1
|
Zuo HJ, Wang PX, Ren XQ, Shi HL, Shi JS, Guo T, Wan C, Li JJ. Gastrodin Regulates PI3K/AKT-Sirt3 Signaling Pathway and Proinflammatory Mediators in Activated Microglia. Mol Neurobiol 2024; 61:2728-2744. [PMID: 37930585 DOI: 10.1007/s12035-023-03743-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Activated microglia and their mediated inflammatory responses play an important role in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Therefore, regulating microglia activation is considered a potential therapeutic strategy. The neuroprotective effects of gastrodin were evaluated in HIBD model mice, and in oxygen glucose deprivation (OGD)-treated and lipopolysaccharide (LPS)activated BV-2 microglia cells. The potential molecular mechanism was investigated using western blotting, immunofluorescence labeling, quantitative realtime reverse transcriptase polymerase chain reaction, and flow cytometry. Herein, we found that PI3K/AKT signaling can regulate Sirt3 in activated microglia, but not reciprocally. And gastrodin exerts anti-inflammatory and antiapoptotic effects through the PI3K/AKT-Sirt3 signaling pathway. In addition, gastrodin could promote FOXO3a phosphorylation, and inhibit ROS production in LPSactivated BV-2 microglia. Moreover, the level P-FOXO3a decreased significantly in Sirt3-siRNA group. However, there was no significant change after gastrodin and siRNA combination treatment. Notably, gastrodin might also affect the production of ROS in activated microglia by regulating the level of P-FOXO3a via Sirt3. Together, this study highlighted the neuroprotective role of PI3K/AKT-Sirt3 axis in HIBD, and the anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects of gastrodin on HIBD.
Collapse
Affiliation(s)
- Han-Jun Zuo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Peng-Xiang Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Xue-Qi Ren
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Hao-Long Shi
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Jin-Sha Shi
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Tao Guo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Cheng Wan
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Juan-Juan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China.
| |
Collapse
|
2
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Perrotta M, Carnevale D. Brain Areas Involved in Modulating the Immune Response Participating in Hypertension and Its Target Organ Damage. Antioxid Redox Signal 2021; 35:1515-1530. [PMID: 34269604 DOI: 10.1089/ars.2021.0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension is a multifactorial disease ensuing from the continuous challenge imposed by several risk factors on the cardiovascular system. Classically known pathophysiological alterations associated with hypertension comprise neurogenic mechanisms dysregulating the autonomic nervous system (ANS), vascular dysfunction, and excessive activation of the renin angiotensin system. During the past few years, a considerable number of studies indicated that immune activation and inflammation also have an important role in the onset and maintenance of hypertension. Critical Issues: On these premises, it has been necessary to reconsider the pathophysiological mechanisms underlying hypertension development, taking into account the potential interactions established between classically known determinants of high blood pressure and the immune system. Recent Advances: Interestingly, central nervous system areas controlling cardiovascular functions are enriched with Angiotensin II receptors. Observations showing that these brain areas are crucial for mediating peripheral ANS and immune responses were suggestive of a critical role of neuroimmune interactions in hypertension. In fact, the ANS, characterized by an intricate network of afferent and efferent fibers, represents an intermediate between the brain and peripheral responses that are essential for blood pressure regulation. Future Directions: In this review, we will summarize studies showing how specific brain areas can modulate immune responses that are involved in hypertension. Antioxid. Redox Signal. 35, 1515-1530.
Collapse
Affiliation(s)
- Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Daniela Carnevale
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
4
|
Lim J, Sohn H, Kwon MS, Kim B. White Matter Alterations Associated with Pro-inflammatory Cytokines in Patients with Major Depressive Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:449-458. [PMID: 34294614 PMCID: PMC8316659 DOI: 10.9758/cpn.2021.19.3.449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/06/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022]
Abstract
Objective Regarding the neuroinflammatory theory of major depressive disorder (MDD), little is known about the effect of pro-inflammatory cytokines on white matter (WM) changes in MDD. We aimed to investigate the relationship between pro-inflammatory cytokines and WM alterations in patients with MDD. Methods Twenty-two patients with MDD and 22 healthy controls (HC) were evaluated for brain imaging and pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, interferon-γ and tumor necrosis factor (TNF)-α. Tract-based spatial statistics and FreeSurfer were used for brain image analysis. Results The levels of TNF-α and IL-8 were significantly higher in the MDD group than in HC. Compared to HC, lower fractional anisotropy (FA), and higher median diffusivity (MD) and radial diffusivity (RD) values were found in the MDD group for several WM regions. Voxel-wise correlation analysis showed that the level of TNF-α was negatively correlated with FA, and positively correlated with MD and RD in the left body and genu of the corpus callosum, left anterior corona radiata, and left superior corona radiata. Conclusion Our findings suggest that TNF-α may play an important role in the WM alterations in depression, possibly through demyelination.
