to investigate, using finite element method (FEM) modeling and simulations, whether lead design, electrical setup, and operating modes induce differences in electric field (EF) distribution and in consequence, the clinical outcome. Finite element models of a MER system and a chronic DBS lead were developed. Simulations of the EF were performed for homogenous and patient-specific brain models to evaluate the influence of grounding (guide tube vs. stimulator case), parallel MER leads, and non-active DBS contacts. Results showed that the EF is deformed depending on the distance between the guide tube and stimulating contact. Several parallel MER leads and the presence of the non-active DBS contacts influence the EF distribution. The DBS EF volume can cover the intraoperatively produced EF, but can also extend to other anatomical areas. In conclusion, EF deformations between stimulation tests and DBS should be taken into consideration as they can alter the clinical outcome.
Collapse
Affiliation(s)
- Fabiola Alonso
- Department of Biomedical Engineering, Linköping University, 58185 Linköping, Sweden.
| | - Dorian Vogel
- Department of Biomedical Engineering, Linköping University, 58185 Linköping, Sweden.
- Institute for Medical and Analytical Technologies, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, 4132 Muttenz, Switzerland.
| | - Johannes Johansson
- Department of Biomedical Engineering, Linköping University, 58185 Linköping, Sweden.
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, 58185 Linköping, Sweden.
| | - Simone Hemm
- Department of Biomedical Engineering, Linköping University, 58185 Linköping, Sweden.
- Institute for Medical and Analytical Technologies, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, 4132 Muttenz, Switzerland.
| |
Collapse
|
14
|
Lehto LJ, Slopsema JP, Johnson MD, Shatillo A, Teplitzky BA, Utecht L, Adriany G, Mangia S, Sierra A, Low WC, Gröhn O, Michaeli S. Orientation selective deep brain stimulation. J Neural Eng 2017; 14:016016. [PMID: 28068296 DOI: 10.1088/1741-2552/aa5238] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. APPROACH This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. MAIN RESULTS Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. SIGNIFICANCE The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.
Collapse
Affiliation(s)
- Lauri J Lehto
- Center for Magnetic Resonance Research, Radiology, University of Minnesota, 2021 6th St SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Alonso F, Latorre MA, Göransson N, Zsigmond P, Wårdell K. Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study. Brain Sci 2016; 6:brainsci6030039. [PMID: 27618109 PMCID: PMC5039468 DOI: 10.3390/brainsci6030039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022] Open
Abstract
New deep brain stimulation (DBS) electrode designs offer operation in voltage and current mode and capability to steer the electric field (EF). The aim of the study was to compare the EF distributions of four DBS leads at equivalent amplitudes (3 V and 3.4 mA). Finite element method (FEM) simulations (n = 38) around cylindrical contacts (leads 3389, 6148) or equivalent contact configurations (leads 6180, SureStim1) were performed using homogeneous and patient-specific (heterogeneous) brain tissue models. Steering effects of 6180 and SureStim1 were compared with symmetric stimulation fields. To make relative comparisons between simulations, an EF isolevel of 0.2 V/mm was chosen based on neuron model simulations (n = 832) applied before EF visualization and comparisons. The simulations show that the EF distribution is largely influenced by the heterogeneity of the tissue, and the operating mode. Equivalent contact configurations result in similar EF distributions. In steering configurations, larger EF volumes were achieved in current mode using equivalent amplitudes. The methodology was demonstrated in a patient-specific simulation around the zona incerta and a "virtual" ventral intermediate nucleus target. In conclusion, lead design differences are enhanced when using patient-specific tissue models and current stimulation mode.
Collapse
Affiliation(s)
- Fabiola Alonso
- Department of Biomedical Engineering, Linköping University, Linköping 58185, Sweden.
| | - Malcolm A Latorre
- Department of Biomedical Engineering, Linköping University, Linköping 58185, Sweden.
| | - Nathanael Göransson
- Department of Biomedical Engineering, Linköping University, Linköping 58185, Sweden.
- Department of Neurosurgery, Linköping University Hospital, Region Östergötland, Linköping 58185, Sweden.
| | - Peter Zsigmond
- Department of Neurosurgery, Linköping University Hospital, Region Östergötland, Linköping 58185, Sweden.
