1
|
Yang L, Xing W, Shi Y, Hu M, Li B, Hu Y, Zhang G. Stress-induced NLRP3 inflammasome activation and myelin alterations in the hippocampus of PTSD rats. Neuroscience 2024; 555:156-166. [PMID: 39043314 DOI: 10.1016/j.neuroscience.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Inflammatory and myelin changes may contribute to the pathophysiology of post-traumatic stress disorder (PTSD). The NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3), a brain inflammasome, is activated in the hippocampus of mice with PTSD. In other psychiatric disorders, NLRP3 expression has been associated with axonal myelination and demyelination. However, the association between NLRP3 and myelin in rats with PTSD remains unclear. Therefore, this study aims to investigate the relationship between the NLRP3 inflammasome and myelin in the hippocampus of rats with PTSD. A rat model of post-traumatic stress disorder was established using the single-prolonged stress (SPS) approach. Hippocampal tissues were collected for the detection of NLRP3 inflammasome-associated proteins and myelin basic protein at 3, 7, and 14 days after SPS. To further explore the relationship between NLRP3 and myelin, the NLRP3-specific inhibitor MCC950 was administered intraperitoneally to rats starting 72 h before SPS, and then alterations in NLRP3 inflammasome-associated proteins and myelin were observed in the PTSD and control groups. We found that NLRP3 and downstream related proteins were activated in the hippocampus of rats 3 days after SPS, and the myelin content in the hippocampus increased after SPS stress. MCC950 reduced the expression of NLRP3-related pathway proteins, improved anxiety behaviour and spatial learning memory impairment, and inhibited the increase in myelin content in the hippocampal region of rats after SPS. In conclusion the study indicates that NLRP3 has a significant role in the hippocampal region of rats with PTSD. Inhibition of the NLRP3 inflammasome could be a potential target for treating PTSD.
Collapse
Affiliation(s)
- Luodong Yang
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Wenlong Xing
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yan Shi
- Shihezi University, Shihezi, China
| | - Min Hu
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Bin Li
- Shihezi University, Shihezi, China
| | - Yuanyuan Hu
- First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Guiqing Zhang
- First Affiliated Hospital of Shihezi University, Shihezi, China.
| |
Collapse
|
2
|
Melo AI, Zempoalteca R, Ramirez-Funez G, Anaya-Hernández A, Porras MG, Aguirre-Benítez EL, González Del Pliego M, Armando PT, Jiménez-Estrada I. Role of tactile stimulation during the preweaning period on the development of the peripheral sensory sural (SU) nerve in adult artificially reared female rat. Dev Psychobiol 2024; 66:e22486. [PMID: 38739111 DOI: 10.1002/dev.22486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 05/14/2024]
Abstract
Maternal deprivation, as a result of the artificial rearing (AR) paradigm, disturbs electrophysiological and histological characteristics of the peripheral sensory sural (SU) nerve of infant and adult male rats. Such changes are prevented by providing tactile or social stimulation during isolation. AR also affects the female rat's brain and behavior; however, it is unknown whether this early adverse experience also alters their SU nerve development or if tactile stimulation might prevent these possible developmental effects. To assess these possibilities, the electrophysiological and histological characteristics of the SU nerve from adult diestrus AR female rats that: (i) received no tactile stimulation (AR group), (ii) received tactile stimulation in the anogenital and body area (AR-Tactile group), or (iii) were mother reared (MR group) were determined. We found that the amplitude, but not the area, of the evoked compound action potential response in SU nerves of AR rats was lower than those of SU nerves of MR female rats. Tactile stimulation prevented these effects. Additionally, we found a reduction in the outer diameter and myelin thickness of axons, as well as a large proportion of axons with low myelin thickness in nerves of AR rats compared to the nerves of the MR and AR-Tactile groups of rats; however, tactile stimulation only partially prevented these effects. Our data indicate that maternal deprivation disturbs the development of sensory SU nerves in female rats, whereas tactile stimulation partially prevents the changes generated by AR. Considering that our previous studies have shown more severe effects of AR on male SU nerve development, we suggest that sex-associated factors may be involved in these processes.
Collapse
Affiliation(s)
- Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, Mexico
| | - Rene Zempoalteca
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Mexico
| | - Gabriela Ramirez-Funez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, Mexico
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Mexico
| | - Mercedes G Porras
- Departamento de Fisiología, Facultad de Medicina, UNAM, Ciudad de México, Mexico
| | | | | | - Pérez-Torres Armando
- Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Ciudad de México, Mexico
| | | |
Collapse
|
3
|
Mangini L, Lawrence R, Lopez ME, Graham TC, Bauer CR, Nguyen H, Su C, Ramphal J, Crawford BE, Hartl TA. Galactokinase 1 is the source of elevated galactose-1-phosphate and cerebrosides are modestly reduced in a mouse model of classic galactosemia. JIMD Rep 2024; 65:280-294. [PMID: 38974607 PMCID: PMC11224506 DOI: 10.1002/jmd2.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Classic galactosemia (CG) arises from loss-of-function mutations in the Galt gene, which codes for the enzyme galactose-1-phosphate uridylyltransferase (GALT), a central component in galactose metabolism. The neonatal fatality associated with CG can be prevented by galactose dietary restriction, but for decades it has been known that limiting galactose intake is not a cure and patients often have lasting complications. Even on a low-galactose diet, GALT's substrate galactose-1-phosphate (Gal1P) is elevated and one hypothesis is that elevated Gal1P is a driver of pathology. Here we show that Gal1P levels were elevated above wildtype (WT) in Galt mutant mice, while mice doubly mutant for Galt and the gene encoding galactokinase 1 (Galk1) had normal Gal1P levels. This indicates that GALK1 is necessary for the elevated Gal1P in CG. Another hypothesis to explain the pathology is that an inability to metabolize galactose leads to diminished or disrupted galactosylation of proteins or lipids. Our studies reveal that levels of a subset of cerebrosides-galactosylceramide 24:1, sulfatide 24:1, and glucosylceramide 24:1-were modestly decreased compared to WT. In contrast, gangliosides were unaltered. The observed reduction in these 24:1 cerebrosides may be relevant to the clinical pathology of CG, since the cerebroside galactosylceramide is an important structural component of myelin, the 24:1 species is the most abundant in myelin, and irregularities in white matter, of which myelin is a constituent, have been observed in patients with CG. Therefore, impaired cerebroside production may be a contributing factor to the brain damage that is a common clinical feature of the human disease.
Collapse
Affiliation(s)
- Linley Mangini
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Roger Lawrence
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Manuel E. Lopez
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Timothy C. Graham
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Christopher R. Bauer
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Hang Nguyen
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Cheng Su
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - John Ramphal
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Brett E. Crawford
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| | - Tom A. Hartl
- Research and Early DevelopmentBioMarin Pharmaceutical Inc.San RafaelCaliforniaUSA
| |
Collapse
|
4
|
Miller JG, Gluckman PD, Fortier MV, Chong YS, Meaney MJ, Tan AP, Gotlib IH. Faster pace of hippocampal growth mediates the association between perinatal adversity and childhood depression. Dev Cogn Neurosci 2024; 67:101392. [PMID: 38761439 PMCID: PMC11127214 DOI: 10.1016/j.dcn.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024] Open
Abstract
Early life adversity has been posited to influence the pace of structural neurodevelopment. Most research, however, has relied on cross-sectional data, which do not reveal whether the pace of neurodevelopmental change is accelerated or slowed following early exposures. In a birth cohort study that included neuroimaging data obtained at 4.5, 6, and 7.5 years of age (N = 784), we examined associations among a cumulative measure of perinatal adversity relative to resources, nonlinear trajectories of hippocampal and amygdala volume, and children's subsequent depressive symptoms at 8.5 years of age. Greater adversity was associated with reduced bilateral hippocampal body volume in early childhood, but also to faster growth in the right hippocampal body across childhood. Further, the association between adversity and childhood depressive symptoms was mediated by faster hippocampal body growth. These findings suggest that perinatal adversity is biologically embedded in hippocampal structure development, including an accelerated pace of change in the right hippocampal body that is implicated in children's psychopathology risk. In addition, our findings suggest that reduced hippocampal volume is not inconsistent with accelerated hippocampal change; these aspects of structural development may typically co-occur, as smaller regional volumes in early childhood were associated with faster growth across childhood.
Collapse
Affiliation(s)
- Jonas G Miller
- Department of Psychological Sciences, University of Connecticut, CT, USA.
| | - Peter D Gluckman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marielle V Fortier
- Department of Diagnostic & Interventional Imaging, KK Women's and Children's Hospital, Singapore
| | - Yap Seng Chong
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, A⁎STAR Research Entities, Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Obstetrics & Gynecology, National University Health System, Singapore
| | - Michael J Meaney
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, A⁎STAR Research Entities, Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Douglas Mental Health University Institute, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada; Brain - Body Initiative, A⁎STAR Research Entities, Singapore
| | - Ai Peng Tan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, A⁎STAR Research Entities, Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Brain - Body Initiative, A⁎STAR Research Entities, Singapore; Department of Diagnostic Imaging, National University Health System, Singapore
| | - Ian H Gotlib
- Department of Psychology, Stanford University, CA, USA
| |
Collapse
|
5
|
Premachandran H, Wilkin J, Arruda-Carvalho M. Minimizing Variability in Developmental Fear Studies in Mice: Toward Improved Replicability in the Field. Curr Protoc 2024; 4:e1040. [PMID: 38713136 DOI: 10.1002/cpz1.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In rodents, the first weeks of postnatal life feature remarkable changes in fear memory acquisition, retention, extinction, and discrimination. Early development is also marked by profound changes in brain circuits underlying fear memory processing, with heightened sensitivity to environmental influences and stress, providing a powerful model to study the intersection between brain structure, function, and the impacts of stress. Nevertheless, difficulties related to breeding and housing young rodents, preweaning manipulations, and potential increased variability within that population pose considerable challenges to developmental fear research. Here we discuss several factors that may promote variability in studies examining fear conditioning in young rodents and provide recommendations to increase replicability. We focus primarily on experimental conditions, design, and analysis of rodent fear data, with an emphasis on mouse studies. The convergence of anatomical, synaptic, physiological, and behavioral changes during early life may increase variability, but careful practice and transparency in reporting may improve rigor and consensus in the field. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Poggi G, Klaus F, Pryce CR. Pathophysiology in cortico-amygdala circuits and excessive aversion processing: the role of oligodendrocytes and myelination. Brain Commun 2024; 6:fcae140. [PMID: 38712320 PMCID: PMC11073757 DOI: 10.1093/braincomms/fcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Stress-related psychiatric illnesses, such as major depressive disorder, anxiety and post-traumatic stress disorder, present with alterations in emotional processing, including excessive processing of negative/aversive stimuli and events. The bidirectional human/primate brain circuit comprising anterior cingulate cortex and amygdala is of fundamental importance in processing emotional stimuli, and in rodents the medial prefrontal cortex-amygdala circuit is to some extent analogous in structure and function. Here, we assess the comparative evidence for: (i) Anterior cingulate/medial prefrontal cortex<->amygdala bidirectional neural circuits as major contributors to aversive stimulus processing; (ii) Structural and functional changes in anterior cingulate cortex<->amygdala circuit associated with excessive aversion processing in stress-related neuropsychiatric disorders, and in medial prefrontal cortex<->amygdala circuit in rodent models of chronic stress-induced increased aversion reactivity; and (iii) Altered status of oligodendrocytes and their oligodendrocyte lineage cells and myelination in anterior cingulate/medial prefrontal cortex<->amygdala circuits in stress-related neuropsychiatric disorders and stress models. The comparative evidence from humans and rodents is that their respective anterior cingulate/medial prefrontal cortex<->amygdala circuits are integral to adaptive aversion processing. However, at the sub-regional level, the anterior cingulate/medial prefrontal cortex structure-function analogy is incomplete, and differences as well as similarities need to be taken into account. Structure-function imaging studies demonstrate that these neural circuits are altered in both human stress-related neuropsychiatric disorders and rodent models of stress-induced increased aversion processing. In both cases, the changes include altered white matter integrity, albeit the current evidence indicates that this is decreased in humans and increased in rodent models. At the cellular-molecular level, in both humans and rodents, the current evidence is that stress disorders do present with changes in oligodendrocyte lineage, oligodendrocytes and/or myelin in these neural circuits, but these changes are often discordant between and even within species. Nonetheless, by integrating the current comparative evidence, this review provides a timely insight into this field and should function to inform future studies-human, monkey and rodent-to ascertain whether or not the oligodendrocyte lineage and myelination are causally involved in the pathophysiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
| | - Federica Klaus
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Hernandez DP, Cruz DM, Martinez CS, Garcia LM, Figueroa A, Villarreal M, Manoj LM, Lopez S, López-Lorenzo KD, López-Juárez A. Gender-Specific Fine Motor Skill Learning Is Impaired by Myelin-Targeted Neurofibromatosis Type 1 Gene Mutation. Cancers (Basel) 2024; 16:477. [PMID: 38339230 PMCID: PMC10854893 DOI: 10.3390/cancers16030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is caused by mutations in the NF1 gene. The clinical presentation of NF1 includes diverse neurological issues in pediatric and adult patients, ranging from learning disabilities, motor skill issues, and attention deficit disorder, to increased risk of depression and dementia. Preclinical research suggests that abnormal neuronal signaling mediates spatial learning and attention issues in NF1; however, drugs that improve phenotypes in models show inconclusive results in clinical trials, highlighting the need for a better understanding of NF1 pathophysiology and broader therapeutic options. Most NF1 patients show abnormalities in their brain white matter (WM) and myelin, and links with NF1 neuropathophysiology have been suggested; however, no current data can clearly support or refute this idea. We reported that myelin-targeted Nf1 mutation impacts oligodendrocyte signaling, myelin ultrastructure, WM connectivity, and sensory-motor behaviors in mice; however, any impact on learning and memory remains unknown. Here, we adapted a voluntary running test-the complex wheel (CW; a wheel with unevenly spaced rungs)-to delineate fine motor skill learning curves following induction of an Nf1 mutation in pre-existing myelinating cells (pNf1 mice). We found that pNf1 mutant females experience delayed or impaired learning in the CW, while proper learning in pNf1 males is predominantly disrupted; these phenotypes add complexity to the gender-dependent learning differences in the mouse strain used. No broad differences in memory of acquired CW skills were detected in any gender, but gene-dose effects were observed at the studied time points. Finally, nitric oxide signaling regulation differentially impacted learning in wild type (WT)/pNf1, male/female mice. Our results provide evidence for fine motor skill learning issues upon induction of an Nf1 mutation in mature myelinating cells. Together with previous connectivity, cellular, and molecular analyses, these results diversify the potential treatments for neurological issues in NF1.
