1
|
Smith MT, Kong D, Kuo A, Imam MZ, Williams CM. Multitargeted Opioid Ligand Discovery as a Strategy to Retain Analgesia and Reduce Opioid-Related Adverse Effects. J Med Chem 2023; 66:3746-3784. [PMID: 36856340 DOI: 10.1021/acs.jmedchem.2c01695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The global "opioid crisis" has placed enormous pressure on the opioid ligand discovery community to produce novel opioid analgesics with superior opioid-related adverse-effect profiles compared with morphine. In this Perspective, the multitargeted opioid ligand strategy for the discovery of opioid analgesics with superior preclinical therapeutic indices relative to morphine is reviewed and discussed. Dual-targeted μ-opioid (MOP)/δ-opioid (DOP) ligands in which the in vitro DOP antagonist potency at least equals that of the MOP agonist activity, and are devoid of DOP or κ-opioid (KOP) agonist activity, are sufficiently promising candidates to warrant further investigation. Dual-targeted MOP/NOP partial agonists have superior preclinical therapeutic indices to morphine and/or fentanyl in nonhuman primates and are also considered promising. Based on the poor preclinical and clinical therapeutic indices of cebranopadol, which is a full agonist at MOP, DOP, and NOP receptors and a partial agonist at the KOP receptor, this pharmacologic template should be avoided.
Collapse
|
2
|
Iglesias González AB, Jakobsson JET, Vieillard J, Lagerström MC, Kullander K, Boije H. Single Cell Transcriptomic Analysis of Spinal Dmrt3 Neurons in Zebrafish and Mouse Identifies Distinct Subtypes and Reveal Novel Subpopulations Within the dI6 Domain. Front Cell Neurosci 2021; 15:781197. [PMID: 35002627 PMCID: PMC8733252 DOI: 10.3389/fncel.2021.781197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
The spinal locomotor network is frequently used for studies into how neuronal circuits are formed and how cellular activity shape behavioral patterns. A population of dI6 interneurons, marked by the Doublesex and mab-3 related transcription factor 3 (Dmrt3), has been shown to participate in the coordination of locomotion and gaits in horses, mice and zebrafish. Analyses of Dmrt3 neurons based on morphology, functionality and the expression of transcription factors have identified different subtypes. Here we analyzed the transcriptomes of individual cells belonging to the Dmrt3 lineage from zebrafish and mice to unravel the molecular code that underlies their subfunctionalization. Indeed, clustering of Dmrt3 neurons based on their gene expression verified known subtypes and revealed novel populations expressing unique markers. Differences in birth order, differential expression of axon guidance genes, neurotransmitters, and their receptors, as well as genes affecting electrophysiological properties, were identified as factors likely underlying diversity. In addition, the comparison between fish and mice populations offers insights into the evolutionary driven subspecialization concomitant with the emergence of limbed locomotion.
Collapse
Affiliation(s)
| | | | | | | | | | - Henrik Boije
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Vivancos M, Fanelli R, Besserer-Offroy É, Beaulieu S, Chartier M, Resua-Rojas M, Mona CE, Previti S, Rémond E, Longpré JM, Cavelier F, Sarret P. Metabolically stable neurotensin analogs exert potent and long-acting analgesia without hypothermia. Behav Brain Res 2021; 405:113189. [PMID: 33607165 DOI: 10.1016/j.bbr.2021.113189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The endogenous tridecapeptide neurotensin (NT) has emerged as an important inhibitory modulator of pain transmission, exerting its analgesic action through the activation of the G protein-coupled receptors, NTS1 and NTS2. Whereas both NT receptors mediate the analgesic effects of NT, NTS1 activation also produces hypotension and hypothermia, which may represent obstacles for the development of new pain medications. In the present study, we implemented various chemical strategies to improve the metabolic stability of the biologically active fragment NT(8-13) and assessed their NTS1/NTS2 relative binding affinities. We then determined their ability to reduce the nociceptive behaviors in acute, tonic, and chronic pain models and to modulate blood pressure and body temperature. To this end, we synthesized a series of NT(8-13) analogs carrying a reduced amide bond at Lys8-Lys9 and harboring site-selective modifications with unnatural amino acids, such as silaproline (Sip) and trimethylsilylalanine (TMSAla). Incorporation of Sip and TMSAla respectively in positions 10 and 13 of NT(8-13) combined with the Lys8-Lys9 reduced amine bond (JMV5296) greatly prolonged the plasma half-life time over 20 h. These modifications also led to a 25-fold peptide selectivity toward NTS2. More importantly, central delivery of JMV5296 was able to induce a strong antinociceptive effect in acute (tail-flick), tonic (formalin), and chronic inflammatory (CFA) pain models without inducing hypothermia. Altogether, these results demonstrate that the chemically-modified NT(8-13) analog JMV5296 exhibits a better therapeutic profile and may thus represent a promising avenue to guide the development of new stable NT agonists and improve pain management.