- Department of Clinical and Experimental Medicine, Linköping University, Linköping 58185, Sweden.
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping 58185, Sweden.
| |
Collapse
|
16
|
Zhao Z, Gong R, Huang H, Wang J. Design, Fabrication, Simulation and Characterization of a Novel Dual-Sided Microelectrode Array for Deep Brain Recording and Stimulation. SENSORS 2016; 16:s16060880. [PMID: 27314356 PMCID: PMC4934306 DOI: 10.3390/s16060880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/06/2016] [Accepted: 05/20/2016] [Indexed: 01/07/2023]
Abstract
In this paper, a novel dual-sided microelectrode array is specially designed and fabricated for a rat Parkinson’s disease (PD) model to study the mechanisms of deep brain stimulation (DBS). The fabricated microelectrode array can stimulate the subthalamic nucleus and simultaneously record electrophysiological information from multiple nuclei of the basal ganglia system. The fabricated microelectrode array has a long shaft of 9 mm and each planar surface is equipped with three stimulating sites (diameter of 100 μm), seven electrophysiological recording sites (diameter of 20 μm) and four sites with diameter of 50 μm used for neurotransmitter measurements in future work. The performances of the fabricated microelectrode array were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. In addition, the stimulating effects of the fabricated microelectrode were evaluated by finite element modeling (FEM). Preliminary animal experiments demonstrated that the designed microelectrode arrays can record spontaneous discharge signals from the striatum, the subthalamic nucleus and the globus pallidus interna. The designed and fabricated microelectrode arrays provide a powerful research tool for studying the mechanisms of DBS in rat PD models.
Collapse
Affiliation(s)
- Zongya Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| | - Ruxue Gong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| | - Hongen Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| |
Collapse
|
17
|
Paffi A, Camera F, Apollonio F, d'Inzeo G, Liberti M. Numerical characterization of intraoperative and chronic electrodes in deep brain stimulation. Front Comput Neurosci 2015; 9:2. [PMID: 25745397 PMCID: PMC4333814 DOI: 10.3389/fncom.2015.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/07/2015] [Indexed: 11/30/2022] Open
Abstract
An intraoperative electrode (microelectrode) is used in the deep brain stimulation (DBS) technique to pinpoint the brain target and to choose the best parameters for the electrical stimulus. However, when the intraoperative electrode is replaced with the chronic one (macroelectrode), the observed effects do not always coincide with predictions. To investigate the causes of such discrepancies, a 3D model of the basal ganglia has been considered and realistic models of both intraoperative and chronic electrodes have been developed and numerically solved. Results of simulations of the electric potential (V) and the activating function (AF) along neuronal fibers show that the different geometries and sizes of the two electrodes do not change the distributions and polarities of these functions, but rather the amplitudes. This effect is similar to the one produced by the presence of different tissue layers (edema or glial tissue) in the peri-electrode space. Conversely, an inaccurate positioning of the chronic electrode with respect to the intraoperative one (electric centers not coincident) may induce a completely different electric stimulation in some groups of fibers.
Collapse
Affiliation(s)
- Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome Rome, Italy
| | - Francesca Camera
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome Rome, Italy
| | - Guglielmo d'Inzeo
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome Rome, Italy
| |
Collapse
|
18
|
Kent AR, Swan BD, Brocker DT, Turner DA, Gross RE, Grill WM. Measurement of evoked potentials during thalamic deep brain stimulation. Brain Stimul 2014; 8:42-56. [PMID: 25457213 DOI: 10.1016/j.brs.2014.09.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/21/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) treats the symptoms of several movement disorders, but optimal selection of stimulation parameters remains a challenge. The evoked compound action potential (ECAP) reflects synchronized neural activation near the DBS lead, and may be useful for feedback control and automatic adjustment of stimulation parameters in closed-loop DBS systems. OBJECTIVES Determine the feasibility of recording ECAPs in the clinical setting, understand the neural origin of the ECAP and sources of any stimulus artifact, and correlate ECAP characteristics with motor symptoms. METHODS The ECAP and tremor response were measured simultaneously during intraoperative studies of thalamic DBS, conducted in patients who were either undergoing surgery for initial lead implantation or replacement of their internal pulse generator. RESULTS There was large subject-to-subject variation in stimulus artifact amplitude, which model-based analysis suggested may have been caused by glial encapsulation of the lead, resulting in imbalances in the tissue impedance between the contacts. ECAP recordings obtained from both acute and chronically implanted electrodes revealed that specific phase characteristics of the signal varied systematically with stimulation parameters. Further, a trend was observed in some patients between the energy of the initial negative and positive ECAP phases, as well as secondary phases, and changes in tremor from baseline. A computational model of thalamic DBS indicated that direct cerebellothalamic fiber activation dominated the clinically measured ECAP, suggesting that excitation of these fibers is critical in DBS therapy. CONCLUSIONS This work demonstrated that ECAPs can be recorded in the clinical setting and may provide a surrogate feedback control signal for automatic adjustment of stimulation parameters to reduce tremor amplitude.