Collapse
Affiliation(s)
- Daniella P. Hernandez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Daniela M. Cruz
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Celeste S. Martinez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Larisa M. Garcia
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Ashley Figueroa
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Marisol Villarreal
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Liya M. Manoj
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Saul Lopez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | | | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| |
Collapse
|
8
|
de Blank P, Nishiyama A, López-Juárez A. A new era for myelin research in Neurofibromatosis type 1. Glia 2023; 71:2701-2719. [PMID: 37382486 PMCID: PMC10592420 DOI: 10.1002/glia.24432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Evidence for myelin regulating higher-order brain function and disease is rapidly accumulating; however, defining cellular/molecular mechanisms remains challenging partially due to the dynamic brain physiology involving deep changes during development, aging, and in response to learning and disease. Furthermore, as the etiology of most neurological conditions remains obscure, most research models focus on mimicking symptoms, which limits understanding of their molecular onset and progression. Studying diseases caused by single gene mutations represents an opportunity to understand brain dys/function, including those regulated by myelin. Here, we discuss known and potential repercussions of abnormal central myelin on the neuropathophysiology of Neurofibromatosis Type 1 (NF1). Most patients with this monogenic disease present with neurological symptoms diverse in kind, severity, and onset/decline, including learning disabilities, autism spectrum disorders, attention deficit and hyperactivity disorder, motor coordination issues, and increased risk for depression and dementia. Coincidentally, most NF1 patients show diverse white matter/myelin abnormalities. Although myelin-behavior links were proposed decades ago, no solid data can prove or refute this idea yet. A recent upsurge in myelin biology understanding and research/therapeutic tools provides opportunities to address this debate. As precision medicine moves forward, an integrative understanding of all cell types disrupted in neurological conditions becomes a priority. Hence, this review aims to serve as a bridge between fundamental cellular/molecular myelin biology and clinical research in NF1.
Collapse
Affiliation(s)
- Peter de Blank
- Department of Pediatrics, The Cure Starts Now Brain Tumor Center, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
9
|
Chen CP, Chen PC, Pan YL, Hsu YC. Prenatal lipopolysaccharide exposure induces anxiety-like behaviour in male mouse offspring and aberrant glial differentiation of embryonic neural stem cells. Cell Mol Biol Lett 2023; 28:67. [PMID: 37592237 PMCID: PMC10436442 DOI: 10.1186/s11658-023-00480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Prenatal infection has been implicated in the development of neuropsychiatric disorders in children. We hypothesised that exposure to lipopolysaccharide during prenatal development could induce anxiety-like behaviour and sensorineural hearing loss in offspring, as well as disrupt neural differentiation during embryonic neural development. METHODS We simulated prenatal infection in FVB mice and mouse embryonic stem cell (ESC) lines, specifically 46C and E14Tg2a, through lipopolysaccharide treatment. Gene expression profiling analyses and behavioural tests were utilized to study the effects of lipopolysaccharide on the offspring and alterations in toll-like receptor (TLR) 2-positive and TLR4-positive cells during neural differentiation in the ESCs. RESULTS Exposure to lipopolysaccharide (25 µg/kg) on gestation day 9 resulted in anxiety-like behaviour specifically in male offspring, while no effects were detected in female offspring. We also found significant increases in the expression of GFAP and CNPase, as well as higher numbers of GFAP + astrocytes and O4+ oligodendrocytes in the prefrontal cortex of male offspring. Furthermore, increased scores for genes related to oligodendrocyte and lipid metabolism, particularly ApoE, were observed in the prefrontal cortex regions. Upon exposure to lipopolysaccharide during the ESC-to-neural stem cell (NSC) transition, Tuj1, Map2, Gfap, O4, and Oligo2 mRNA levels increased in the differentiated neural cells on day 14. In vitro experiments demonstrated that lipopolysaccharide exposure induced inflammatory responses, as evidenced by increased expression of IL1b and ApoB mRNA. CONCLUSIONS Our findings suggest that prenatal infection at different stages of neural differentiation may result in distinct disturbances in neural differentiation during ESC-NSC transitions. Furthermore, early prenatal challenges with lipopolysaccharide selectively induce anxiety-like behaviour in male offspring. This behaviour may be attributed to the abnormal differentiation of astrocytes and oligodendrocytes in the brain, potentially mediated by ApoB/E signalling pathways in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Division of High Risk Pregnancy, Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ling Pan
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, New Taipei City, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
10
|
Hardi FA, Goetschius LG, Tillem S, McLoyd V, Brooks-Gunn J, Boone M, Lopez-Duran N, Mitchell C, Hyde LW, Monk CS. Early childhood household instability, adolescent structural neural network architecture, and young adulthood depression: A 21-year longitudinal study. Dev Cogn Neurosci 2023; 61:101253. [PMID: 37182338 PMCID: PMC10200816 DOI: 10.1016/j.dcn.2023.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023] Open
Abstract
Unstable and unpredictable environments are linked to risk for psychopathology, but the underlying neural mechanisms that explain how instability relate to subsequent mental health concerns remain unclear. In particular, few studies have focused on the association between instability and white matter structures despite white matter playing a crucial role for neural development. In a longitudinal sample recruited from a population-based study (N = 237), household instability (residential moves, changes in household composition, caregiver transitions in the first 5 years) was examined in association with adolescent structural network organization (network integration, segregation, and robustness of white matter connectomes; Mage = 15.87) and young adulthood anxiety and depression (six years later). Results indicate that greater instability related to greater global network efficiency, and this association remained after accounting for other types of adversity (e.g., harsh parenting, neglect, food insecurity). Moreover, instability predicted increased depressive symptoms via increased network efficiency even after controlling for previous levels of symptoms. Exploratory analyses showed that structural connectivity involving the left fronto-lateral and temporal regions were most strongly related to instability. Findings suggest that structural network efficiency relating to household instability may be a neural mechanism of risk for later depression and highlight the ways in which instability modulates neural development.
Collapse
Affiliation(s)
- Felicia A Hardi
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Leigh G Goetschius
- The Hilltop Institute, University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Scott Tillem
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vonnie McLoyd
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jeanne Brooks-Gunn
- Teachers College, Columbia University, New York, NY, United States of America; College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Montana Boone
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Nestor Lopez-Duran
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Colter Mitchell
- Survey Research Center of the Institute for Social Research, University of Michigan, United States of America; Population Studies Center of the Institute for Social Research, University of Michigan, United States of America
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America; Survey Research Center of the Institute for Social Research, University of Michigan, United States of America
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America; Survey Research Center of the Institute for Social Research, University of Michigan, United States of America; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States of America; Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
11
|
Holz NE, Berhe O, Sacu S, Schwarz E, Tesarz J, Heim CM, Tost H. Early Social Adversity, Altered Brain Functional Connectivity, and Mental Health. Biol Psychiatry 2023; 93:430-441. [PMID: 36581495 DOI: 10.1016/j.biopsych.2022.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Early adverse environmental exposures during brain development are widespread risk factors for the onset of severe mental disorders and strong and consistent predictors of stress-related mental and physical illness and reduced life expectancy. Current evidence suggests that early negative experiences alter plasticity processes during developmentally sensitive time windows and affect the regular functional interaction of cortical and subcortical neural networks. This, in turn, may promote a maladapted development with negative consequences on the mental and physical health of exposed individuals. In this review, we discuss the role of functional magnetic resonance imaging-based functional connectivity phenotypes as potential biomarker candidates for the consequences of early environmental exposures-including but not limited to-childhood maltreatment. We take an expanded concept of developmentally relevant adverse experiences from infancy over childhood to adolescence as our starting point and focus our review of functional connectivity studies on a selected subset of functional magnetic resonance imaging-based phenotypes, including connectivity in the limbic and within the frontoparietal as well as default mode networks, for which we believe there is sufficient converging evidence for a more detailed discussion in a developmental context. Furthermore, we address specific methodological challenges and current knowledge gaps that complicate the interpretation of early stress effects on functional connectivity and deserve particular attention in future studies. Finally, we highlight the forthcoming prospects and challenges of this research area with regard to establishing functional connectivity measures as validated biomarkers for brain developmental processes and individual risk stratification and as target phenotypes for mechanism-based interventions.