Collapse
Affiliation(s)
- Jaehwa Lim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hoyoung Sohn
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Min-Soo Kwon
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Borah Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
5
|
Guo J, Zhang XLN, Bao ZR, Yang XK, Li LS, Zi Y, Li F, Wu CY, Li JJ, Yuan Y. Gastrodin Regulates the Notch Signaling Pathway and Sirt3 in Activated Microglia in Cerebral Hypoxic-Ischemia Neonatal Rats and in Activated BV-2 Microglia. Neuromolecular Med 2020; 23:348-362. [PMID: 33095377 DOI: 10.1007/s12017-020-08627-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
In response to hypoxic-ischemic brain damage (HIBD), microglia activation and its mediated inflammation contribute to neuronal damage. Inhibition of over-activated microglia is deemed to be a potential therapeutic strategy. Our previous studies showed that gastrodin efficiently depressed the neuroinflammation mediated by activated microglia in HIBD neonatal rats. The underlying mechanisms through which gastrodin acts on activated microglia have not been fully elucidated. This study is designed to determine whether gastrodin would regulate the Notch signaling pathway and Sirtuin3 (Sirt3), which are implicated in regulating microglia activation. The present results showed that gastrodin markedly suppressed the expression of members of Notch signaling pathway (Notch-1, NICD, RBP-JK and Hes-1) in activated microglia both in vivo and in vitro. Conversely, Sirt3 expression was enhanced. In BV-2 microglia treated with a γ-secretase inhibitor of Notch pathway- DAPT, the expression of RBP-JK, Hes-1, and NICD was suppressed in activated microglia. Treatment with DAPT and gastrodin further decreased NICD and Hes-1 expression. Sirt3 expression was also decreased after DAPT treatment. However, Sirt3 expression in activated BV-2 microglia given a combined DAPT and gastrodin treatment was not further increased. In addition, combination of DAPT and Gastrodin cumulatively decreased tumor necrosis factor-α (TNF-α) expression. The results suggest that gastrodin regulates microglia activation via the Notch signaling pathway and Sirt3. More importantly, interference of the Notch signaling pathway inhibited Sirt3 expression, indicating that Sirt3 is a downstream gene of the Notch signaling pathway. It is suggested that Notch and Sirt3 synergistically regulate microglia activation such as in TNF-α production.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Benzyl Alcohols/pharmacokinetics
- Benzyl Alcohols/pharmacology
- Carotid Artery, Common
- Cells, Cultured
- Cerebral Cortex/pathology
- Corpus Callosum/pathology
- Diamines/pharmacology
- Disease Models, Animal
- Drug Synergism
- Gene Expression Regulation/drug effects
- Glucosides/pharmacokinetics
- Glucosides/pharmacology
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Ligation
- Lipopolysaccharides/pharmacology
- Microglia/drug effects
- Microglia/metabolism
- Neuroinflammatory Diseases/drug therapy
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptor, Notch1/biosynthesis
- Receptor, Notch1/genetics
- Receptor, Notch1/physiology
- Signal Transduction/drug effects
- Sirtuins/biosynthesis
- Sirtuins/genetics
- Sirtuins/physiology
- Thiazoles/pharmacology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Jing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Xiao-Li-Na Zhang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
- First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650500, China
| | - Zhang-Rui Bao
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Xue-Ke Yang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Ling-Shuang Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Yu Zi
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Fan Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Juan-Juan Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| |
Collapse
|
6
|
Parekh RU, Robidoux J, Sriramula S. Kinin B1 Receptor Blockade Prevents Angiotensin II-induced Neuroinflammation and Oxidative Stress in Primary Hypothalamic Neurons. Cell Mol Neurobiol 2020; 40:845-857. [PMID: 31865500 PMCID: PMC8112717 DOI: 10.1007/s10571-019-00778-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation has become an important underlying factor in many cardiovascular disorders, including hypertension. Previously we showed that elevated angiotensin II (Ang II) and angiotensin II type I receptor (AT1R) expression levels can increase neuroinflammation leading to hypertension. We also found that kinin B1 receptor (B1R) expression increased in the hypothalamic paraventricular neurons resulting in neuroinflammation and oxidative stress in neurogenic hypertension. However, whether there are any potential interactions between AT1R and B1R in neuroinflammation is not clear. In the present study, we aimed to determine whether Ang II-mediated effects on inflammation and oxidative stress are mediated by the activation of B1R in mouse neonatal primary hypothalamic neuronal cultures. Gene expression and immunostaining revealed that both B1R and AT1R are expressed on primary hypothalamic neurons. Ang II stimulation significantly increased the expression of B1R, decreased mitochondrial respiration, increased the expression of two NADPH oxidase subunits (Nox2 and Nox4), increased the oxidative potential, upregulated several proinflammatory genes (IL-1β, IL-6, and TNFα), and increased NF-kB p65 DNA binding activity. These changes were prevented by pretreatment with the B1R-specific peptide antagonist, R715. In summary, our study demonstrates a causal relationship between B1R expression after Ang II stimulation, suggesting a possible cross talk between AT1R and B1R in neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Rohan Umesh Parekh
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Jacques Robidoux
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA.