Collapse
Affiliation(s)
- Alexander R Kent
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Dennis A Turner
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Kent AR, Grill WM. Analysis of deep brain stimulation electrode characteristics for neural recording. J Neural Eng 2014; 11:046010. [PMID: 24921984 DOI: 10.1088/1741-2560/11/4/046010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Closed-loop deep brain stimulation (DBS) systems have the potential to optimize treatment of movement disorders by enabling automatic adjustment of stimulation parameters based on a feedback signal. Evoked compound action potentials (ECAPs) and local field potentials (LFPs) recorded from the DBS electrode may serve as suitable closed-loop control signals. The objective of this study was to understand better the factors that influence ECAP and LFP recording, including the physical presence of the electrode, the geometrical dimensions of the electrode, and changes in the composition of the peri-electrode space across recording conditions. APPROACH Coupled volume conductor-neuron models were used to calculate single-unit activity as well as ECAP responses and LFP activity from a population of model thalamic neurons. MAIN RESULTS Comparing ECAPs and LFPs measured with and without the presence of the highly conductive recording contacts, we found that the presence of these contacts had a negligible effect on the magnitude of single-unit recordings, ECAPs (7% RMS difference between waveforms), and LFPs (5% change in signal magnitude). Spatial averaging across the contact surface decreased the ECAP magnitude in a phase-dependent manner (74% RMS difference), resulting from a differential effect of the contact on the contribution from nearby or distant elements, and decreased the LFP magnitude (25% change). Reductions in the electrode diameter or recording contact length increased signal energy and increased spatial sensitivity of single neuron recordings. Moreover, smaller diameter electrodes (500 µm) were more selective for recording from local cells over passing axons, with the opposite true for larger diameters (1500 µm). Changes in electrode dimensions had phase-dependent effects on ECAP characteristics, and generally had small effects on the LFP magnitude. ECAP signal energy and LFP magnitude decreased with tighter contact spacing (100 µm), compared to the original dimensions (1500 µm), with the opposite effect on the ECAP at longer contact-to-contact distances (2000 µm). Finally, acute edema reduced the single neuron and population ECAP signal energy, as well as LFP magnitude, and glial encapsulation had the opposite effect, after accounting for loss of cells in the peri-electrode space. SIGNIFICANCE This study determined recording conditions and electrode designs that influence ECAP and LFP recording fidelity.
Collapse
Affiliation(s)
- Alexander R Kent
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
20
|
Yousif N, Pavese N, Naushahi MJ, Nandi D, Bain PG. Reversing the polarity of bipolar stimulation in deep brain stimulation for essential tremor: a theoretical explanation for a useful clinical intervention. Neurocase 2014; 20:10-7. [PMID: 23003326 DOI: 10.1080/13554794.2012.713495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The quadripolar electrodes used for deep brain stimulation are designed to give flexibility in contact configuration, optimize therapeutic effect, and minimize side-effects. A patient with essential tremor did not tolerate a bipolar setting due to the emergence of a pulling sensation in her face. However, when the polarity of the contacts was reversed, a 70% higher voltage was tolerated. Using an electric field model, we predicted that this effect was due to the proximity of the topmost contact to the internal capsule. Post-operative imaging supported this prediction. These results demonstrate how a multi-disciplinary approach allows us to optimize parameter settings.