Collapse
Affiliation(s)
- Mélanie Vivancos
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Roberto Fanelli
- Institut des Biomolécules Max Mousseron (IBMM), UMR-CNRS 5247, Université Montpellier, ENSCM, Montpellier, France.
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Sabrina Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Magali Chartier
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Resua-Rojas
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA.
| | - Santo Previti
- Institut des Biomolécules Max Mousseron (IBMM), UMR-CNRS 5247, Université Montpellier, ENSCM, Montpellier, France.
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron (IBMM), UMR-CNRS 5247, Université Montpellier, ENSCM, Montpellier, France.
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron (IBMM), UMR-CNRS 5247, Université Montpellier, ENSCM, Montpellier, France.
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
4
|
Quirion B, Bergeron F, Blais V, Gendron L. The Delta-Opioid Receptor; a Target for the Treatment of Pain. Front Mol Neurosci 2020; 13:52. [PMID: 32431594 PMCID: PMC7214757 DOI: 10.3389/fnmol.2020.00052] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
Nowadays, pain represents one of the most important societal burdens. Current treatments are, however, too often ineffective and/or accompanied by debilitating unwanted effects for patients dealing with chronic pain. Indeed, the prototypical opioid morphine, as many other strong analgesics, shows harmful unwanted effects including respiratory depression and constipation, and also produces tolerance, physical dependence, and addiction. The urgency to develop novel treatments against pain while minimizing adverse effects is therefore crucial. Over the years, the delta-opioid receptor (DOP) has emerged as a promising target for the development of new pain therapies. Indeed, targeting DOP to treat chronic pain represents a timely alternative to existing drugs, given the weak unwanted effects spectrum of DOP agonists. Here, we review the current knowledge supporting a role for DOP and its agonists for the treatment of pain. More specifically, we will focus on the cellular and subcellular localization of DOP in the nervous system. We will also discuss in further detail the molecular and cellular mechanisms involved in controlling the cellular trafficking of DOP, known to differ significantly from most G protein-coupled receptors. This review article will allow a better understanding of how DOP represents a promising target to develop new treatments for pain management as well as where we stand as of our ability to control its cellular trafficking and cell surface expression.
Collapse
Affiliation(s)
- Béatrice Quirion
- Faculté de Médecine et des Sciences de la Santé, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Francis Bergeron
- Faculté de Médecine et des Sciences de la Santé, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Véronique Blais
- Faculté de Médecine et des Sciences de la Santé, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Gendron
- Faculté de Médecine et des Sciences de la Santé, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Bagheri Tudashki H, Haddad Y, Charfi I, Couture R, Pineyro G. Ligand-specific recycling profiles determine distinct potential for chronic analgesic tolerance of delta-opioid receptor (DOPr) agonists. J Cell Mol Med 2020; 24:5718-5730. [PMID: 32279433 PMCID: PMC7214178 DOI: 10.1111/jcmm.15234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
δ-opioid receptor (DOPr) agonists have analgesic efficacy in chronic pain models but development of tolerance limits their use for long-term pain management. Although agonist potential for inducing acute analgesic tolerance has been associated with distinct patterns of DOPr internalization, the association between trafficking and chronic tolerance remains ill-defined. In a rat model of streptozotocin (STZ)-induced diabetic neuropathy, deltorphin II and TIPP produced sustained analgesia following daily (intrathecal) i.t. injections over six days, whereas similar treatment with SNC-80 or SB235863 led to progressive tolerance and loss of the analgesic response. Trafficking assays in murine neuron cultures showed no association between the magnitude of ligand-induced sequestration and development of chronic tolerance. Instead, ligands that supported DOPr recycling were also the ones producing sustained analgesia over 6-day treatment. Moreover, endosomal endothelin-converting enzyme 2 (ECE2) blocker 663444 prevented DOPr recycling by deltorphin II and TIPP and precipitated tolerance by these ligands. In conclusion, agonists, which support DOPr recycling, avoid development of analgesic tolerance over repeated administration.