Collapse
Affiliation(s)
- Nathalie E Holz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Oksana Berhe
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Seda Sacu
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jonas Tesarz
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine M Heim
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany; College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
12
|
Martínez-Álvarez V, Segura-Alegría B, Rodríguez-Torres EE, Porras MG, Aguirre-Benítez E, González Del Pliego M, Hudson R, Quiroz-González S, Melo AI, Jiménez-Estrada I. Mother and sibling interactions during the preweaning period influence myelination and impulse propagation of the sensory sural nerve in the adult rat. Dev Psychobiol 2022; 64:e22316. [PMID: 36282737 DOI: 10.1002/dev.22316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 01/27/2023]
Abstract
To investigate whether mother and sibling interactions during the preweaning period influence the histological and electrophysiological characteristics of the sensory sural nerve (SUn) in the adult rat, litters composed of 1, 3, 6, 9, and 12 male pups (P) were formed and the pups routinely weighed until postnatal day 60 (PND60). At PND9, 3P and 6P litters showed greater body weight than pups without siblings or from 9P or 12P litters, and such differences in weight were maintained until adulthood. Analysis of maternal licking at PND8 and 9 showed that pups from large litters received fewer licks than pups from small size litters. At PND60, SUn of rats from 6P and 9P litters had greater compound action potential (CAP) amplitude and a higher proportion of axons with large myelin thickness than nerves from rats of 1P, 3P, or 12P litters. SUn of heaviest rats from 9P and 12P litters had greater CAP area and myelination than the lightest rats from the same litters. We propose that a complex interplay of sensory, social, and nutritional factors arising from mother and littermate interactions during the preweaning period influence myelination and the propagation of action potentials in the SUn of adult rats.
Collapse
Affiliation(s)
- Vladimir Martínez-Álvarez
- Depto. Fisiología, Biofísica y Neurociencias, CINVESTAV, IPN, Mexico City, Mexico.,Depto. Biología, FES-Iztacala, UNAM, Mexico City, Mexico
| | | | | | | | | | | | - Robyn Hudson
- Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV- Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico City, Mexico
| | | |
Collapse
|
13
|
Lautarescu A, Bonthrone AF, Pietsch M, Batalle D, Cordero-Grande L, Tournier JD, Christiaens D, Hajnal JV, Chew A, Falconer S, Nosarti C, Victor S, Craig MC, Edwards AD, Counsell SJ. Maternal depressive symptoms, neonatal white matter, and toddler social-emotional development. Transl Psychiatry 2022; 12:323. [PMID: 35945202 PMCID: PMC9363426 DOI: 10.1038/s41398-022-02073-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Maternal prenatal depression is associated with increased likelihood of neurodevelopmental and psychiatric conditions in offspring. The relationship between maternal depression and offspring outcome may be mediated by in-utero changes in brain development. Recent advances in magnetic resonance imaging (MRI) have enabled in vivo investigations of neonatal brains, minimising the effect of postnatal influences. The aim of this study was to examine associations between maternal prenatal depressive symptoms, infant white matter, and toddler behaviour. 413 mother-infant dyads enrolled in the developing Human Connectome Project. Mothers completed the Edinburgh Postnatal Depression Scale (median = 5, range = 0-28, n = 52 scores ≥ 11). Infants (n = 223 male) (median gestational age at birth = 40 weeks, range 32.14-42.29) underwent MRI (median postmenstrual age at scan = 41.29 weeks, range 36.57-44.71). Fixel-based fibre metrics (mean fibre density, fibre cross-section, and fibre density modulated by cross-section) were calculated from diffusion imaging data in the left and right uncinate fasciculi and cingulum bundle. For n = 311, internalising and externalising behaviour, and social-emotional abilities were reported at a median corrected age of 18 months (range 17-24). Statistical analysis used multiple linear regression and mediation analysis with bootstrapping. Maternal depressive symptoms were positively associated with infant fibre density in the left (B = 0.0005, p = 0.003, q = 0.027) and right (B = 0.0006, p = 0.003, q = 0.027) uncinate fasciculus, with left uncinate fasciculus fibre density, in turn, positively associated with social-emotional abilities in toddlerhood (B = 105.70, p = 0.0007, q = 0.004). In a mediation analysis, higher maternal depressive symptoms predicted toddler social-emotional difficulties (B = 0.342, t(307) = 3.003, p = 0.003), but this relationship was not mediated by fibre density in the left uncinate fasciculus (Sobel test p = 0.143, bootstrapped indirect effect = 0.035, SE = 0.02, 95% CI: [-0.01, 0.08]). There was no evidence of an association between maternal depressive and cingulum fibre properties. These findings suggest that maternal perinatal depressive symptoms are associated with neonatal uncinate fasciculi microstructure, but not fibre bundle size, and toddler behaviour.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - J-Donald Tournier
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Joseph V Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Andrew Chew
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Suresh Victor
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
| | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Female Hormone Clinic, South London and Maudsley National Health Service Foundation Trust, London, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- EPSRC/Wellcome Centre for Medical Engineering, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|
14
|
Relationship between infantile mother preference and neural regions activated by maternal contact in C57BL/6 mice. Neurosci Res 2022; 178:69-77. [DOI: 10.1016/j.neures.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022]
|
15
|
Al-Hakeim HK, Hadi HH, Jawad GA, Maes M. Intersections between Copper, β-Arrestin-1, Calcium, FBXW7, CD17, Insulin Resistance and Atherogenicity Mediate Depression and Anxiety Due to Type 2 Diabetes Mellitus: A Nomothetic Network Approach. J Pers Med 2022; 12:jpm12010023. [PMID: 35055338 PMCID: PMC8779500 DOI: 10.3390/jpm12010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is frequently accompanied by affective disorders with a prevalence of comorbid depression of around 25%. Nevertheless, the biomarkers of affective symptoms including depression and anxiety due to T2DM are not well established. The present study delineated the effects of serum levels of copper, zinc, β-arrestin-1, FBXW7, lactosylceramide (LacCer), serotonin, calcium, magnesium on severity of depression and anxiety in 58 men with T2DM and 30 healthy male controls beyond the effects of insulin resistance (IR) and atherogenicity. Severity of affective symptoms was assessed using the Hamilton Depression and Anxiety rating scales. We found that 61.7% of the variance in affective symptoms was explained by the multivariate regression on copper, β-arrestin-1, calcium, and IR coupled with atherogenicity. Copper and LacCer (positive) and calcium and BXW7 (inverse) had significant specific indirect effects on affective symptoms, which were mediated by IR and atherogenicity. Copper, β-arrestin-1, and calcium were associated with affective symptoms above and beyond the effects of IR and atherogenicity. T2DM and affective symptoms share common pathways, namely increased atherogenicity, IR, copper, and β-arrestin-1, and lowered calcium, whereas copper, β-arrestin-1, calcium, LacCer, and FBXW7 may modulate depression and anxiety symptoms by affecting T2DM.
Collapse
Affiliation(s)
- Hussein Kadhem Al-Hakeim
- Department of Chemistry, College of Science, University of Kufa, Najaf 54001, Iraq; (H.K.A.-H.); (H.H.H.); (G.A.J.)
| | - Hadi Hasan Hadi
- Department of Chemistry, College of Science, University of Kufa, Najaf 54001, Iraq; (H.K.A.-H.); (H.H.H.); (G.A.J.)
| | - Ghoufran Akeel Jawad
- Department of Chemistry, College of Science, University of Kufa, Najaf 54001, Iraq; (H.K.A.-H.); (H.H.H.); (G.A.J.)
| | - Michael Maes
- Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 281, Geelong, VIC 3220, Australia
- Correspondence:
| |
Collapse
|
16
|
Long KLP, Chao LL, Kazama Y, An A, Hu KY, Peretz L, Muller DCY, Roan VD, Misra R, Toth CE, Breton JM, Casazza W, Mostafavi S, Huber BR, Woodward SH, Neylan TC, Kaufer D. Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Transl Psychiatry 2021; 11:631. [PMID: 34903726 PMCID: PMC8668977 DOI: 10.1038/s41398-021-01745-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Individual reactions to traumatic stress vary dramatically, yet the biological basis of this variation remains poorly understood. Recent studies demonstrate the surprising plasticity of oligodendrocytes and myelin with stress and experience, providing a potential mechanism by which trauma induces aberrant structural and functional changes in the adult brain. In this study, we utilized a translational approach to test the hypothesis that gray matter oligodendrocytes contribute to traumatic-stress-induced behavioral variation in both rats and humans. We exposed adult, male rats to a single, severe stressor and used a multimodal approach to characterize avoidance, startle, and fear-learning behavior, as well as oligodendrocyte and myelin basic protein (MBP) content in multiple brain areas. We found that oligodendrocyte cell density and MBP were correlated with behavioral outcomes in a region-specific manner. Specifically, stress-induced avoidance positively correlated with hippocampal dentate gyrus oligodendrocytes and MBP. Viral overexpression of the oligodendrogenic factor Olig1 in the dentate gyrus was sufficient to induce an anxiety-like behavioral phenotype. In contrast, contextual fear learning positively correlated with MBP in the amygdala and spatial-processing regions of the hippocampus. In a group of trauma-exposed US veterans, T1-/T2-weighted magnetic resonance imaging estimates of hippocampal and amygdala myelin associated with symptom profiles in a region-specific manner that mirrored the findings in rats. These results demonstrate a species-independent relationship between region-specific, gray matter oligodendrocytes and differential behavioral phenotypes following traumatic stress exposure. This study suggests a novel mechanism for brain plasticity that underlies individual variance in sensitivity to traumatic stress.
Collapse
Affiliation(s)
- Kimberly L P Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychiatry and Behavioral Sciences, University of California, SanFrancisco, San Francisco, CA, 94143, USA
| | - Linda L Chao
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yurika Kazama
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Anjile An
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kelsey Y Hu
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Lior Peretz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dyana C Y Muller
- Department of Computer Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Vivian D Roan
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rhea Misra
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Claire E Toth
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jocelyn M Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Psychiatry, Columbia University, New York, NY, 10027, USA
| | - William Casazza
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sara Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | - Bertrand R Huber
- Department of Neurology, Boston University, Boston, MA, 02215, USA
- National Center for PTSD, VA New England Health Care System, Boston, MA, 02130, USA
| | - Steven H Woodward
- National Center for PTSD, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Thomas C Neylan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- San Francisco VA Health Care System, San Francisco, CA, 94121, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada.
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
17
|
Harmon-Jones SK, Richardson R. Adults who are more anxious and were anxiously attached as children report later first memories. Br J Psychol 2021; 113:455-478. [PMID: 34894150 DOI: 10.1111/bjop.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022]
Abstract
Here, we examined retrospective reports of adults' earliest autobiographical memory, the age of this report and whether the reported age was associated with exposure to early life adversity, current anxiety and childhood attachment. Across four studies, we found that reporting a later 'earliest' memory was associated with higher self-reported anxiety in both American (Studies 1, 2 and 4) and Australian (Study 3) samples. Furthermore, in Studies 2-4, we found that reporting a later earliest memory uniquely predicted anxiety when controlling for number of adverse childhood events (a risk factor for the development of anxiety). In Study 4, we established that this relation is partially mediated by childhood anxious attachment. Although we consistently demonstrated that later earliest memories were associated with current anxiety, we found little evidence for a relation between reported age at the time of earliest memory and childhood adversity. We also found no evidence of gender differences in the associations of interest. These results suggest that poorer memory of early childhood is associated with greater childhood anxious attachment and anxiety in adulthood. The implications of this work are discussed in terms of the adaptive nature of autobiographical memory and the development of a coherent life narrative.
Collapse
Affiliation(s)
| | - Rick Richardson
- School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Roubinov D, Meaney MJ, Boyce WT. Change of pace: How developmental tempo varies to accommodate failed provision of early needs. Neurosci Biobehav Rev 2021; 131:120-134. [PMID: 34547365 PMCID: PMC8648258 DOI: 10.1016/j.neubiorev.2021.09.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/30/2021] [Accepted: 09/16/2021] [Indexed: 01/13/2023]
Abstract
The interplay of genes and environments (GxE) is a fundamental source of variation in behavioral and developmental outcomes. Although the role of developmental time (T) in the unfolding of such interactions has yet to be fully considered, GxE operates within a temporal frame of reference across multiple timescales and degrees of biological complexity. Here, we consider GxExT interactions to understand adversity-induced developmental acceleration or deceleration whereby environmental conditions hasten or hinder children's development. To date, developmental pace changes have been largely explained through a focus on the individual: for example, how adversity "wears down" aging biological systems or how adversity accelerates or decelerates maturation to optimize reproductive fitness. We broaden such theories by positing shifts in developmental pace in response to the parent-child dyad's capacity or incapacity for meeting children's early, physiological and safety needs. We describe empirical evidence and potential neurobiological mechanisms supporting this new conceptualization of developmental acceleration and deceleration. We conclude with suggestions for future research on the developmental consequences of early adverse exposures.