Collapse
Affiliation(s)
- Nada Yousif
- a Department of Medicine , Centre for Neuroscience, Imperial College London , London , UK
| | | | | | | | | |
Collapse
|
21
|
Sillay KA, Rutecki P, Cicora K, Worrell G, Drazkowski J, Shih JJ, Sharan AD, Morrell MJ, Williams J, Wingeier B. Long-Term Measurement of Impedance in Chronically Implanted Depth and Subdural Electrodes During Responsive Neurostimulation in Humans. Brain Stimul 2013; 6:718-26. [DOI: 10.1016/j.brs.2013.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
|
22
|
Kent AR, Grill WM. Neural origin of evoked potentials during thalamic deep brain stimulation. J Neurophysiol 2013; 110:826-43. [PMID: 23719207 DOI: 10.1152/jn.00074.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Closed-loop deep brain stimulation (DBS) systems could provide automatic adjustment of stimulation parameters and improve outcomes in the treatment of Parkinson's disease and essential tremor. The evoked compound action potential (ECAP), generated by activated neurons near the DBS electrode, may provide a suitable feedback control signal for closed-loop DBS. The objectives of this work were to characterize the ECAP across stimulation parameters and determine the neural elements contributing to the signal. We recorded ECAPs during thalamic DBS in anesthetized cats and conducted computer simulations to calculate the ECAP of a population of thalamic neurons. The experimental and computational ECAPs were similar in shape and had characteristics that were correlated across stimulation parameters (R(2) = 0.80-0.95, P < 0.002). The ECAP signal energy increased with larger DBS amplitudes (P < 0.0001) and pulse widths (P < 0.002), and the signal energy of secondary ECAP phases was larger at 10-Hz than at 100-Hz DBS (P < 0.002). The computational model indicated that these changes resulted from a greater extent of neural activation and an increased synchronization of postsynaptic thalamocortical activity, respectively. Administration of tetrodotoxin, lidocaine, or isoflurane abolished or reduced the magnitude of the experimental and computational ECAPs, glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D(-)-2-amino-5-phosphonopentanoic acid (APV) reduced secondary ECAP phases by decreasing postsynaptic excitation, and the GABAA receptor agonist muscimol increased the latency of the secondary phases by augmenting postsynaptic hyperpolarization. This study demonstrates that the ECAP provides information about the type and extent of neural activation generated during DBS, and the ECAP may serve as a feedback control signal for closed-loop DBS.
Collapse
Affiliation(s)
- Alexander R Kent
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | | |
Collapse
|
23
|
Miled MA, Sawan M. Electrode robustness in artificial cerebrospinal fluid for dielectrophoresis-based LoC. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1390-3. [PMID: 23366159 DOI: 10.1109/embc.2012.6346198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this paper, we present hybrid microelectronics / microfluidic Lab-on-Chip (LoC) platform intended for implantable medical microsystems for neurotransmitter detection. In vitro experiments were achieved using artificial cerebrospinal fluid (ACSF) from Tocris Bioscience where microspheres were immersed to test the behaviour of the designed LoC. One of main features of the proposed LoC platform is its thin thickness, including micro-channels and silicon CMOS chip. The latter is integrated into the glass top-layer of the LoC measuring 0.5 mm. The size of the device is 9 mm × 5 mm. the electrode architecture is composed of 8×2×2 L-shaped electrodes in a 650 µm channel width and 4 sites for interdigitited electrodes. 32 L-shaped electrodes were connected to a electronics circuit for cells manipulation using dielectrophoresis (DEP). The described LoC achieved an efficient separation within a concentration of 50 µl of a solution of microspheres, distilled water (DW) and 500 µl of ACSF. Beyond this concentration, electrode destruction was observed.