| |
Collapse
|
7
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
8
|
Elkahloun AG, Rodriguez Y, Alaiyed S, Wenzel E, Saavedra JM. Telmisartan Protects a Microglia Cell Line from LPS Injury Beyond AT1 Receptor Blockade or PPARγ Activation. Mol Neurobiol 2018; 56:3193-3210. [PMID: 30105672 DOI: 10.1007/s12035-018-1300-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/02/2018] [Indexed: 01/12/2023]
Abstract
The Angiotensin II Receptor Blocker (ARB) Telmisartan reduces inflammation through Angiotensin II AT1 receptor blockade and peroxisome proliferator-activated receptor gamma (PPARγ) activation. However, in a mouse microglia-like BV2 cell line, imitating primary microglia responses with high fidelity and devoid of AT1 receptor gene expression or PPARγ activation, Telmisartan reduced gene expression of pro-injury factors, enhanced that of anti-inflammatory genes, and prevented LPS-induced increase in inflammatory markers. Using global gene expression profiling and pathways analysis, we revealed that Telmisartan normalized the expression of hundreds of genes upregulated by LPS and linked with inflammation, apoptosis and neurodegenerative disorders, while downregulating the expression of genes associated with oncological, neurodegenerative and viral diseases. The PPARγ full agonist Pioglitazone had no neuroprotective effects. Surprisingly, the PPARγ antagonists GW9662 and T0070907 were neuroprotective and enhanced Telmisartan effects. GW9226 alone significantly reduced LPS toxic effects and enhanced Telmisartan neuroprotection, including downregulation of pro-inflammatory TLR2 gene expression. Telmisartan and GW9662 effects on LPS injury negatively correlated with pro-inflammatory factors and upstream regulators, including TLR2, and positively with known neuroprotective factors and upstream regulators. Gene Set Enrichment Analysis (GSEA) of the Telmisartan and GW9662 data revealed negative correlations with sets of genes associated with neurodegenerative and metabolic disorders and toxic treatments in cultured systems, while demonstrating positive correlations with gene sets associated with neuroprotection and kinase inhibition. Our results strongly suggest that novel neuroprotective effects of Telmisartan and GW9662, beyond AT1 receptor blockade or PPARγ activation, include downregulation of the TLR2 signaling pathway, findings that may have translational relevance.
Collapse
Affiliation(s)
- Abdel G Elkahloun
- Microarray Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Dr, MSC 4435, Bethesda, MD, 20892-4435, USA
| | - Yara Rodriguez
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Seham Alaiyed
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Erin Wenzel
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Juan M Saavedra
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
9
|
Bhat SA, Sood A, Shukla R, Hanif K. AT2R Activation Prevents Microglia Pro-inflammatory Activation in a NOX-Dependent Manner: Inhibition of PKC Activation and p47phox Phosphorylation by PP2A. Mol Neurobiol 2018; 56:3005-3023. [DOI: 10.1007/s12035-018-1272-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
|
10
|
Liu SJ, Liu XY, Li JH, Guo J, Li F, Gui Y, Li XH, Yang L, Wu CY, Yuan Y, Li JJ. Gastrodin attenuates microglia activation through renin-angiotensin system and Sirtuin3 pathway. Neurochem Int 2018; 120:49-63. [PMID: 30075231 DOI: 10.1016/j.neuint.2018.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023]
Abstract
Microglia activation and its mediated production of proinflammatory mediators play important roles in different neurodegenerative diseases; hence, modulation of microglia activation has been considered a potential therapeutic strategy to ameliorate neurodegeneration. This study was aimed to determine whether Gastrodin, a common herbal agent known to possess neuroprotective property, can attenuate production of proinflammatory mediators in activated microglia through the renin-angiotensin system (RAS) and Sirtuin3 (SIRT3). Expression of various members of the RAS including ACE, AT1, AT2, and SIRT3 in activated microglia was assessed by immunofluorescence and Western blot in hypoxic-ischemia brain damage (HIBD) in postnatal rats, and in BV-2 microglia in vitro challenged with lipopolysaccharide (LPS) with or without Gastrodin treatment. Expression of NOX-2, a subunit of NADPH oxidase, and proinflammatory mediators including iNOS and TNF-α, was also evaluated. The present results showed that expression of ACE, AT1, NOX-2, iNOS and TNF-α was markedly increased in activated microglia in the corpus callosum of HIBD rats, and in LPS stimulated BV-2 microglia. Remarkably, the expression was markedly attenuated following Gastrodin treatment. Conversely, Gastrodin enhanced AT2 and SIRT3 protein expression. In BV-2 microglia treated with Azilsartan, a specific inhibitor of AT1 (AT1I group), NOX-2 expression was decreased whereas that of SIRT3 in LPS + AT1I and LPS + Gastrodin group was increased when compared with the controls. In LPS + AT1I + Gastrodin group, SIRT3 expression was further augmented. More importantly, Gastrodin effectively reduced caspase 3 protein expression level in the HIBD rats coupled with a significant decrease in caspase 3 positive cells. We conclude that Gastrodin can exert its protective effects against the hypoxic-ischemia brain damage in the present experimental HIBD model. It is suggested that this is mainly through suppression of expression of RAS (except for AT2 and SIRT3) and proinflammatory mediators e.g. TNF-α in activated microglia.
Collapse
Affiliation(s)
- Shun-Jin Liu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Xiao-Yu Liu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Jing-Hui Li
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650500, PR China.
| | - Jing Guo
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Yang Gui
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650500, PR China.