Collapse
Affiliation(s)
- Danielle Roubinov
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States.
| | - Michael J Meaney
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, H3H 1R4, Canada; Child and Brain Development Program, CIFAR, Toronto, Ontario, M5G 1M1, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A ⁎STAR), 117609, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - W Thomas Boyce
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States; Child and Brain Development Program, CIFAR, Toronto, Ontario, M5G 1M1, Canada; Department of Pediatrics, University of California, San Francisco, United States
| |
Collapse
|
19
|
Ho TC, King LS. Mechanisms of neuroplasticity linking early adversity to depression: developmental considerations. Transl Psychiatry 2021; 11:517. [PMID: 34628465 PMCID: PMC8501358 DOI: 10.1038/s41398-021-01639-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Early exposure to psychosocial adversity is among the most potent predictors of depression. Because depression commonly emerges prior to adulthood, we must consider the fundamental principles of developmental neuroscience when examining how experiences of childhood adversity, including abuse and neglect, can lead to depression. Considering that both the environment and the brain are highly dynamic across the period spanning gestation through adolescence, the purpose of this review is to discuss and integrate stress-based models of depression that center developmental processes. We offer a general framework for understanding how psychosocial adversity in early life disrupts or calibrates the biobehavioral systems implicated in depression. Specifically, we propose that the sources and nature of the environmental input shaping the brain, and the mechanisms of neuroplasticity involved, change across development. We contend that the effects of adversity largely depend on the developmental stage of the organism. First, we summarize leading neurobiological models that focus on the effects of adversity on risk for mental disorders, including depression. In particular, we highlight models of allostatic load, acceleration maturation, dimensions of adversity, and sensitive or critical periods. Second, we expound on and review evidence for the formulation that distinct mechanisms of neuroplasticity are implicated depending on the timing of adverse experiences, and that inherent within certain windows of development are constraints on the sources and nature of these experiences. Finally, we consider other important facets of adverse experiences (e.g., environmental unpredictability, perceptions of one's experiences) before discussing promising research directions for the future of the field.
Collapse
Affiliation(s)
- Tiffany C Ho
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Lucy S King
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
20
|
Guadagno A, Belliveau C, Mechawar N, Walker CD. Effects of Early Life Stress on the Developing Basolateral Amygdala-Prefrontal Cortex Circuit: The Emerging Role of Local Inhibition and Perineuronal Nets. Front Hum Neurosci 2021; 15:669120. [PMID: 34512291 PMCID: PMC8426628 DOI: 10.3389/fnhum.2021.669120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
The links between early life stress (ELS) and the emergence of psychopathology such as increased anxiety and depression are now well established, although the specific neurobiological and developmental mechanisms that translate ELS into poor health outcomes are still unclear. The consequences of ELS are complex because they depend on the form and severity of early stress, duration, and age of exposure as well as co-occurrence with other forms of physical or psychological trauma. The long term effects of ELS on the corticolimbic circuit underlying emotional and social behavior are particularly salient because ELS occurs during critical developmental periods in the establishment of this circuit, its local balance of inhibition:excitation and its connections with other neuronal pathways. Using examples drawn from the human and rodent literature, we review some of the consequences of ELS on the development of the corticolimbic circuit and how it might impact fear regulation in a sex- and hemispheric-dependent manner in both humans and rodents. We explore the effects of ELS on local inhibitory neurons and the formation of perineuronal nets (PNNs) that terminate critical periods of plasticity and promote the formation of stable local networks. Overall, the bulk of ELS studies report transient and/or long lasting alterations in both glutamatergic circuits and local inhibitory interneurons (INs) and their associated PNNs. Since the activity of INs plays a key role in the maturation of cortical regions and the formation of local field potentials, alterations in these INs triggered by ELS might critically participate in the development of psychiatric disorders in adulthood, including impaired fear extinction and anxiety behavior.
Collapse
Affiliation(s)
- Angela Guadagno
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Kreiker M, Perez K, Brown KL. The effects of early weaning on Pavlovian fear conditioning in young rats. Dev Psychobiol 2021; 63:e22133. [PMID: 34423435 DOI: 10.1002/dev.22133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 11/09/2022]
Abstract
Early life stress enhances memory for Pavlovian fear conditioning. Stress enhancements on fear conditioning following early weaning, however, have yet to be studied in periweaning rats. Early weaning is a relevant animal model for human early life trauma, and Pavlovian fear conditioning is useful for identifying links between stress-induced developmental changes and behavior. We hypothesized that early weaning-on postnatal day (P)15-would lead to higher levels of conditional freezing relative to rats weaned later in life. Periweaning rats were trained with a discrete conditional stimulus (CS) and a shock unconditional stimulus (US), and tested 1 or 15 days later. Enhanced retention was observed in early weaned rats receiving forward paired CS-US training in Experiment 1, though this did not replicate in the second experiment. Despite overall enhancements in early weaned rats in Experiment 1, infantile amnesia effects were not overcome in young rats tested 15 days after training. Enhanced freezing levels in early weaned rats were not observed in subjects receiving unpaired CS, US training, and sensitivity to the US was not different due to age at weaning. Potential mechanisms underlying weaning-related enhancements and considerations for future studies including the role of social transmission of fear information are discussed.
Collapse
Affiliation(s)
- Malaz Kreiker
- Department of Psychology and Neuroscience, Drake University, Des Moines, Iowa, USA
| | - Katelyn Perez
- Department of Psychology and Neuroscience, Drake University, Des Moines, Iowa, USA
| | - Kevin L Brown
- Department of Psychology and Neuroscience, Drake University, Des Moines, Iowa, USA
| |
Collapse
|
22
|
Simon KR, Merz EC, He X, Desai PM, Meyer JS, Noble KG. Socioeconomic factors, stress, hair cortisol, and white matter microstructure in children. Dev Psychobiol 2021; 63:e22147. [PMID: 34105766 DOI: 10.1002/dev.22147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 11/11/2022]
Abstract
Socioeconomic disadvantage has been linked to increased stress exposure in children and adults. Exposure to stress in childhood has been associated with deleterious effects on cognitive development and well-being throughout the lifespan. Further, exposure to stress has been associated with differences in brain development in children, both in cortical and subcortical gray matter. However, less is known about the associations among socioeconomic disadvantage, stress, and children's white matter development. In this study, we investigated whether socioeconomic disparities would be associated with differences in white matter microstructure in the cingulum bundle, as has been previously reported. We additionally investigated whether any such differences could be explained by differences in stress exposure and/or physiological stress levels. White matter tracts were measured via diffusion tensor imaging in 58 children aged 5-9 years. Results indicated that greater exposure to stressful life events was associated with higher child hair cortisol concentrations. Further, physiological stress, as indexed by hair cortisol concentrations, were associated with higher fractional anisotropy in the cingulum bundle. These results have implications for better understanding how perceived and physiological stress may alter neural development during childhood.
Collapse
Affiliation(s)
- Katrina R Simon
- Teachers College, Columbia University, New York, New York, USA
| | - Emily C Merz
- Colorado State University, Fort Collins, Colorado, USA
| | - Xiaofu He
- Columbia University Irving Medical Center, New York, New York, USA
| | - Pooja M Desai
- Teachers College, Columbia University, New York, New York, USA
| | - Jerrold S Meyer
- University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | |
Collapse
|
23
|
Breton JM, Barraza M, Hu KY, Frias SJ, Long KL, Kaufer D. Juvenile exposure to acute traumatic stress leads to long-lasting alterations in grey matter myelination in adult female but not male rats. Neurobiol Stress 2021; 14:100319. [PMID: 33937444 PMCID: PMC8079662 DOI: 10.1016/j.ynstr.2021.100319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Stress early in life can have a major impact on brain development, and there is increasing evidence that childhood stress confers vulnerability for later developing psychiatric disorders. In particular, during peri-adolescence, brain regions crucial for emotional regulation, such as the prefrontal cortex (PFC), amygdala (AMY) and hippocampus (HPC), are still developing and are highly sensitive to stress. Changes in myelin levels have been implicated in mental illnesses and stress effects on myelin and oligodendrocytes (OLs) are beginning to be explored as a novel and underappreciated mechanism underlying psychopathologies. Yet there is little research on the effects of acute stress on myelin during peri-adolescence, and even less work exploring sex-differences. Here, we used a rodent model to test the hypothesis that exposure to acute traumatic stress as a juvenile would induce changes in OLs and myelin content across limbic brain regions. Male and female juvenile rats underwent 3 h of restraint stress with exposure to a predator odor on postnatal day (p) 28. Acute stress induced a physiological response, increasing corticosterone release and reducing weight gain in stress-exposed animals. Brain sections containing the PFC, AMY and HPC were taken either in adolescence (p40), or in adulthood (p95) and stained for markers of OLs and myelin. We found that acute stress induced sex-specific changes in grey matter (GM) myelination and OLs in both the short- and long-term. Exposure to a single stressor as a juvenile increased GM myelin content in the AMY and HPC in p40 males, compared to the respective control group. At p40, corticosterone release during stress exposure was also positively correlated with GM myelin content in the AMY of male rats. Single exposure to juvenile stress also led to long-term effects exclusively in female rats. Compared to controls, stress-exposed females showed reduced GM myelin content in all three brain regions. Acute stress exposure decreased PFC and HPC OL density in p40 females, perhaps contributing towards this observed long-term decrease in myelin content. Overall, our findings suggest that the juvenile brain is vulnerable to exposure to a brief severe stressor. Exposure to a single short traumatic event during peri-adolescence produces long-lasting changes in GM myelin content in the adult brain of female, but not male, rats. These findings highlight myelin plasticity as a potential contributor to sex-specific sensitivity to perturbation during a critical window of development.
Collapse
Affiliation(s)
- Jocelyn M. Breton
- University of California, Berkeley, Helen Wills Neuroscience Institute, United States
| | - Matthew Barraza
- University of California, Berkeley, Molecular and Cellular Biology, United States
| | - Kelsey Y. Hu
- University of California, Berkeley, Molecular and Cellular Biology, United States
| | - Samantha Joy Frias
- University of California, Berkeley, Molecular and Cellular Biology, United States
| | - Kimberly L.P. Long
- University of California, Berkeley, Helen Wills Neuroscience Institute, United States
| | - Daniela Kaufer
- University of California, Berkeley, Helen Wills Neuroscience Institute, United States
- University of California, Berkeley, Integrative Biology, United States
- Canadian Institute for Advanced Research, Toronto, ON, M5G1M1, Canada
| |
Collapse
|
24
|
Chahal R, Kirshenbaum JS, Ho TC, Mastrovito D, Gotlib IH. Greater age-related changes in white matter morphometry following early life stress: Associations with internalizing problems in adolescence. Dev Cogn Neurosci 2021; 47:100899. [PMID: 33340790 PMCID: PMC7750321 DOI: 10.1016/j.dcn.2020.100899] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
Early life stress (ELS) is associated with increased risk for internalizing disorders and variations in gray matter development. It is unclear, however, whether ELS affects normative age-related changes in white matter (WM) morphology, and if such maturational differences are associated with risk for internalizing psychopathology. We conducted comprehensive interviews in a cross-sectional sample of young adolescents (N = 156; 89 F; Ages 9-14) to assess lifetime exposure to stress and objective cumulative ELS severity. We used diffusion-weighted imaging to measure WM fixel-based morphometry and tested the effects of age and ELS on WM fiber density and cross-section (FDC), and associations between WM FDC and internalizing problems. Age was positively associated with FDC in all WM tracts; greater ELS severity was related to stronger age-WM associations in several association tracts connecting the frontal lobes with limbic, parietal, and occipital regions, including bilateral superior and inferior longitudinal and uncinate fasciculi (UF). Among older adolescents with greater ELS severity, a higher UF FDC was associated with fewer internalizing problems. Greater ELS severity predicted more mature WM morphometry in tracts implicated in emotion regulation and cognitive processing. More phenotypically mature UF WM may be adaptive against internalizing psychopathology in adolescents exposed to ELS.