Collapse
Affiliation(s)
- Mohamed Amine Miled
- Ecole Polytechnique de Montreal, Electrical Engineering department, Montreal, Canada.
| | | |
Collapse
|
24
|
Yousif N, Borisyuk R, Pavese N, Nandi D, Bain P. Spatiotemporal visualization of deep brain stimulation-induced effects in the subthalamic nucleus. Eur J Neurosci 2012; 36:2252-9. [PMID: 22805069 DOI: 10.1111/j.1460-9568.2012.08086.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deep brain stimulation (DBS) is a successful surgical therapy used to treat the disabling symptoms of movement disorders such as Parkinson's disease. It involves the chronic stimulation of disorder-specific nuclei. However, the mechanisms that lead to clinical improvements remain unclear. Consequently, this slows the optimization of present-day DBS therapy and hinders its future development and application. We used a computational model to calculate the distribution of electric potential induced by DBS and study the effect of stimulation on the spiking activity of a subthalamic nucleus (STN) projection neuron. We previously showed that such a model can reveal detailed spatial effects of stimulation in the vicinity of the electrode. However, this multi-compartmental STN neuron model can fire in either a burst or tonic mode and, in this study, we hypothesized that the firing mode of the cell will have a major impact on the DBS-induced effects. Our simulations showed that the bursting model exhibits behaviour observed in studies of high-frequency stimulation of STN neurons, such as the presence of a silent period at stimulation offset and frequency-dependent stimulation effects. We validated the model by simulating the clinical parameter settings used for a Parkinsonian patient and showed, in a patient-specific anatomical model, that the region of affected tissue is consistent with clinical observations of the optimal DBS site. Our results demonstrated a method of quantitatively assessing neuronal changes induced by DBS, to maximize therapeutic benefit and minimize unwanted side effects.
Collapse
Affiliation(s)
- Nada Yousif
- Centre for Neuroscience, Imperial College London, Charing Cross Hospital, London, UK.
| | | | | | | | | |
Collapse
|
25
|
Elwassif MM, Datta A, Rahman A, Bikson M. Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture. J Neural Eng 2012; 9:046009. [PMID: 22764359 PMCID: PMC3406231 DOI: 10.1088/1741-2560/9/4/046009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There is a growing interest in the use of deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. magnetic resonance imaging) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method (FEM) simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: (1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); (2) it does not interfere with device efficacy; and (3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure.
Collapse
Affiliation(s)
- Maged M Elwassif
- Department of Biomedical Engineering, The City College of New York of The City University of New York, NY, USA
| | | | | | | |
Collapse
|
26
|
Schmidt C, van Rienen U. Modeling the Field Distribution in Deep Brain Stimulation: The Influence of Anisotropy of Brain Tissue. IEEE Trans Biomed Eng 2012; 59:1583-92. [DOI: 10.1109/tbme.2012.2189885] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Kent AR, Grill WM. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact. J Neural Eng 2012; 9:036004. [PMID: 22510375 DOI: 10.1088/1741-2560/9/3/036004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The clinical efficacy of deep brain stimulation (DBS) for the treatment of movement disorders depends on the identification of appropriate stimulation parameters. Since the mechanisms of action of DBS remain unclear, programming sessions can be time consuming, costly and result in sub-optimal outcomes. Measurement of electrically evoked compound action potentials (ECAPs) during DBS, generated by activated neurons in the vicinity of the stimulating electrode, could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulation parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1000 to 5000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 µs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters.
Collapse
Affiliation(s)
- A R Kent
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
28
|
Miled MA, Massicotte G, Sawan M. Dielectrophoresis-based integrated Lab-on-Chip for nano and micro-particles manipulation and capacitive detection. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2012; 6:120-132. [PMID: 23852977 DOI: 10.1109/tbcas.2012.2185844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present in this paper a new Lab-on-Chip (LoC) architecture for dielectrophoresis-based cell manipulation, detection, and capacitive measurement. The proposed LoC is built around a CMOS full-custom chip and a microfluidic structure. The CMOS chip is used to deliver all parameters required to control the dielectrophoresis (DEP) features such as frequency, phase, and amplitude of signals spread on in-channel electrodes of the LoC. It is integrated to the LoC and experimental results are related to micro and nano particles manipulation and detection in a microfluidic platform. The proposed microsystem includes an on-chip 27-bit frequency divider, a digital phase controller with a 3.6° phase shift resolution and a 2.5 V dynamic range. The sensing module is composed of a 3 × 3 capacitive sensor array with 10 fF per mV sensitivity, and a dynamic range of 1.5 V. The obtained results show an efficient nano and micro-particles (PC05N, PA04N and PS03N) separation based on frequency segregation with low voltages less than 1.7 V and a fully integrated and reconfigurable system.