| | - Xiu-Hua Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Li Yang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Juan-Juan Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| |
Collapse
|
11
|
Lü C, Liu Q, Zeng X. [Effects of interleukin 10 gene modified bone marrow mesenchymal stem cells on expression of inflammatory cytokines and neuronal apoptosis in rats after cerebral ischemia reperfusion injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 31:240-245. [PMID: 29786261 DOI: 10.7507/1002-1892.201605095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To explore the effects of interleukin 10 (IL-10) gene modified bone marrow mesenchymal stem cells (BMSCs) on the expression of inflammatory cytokines and neuronal apoptosis in rats after cerebral ischemia reperfusion injury. Methods BMSCs were cultured by whole bone marrow adherence screening method. The properties of BMSCs were identified by immunocytochemical methods. BMSCs at passage 3 were transfected with recombinant adenovirus IL-10 gene (AdIL-10-BMSCs). The model of middle cerebral artery occlusion was made in 40 adult male Sprague Dawley rats by thread embolism method. The rats were randomly divided into 4 groups ( n=10). At 3 hours after modelling, the rats of groups A, B, C, and D received tail intravenous injection of 1 mL L-DMEM medium containing 10% FBS, 61.78 ng IL-10, 1 mL BMSCs suspension (2×10 6 cells/mL), and 1 mL AdIL-10-BMSCs cell suspension (2×10 6 cells/mL), respectively. The cells were labelled with BrdU before cell transplantation in groups C and D. At 7 days after reperfusion, the brain tissue was harvested to detect the expression of OX42 by immunohistochemical assay, to determine the concentration of tumor necrosis factor α (TNF-α) and IL-1β by ELISA, and to detect the apoptosis by TUNEL assay. BrdU labelled cells were observed by immunofluorescence staining in groups C and D. Results BrdU labelled positive cells with green fluorescence were observed in the brain tissue of groups C and D, which mainly distributed in the striatum, cerebral cortex, and subcortex around the infarction area. The number of OX42 positive cells was significantly less in groups B, C, and D than group A ( P<0.05), and in group D than groups B and C ( P<0.05). Compared with the other 3 groups, the contents of TNF-α and IL-1β significantly decreased in group D ( P<0.05). TUNEL assay showed that the apoptotic cells (TUNEL positive cells) were mainly seen in the striatum and fronto parietal subcortical tissues (equivalent to ischemic penumbra). The number of TUNEL positive cells in group D was significantly less than that in groups A, B, and C ( P<0.05). Conclusion AdIL-10-BMSCs can inhibit secretion of TNF-α and IL-1β from microglial cells and inhibit the nerve cell apoptosis around infarct brain tissue, which might contribute to its protective role upon cerebral ischemia reperfusion injury.
Collapse
Affiliation(s)
- Cui Lü
- Electrocardiographic Room, Affiliated Hospital of Weifang Medical University, Weifang Shandong, 261031, P.R.China
| | - Qian Liu
- Electrocardiographic Room, Affiliated Hospital of Weifang Medical University, Weifang Shandong, 261031, P.R.China
| | - Xianwei Zeng
- Electrocardiographic Room, Affiliated Hospital of Weifang Medical University, Weifang Shandong, 261031,
| |
Collapse
|
12
|
Peretz Damari S, Shamrakov D, Varenik M, Koren E, Nativ-Roth E, Barenholz Y, Regev O. Practical aspects in size and morphology characterization of drug-loaded nano-liposomes. Int J Pharm 2018; 547:648-655. [PMID: 29913218 DOI: 10.1016/j.ijpharm.2018.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Size and morphology distributions are critical to the performance of nano-drug systems, as they determine drug pharmacokinetics and biodistribution. Therefore, comprehensive and reliable analyses of these properties are required by both the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). In this study, we compare two most commonly used approaches for assessing the size distribution and morphology of liposomal nano-drug systems, namely, dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM); an automated quantitative analysis method was developed for the latter method. We demonstrate the advantages and disadvantages of each of these two approaches for a commercial formulation of the anti-cancer drug doxorubicin - Doxil®, in which the drug is encapsulated, mostly in the form of nano-rod crystals. With increasing drug concentration, these nano-rods change the shape of the liposomes from spherical, before drug loading, to prolate (oval), post drug loading. Cryo-TEM analysis provides a detailed size distribution of both the liposomes (minor and major axes) and the nano-rod drug. Both these values are relevant to the drug performance. In this study, we show that at elevated drug concentration (2.75 mg/ml) the drug grows mainly along the major axis and that this high concentration can result, in some cases, in liposome rupture. We show that the combination of cryo-TEM and DLS constitutes a reliable tool for demonstrating the stability of the formulation in human plasma at body temperature, a characteristic that is crucial for achieving therapeutic efficacy.
Collapse
Affiliation(s)
- Sivan Peretz Damari
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | - Maxim Varenik
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Erez Koren
- Laboratory of Membrane and Liposome Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Einat Nativ-Roth
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Oren Regev
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
13
|
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76:736-753. [PMID: 28859332 DOI: 10.1093/jnen/nlx056] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
14
|