Collapse
Affiliation(s)
- Rajpreet Chahal
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, United States.
| | - Jaclyn S Kirshenbaum
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, United States
| | - Tiffany C Ho
- Department of Psychiatry & Behavioral Sciences and Weill Institute for Neurosciences, University of California, 401 Parnassus Avenue, San Francisco, CA, 94143, United States
| | - Dana Mastrovito
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, United States
| | - Ian H Gotlib
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, United States.
| |
Collapse
|
25
|
Neural meaning making, prediction, and prefrontal-subcortical development following early adverse caregiving. Dev Psychopathol 2021; 32:1563-1578. [PMID: 33427163 DOI: 10.1017/s0954579420001169] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Early adversities that are caregiving-related (crEAs) are associated with a significantly increased risk for mental health problems. Recent neuroscientific advances have revealed alterations in medial prefrontal cortex (mPFC)-subcortical circuitry following crEAs. While this work has identified alterations in affective operations (e.g., perceiving, reacting, controlling, learning) associated with mPFC-subcortical circuitry, this circuitry has a much broader function extending beyond operations. It plays a primary role in affective meaning making, involving conceptual-level, schematized knowledge to generate predictions about the current environment. This function of mPFC-subcortical circuitry motivates asking whether mPFC-subcortical phenotypes following crEAs support semanticized knowledge content (or the concept-level knowledge) and generate predictive models. I present a hypothesis motivated by research findings across four different lines of work that converge on mPFC-subcortical neuroanatomy, including (a) the neurobiology supporting emotion regulation processes in adulthood, (b) the neurobiology that is activated by caregiving cues during development, (c) the neurobiology that is altered by crEAs, and (d) the neurobiology of semantic-based meaning making. I hypothesize that the affective behaviors following crEAs result in part from affective semantic memory processes supported by mPFC-subcortical circuitry that over the course of development, construct affective schemas that generate meaning making and guide predictions. I use this opportunity to review some of the literature on mPFC-subcortical circuit development following crEAs to illustrate the motivation behind this hypothesis. Long recognized by clinical science and cognitive neuroscience, studying schema-based processes may be particularly helpful for understanding how affective meaning making arises from developmental trajectories of mPFC-subcortical circuitry.
Collapse
|
26
|
Zoicas I, Huber SE, Kalinichenko LS, Gulbins E, Müller CP, Kornhuber J. Ceramides affect alcohol consumption and depressive-like and anxiety-like behavior in a brain region- and ceramide species-specific way in male mice. Addict Biol 2020; 25:e12847. [PMID: 31828921 DOI: 10.1111/adb.12847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 01/02/2023]
Abstract
Depression and alcohol dependence are associated with increased plasma ceramide concentrations in humans. Pharmacological increase in C16 ceramide concentrations in the dorsal hippocampus (DH) induced a depressive-like phenotype in naïve mice. However, the effects of C16 ceramide on alcohol consumption and anxiety-like behavior as well as the behavioral effects of other ceramide species are yet unknown. Therefore, we investigated whether repeated infusion of ceramides with different fatty acid chain lengths (C8, C16, and C20) into the DH and the basolateral amygdala (BLA) alter alcohol consumption, emotional behavior, and tissue monoamine levels. Our results revealed that C16, but not C8 and C20, ceramide altered alcohol drinking and emotional behavior in a brain region-specific way without altering tissue noradrenaline, dopamine, and serotonin levels in the prefrontal cortex, ventral striatum, and dorsal mesencephalon. In more detail, C16 ceramide increased alcohol consumption when infused into the BLA, but not when infused into the DH. Furthermore, C16 ceramide induced a depressive-like phenotype when infused into the DH, but a predominantly anxiogenic-like phenotype (in a non-social, but not a social context) when infused into the BLA. In turn, alcohol drinking normalized C16 ceramide-induced depressive-like and anxiogenic-like phenotypes. This study demonstrates a complex ceramide species-specific and brain region-specific modulation of alcohol consumption and emotional behavior in mice and provides the framework for future studies investigating the involvement of distinct ceramide species in the regulation of emotional behavior.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg Erlangen Germany
| | - Sabine E. Huber
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg Erlangen Germany
- Institute of Physiology I Westfälische Wilhelms‐University Münster Münster Germany
| | - Liubov S. Kalinichenko
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg Erlangen Germany
| | - Erich Gulbins
- Department of Molecular Biology University of Duisburg‐Essen Essen Germany
- Department of Surgery University of Cincinnati Cincinnati Ohio
| | - Christian P. Müller
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg Erlangen Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander‐University Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
27
|
Amygdala-Prefrontal Structural Connectivity Mediates the Relationship between Prenatal Depression and Behavior in Preschool Boys. J Neurosci 2020; 40:6969-6977. [PMID: 32788182 DOI: 10.1523/jneurosci.0481-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023] Open
Abstract
Prenatal depression is common, underrecognized, and undertreated. It has negative consequences on child behavior and brain development, yet the relationships among prenatal depression, child behavior, and children's brain structure remain unclear. The aim of this study was to determine whether altered brain connectivity mediates relationships between prenatal maternal depressive symptoms and child behavior. This study included 54 human mother-child pairs. Mothers completed the Edinburgh Postnatal Depression Scale during the second and third trimesters of pregnancy and 3 months postpartum. Their children had diffusion MRI at age 4.1 ± 0.8 years, and children's behavior was assessed using the Child Behavior Checklist within 6 months of their MRI scan. Structural brain connectivity of the amygdala, fornix, uncinate fasciculus, and cingulum was assessed using fractional anisotropy and mean diffusivity and analyzed with maternal prenatal depressive symptoms as well as child behavior. Third trimester maternal Edinburgh Postnatal Depression Scale scores were positively associated with mean diffusivity in the amygdala-frontal tract and the cingulum, controlling for postpartum depression. Externalizing behavior had a sex interaction in the amygdala-frontal pathway; weaker connectivity (lower fractional anisotropy, higher mean diffusivity) was associated with worse behavior in boys. Amygdala-frontal connectivity mediated the relationship between third trimester depressive symptoms and child externalizing behavior in males. These findings suggest that altered brain structure is a mechanism via which prenatal depressive symptoms can impact child behavior, highlighting the importance of both recognition and intervention in prenatal depression.SIGNIFICANCE STATEMENT Understanding how prenatal maternal depression impacts child behavior is critical for appropriately treating prenatal maternal mental health problems and improving child outcomes. Here, we show white matter changes in young children exposed to maternal prenatal depressive symptoms. Children of mothers with worse depressive symptoms had weaker white matter connectivity between areas related to emotional processing. Furthermore, connectivity between the amygdala and prefrontal cortex mediated the relationship between maternal depressive symptoms and externalizing behavior in boys, showing that altered brain structure is a possible mechanism via which maternal prenatal depression impacts children's behavior. This provides important information for understanding why children of depressed mothers may be more vulnerable to depression themselves and may help shape future guidelines on maternal prenatal care.
Collapse
|
28
|
Ramphal B, DeSerisy M, Pagliaccio D, Raffanello E, Rauh V, Tau G, Posner J, Marsh R, Margolis AE. Associations between Amygdala-Prefrontal Functional Connectivity and Age Depend on Neighborhood Socioeconomic Status. Cereb Cortex Commun 2020; 1:tgaa033. [PMID: 32984815 PMCID: PMC7503474 DOI: 10.1093/texcom/tgaa033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Although severe early life stress has been shown to accelerate the development of frontolimbic resting-state functional connectivity (RSFC), less is known about the effects of socioeconomic disadvantage, a prolonged and multifaceted stressor. In a cross-sectional study of 127 participants aged 5–25, we examined whether lower neighborhood socioeconomic status (SES; measured by Area Deprivation Index and neighborhood poverty and educational attainment) was associated with prematurely reduced amygdala-ventromedial prefrontal cortex (vmPFC) RSFC. We further tested whether neighborhood SES was more predictive than household SES and whether SES effects on connectivity were associated with anxiety symptoms. We found reduced basolateral amygdala-vmPFC RSFC at earlier ages in participants from more disadvantaged neighborhoods; this effect was unique to neighborhood SES and absent for household SES. Furthermore, this reduced connectivity in more disadvantaged youth and increased connectivity in more advantaged youth were associated with less anxiety; children who deviated from the connectivity pattern associated with their neighborhood SES had more anxiety. These results demonstrate that neighborhood socioeconomic disadvantage is associated with accelerated maturation of amygdala-vmPFC RSFC and suggest that the pathophysiology of pediatric anxiety depends on a child’s neighborhood socioeconomic characteristics. Our findings also underscore the importance of examining SES effects in studies of brain development.
Collapse
Affiliation(s)
- Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mariah DeSerisy
- Department of Psychology, Fordham University, Bronx, NY 10458, USA
| | - David Pagliaccio
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Elizabeth Raffanello
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Virginia Rauh
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Gregory Tau
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jonathan Posner
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rachel Marsh
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Amy E Margolis
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
29
|
Abstract
Abstract
Although early-life adversity can undermine healthy development, children growing up in harsh environments may develop intact, or even enhanced, skills for solving problems in high-adversity contexts (i.e., “hidden talents”). Here we situate the hidden talents model within a larger interdisciplinary framework. Summarizing theory and research on hidden talents, we propose that stress-adapted skills represent a form of adaptive intelligence that enables individuals to function within the constraints of harsh, unpredictable environments. We discuss the alignment of the hidden talents model with current knowledge about human brain development following early adversity; examine potential applications of this perspective to multiple sectors concerned with youth from harsh environments, including education, social services, and juvenile justice; and compare the hidden talents model with contemporary developmental resilience models. We conclude that the hidden talents approach offers exciting new directions for research on developmental adaptations to childhood adversity, with translational implications for leveraging stress-adapted skills to more effectively tailor education, jobs, and interventions to fit the needs and potentials of individuals from a diverse range of life circumstances. This approach affords a well-rounded view of people who live with adversity that avoids stigma and communicates a novel, distinctive, and strength-based message.
Collapse
|
30
|
Miller JG, Ho TC, Humphreys KL, King LS, Foland-Ross LC, Colich NL, Ordaz SJ, Lin J, Gotlib IH. Early Life Stress, Frontoamygdala Connectivity, and Biological Aging in Adolescence: A Longitudinal Investigation. Cereb Cortex 2020; 30:4269-4280. [PMID: 32215605 PMCID: PMC7264647 DOI: 10.1093/cercor/bhaa057] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Early life stress (ELS) may accelerate frontoamygdala development related to socioemotional processing, serving as a potential source of resilience. Whether this circuit is associated with other proposed measures of accelerated development is unknown. In a sample of young adolescents, we examined the relations among ELS, frontoamygdala circuitry during viewing of emotional faces, cellular aging as measured by telomere shortening, and pubertal tempo. We found that greater cumulative severity of ELS was associated with stronger negative coupling between bilateral centromedial amygdala and the ventromedial prefrontal cortex, a pattern that may reflect more mature connectivity. More negative frontoamygdala coupling (for distinct amygdala subdivisions) was associated with slower telomere shortening and pubertal tempo over 2 years. These potentially protective associations of negative frontoamygdala connectivity were most pronounced in adolescents who had been exposed to higher ELS. Our findings provide support for the formulation that ELS accelerates maturation of frontoamygdala connectivity and provide novel evidence that this neural circuitry confers protection against accelerated biological aging, particularly for adolescents who have experienced higher ELS. Although negative frontoamygdala connectivity may be an adaptation to ELS, frontoamygdala connectivity, cellular aging, and pubertal tempo do not appear to be measures of the same developmental process.