Collapse
Affiliation(s)
| | - Youssef Haddad
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Iness Charfi
- Centre de RechercheCentre Hospitalier Universitaire Ste-JustineMontréalQCCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Rejean Couture
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| | - Graciela Pineyro
- Centre de RechercheCentre Hospitalier Universitaire Ste-JustineMontréalQCCanada
- Department of Pharmacology and PhysiologyFaculty of MedicineUniversité de MontréalMontréalQCCanada
| |
Collapse
|
6
|
Berthiaume S, Abdallah K, Blais V, Gendron L. Alleviating pain with delta opioid receptor agonists: evidence from experimental models. J Neural Transm (Vienna) 2020; 127:661-672. [PMID: 32189076 DOI: 10.1007/s00702-020-02172-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The use of opioids for the relief of pain and headache disorders has been studied for years. Nowadays, particularly because of its ability to produce analgesia in various pain models, delta opioid receptor (DOPr) emerges as a promising target for the development of new pain therapies. Indeed, their potential to avoid the unwanted effects commonly observed with clinically used opioids acting at the mu opioid receptor (MOPr) suggests that DOPr agonists could be a therapeutic option. In this review, we discuss the use of opioids in the management of pain in addition to describing the evidence of the analgesic potency of DOPr agonists in animal models.
Collapse
Affiliation(s)
- Sophie Berthiaume
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Khaled Abdallah
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Véronique Blais
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
7
|
Beaudeau JL, Blais V, Holleran BJ, Bergeron A, Piñeyro G, Guérin B, Gendron L, Dory YL. N-Guanidyl and C-Tetrazole Leu-Enkephalin Derivatives: Efficient Mu and Delta Opioid Receptor Agonists with Improved Pharmacological Properties. ACS Chem Neurosci 2019; 10:1615-1626. [PMID: 30614675 DOI: 10.1021/acschemneuro.8b00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leu-enkephalin and d-Ala2-Leu-enkephalin were modified at their N- and C-termini with guanidyl and tetrazole groups. The resulting molecules were prepared in solution or by solid phase peptide synthesis. The affinity of the different analogues at mu (MOP) and delta opioid receptors (DOP) was then assessed by competitive binding in stably transfected DOP and MOP HEK293 cells. Inhibition of cAMP production and recruitment of β-arrestin were also investigated. Finally, lipophilicity (logD7.4) and plasma stability of each compound were measured. Compared to the native ligands, we found that the replacement of the terminal carboxylate by a tetrazole slightly decreased both the affinity at mu and delta opioid receptors as well as the half-life. By contrast, replacing the ammonium at the N-terminus with a guanidyl significantly improved the affinity, the potency, as well as the lipophilicity and the stability of the resulting peptides. Replacing the glycine residue with a d-alanine in position 2 consistently improved the potency as well as the stability of the analogues. The best peptidomimetic of the whole series, guanidyl-Tyr-d-Ala-Gly-Phe-Leu-tetrazole, displayed sub-nanomolar affinity and an increased lipophilicity. Moreover, it proved to be stable in plasma for up to 24 h, suggesting that the modifications are protecting the compound against protease degradation.
Collapse
Affiliation(s)
| | | | | | | | - Graciela Piñeyro
- Département de Psychiatrie, Centre de Recherche du CHU Ste-Justine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|
8
|
Gendron L, Nagi K, Zeghal M, Giguère PM, Pineyro G. Molecular aspects of delta opioid receptors. OPIOID HORMONES 2019; 111:49-90. [DOI: 10.1016/bs.vh.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Wang D, Tawfik VL, Corder G, Low SA, François A, Basbaum AI, Scherrer G. Functional Divergence of Delta and Mu Opioid Receptor Organization in CNS Pain Circuits. Neuron 2018; 98:90-108.e5. [PMID: 29576387 PMCID: PMC5896237 DOI: 10.1016/j.neuron.2018.03.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/19/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
Cellular interactions between delta and mu opioid receptors (DORs and MORs), including heteromerization, are thought to regulate opioid analgesia. However, the identity of the nociceptive neurons in which such interactions could occur in vivo remains elusive. Here we show that DOR-MOR co-expression is limited to small populations of excitatory interneurons and projection neurons in the spinal cord dorsal horn and unexpectedly predominates in ventral horn motor circuits. Similarly, DOR-MOR co-expression is rare in parabrachial, amygdalar, and cortical brain regions processing nociceptive information. We further demonstrate that in the discrete DOR-MOR co-expressing nociceptive neurons, the two receptors internalize and function independently. Finally, conditional knockout experiments revealed that DORs selectively regulate mechanical pain by controlling the excitability of somatostatin-positive dorsal horn interneurons. Collectively, our results illuminate the functional organization of DORs and MORs in CNS pain circuits and reappraise the importance of DOR-MOR cellular interactions for developing novel opioid analgesics.