Leung SB, Zhang H, Lau CW, Lin ZX. Attenuation of blood pressure in spontaneously hypertensive rats by acupuncture was associated with reduction oxidative stress and improvement from endothelial dysfunction. Chin Med 2016; 11:38. [PMID: 27582785 PMCID: PMC5006281 DOI: 10.1186/s13020-016-0110-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Background Hypertension can be treated effectively by acupuncture; however, the association between acupuncture and endothelial function remains unknown. This study aimed to investigate the effects of acupuncture on endothelial dysfunction and oxidative stress-related parameters in spontaneously hypertensive animals. Methods Eighteen-week-old Wistar–Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) were arbitrarily divided into four groups: WKY control (n = 8), SHR control (n = 8), SHR sham-acupuncture (n = 8) and SHR acupuncture (n = 8). The SHR acupuncture group had electroacupuncture for 6 consecutive weeks on acupoints ST36 and LR3. Blood pressure was monitored during the treatment period, and animals were euthanized at the 6th week. Aortas were harvested for determination of angiotensin II levels, NADPH oxidase activity and nitrate/nitrite levels. The level of reactive oxygen species (ROS) was determined by dihydroethidium (DHE) imaging, and functional studies were performed to assess vascular reactivity. Endothelial nitric oxide synthase was measured by Western blot assay. Results Blood pressure at the end of treatment was significantly lower in the SHR acupuncture group (185.0 ± 5.6 mmHg) compared with the SHR sham-acupuncture and the SHR control groups (201.0 ± 5.4 and 197.4 ± 5.9 mmHg, respectively; P < 0.001). Serum angiotensin II level in the SHR control group was significantly higher than in the WKY control group (P < 0.001), while it was significantly attenuated by acupuncture treatment (P = 0.023). DHE staining showed that ROS level was reduced in the aortas (P = 0.0017) and carotid arteries (P = 0.039) of acupuncture-treated SHRs. Biochemical assays showed that acupuncture inhibited the NADPH oxidase activity (P = 0.022) and enhanced antioxidant capacity (P = 0.0039). In functional studies, endothelium-dependent relaxation of aortic rings (P = 0.018) and carotid arteries (P = 0.022) in response to acetylcholine was improved in the SHR acupuncture group. Aortas of SHRs receiving acupuncture also expressed an elevated level of eNOS (P > 0.001) and p-eNOS (P = 0.012) and a reduced nitrotyrosine level (P = 0.0012). The nitrate/nitrite level in aortic tissue was also attenuated after acupuncture (P = 0.0018). Conclusion The effects of acupuncture in treating hypertension were associated with reduced oxidative stress, increased nitric oxide bioavailability and endothelial function in SHRs. Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0110-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sin Bond Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Hongwei Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Chi Wai Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| |
Collapse
|
15
|
Biancardi VC, Stranahan AM, Krause EG, de Kloet AD, Stern JE. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 2016; 310:H404-15. [PMID: 26637556 PMCID: PMC4796625 DOI: 10.1152/ajpheart.00247.2015] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023]
Abstract
ANG II is thought to increase sympathetic outflow by increasing oxidative stress and promoting local inflammation in the paraventricular nucleus (PVN) of the hypothalamus. However, the relative contributions of inflammation and oxidative stress to sympathetic drive remain poorly understood, and the underlying cellular and molecular targets have yet to be examined. ANG II has been shown to enhance Toll-like receptor (TLR)4-mediated signaling on microglia. Thus, in the present study, we aimed to determine whether ANG II-mediated activation of microglial TLR4 signaling is a key molecular target initiating local oxidative stress in the PVN. We found TLR4 and ANG II type 1 (AT1) receptor mRNA expression in hypothalamic microglia, providing molecular evidence for the potential interaction between these two receptors. In hypothalamic slices, ANG II induced microglial activation within the PVN (∼65% increase, P < 0.001), an effect that was blunted in the absence of functional TLR4. ANG II increased ROS production, as indicated by dihydroethidium fluorescence, within the PVN of rats and mice (P < 0.0001 in both cases), effects that were also dependent on the presence of functional TLR4. The microglial inhibitor minocycline attenuated ANG II-mediated ROS production, yet ANG II effects persisted in PVN single-minded 1-AT1a knockout mice, supporting the contribution of a non-neuronal source (likely microglia) to ANG II-driven ROS production in the PVN. Taken together, these results support functional interactions between AT1 receptors and TLR4 in mediating ANG II-dependent microglial activation and oxidative stress within the PVN. More broadly, our results support a functional interaction between the central renin-angiotensin system and innate immunity in the regulation of neurohumoral outflows from the PVN.
Collapse
Affiliation(s)
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Annette D de Kloet
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
16
|
Kumar A, Singh B, Mishra J, Sah SP, Pottabathini R. Neuroprotective mechanism of losartan and its interaction with nimesulide against chronic fatigue stress. Inflammopharmacology 2015; 23:291-305. [PMID: 26122818 DOI: 10.1007/s10787-015-0238-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/13/2015] [Indexed: 01/04/2023]
Abstract
Potential role of angiotensin-II and cyclooxygenase have been suggested in the pathophysiology of chronic fatigue stress. The present study has been designed to evaluate the neuroprotective effect of losartan and its interaction with nimesulide against chronic fatigue stress and related complications in mice. In the present study, male Laca mice (20-30 g) were subjected to running wheel activity test session (RWATS) for 6 min daily for 21 days. Losartan, nimesulide and their combinations were administered daily for 21 days, 45 min before being subjected to RWATS. Various behavioral and biochemical and neuroinflammatory mediators were assessed subsequently. 21 days RWATS treatment significantly decreased number of wheel rotations/6 min indicating fatigue stress like behaviors as compared to naive group. 21 days treatment with losartan (10 and 20 mg/kg, ip), nimesulide (5 and 10 mg/kg, po) and their combinations significantly improved behavior [increased number of wheel rotations, reversal of post-exercise fatigue, locomotor activity, antianxiety-like behavior (number of entries, latency to enter and time spent in mirror chamber), and memory performance (transfer latency in plus-maze performance task)], biochemical parameters (reduced serum corticosterone, brain lipid peroxidation, nitrite concentration, acetylcholinesterase activity, restored reduced glutathione levels and catalase activity) as compared to RWATS control. Besides, TNF-α, CRP levels were significantly attenuated by these drugs and their combinations as compared to control. The present study highlights the role of cyclooxygenase modulation in the neuroprotective effect of losartan against chronic fatigue stress-induced behavioral, biochemical and cellular alterations in mice.