Collapse
Affiliation(s)
- Jonas G Miller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Tiffany C Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Lucy S King
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Lara C Foland-Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Natalie L Colich
- Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Sarah J Ordaz
- Ordaz Psychological Health, Inc., Menlo Park, CA 94025, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Ziegler G, Moutoussis M, Hauser TU, Fearon P, Bullmore ET, Goodyer IM, Fonagy P, Jones PB, Lindenberger U, Dolan RJ. Childhood socio-economic disadvantage predicts reduced myelin growth across adolescence and young adulthood. Hum Brain Mapp 2020; 41:3392-3402. [PMID: 32432383 PMCID: PMC7375075 DOI: 10.1002/hbm.25024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/16/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Socio-economic disadvantage increases exposure to life stressors. Animal research suggests early life stressors impact later neurodevelopment, including myelin developmental growth. To determine how early life disadvantage may affect myelin growth in adolescence and young adulthood, we analysed data from an accelerated longitudinal neuroimaging study measuring magnetisation transfer (MT), a myelin-sensitive marker, in 288 participants (149 female) between 14 and 25 years of age at baseline. We found that early life economic disadvantage before age 12, measured by a neighbourhood poverty index, was associated with slower myelin growth. This association was observed for magnetization transfer in cortical, subcortical and core white matter regions, and also in key subcortical nuclei. Participant IQ at baseline, alcohol use, body mass index, parental occupation and self-reported parenting quality did not account for these effects, but parental education did so partially. Specifically, positive parenting moderated the effect of socio-economic disadvantage in a protective manner. Thus, early socioeconomic disadvantage appears to alter myelin growth across adolescence. This finding has potential translational implications, including clarifying whether reducing socio-economic disadvantage during childhood, and increasing parental education and positive parenting, promote normal trajectories of brain development in economically disadvantaged contexts.
Collapse
Affiliation(s)
- Gabriel Ziegler
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,DZNE Magdeburg, German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Michael Moutoussis
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Tobias U Hauser
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Pasco Fearon
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Research and Development Department, Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, UK.,Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Ian M Goodyer
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Research and Development Department, Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, UK
| | - Peter Fonagy
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Research and Development Department, Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, UK
| | - Ulman Lindenberger
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
32
|
Takita M, Kikusui T. Early weaning augments the spontaneous release of dopamine in the amygdala but not the prefrontal cortex: an in vivo microdialysis study of male rats. Exp Anim 2020; 69:382-387. [PMID: 32350170 PMCID: PMC7677083 DOI: 10.1538/expanim.20-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our early weaning schedule was associated with the emergence of trait anxiety in male
rodents performing an elevated plus maze but not an open-field test. We previously
reported that early weaning weakened excitatory neurotransmission to the amygdala from the
prefrontal cortex, where the mesocorticolimbic dopaminergic (DAergic) fiber terminates on
each. In this study, we investigated DAergic transmission in both these brain regions. The
extracellular levels of amygdalar DA in adulthood were two times higher in rats weaned at
16 days compared to those weaned at 30 days in both the home cage and the open-field. This
difference in extracellular DA levels was not apparent in the prefrontal cortex. The
concurrently measured locomotor and rearing behaviors did not vary according to the
weaning period and the probe-implanted region, respectively. These results suggest that
the effects of early weaning on DA tone appear to be specific to the amygdala and do not
represent ubiquitous upregulation as these changes were not observed in the prefrontal
cortex.
Collapse
Affiliation(s)
- Masatoshi Takita
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.,Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, 1-5-1 Choufuga-oka, Choufu, Tokyo 182-8585, Japan
| | - Takefumi Kikusui
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
33
|
Tottenham N. Early Adversity and the Neotenous Human Brain. Biol Psychiatry 2020; 87:350-358. [PMID: 31399257 PMCID: PMC6935437 DOI: 10.1016/j.biopsych.2019.06.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
Abstract
Human brain development is optimized to learn from environmental cues. The protracted development of the cortex and its connections with subcortical targets has been argued to permit more opportunity for acquiring complex behaviors. This review uses the example of amygdala-medial prefrontal cortex circuitry development to illustrate a principle of human development-namely, that the extension of the brain's developmental timeline allows for the (species-expected) collaboration between child and parent in co-construction of the human brain. The neurobiology underlying affective learning capitalizes on this protracted timeline to develop a rich affective repertoire in adulthood. Humans are afforded this luxuriously slow development in part by the extended period of caregiving provided by parents, and parents aid in scaffolding the process of maturation during childhood. Just as adequate caregiving is a potent effector of brain development, so is adverse caregiving, which is the largest environmental risk factor for adult mental illness. There are large individual differences in neurobiological outcomes following caregiving adversity, indicating that these pathways are probabilistic, rather than deterministic, and prolonged plasticity in human brain development may also allow for subsequent amelioration by positive experiences. The extant research indicates that the development of mental health cannot be considered without consideration of children in the context of their families.
Collapse
Affiliation(s)
- Nim Tottenham
- Department of Psychology, Columbia University, New York, New York.
| |
Collapse
|
34
|
Kamimura I, Kaneko R, Morita H, Mogi K, Kikusui T. Microbial colonization history modulates anxiety-like and complex social behavior in mice. Neurosci Res 2020; 168:64-75. [PMID: 32017965 DOI: 10.1016/j.neures.2020.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Microbiome composition has a pivotal role in neurobehavioral development. However, there is limited information about the role of the microbiome in sociability of mice in complex social contexts. Germ-free (GF) mice were reared in a microbiota-free environment until postnatal day 21 and then transferred to a room containing specific pathogen free (SPF) mice. At 9 weeks old, group social behaviors were measured for three GF mice and three SPF mice unfamiliar to each other. GF mice spent less time in the center area of the arena and there were longer inter-individual distances compared with SPF mice. GF mice also had decreased brain-derived neurotrophic factor (BDNF) and increased ΔFosB mRNA in the prefrontal cortex compared to SPF mice. There were differences in the gut microbiome composition between GF and SPF mice; however, if cohabitating after weaning, then their microbiome composition became equivalent and group differences in behavior and BDNF and ΔFosB mRNA expression disappeared. These results demonstrate that the bacterial community can modulate neural systems that are involved in sociability and anxiety during the developmental period and suggest that sociability and anxiety can be shaped depending on the microbiome environment through interaction with conspecifics.
Collapse
Affiliation(s)
- Itsuka Kamimura
- Department of Animal Science and Biotechnology, Azabu University, Japan
| | - Ryou Kaneko
- Graduate School of Environmental and Life Science, Okayama University, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Japan.
| |
Collapse
|
35
|
Honeycutt JA, Demaestri C, Peterzell S, Silveri MM, Cai X, Kulkarni P, Cunningham MG, Ferris CF, Brenhouse HC. Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity. eLife 2020; 9:52651. [PMID: 31958061 PMCID: PMC7010412 DOI: 10.7554/elife.52651] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Exposure to early-life adversity (ELA) increases the risk for psychopathologies associated with amygdala-prefrontal cortex (PFC) circuits. While sex differences in vulnerability have been identified with a clear need for individualized intervention strategies, the neurobiological substrates of ELA-attributable differences remain unknown due to a paucity of translational investigations taking both development and sex into account. Male and female rats exposed to maternal separation ELA were analyzed with anterograde tracing from basolateral amygdala (BLA) to PFC to identify sex-specific innervation trajectories through juvenility (PD28) and adolescence (PD38;PD48). Resting-state functional connectivity (rsFC) was assessed longitudinally (PD28;PD48) in a separate cohort. All measures were related to anxiety-like behavior. ELA-exposed rats showed precocial maturation of BLA-PFC innervation, with females affected earlier than males. ELA also disrupted maturation of female rsFC, with enduring relationships between rsFC and anxiety-like behavior. This study is the first providing both anatomical and functional evidence for sex- and experience-dependent corticolimbic development. Having a traumatic childhood increases the risk a person will develop anxiety disorders later in life. Early life adversity affects men and women differently, but scientists do not yet know why. Learning more could help scientists develop better ways to prevent or treat anxiety disorders in men and women who experienced childhood trauma. Anxiety occurs when threat-detecting brain circuits turn on. These circuits begin working in infancy, and during childhood and adolescence, experiences shape the brain to hone the body’s responses to perceived threats. Two areas of the brain that are important hubs for anxiety-related brain circuits include the basolateral amygdala (BLA) and the prefrontal cortex (PFC). Now, Honeycutt et al. show that rats that experience early life adversity develop stronger connections between the BLA and PFC, and these changes occur earlier in female rats. In the experiments, one group of rats was repeatedly separated from their mothers and littermates (an early life trauma), while a second group was not. Honeycutt et al. examined the connections between the BLA and PFC in the two groups at three different time periods during their development: the juvenile stage, early adolescence, and late adolescence. The experiments showed stronger connections between the BLA and PFC begin to appear earlier in juvenile traumatized female rats. But these changes did not appear in their male counterparts until adolescence. Lastly, the rats that developed these strengthened BLA-PFC connections also behaved more anxiously later in life. This may mean that the ideal timing for interventions may be different for males and females. More work is needed to see if these results translate to humans and then to find the best times and methods to help people who experienced childhood trauma.
Collapse
Affiliation(s)
- Jennifer A Honeycutt
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Camila Demaestri
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Shayna Peterzell
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| | - Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, United States.,Department of Psychiatry, Harvard Medical School, Boston, United States
| | - Xuezhu Cai
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Miles G Cunningham
- Laboratory for Neural Reconstruction, Department of Psychiatry, McLean Hospital, Belmont, United States
| | - Craig F Ferris
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, United States
| | - Heather C Brenhouse
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, United States
| |
Collapse
|
36
|
Poletti S, Melloni E, Mazza E, Vai B, Benedetti F. Gender-specific differences in white matter microstructure in healthy adults exposed to mild stress. Stress 2020; 23:116-124. [PMID: 31452451 DOI: 10.1080/10253890.2019.1657823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress is a powerful moderator of brain plasticity and may affect several physiological functions such as the endocrine and the immune system. The impact of stress can be protective or detrimental according to several factors such as level of the stressor and age of occurrence. Also, the impact may differ in males and females. We aim to analyze the effect of mild levels of early and recent stress on white matter microstructure in healthy volunteers. MRI acquisition of diffusion tensor images with a 3.0 T scanner was performed on 130 healthy subjects (71 males and 59 females). Severity of early and recent stress was rated, respectively, on the Risky Families Questionnaire and on the Schedule of Recent Experiences; subjects were divided into low stress and mild stress groups. Mild early stress associated with lower fractional anisotropy (FA) in the cingulate gyrus compared to low early stress. Females reported reduced FA compared to males in the low-stress group in the internal capsule, posterior corona radiata, posterior thalamic radiation, superior longitudinal fasciculus, and sagittal stratum whereas no difference was observed in the mild stress group. An additive effect of early and recent stress was observed in posterior corona radiata, retrolenticular part of the internal capsule, and superior longitudinal fasciculus. The impact of early stress on WM microstructure in healthy subjects is different in males and females. While males seem to be more sensitive to early stress, an additive effect of early and recent stress manifests itself in females.Layman summaryMild levels of early stress associate with lower white matter integrity measured by fractional anisotropy.Females and males show differences in white matter integrity when exposed to low levels of early stress with females showing lower white matter integrity compared to males.No difference in white matter integrity was observed for males and females exposed to mild levels of stress.Mild stress in females is associated with higher white matter integrity.Males seem to be more sensitive to early stress while females are more affected when early stress is followed by stress in adult life.