Collapse
MESH Headings
- Animals
- Anterior Horn Cells/chemistry
- Anterior Horn Cells/metabolism
- Anterior Horn Cells/pathology
- Central Nervous System/chemistry
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Net/chemistry
- Nerve Net/metabolism
- Nerve Net/pathology
- Pain/metabolism
- Pain/pathology
- Pain Measurement/methods
- Posterior Horn Cells/chemistry
- Posterior Horn Cells/metabolism
- Posterior Horn Cells/pathology
- Receptors, Opioid, delta/biosynthesis
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
Collapse
Affiliation(s)
- Dong Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Gregory Corder
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Sarah A Low
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA; New York Stem Cell Foundation - Robertson Investigator, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
10
|
Abstract
Nowadays, the delta opioid receptor (DOPr) represents a promising target for the treatment of chronic pain and emotional disorders. Despite the fact that they produce limited antinociceptive effects in healthy animals and in most acute pain models, DOPr agonists have shown efficacy in various chronic pain models. In this chapter, we review the progresses that have been made over the last decades in understanding the role played by DOPr in the control of pain. More specifically, the distribution of DOPr within the central nervous system and along pain pathways is presented. We also summarize the literature supporting a role for DOPr in acute, tonic, and chronic pain models, as well as the mechanisms regulating its activity under specific conditions. Finally, novel compounds that have make their way to clinical trials are discussed.
Collapse
Affiliation(s)
- Khaled Abdallah
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du CHUS, Sherbrooke, QC, Canada
| | - Louis Gendron
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre de recherche du CHUS, Sherbrooke, QC, Canada.
- Département d'anesthésiologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Quebec Pain Research Network, Sherbrooke, QC, Canada.
| |
Collapse
|
11
|
Sex Differences in Regional Brain Glucose Metabolism Following Opioid Withdrawal and Replacement. Neuropsychopharmacology 2017; 42:1841-1849. [PMID: 28393895 PMCID: PMC5520789 DOI: 10.1038/npp.2017.69] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 01/21/2023]
Abstract
Methadone and buprenorphine are currently the most common pharmacological treatments for opioid dependence. Interestingly, the clinical response to these drugs appears to be sex specific. That is, females exhibit superior therapeutic efficacy, defined as extended periods of abstinence and longer time to relapse, compared with males. However, the underlying metabolic effects of opioid withdrawal and replacement have not been examined. Therefore, using 18FDG and microPET, we measured differences in regional brain glucose metabolism in males and females following morphine withdrawal and subsequent methadone or buprenorphine replacement. In both males and females, spontaneous opioid withdrawal altered glucose metabolism in regions associated with reward and drug dependence. Specifically, metabolic increases in the thalamus, as well as metabolic decreases in insular cortex and the periaqueductal gray, were noted. However, compared with males, females exhibited increased metabolism in the preoptic area, primary motor cortex, and the amygdala, and decreased metabolism in the caudate/putamen and medial geniculate nucleus. Methadone and buprenorphine initially abolished these changes uniformly, but subsequently produced their own regional metabolic alterations that varied by treatment and sex. Compared with sex-matched control animals undergoing spontaneous opioid withdrawal, male animals treated with methadone exhibited increased caudate/putamen metabolism, whereas buprenorphine produced increased ventral striatum and motor cortex metabolism in females, and increased ventral striatum and somatosensory cortex metabolism in males. Notably, when treatment effects were compared between sexes, methadone-treated females showed increased cingulate cortex metabolism, whereas buprenorphine-treated females showed decreased metabolism in cingulate cortex and increased metabolism in the globus pallidus. Perhaps the initial similarities in males and females underlie early therapeutic efficacy, whereas these posttreatment sex differences contribute to clinical treatment failure more commonly experienced by the former.