Collapse
Affiliation(s)
- Mohamed Amine Miled
- Department of Electrical Engineering, Polystim Neurotechnologies Laboratory, Ecole Polytechnique de Montreal, Montreal, QC H3T 1J4 Canada.
| | | | | |
Collapse
|
29
|
Coenen VA, Schlaepfer TE, Allert N, Mädler B. Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206684 DOI: 10.1016/b978-0-12-404706-8.00011-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diffusion tensor imaging (DTI) is more than just a useful adjunct to invasive techniques like optogenetics which recently have tremendously influenced our understanding of the mechanisms of deep brain stimulation (DBS). In combination with other technologies, DTI helps us to understand which parts of the brain tissue are connected to others and which ones are truly influenced with neuromodulation. The complex interaction of DBS with the surrounding tissues-scrutinized with DTI-allows to create testable hypotheses that can explain network interactions. Those interactions are vital for our understanding of the net effects of neuromodulation. This work naturally was first done in the field of movement disorder surgery, where a lot of experience regarding therapeutic effects and only a short latency between initiation of neuromodulation and alleviation of symptoms exist. This chapter shows the journey over the past 10 years with first applications in DBS toward current research in affect regulating network balances and their therapeutic alterations with the neuromodulation technology.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Division of Stereotaxy and Functional Neurosurgery, Department of Neurosurgery, Bonn University Medical Center, Bonn, Germany.
| | | | | | | |
Collapse
|
30
|
Buhlmann J, Hofmann L, Tass PA, Hauptmann C. Modeling of a segmented electrode for desynchronizing deep brain stimulation. FRONTIERS IN NEUROENGINEERING 2011; 4:15. [PMID: 22163220 PMCID: PMC3233722 DOI: 10.3389/fneng.2011.00015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/21/2011] [Indexed: 12/04/2022]
Abstract
Deep brain stimulation (DBS) is an effective therapy for medically refractory movement disorders like Parkinson’s disease. The electrodes, implanted in the target area within the human brain, generate an electric field which activates nerve fibers and cell bodies in the vicinity. Even though the different target nuclei display considerable differences in their anatomical structure, only few types of electrodes are currently commercially available. It is desirable to adjust the electric field and in particular the volume of tissue activated around the electrode with respect to the corresponding target nucleus in a such way that side effects can be reduced. Furthermore, a more selective and partial activation of the target structure is desirable for an optimal application of novel stimulation strategies, e.g., coordinated reset neuromodulation. Hence we designed a DBS electrode with a segmented design allowing a more selective activation of the target structure. We created a finite element model (FEM) of the electrode and analyzed the volume of tissue activated for this electrode design. The segmented electrode activated an area in a targeted manner, of which the dimension and position relative to the electrode could be controlled by adjusting the stimulation parameters for each electrode contact. According to our computational analysis, this directed stimulation might be superior with respect to the occurrence of side effects and it enables the application of coordinated reset neuromodulation under optimal conditions.
Collapse
Affiliation(s)
- J Buhlmann
- Institute of Neuroscience and Medicine - Neuromodulation, Research Center Jülich Jülich, Germany
| | | | | | | |
Collapse
|
31
|
Arena CB, Sano MB, Rylander MN, Davalos RV. Theoretical considerations of tissue electroporation with high-frequency bipolar pulses. IEEE Trans Biomed Eng 2011; 58:1474-82. [PMID: 21189230 DOI: 10.1109/tbme.2010.2102021] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study introduces the use of high-frequency pulsed electric fields for tissue electroporation. Through the development of finite element models and the use of analytical techniques, electroporation with rectangular, bipolar pulses is investigated. The electric field and temperature distribution along with the associated transmembrane potential development are considered in a heterogeneous skin fold geometry. Results indicate that switching polarity on the nanosecond scale near the charging time of plasma membranes can greatly improve treatment outcomes in heterogeneous tissues. Specifically, high-frequency fields ranging from 500 kHz to 1 MHz are best suited to penetrate epithelial layers without inducing significant Joule heating, and cause electroporation in underlying cells.