Collapse
Affiliation(s)
- Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Elisa Melloni
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Elena Mazza
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Benedetta Vai
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
37
|
Callaghan BL, Gee DG, Gabard-Durnam L, Telzer EH, Humphreys KL, Goff B, Shapiro M, Flannery J, Lumian DS, Fareri DS, Caldera C, Tottenham N. Decreased Amygdala Reactivity to Parent Cues Protects Against Anxiety Following Early Adversity: An Examination Across 3 Years. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:664-671. [PMID: 30952600 PMCID: PMC6612442 DOI: 10.1016/j.bpsc.2019.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND The human brain remains highly plastic for a protracted developmental period. Thus, although early caregiving adversities that alter amygdala development can result in enduring emotion regulation difficulties, these trajectories should respond to subsequent enriched caregiving. Exposure to high-quality parenting can regulate (i.e., decrease) children's amygdala reactivity, a process that, over the long term, is hypothesized to enhance emotion regulation. We tested the hypothesis that even following adversity, the parent-child relationship would be associated with decreases in amygdala reactivity to parent cues, which would in turn predict lower future anxiety. METHODS Participants were 102 children (6-10 years of age) and adolescents (11-17 years of age), for whom data were collected at one or two time points and who either had experienced institutional care before adoption (n = 45) or had lived always with their biological parents (comparison; n = 57). We examined how amygdala reactivity to visual cues of the parent at time 1 predicted longitudinal change (from time 1 to time 2) in parent-reported child anxiety across 3 years. RESULTS At time 1, on average, amygdala reactivity decrements to parent cues were not seen in children who had received institutional care but were seen in children in the comparison group. However, some children who previously experienced institutional care did show decreased amygdala reactivity to parent cues (∼40%), which was associated with greater child-reported feelings of security with their parent. Amygdala decreases at time 1 were followed by steeper anxiety reductions from time 1 to time 2 (i.e., 3 years). CONCLUSIONS These data provide a neurobiological mechanism by which the parent-child relationship can increase resilience, even in children at significant risk for anxiety symptoms.
Collapse
Affiliation(s)
- Bridget L Callaghan
- Department of Psychology, Columbia University, New York, New York; Department of Psychiatry, The University of Melbourne, Melbourne, Australia.
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, Connecticut
| | | | - Eva H Telzer
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee
| | - Bonnie Goff
- Department of Psychology, University of California-Los Angeles, Los Angeles, California
| | - Mor Shapiro
- David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
| | - Jessica Flannery
- Department of Psychology, University of Oregon, Eugene, Eugene, Oregon
| | - Daniel S Lumian
- Department of Psychology, University of Denver, Denver, Colorado
| | - Dominic S Fareri
- Department of Psychology, Adelphi University, Garden City, New York
| | - Christina Caldera
- Department of Psychology, University of California-Los Angeles, Los Angeles, California
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, New York
| |
Collapse
|
38
|
Kikusui T, Kanbara N, Ozaki M, Hirayama N, Ida K, Tokita M, Tanabe N, Mitsuyama K, Abe H, Yoshida M, Nagasawa M, Mogi K. Early weaning increases anxiety via brain-derived neurotrophic factor signaling in the mouse prefrontal cortex. Sci Rep 2019; 9:3991. [PMID: 30850750 PMCID: PMC6408497 DOI: 10.1038/s41598-019-40530-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Deprivation of maternal care during early development markedly affects emotional development, but the underlying neuromolecular mechanisms are not fully understood. In a mouse model of disrupted mother-infant relationship, early weaning causes long-term impacts on pups to exhibit increased corticosterone secretion, anxiety, and stress responses in their adulthood. Revealing the molecular mechanisms behind it would beneficial to ameliorating mental problems caused by abuse in childhood. We report that normalizing circulating corticosterone in early-weaned mice, either in adulthood or soon after weaning, ameliorated anxiety levels assessed in the plus maze test. Administering a glucocorticoid receptor antagonist into the prefrontal cortex (PFC) reversed the effects of early weaning, whereas administering corticosterone increased anxiety levels, suggesting that the PFC is corticosterone’s target brain region. In the PFCs of early-weaned mice, we observed prolonged reductions in the expression of brain-derived neurotrophic factor (BDNF) and associated mRNAs. Anxiety in early-weaned mice was ameliorated by pretreatment with BDNF or a BDNF receptor agonist. In summary, early weaning increased anxiety levels by modulating glucocorticoid and BDNF signaling in the PFC.
Collapse
Affiliation(s)
- Takefumi Kikusui
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Natsumi Kanbara
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Mariya Ozaki
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Nozomi Hirayama
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Kumiko Ida
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Mika Tokita
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Naho Tanabe
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Kuriko Mitsuyama
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Hatsuki Abe
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Miki Yoshida
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Miho Nagasawa
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Kazutaka Mogi
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan.
| |
Collapse
|
39
|
Zhang W, Zhang Y, Zheng Y, Zheng M, Sun N, Yang X, Gao Y. Progress in Research on Brain Development and Function of Mice During Weaning. Curr Protein Pept Sci 2019; 20:705-712. [PMID: 30678620 DOI: 10.2174/1389203720666190125095819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/13/2019] [Indexed: 01/15/2023]
Abstract
Lactation is a critical phase for brain function development. New dietary experiences of mouse caused by weaning can regulate brain development and function, increase their response to food and environment, and eventually give rise to corresponding behavioral changes. Changes in weaning time induce the alteration of brain tissues morphology and molecular characteristics, glial cell activity and behaviors in the offspring. In addition, it is also sensitive to the intervention of environment and drugs during this period. That is to say, the study focused on brain development and function based on mouse weaning is critical to demonstrate the underlying pathogenesis of neuropsychiatric diseases and find new drug targets. This article mainly focuses on the developmental differentiation of the brain during lactation, especially during weaning in mice.
Collapse
Affiliation(s)
- Wenjie Zhang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueling Zhang
- Department of Operating Theatre, Binzhou People's Hospital, Binzhou, China
| | - Yuanjia Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingxuan Zheng
- Department of Pathogen Biology and Immunology, Xuzhou Medical University and Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu, China
| | - Nannan Sun
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Yang
- Department of Pathogen Biology and Immunology, Xuzhou Medical University and Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu, China
| | - Yong Gao
- College of PIWEI institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
40
|
Pepper RE, Pitman KA, Cullen CL, Young KM. How Do Cells of the Oligodendrocyte Lineage Affect Neuronal Circuits to Influence Motor Function, Memory and Mood? Front Cell Neurosci 2018; 12:399. [PMID: 30524235 PMCID: PMC6262292 DOI: 10.3389/fncel.2018.00399] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are immature cells in the central nervous system (CNS) that can rapidly respond to changes within their environment by modulating their proliferation, motility and differentiation. OPCs differentiate into myelinating oligodendrocytes throughout life, and both cell types have been implicated in maintaining and modulating neuronal function to affect motor performance, cognition and emotional state. However, questions remain about the mechanisms employed by OPCs and oligodendrocytes to regulate circuit function, including whether OPCs can only influence circuits through their generation of new oligodendrocytes, or can play other regulatory roles within the CNS. In this review, we detail the molecular and cellular mechanisms that allow OPCs, newborn oligodendrocytes and pre-existing oligodendrocytes to regulate circuit function and ultimately influence behavioral outcomes.
Collapse
Affiliation(s)
- Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
41
|
Jensen SKG, Pangelinan M, Björnholm L, Klasnja A, Leemans A, Drakesmith M, Evans CJ, Barker ED, Paus T. Associations between prenatal, childhood, and adolescent stress and variations in white-matter properties in young men. Neuroimage 2018; 182:389-397. [PMID: 29066395 PMCID: PMC5911246 DOI: 10.1016/j.neuroimage.2017.10.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/30/2017] [Accepted: 10/16/2017] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Previous studies have shown that both pre- and post-natal adversities, the latter including exposures to stress during childhood and adolescence, explain variation in structural properties of white matter (WM) in the brain. While previous studies have examined effects of independent stress exposures within one developmental period, such as childhood, we examine effects of stress across development using data from a prospective longitudinal study. More specifically, we ask how stressful events during prenatal development, childhood, and adolescence relate to variation in WM properties in early adulthood in young men recruited from a birth cohort. METHOD Using data from 393 mother-son pairs from a community-based birth cohort from England (Avon Longitudinal Study of Parents and Children), we examined how stressful life events relate to variation in different structural properties of WM in the corpus callosum and across the whole brain in early adulthood in men aged 18-21 years. We distinguish between stress occurring during three developmental periods: a) prenatal maternal stress, b) postnatal stress within the first four years of life, c) stress during adolescence (age 12-16 years). To obtain a comprehensive quantification of variation in WM, we assess structural properties of WM using four different measures, namely fractional anisotropy (FA), mean diffusivity (MD), magnetization transfer ratio (MTR) and myelin water fraction (MWF). RESULTS The developmental model shows that prenatal stress is associated with lower MTR and MWF in the genu and/or splenium of the corpus callosum, and with lower MTR in global (lobar) WM. Stress during early childhood is associated with higher MTR in the splenium, and stress during adolescence is associated with higher MTR in the genu and lower MD in the splenium. We see no associations between postnatal stress and variation in global (lobar) WM. CONCLUSIONS The current study found evidence for independent effects of stress on WM properties during distinct neurodevelopmental periods. We speculate that these independent effects are due to differences in the developmental processes unfolding at different developmental time points. We suggest that associations between prenatal stress and WM properties may relate to abnormalities in neurogenesis, affecting the number and density of axons, while postnatal stress may interfere with processes related to myelination or radial growth of axons. Potential consequences of prenatal glucocorticoid exposure should be considered in obstetric care.
Collapse
Affiliation(s)
- Sarah K G Jensen
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Pediatrics, Boston Children's Hospital, Boston, MA USA; Harvard Medical School, Boston, MA, USA
| | | | | | - Anja Klasnja
- Rotman Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Drakesmith
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - C J Evans
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Edward D Barker
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom
| | - Tomáš Paus
- Rotman Research Institute, University of Toronto, Toronto, Ontario, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada; Child Mind Institute, New York, USA.
| |
Collapse
|
42
|
Gee DG, Bath KG, Johnson CM, Meyer HC, Murty VP, van den Bos W, Hartley CA. Neurocognitive Development of Motivated Behavior: Dynamic Changes across Childhood and Adolescence. J Neurosci 2018; 38:9433-9445. [PMID: 30381435 PMCID: PMC6209847 DOI: 10.1523/jneurosci.1674-18.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The ability to anticipate and respond appropriately to the challenges and opportunities present in our environments is critical for adaptive behavior. Recent methodological innovations have led to substantial advances in our understanding of the neurocircuitry supporting such motivated behavior in adulthood. However, the neural circuits and cognitive processes that enable threat- and reward-motivated behavior undergo substantive changes over the course of development, and these changes are less well understood. In this article, we highlight recent research in human and animal models demonstrating how developmental changes in prefrontal-subcortical neural circuits give rise to corresponding changes in the processing of threats and rewards from infancy to adulthood. We discuss how these developmental trajectories are altered by experiential factors, such as early-life stress, and highlight the relevance of this research for understanding the developmental onset and treatment of psychiatric disorders characterized by dysregulation of motivated behavior.