Collapse
Affiliation(s)
- Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| | - Barinder Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Jitendriya Mishra
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Raghavender Pottabathini
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| |
Collapse
|
17
|
Villapol S, Balarezo MG, Affram K, Saavedra JM, Symes AJ. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain 2015; 138:3299-315. [PMID: 26115674 DOI: 10.1093/brain/awv172] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/22/2015] [Indexed: 02/06/2023] Open
Abstract
See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and PPARγ activating properties have therapeutic potential for traumatic brain injury.
Collapse
Affiliation(s)
- Sonia Villapol
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 2 Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA *Present address: Georgetown University Medical Centre, Department of Neuroscience, Washington, DC, USA
| | - María G Balarezo
- 2 Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kwame Affram
- 2 Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Juan M Saavedra
- 3 Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, USA
| | - Aviva J Symes
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 2 Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
18
|
de Kloet AD, Liu M, Rodríguez V, Krause EG, Sumners C. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am J Physiol Regul Integr Comp Physiol 2015; 309:R444-58. [PMID: 26084692 DOI: 10.1152/ajpregu.00078.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023]
Abstract
Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.
Collapse
Affiliation(s)
- Annette D de Kloet
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Meng Liu
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Vermalí Rodríguez
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida; and
| |
Collapse
|
19
|
McCarthy CA, Widdop RE, Deliyanti D, Wilkinson-Berka JL. Brain and retinal microglia in health and disease: An unrecognized target of the renin-angiotensin system. Clin Exp Pharmacol Physiol 2013; 40:571-9. [DOI: 10.1111/1440-1681.12099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Claudia A McCarthy
- Department of Pharmacology; Monash University; Clayton; Alfred Medical Research and Education Precinct; Melbourne Victoria Australia
| | - Robert E Widdop
- Department of Pharmacology; Monash University; Clayton; Alfred Medical Research and Education Precinct; Melbourne Victoria Australia
| | - Devy Deliyanti
- Department of Immunology; Monash University; Alfred Medical Research and Education Precinct; Melbourne Victoria Australia
| | - Jennifer L Wilkinson-Berka
- Department of Immunology; Monash University; Alfred Medical Research and Education Precinct; Melbourne Victoria Australia
| |
Collapse
|
20
|
Expression of angiotensin II and its receptors in activated microglia in experimentally induced cerebral ischemia in the adult rats. Mol Cell Biochem 2013; 382:47-58. [DOI: 10.1007/s11010-013-1717-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
21
|
McCarthy CA, Vinh A, Broughton BRS, Sobey CG, Callaway JK, Widdop RE. Angiotensin II Type 2 Receptor Stimulation Initiated After Stroke Causes Neuroprotection in Conscious Rats. Hypertension 2012. [DOI: 10.1161/hypertensionaha.112.199646 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We have demonstrated previously that pretreatment with an angiotensin II type 2 receptor (AT
2
R) agonist is neuroprotective against a subsequent stroke independent of any changes in blood pressure. Therefore, in the current study, we have examined the potential neuroprotective effect of AT
2
R stimulation initiated after stroke induction to mimic the clinical setting. Intracerebroventricular administration of the AT
2
R agonist CGP42112 was commenced 6 hours after an ischemic stroke had been induced in conscious spontaneously hypertensive rats. CGP42112 given over 4 doses in the same rats (3 µg/kg per dose centrally) at 6, 24, 48, and 72 hours after stroke induction reduced total infarct volume (32±13 mm
3
versus vehicle, 170±49 mm
3
;
P
<0.05) and improved motor function. Furthermore, we have demonstrated that AT
2
R stimulation after stroke increased neuronal survival, decreased apoptosis, and caused an increase in the number of activated microglia in the core region of damage. The effects of CGP42112 were partially reversed with the coadministration of an AT
2
R antagonist, PD123319. Thus, the current study has shown for the first time that delayed central AT
2
R stimulation after a cerebral incident is neuroprotective in a conscious rat model of stroke.
Collapse
Affiliation(s)
- Claudia A. McCarthy
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Antony Vinh
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Brad R. S. Broughton
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Christopher G. Sobey
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Jennifer K. Callaway
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Robert E. Widdop
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| |
Collapse
|
22
|
McCarthy CA, Vinh A, Broughton BRS, Sobey CG, Callaway JK, Widdop RE. Angiotensin II Type 2 Receptor Stimulation Initiated After Stroke Causes Neuroprotection in Conscious Rats. Hypertension 2012. [DOI: 10.1161/hypertensionaha.112.199646 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We have demonstrated previously that pretreatment with an angiotensin II type 2 receptor (AT
2
R) agonist is neuroprotective against a subsequent stroke independent of any changes in blood pressure. Therefore, in the current study, we have examined the potential neuroprotective effect of AT
2
R stimulation initiated after stroke induction to mimic the clinical setting. Intracerebroventricular administration of the AT
2
R agonist CGP42112 was commenced 6 hours after an ischemic stroke had been induced in conscious spontaneously hypertensive rats. CGP42112 given over 4 doses in the same rats (3 µg/kg per dose centrally) at 6, 24, 48, and 72 hours after stroke induction reduced total infarct volume (32±13 mm
3
versus vehicle, 170±49 mm
3
;
P
<0.05) and improved motor function. Furthermore, we have demonstrated that AT
2
R stimulation after stroke increased neuronal survival, decreased apoptosis, and caused an increase in the number of activated microglia in the core region of damage. The effects of CGP42112 were partially reversed with the coadministration of an AT
2
R antagonist, PD123319. Thus, the current study has shown for the first time that delayed central AT
2
R stimulation after a cerebral incident is neuroprotective in a conscious rat model of stroke.