Collapse
Affiliation(s)
- Christopher B Arena
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Bioelectromechanical Systems Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | | | |
Collapse
|
32
|
Deniau JM, Degos B, Bosch C, Maurice N. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci 2011; 32:1080-91. [PMID: 21039947 DOI: 10.1111/j.1460-9568.2010.07413.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deep brain electrical stimulation has become a recognized therapy in the treatment of a variety of motor disorders and has potentially promising applications in a wide range of neurological diseases including neuropsychiatry. Behavioural observation that electrical high-frequency stimulation of a given brain area induces an effect similar to a lesion suggested a mechanism of functional inhibition. In vitro and in vivo experiments as well as per operative recordings in patients have revealed a variety of effects involving local changes of neuronal excitability as well as widespread effects throughout the connected network resulting from activation of axons, including antidromic activation. Here we review current data regarding the local and network activity changes induced by high-frequency stimulation of the subthalamic nucleus and discuss this in the context of motor restoration in Parkinson's disease. Stressing the important functional consequences of axonal activation in deep brain stimulation mechanisms, we highlight the importance of developing anatomical knowledge concerning the fibre connections of the putative therapeutic targets.
Collapse
Affiliation(s)
- Jean-Michel Deniau
- Institut National de la Santé et de la Recherche Médicale U.667, Dynamique et Physiopathologie des Réseaux Neuronaux, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05 France.
| | | | | | | |
Collapse
|
33
|
Chaturvedi A, Butson CR, Lempka SF, Cooper SE, McIntyre CC. Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions. Brain Stimul 2010; 3:65-7. [PMID: 20607090 DOI: 10.1016/j.brs.2010.01.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become the surgical therapy of choice for medically intractable Parkinson's disease. However, quantitative understanding of the interaction between the electric field generated by DBS and the underlying neural tissue is limited. Recently, computational models of varying levels of complexity have been used to study the neural response to DBS. The goal of this study was to evaluate the quantitative impact of incrementally incorporating increasing levels of complexity into computer models of STN DBS. Our analysis focused on the direct activation of experimentally measureable fiber pathways within the internal capsule (IC). Our model system was customized to an STN DBS patient and stimulation thresholds for activation of IC axons were calculated with electric field models that ranged from an electrostatic, homogenous, isotropic model to one that explicitly incorporated the voltage-drop and capacitance of the electrode-electrolyte interface, tissue encapsulation of the electrode, and diffusion-tensor based 3D tissue anisotropy and inhomogeneity. The model predictions were compared to experimental IC activation defined from electromyographic (EMG) recordings from eight different muscle groups in the contralateral arm and leg of the STN DBS patient. Coupled evaluation of the model and experimental data showed that the most realistic predictions of axonal thresholds were achieved with the most detailed model. Furthermore, the more simplistic neurostimulation models substantially overestimated the spatial extent of neural activation.
Collapse
Affiliation(s)
- Ashutosh Chaturvedi
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
34
|
Grant PF, Lowery MM. Effect of dispersive conductivity and permittivity in volume conductor models of deep brain stimulation. IEEE Trans Biomed Eng 2010; 57:2386-93. [PMID: 20595081 DOI: 10.1109/tbme.2010.2055054] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to examine the effect of dispersive tissue properties on the volume-conducted voltage waveforms and volume of tissue activated during deep brain stimulation. Inhomogeneous finite-element models were developed, incorporating a distributed dispersive electrode-tissue interface and encapsulation tissue of high and low conductivity, under both current-controlled and voltage-controlled stimulation. The models were used to assess the accuracy of capacitive models, where material properties were estimated at a single frequency, with respect to the full dispersive models. The effect of incorporating dispersion in the electrical conductivity and relative permittivity was found to depend on both the applied stimulus and the encapsulation tissue surrounding the electrode. Under current-controlled stimulation, and during voltage-controlled stimulation when the electrode was surrounded by high-resistivity encapsulation tissue, the dispersive material properties of the tissue were found to influence the voltage waveform in the tissue, indicated by RMS errors between the capacitive and dispersive models of 20%-38% at short pulse durations. When the dispersive model was approximated by a capacitive model, the accuracy of estimates of the volume of tissue activated was very sensitive to the frequency at which material properties were estimated. When material properties at 1 kHz were used, the error in the volume of tissue activated by capacitive approximations was reduced to -4.33% and 11.10%, respectively, for current-controlled and voltage-controlled stimulations, with higher errors observed when higher or lower frequencies were used.