Collapse
Affiliation(s)
- Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT 06520,
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Carolyn M Johnson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA 19122
| | - Wouter van den Bos
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands, and
| | | |
Collapse
|
43
|
Genetic Control of Myelin Plasticity after Chronic Psychosocial Stress. eNeuro 2018; 5:eN-NWR-0166-18. [PMID: 30073192 PMCID: PMC6071195 DOI: 10.1523/eneuro.0166-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Anxiety disorders often manifest in genetically susceptible individuals after psychosocial stress, but the mechanisms underlying these gene-environment interactions are largely unknown. We used the chronic social defeat stress (CSDS) mouse model to study resilience and susceptibility to chronic psychosocial stress. We identified a strong genetic background effect in CSDS-induced social avoidance (SA) using four inbred mouse strains: 69% of C57BL/6NCrl (B6), 23% of BALB/cAnNCrl, 19% of 129S2/SvPasCrl, and 5% of DBA/2NCrl (D2) mice were stress resilient. Furthermore, different inbred mouse strains responded differently to stress, suggesting they use distinct coping strategies. To identify biological pathways affected by CSDS, we used RNA-sequencing (RNA-seq) of three brain regions of two strains, B6 and D2: medial prefrontal cortex (mPFC), ventral hippocampus (vHPC), and bed nucleus of the stria terminalis (BNST). We discovered overrepresentation of oligodendrocyte (OLG)-related genes in the differentially expressed gene population. Because OLGs myelinate axons, we measured myelin thickness and found significant region and strain-specific differences. For example, in resilient D2 mice, mPFC axons had thinner myelin than controls, whereas susceptible B6 mice had thinner myelin than controls in the vHPC. Neither myelin-related gene expression in several other regions nor corpus callosum thickness differed between stressed and control animals. Our unbiased gene expression experiment suggests that myelin plasticity is a substantial response to chronic psychosocial stress, varies across brain regions, and is genetically controlled. Identification of genetic regulators of the myelin response will provide mechanistic insight into the molecular basis of stress-related diseases, such as anxiety disorders, a critical step in developing targeted therapy.
Collapse
|
44
|
Early-life and pubertal stress differentially modulate grey matter development in human adolescents. Sci Rep 2018; 8:9201. [PMID: 29907813 PMCID: PMC6003940 DOI: 10.1038/s41598-018-27439-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/30/2018] [Indexed: 12/23/2022] Open
Abstract
Animal and human studies have shown that both early-life traumatic events and ongoing stress episodes affect neurodevelopment, however, it remains unclear whether and how they modulate normative adolescent neuro-maturational trajectories. We characterized effects of early-life (age 0-5) and ongoing stressors (age 14-17) on longitudinal changes (age 14 to17) in grey matter volume (GMV) of healthy adolescents (n = 37). Timing and stressor type were related to differential GMV changes. More personal early-life stressful events were associated with larger developmental reductions in GMV over anterior prefrontal cortex, amygdala and other subcortical regions; whereas ongoing stress from the adolescents' social environment was related to smaller reductions over the orbitofrontal and anterior cingulate cortex. These findings suggest that early-life stress accelerates pubertal development, whereas an adverse adolescent social environment disturbs brain maturation with potential mental health implications: delayed anterior cingulate maturation was associated with more antisocial traits - a juvenile precursor of psychopathy.
Collapse
|
45
|
Roth MC, Humphreys KL, King LS, Gotlib IH. Self-reported neglect, amygdala volume, and symptoms of anxiety in adolescent boys. CHILD ABUSE & NEGLECT 2018; 80:80-89. [PMID: 29574295 PMCID: PMC5953811 DOI: 10.1016/j.chiabu.2018.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/25/2018] [Accepted: 03/12/2018] [Indexed: 05/22/2023]
Abstract
Experiences of psychosocial neglect affect the developing brain and may place individuals at increased risk for anxiety. The majority of research in this area has focused on children who have experienced severe psychosocial deprivation; it is not clear whether typical variation in neglect experienced in community samples would have the same neurobiological consequences as those documented in extreme samples. The present study examined the associations among self-reported childhood neglect, amygdala volume, and anxiety symptoms in a community sample of 138 adolescents ages 9-15 years (43% male). Linear mixed modeling yielded a three-way interaction of neglect, sex, and brain hemisphere, reflecting a significant positive association between neglect and right amygdala volume in boys. Additional analyses indicated that right amygdala volume significantly mediated the association between neglect and anxiety symptoms in boys. These findings are consistent with previous reports of larger amygdala volumes in previously institutionalized children, and with documented associations between caregiving deprivation and anxiety symptoms. The results suggest that the effects of childhood neglect on limbic structures are sex-specific and lateralized, and provide support for a neural mechanism relating childhood neglect to later difficulties in emotional functioning.
Collapse
Affiliation(s)
- Marissa C Roth
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | | | - Lucy S King
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
46
|
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders in youth; however, progress in treatment for childhood anxiety has stalled over the past decade. The National Institute of Mental Health (NIMH) Research Domain Criteria (RDoC) project represents a shift toward a dimensional and interdisciplinary approach to psychiatric disorders; this shift can reframe developmental psychopathology for childhood anxiety and facilitate novel advances in its classification and treatment. Here we highlight constructs in the Systems for Social Processes and the Negative Valence System domains of RDoC, as they relate to childhood anxiety disorders. Childhood anxiety relates to both RDoC domains. In terms of social processes, through natural reliance on parents to reduce children's fear, attachment represents one particular social process, which plays a central role in anxiety among youth. In terms of negative valence, considerable research links threat conditioning to pediatric anxiety. Finally, fronto-amygdala circuitry relates to all three entities, as it has been shown to underly both attachment processes and threat learning, while it also has been consistently implicated in anxiety disorders across development. Through integrative and translational approaches, RDoC provides unique opportunities and simultaneous challenges for advancing the understanding and treatment of childhood anxiety disorders.
Collapse
|
47
|
Aigueperse N, Pittet F, Nicolle C, Houdelier C, Lumineau S. Maternal care affects chicks' development differently according to sex in quail. Dev Psychobiol 2018; 60:1048-1056. [PMID: 29344942 DOI: 10.1002/dev.21597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 11/11/2022]
Abstract
Maternal behavior is known to influence the behavioral development of young. Recently, it was demonstrated that maternal behavior also differed according to sex of chicks and brood sex composition. So, here, we explored if these factors influenced behavioral development of quail chicks when they were brooded, and what characteristics of chicks and foster females could best explain this development. We studied three sets of chick pairs brooded by foster females: unisex male, unisex female, and mixed broods. We found that both emotivity profile and sociality depended on the sex: females were more reactive and less social than males. Females' emotivity profile was correlated with brood composition and foster female activity during maternal care. In males, only sociality was correlated with foster females' scores of aggressive rejection. Our results evidence that male and female chicks respond differentially to maternal behavior. This is discussed in terms of ecological and physiological constraints on development according to sex.
Collapse
Affiliation(s)
- Nadège Aigueperse
- Université de Rennes 1, UMR 6552 Ethologie Animale et Humaine, Rennes, France.,CNRS, UMR 6552 Ethologie Animale et Humaine, Rennes, France
| | - Florent Pittet
- Université de Rennes 1, UMR 6552 Ethologie Animale et Humaine, Rennes, France.,CNRS, UMR 6552 Ethologie Animale et Humaine, Rennes, France
| | - Céline Nicolle
- Université de Rennes 1, UMR 6552 Ethologie Animale et Humaine, Rennes, France.,CNRS, UMR 6552 Ethologie Animale et Humaine, Rennes, France
| | - Cécilia Houdelier
- Université de Rennes 1, UMR 6552 Ethologie Animale et Humaine, Rennes, France.,CNRS, UMR 6552 Ethologie Animale et Humaine, Rennes, France
| | - Sophie Lumineau
- Université de Rennes 1, UMR 6552 Ethologie Animale et Humaine, Rennes, France.,CNRS, UMR 6552 Ethologie Animale et Humaine, Rennes, France
| |
Collapse
|
48
|
Zempoalteca R, Porras MG, Moreno-Pérez S, Ramirez-Funez G, Aguirre-Benítez EL, González Del Pliego M, Mariscal-Tovar S, Mendoza-Garrido ME, Hoffman KL, Jiménez-Estrada I, Melo AI. Early postnatal development of electrophysiological and histological properties of sensory sural nerves in male rats that were maternally deprived and artificially reared: Role of tactile stimulation. Dev Neurobiol 2017; 78:351-362. [PMID: 29197166 DOI: 10.1002/dneu.22561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/14/2017] [Accepted: 11/25/2017] [Indexed: 12/12/2022]
Abstract
Early adverse experiences disrupt brain development and behavior, but little is known about how such experiences impact on the development of the peripheral nervous system. Recently, we found alterations in the electrophysiological and histological characteristics of the sensory sural (SU) nerve in maternally deprived, artificially reared (AR) adult male rats, as compared with maternally reared (MR) control rats. In the present study, our aim was to characterize the ontogeny of these alterations. Thus, male pups of four postnatal days (PND) were (1) AR group, (2) AR and received daily tactile stimulation to the body and anogenital region (AR-Tactile group); or (3) reared by their mother (MR group). At PND 7, 14, or 21, electrophysiological properties and histological characteristics of the SU nerves were assessed. At PND 7, the electrophysiological properties and most histological parameters of the SU nerve did not differ among MR, AR, and AR-Tactile groups. By contrast, at PND 14 and/or 21, the SU nerve of AR rats showed a lower CAP amplitude and area, and a significant reduction in myelin area and myelin thickness, which were accompanied by a reduction in axon area (day 21 only) compared to the nerves of MR rats. Tactile stimulation (AR-Tactile group) partially prevented most of these alterations. These results suggest that sensory cues from the mother and/or littermates during the first 7-14 PND are relevant for the proper development and function of the adult SU nerve. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 351-362, 2018.
Collapse
Affiliation(s)
- Rene Zempoalteca
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, México
| | | | - Suelem Moreno-Pérez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, México.,Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, México
| | - Gabriela Ramirez-Funez
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, México.,Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, México
| | | | | | | | | | - Kurt Leroy Hoffman
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, México
| | | | - Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, México
| |
Collapse
|
49
|
Previous Institutionalization Is Followed by Broader Amygdala-Hippocampal-PFC Network Connectivity during Aversive Learning in Human Development. J Neurosci 2017; 36:6420-30. [PMID: 27307231 DOI: 10.1523/jneurosci.0038-16.2016] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/07/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Early institutional care can be profoundly stressful for the human infant, and, as such, can lead to significant alterations in brain development. In animal models, similar variants of early adversity have been shown to modify amygdala-hippocampal-prefrontal cortex development and associated aversive learning. The current study examined this rearing aberration in human development. Eighty-nine children and adolescents who were either previously institutionalized (PI youth; N = 46; 33 females and 13 males; age range, 7-16 years) or were raised by their biological parents from birth (N = 43; 22 females and 21 males; age range, 7-16 years) completed an aversive-learning paradigm while undergoing functional neuroimaging, wherein visual cues were paired with either an aversive sound (CS+) or no sound (CS-). For the PI youth, better aversive learning was associated with higher concurrent trait anxiety. Both groups showed robust learning and amygdala activation for CS+ versus CS- trials. However, PI youth also exhibited broader recruitment of several regions and increased hippocampal connectivity with prefrontal cortex. Stronger connectivity between the hippocampus and ventromedial PFC predicted significant improvements in future anxiety (measured 2 years later), and this was particularly true within the PI group. These results suggest that for humans as well as for other species, early adversity alters the neurobiology of aversive learning by engaging a broader prefrontal-subcortical circuit than same-aged peers. These differences are interpreted as ontogenetic adaptations and potential sources of resilience. SIGNIFICANCE STATEMENT Prior institutionalization is a significant form of early adversity. While nonhuman animal research suggests that early adversity alters aversive learning and associated neurocircuitry, no prior work has examined this in humans. Here, we show that youth who experienced prior institutionalization, but not comparison youth, recruit the hippocampus during aversive learning. Among youth who experienced prior institutionalization, individual differences in aversive learning were associated with worse current anxiety. However, connectivity between the hippocampus and prefrontal cortex prospectively predicted significant improvements in anxiety 2 years following scanning for previously institutionalized youth. Among youth who experienced prior institutionalization, age-atypical engagement of a distributed set of brain regions during aversive learning may serve a protective function.
Collapse
|
50
|
Knop J, Joëls M, van der Veen R. The added value of rodent models in studying parental influence on offspring development: opportunities, limitations and future perspectives. Curr Opin Psychol 2017; 15:174-181. [DOI: 10.1016/j.copsyc.2017.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
|