Collapse
Affiliation(s)
- Claudia A. McCarthy
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Antony Vinh
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Brad R. S. Broughton
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Christopher G. Sobey
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Jennifer K. Callaway
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Robert E. Widdop
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| |
Collapse
|
23
|
McCarthy CA, Vinh A, Broughton BRS, Sobey CG, Callaway JK, Widdop RE. Angiotensin II Type 2 Receptor Stimulation Initiated After Stroke Causes Neuroprotection in Conscious Rats. Hypertension 2012. [DOI: 10.1161/hypertensionaha.112.199646 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We have demonstrated previously that pretreatment with an angiotensin II type 2 receptor (AT
2
R) agonist is neuroprotective against a subsequent stroke independent of any changes in blood pressure. Therefore, in the current study, we have examined the potential neuroprotective effect of AT
2
R stimulation initiated after stroke induction to mimic the clinical setting. Intracerebroventricular administration of the AT
2
R agonist CGP42112 was commenced 6 hours after an ischemic stroke had been induced in conscious spontaneously hypertensive rats. CGP42112 given over 4 doses in the same rats (3 µg/kg per dose centrally) at 6, 24, 48, and 72 hours after stroke induction reduced total infarct volume (32±13 mm
3
versus vehicle, 170±49 mm
3
;
P
<0.05) and improved motor function. Furthermore, we have demonstrated that AT
2
R stimulation after stroke increased neuronal survival, decreased apoptosis, and caused an increase in the number of activated microglia in the core region of damage. The effects of CGP42112 were partially reversed with the coadministration of an AT
2
R antagonist, PD123319. Thus, the current study has shown for the first time that delayed central AT
2
R stimulation after a cerebral incident is neuroprotective in a conscious rat model of stroke.
Collapse
Affiliation(s)
- Claudia A. McCarthy
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Antony Vinh
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Brad R. S. Broughton
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Christopher G. Sobey
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Jennifer K. Callaway
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Robert E. Widdop
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| |
Collapse
|
24
|
McCarthy CA, Vinh A, Broughton BRS, Sobey CG, Callaway JK, Widdop RE. Angiotensin II Type 2 Receptor Stimulation Initiated After Stroke Causes Neuroprotection in Conscious Rats. Hypertension 2012. [DOI: 10.1161/hypertensionaha.112.199646 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We have demonstrated previously that pretreatment with an angiotensin II type 2 receptor (AT
2
R) agonist is neuroprotective against a subsequent stroke independent of any changes in blood pressure. Therefore, in the current study, we have examined the potential neuroprotective effect of AT
2
R stimulation initiated after stroke induction to mimic the clinical setting. Intracerebroventricular administration of the AT
2
R agonist CGP42112 was commenced 6 hours after an ischemic stroke had been induced in conscious spontaneously hypertensive rats. CGP42112 given over 4 doses in the same rats (3 µg/kg per dose centrally) at 6, 24, 48, and 72 hours after stroke induction reduced total infarct volume (32±13 mm
3
versus vehicle, 170±49 mm
3
;
P
<0.05) and improved motor function. Furthermore, we have demonstrated that AT
2
R stimulation after stroke increased neuronal survival, decreased apoptosis, and caused an increase in the number of activated microglia in the core region of damage. The effects of CGP42112 were partially reversed with the coadministration of an AT
2
R antagonist, PD123319. Thus, the current study has shown for the first time that delayed central AT
2
R stimulation after a cerebral incident is neuroprotective in a conscious rat model of stroke.
Collapse
Affiliation(s)
- Claudia A. McCarthy
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Antony Vinh
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Brad R. S. Broughton
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Christopher G. Sobey
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Jennifer K. Callaway
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Robert E. Widdop
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| |
Collapse
|
25
|
McCarthy CA, Vinh A, Broughton BRS, Sobey CG, Callaway JK, Widdop RE. Angiotensin II Type 2 Receptor Stimulation Initiated After Stroke Causes Neuroprotection in Conscious Rats. Hypertension 2012. [DOI: 10.1161/hypertensionaha.112.199646 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We have demonstrated previously that pretreatment with an angiotensin II type 2 receptor (AT
2
R) agonist is neuroprotective against a subsequent stroke independent of any changes in blood pressure. Therefore, in the current study, we have examined the potential neuroprotective effect of AT
2
R stimulation initiated after stroke induction to mimic the clinical setting. Intracerebroventricular administration of the AT
2
R agonist CGP42112 was commenced 6 hours after an ischemic stroke had been induced in conscious spontaneously hypertensive rats. CGP42112 given over 4 doses in the same rats (3 µg/kg per dose centrally) at 6, 24, 48, and 72 hours after stroke induction reduced total infarct volume (32±13 mm
3
versus vehicle, 170±49 mm
3
;
P
<0.05) and improved motor function. Furthermore, we have demonstrated that AT
2
R stimulation after stroke increased neuronal survival, decreased apoptosis, and caused an increase in the number of activated microglia in the core region of damage. The effects of CGP42112 were partially reversed with the coadministration of an AT
2
R antagonist, PD123319. Thus, the current study has shown for the first time that delayed central AT
2
R stimulation after a cerebral incident is neuroprotective in a conscious rat model of stroke.