Collapse
Affiliation(s)
- Peadar F Grant
- School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Dublin 4, Ireland.
| | | |
Collapse
|
35
|
Yousif N, Purswani N, Bayford R, Nandi D, Bain P, Liu X. Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: A computational modelling study. J Neurosci Methods 2010; 188:105-12. [DOI: 10.1016/j.jneumeth.2010.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 11/28/2022]
|
36
|
Yousif N, Nandi D, Green A, Aziz T, Liu X. The effect of the ventricular system on the electric current in deep brain stimulation. BMC Neurosci 2009. [DOI: 10.1186/1471-2202-10-s1-p184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Gubellini P, Salin P, Kerkerian-Le Goff L, Baunez C. Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior. Prog Neurobiol 2009; 89:79-123. [DOI: 10.1016/j.pneurobio.2009.06.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/28/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022]
|
38
|
Purswani N, Yousif N, Liu X. Modelling the activation of neuronal populations during deep brain stimulation. BMC Neurosci 2009. [DOI: 10.1186/1471-2202-10-s1-p190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Yousif N, Liu X. Investigating the depth electrode-brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution. J Neurosci Methods 2009; 184:142-51. [PMID: 19596028 DOI: 10.1016/j.jneumeth.2009.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 11/19/2022]
Abstract
Deep brain stimulation (DBS) is an increasingly used surgical therapy for a range of neurological disorders involving the long-term electrical stimulation of various regions of the human brain in a disorder specific manner. Despite being used for the last 20 years, the underlying mechanisms are still not known, and disputed. In particular, when the electrodes are implanted into the human brain, an interface is created with changing biophysical properties which may impact on stimulation. We previously defined the electrode-brain interface (EBI) as consisting of three structural elements: the quadripolar DBS electrode, the peri-electrode space and the surrounding brain tissue. In order to understand more about the nature of this EBI, we used structural computational models of this interface, and estimated the effects of stimulation using coupled axon models. These finite element models differ in complexity, each highlighting a different feature of the EBI's effect on the DBS-induced electric field. We show that the quasi-static models are sufficient to demonstrate the difference between the acute and chronic clinical stages post-implantation. However, the frequency-dependent models are necessary as the waveform shaping has a major influence on the activation of neuronal fibres. We also investigate anatomical effects on the electric field, by taking specific account of the ventricular system in the human brain. Taken together, these models allow us to visualise the static, dynamic and target specific properties of the DBS-induced field in the surrounding brain regions.
Collapse
Affiliation(s)
- Nada Yousif
- The Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, UK
| | | |
Collapse
|
40
|
Grant PF, Lowery MM. Effects of the electrical double layer and dispersive tissue properties in a volume conduction model of deep brain stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:6497-6500. [PMID: 19964442 DOI: 10.1109/iembs.2009.5333592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of this study was to investigate the interaction of the electrode-tissue interface and dispersive tissue properties on waveforms used for deep brain stimulation. A finite element model with a distributed impedance electrical double layer was developed. Bulk tissue capacitance and dispersion were found to alter the voltage waveform under constant current stimulation. When the electrode was surrounded by conductive saline or white matter tissue, the electrical double layer was dominant under voltage controlled stimulation. However, as encapsulation tissue resistivity was increased, to emulate chronic stimulation, the voltage waveform approached that observed during constant current stimulation and the influence of the frequency dependent material properties again became dominant.
Collapse
Affiliation(s)
- Peadar F Grant
- School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Ireland.
| | | |
Collapse
|
41
|
Miocinovic S, Lempka SF, Russo GS, Maks CB, Butson CR, Sakaie KE, Vitek JL, McIntyre CC. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp Neurol 2008; 216:166-76. [PMID: 19118551 DOI: 10.1016/j.expneurol.2008.11.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 11/11/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system.
Collapse
Affiliation(s)
- Svjetlana Miocinovic
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|