Collapse
Affiliation(s)
- Claudia A. McCarthy
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Antony Vinh
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Brad R. S. Broughton
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Christopher G. Sobey
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Jennifer K. Callaway
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Robert E. Widdop
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| |
Collapse
|
26
|
McCarthy CA, Vinh A, Broughton BRS, Sobey CG, Callaway JK, Widdop RE. Angiotensin II Type 2 Receptor Stimulation Initiated After Stroke Causes Neuroprotection in Conscious Rats. Hypertension 2012. [DOI: 10.1161/hypertensionaha.112.199646 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We have demonstrated previously that pretreatment with an angiotensin II type 2 receptor (AT
2
R) agonist is neuroprotective against a subsequent stroke independent of any changes in blood pressure. Therefore, in the current study, we have examined the potential neuroprotective effect of AT
2
R stimulation initiated after stroke induction to mimic the clinical setting. Intracerebroventricular administration of the AT
2
R agonist CGP42112 was commenced 6 hours after an ischemic stroke had been induced in conscious spontaneously hypertensive rats. CGP42112 given over 4 doses in the same rats (3 µg/kg per dose centrally) at 6, 24, 48, and 72 hours after stroke induction reduced total infarct volume (32±13 mm
3
versus vehicle, 170±49 mm
3
;
P
<0.05) and improved motor function. Furthermore, we have demonstrated that AT
2
R stimulation after stroke increased neuronal survival, decreased apoptosis, and caused an increase in the number of activated microglia in the core region of damage. The effects of CGP42112 were partially reversed with the coadministration of an AT
2
R antagonist, PD123319. Thus, the current study has shown for the first time that delayed central AT
2
R stimulation after a cerebral incident is neuroprotective in a conscious rat model of stroke.
Collapse
Affiliation(s)
- Claudia A. McCarthy
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Antony Vinh
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Brad R. S. Broughton
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Christopher G. Sobey
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Jennifer K. Callaway
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Robert E. Widdop
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| |
Collapse
|
27
|
McCarthy CA, Vinh A, Broughton BRS, Sobey CG, Callaway JK, Widdop RE. Angiotensin II Type 2 Receptor Stimulation Initiated After Stroke Causes Neuroprotection in Conscious Rats. Hypertension 2012. [DOI: 10.1161/hypertensionaha.112.199646 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We have demonstrated previously that pretreatment with an angiotensin II type 2 receptor (AT
2
R) agonist is neuroprotective against a subsequent stroke independent of any changes in blood pressure. Therefore, in the current study, we have examined the potential neuroprotective effect of AT
2
R stimulation initiated after stroke induction to mimic the clinical setting. Intracerebroventricular administration of the AT
2
R agonist CGP42112 was commenced 6 hours after an ischemic stroke had been induced in conscious spontaneously hypertensive rats. CGP42112 given over 4 doses in the same rats (3 µg/kg per dose centrally) at 6, 24, 48, and 72 hours after stroke induction reduced total infarct volume (32±13 mm
3
versus vehicle, 170±49 mm
3
;
P
<0.05) and improved motor function. Furthermore, we have demonstrated that AT
2
R stimulation after stroke increased neuronal survival, decreased apoptosis, and caused an increase in the number of activated microglia in the core region of damage. The effects of CGP42112 were partially reversed with the coadministration of an AT
2
R antagonist, PD123319. Thus, the current study has shown for the first time that delayed central AT
2
R stimulation after a cerebral incident is neuroprotective in a conscious rat model of stroke.
Collapse
Affiliation(s)
- Claudia A. McCarthy
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Antony Vinh
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Brad R. S. Broughton
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Christopher G. Sobey
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Jennifer K. Callaway
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| | - Robert E. Widdop
- From the Department of Pharmacology, Monash University, Clayton, Victoria, Australia (C.A.M., A.V., B.R.S.B., C.G.S., R.E.W.); Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia (J.K.C.)
| |
Collapse
|
28
|
Abstract
The effects of brain AngII (angiotensin II) depend on AT(1) receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT(1) receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood-brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT(1) receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT(1) receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer's disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer's disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic brain injury.
Collapse
Affiliation(s)
- Juan M Saavedra
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
McCarthy CA, Vinh A, Broughton BRS, Sobey CG, Callaway JK, Widdop RE. Angiotensin II type 2 receptor stimulation initiated after stroke causes neuroprotection in conscious rats. Hypertension 2012; 60:1531-7. [PMID: 23090772 DOI: 10.1161/hypertensionaha.112.199646] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have demonstrated previously that pretreatment with an angiotensin II type 2 receptor (AT(2)R) agonist is neuroprotective against a subsequent stroke independent of any changes in blood pressure. Therefore, in the current study, we have examined the potential neuroprotective effect of AT(2)R stimulation initiated after stroke induction to mimic the clinical setting. Intracerebroventricular administration of the AT(2)R agonist CGP42112 was commenced 6 hours after an ischemic stroke had been induced in conscious spontaneously hypertensive rats. CGP42112 given over 4 doses in the same rats (3 µg/kg per dose centrally) at 6, 24, 48, and 72 hours after stroke induction reduced total infarct volume (32 ± 13 mm(3) versus vehicle, 170 ± 49 mm(3); P<0.05) and improved motor function. Furthermore, we have demonstrated that AT(2)R stimulation after stroke increased neuronal survival, decreased apoptosis, and caused an increase in the number of activated microglia in the core region of damage. The effects of CGP42112 were partially reversed with the coadministration of an AT(2)R antagonist, PD123319. Thus, the current study has shown for the first time that delayed central AT(2)R stimulation after a cerebral incident is neuroprotective in a conscious rat model of stroke.
Collapse
Affiliation(s)
- Claudia A McCarthy
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|