Collapse
|
12
|
Karad SN, Pal M, Crowley RS, Prisinzano TE, Altman RA. Synthesis and Opioid Activity of Tyr 1 -ψ[(Z)CF=CH]-Gly 2 and Tyr 1 -ψ[(S)/(R)-CF 3 CH-NH]-Gly 2 Leu-enkephalin Fluorinated Peptidomimetics. ChemMedChem 2017; 12:571-576. [PMID: 28296145 PMCID: PMC5486982 DOI: 10.1002/cmdc.201700103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Indexed: 12/16/2022]
Abstract
We describe the design, synthesis, and opioid activity of fluoroalkene (Tyr1 -ψ[(Z)CF=CH]-Gly2 ) and trifluoroethylamine (Tyr1 -ψ[(S)/(R)-CF3 CH-NH]-Gly2 ) analogues of the endogenous opioid neuropeptide, Leu-enkephalin. The fluoroalkene peptidomimetic exhibited low nanomolar functional activity (5.0±2 nm and 60±15 nm for δ- and μ-opioid receptors, respectively) with a μ/δ-selectivity ratio that mimics that of the natural peptide. However, the trifluoroethylamine peptidomimetics, irrespective of stereochemistry, did not activate the opioid receptors, which suggest that bulky CF3 substituents are not tolerated at this position.
Collapse
Affiliation(s)
- Somnath Narayan Karad
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Mohan Pal
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Rachel S Crowley
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| | - Ryan A Altman
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas, 66045, USA
| |
Collapse
|
13
|
Pirisedigh A, Blais V, Ait-Mohand S, Abdallah K, Holleran BJ, Leduc R, Dory YL, Gendron L, Guérin B. Synthesis and Evaluation of a 64Cu-Conjugate, a Selective δ-Opioid Receptor Positron Emission Tomography Imaging Agent. Org Lett 2017; 19:2018-2021. [DOI: 10.1021/acs.orglett.7b00575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Azadeh Pirisedigh
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Véronique Blais
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Samia Ait-Mohand
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Khaled Abdallah
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brian J. Holleran
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Richard Leduc
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Yves L. Dory
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Gendron
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Department
of Nuclear Medicine and Radiobiology, ‡Department of Pharmacology and
Physiology, Faculty of Medicine and Health Sciences,
and §Laboratoire de Synthèse
Supramoléculaire, Department of Chemistry, Faculty of Sciences,
Institut de Pharmacologie, Université de Sherbrooke, Centre
de recherche du CHUS, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
14
|
Santoro GC, Carrion J, Dewey SL. Imaging Sex Differences in Regional Brain Metabolism during Acute Opioid Withdrawal. JOURNAL OF ALCOHOLISM AND DRUG DEPENDENCE 2017; 5:262. [PMID: 29046888 PMCID: PMC5642926 DOI: 10.4172/2329-6488.1000262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The rate of opioid overdose continues to rise, necessitating improved treatment options. Current therapeutic approaches rely on administration of either a blocking agent, such as naloxone, or chronic treatment with replacement drugs, including methadone and/or buprenorphine. Recent findings suggest that males and females respond to these treatments uniquely. In an effort to better understand this sex-specific variation in treatment efficacy, we investigated the effects of acute opioid withdrawal in male and female rats using 18FDG and microPET. These data demonstrate that acute opioid withdrawal produces metabolic alterations in brain regions associated with reward and drug dependence, namely corpus striatum, thalamic nuclei, septum, and frontal cortex. Furthermore, certain changes are unique to males. Specifically, males demonstrated increased metabolism in the anterior cingulate cortex and the ventral hippocampus (CA3) following acute opioid withdrawal. If males and females exhibit sex-specific changes in regional brain metabolism following acute opioid withdrawal, then perhaps it is not surprising that they respond to treatment differently.
Collapse
Affiliation(s)
- Giovanni C Santoro
- Center for Neurosciences, Laboratory for Molecular and Behavioral Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Joseph Carrion
- Center for Neurosciences, Laboratory for Molecular and Behavioral Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Stephen L Dewey
- Center for Neurosciences, Laboratory for Molecular and Behavioral Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Psychiatry Department, New York University School of Medicine, NY, USA
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| |
Collapse
|
15
|
Nadon JF, Rochon K, Grastilleur S, Langlois G, Dao TTH, Blais V, Guérin B, Gendron L, Dory YL. Synthesis of Gly-ψ[(Z)CF═CH]-Phe, a Fluoroalkene Dipeptide Isostere, and Its Incorporation into a Leu-enkephalin Peptidomimetic. ACS Chem Neurosci 2017; 8:40-49. [PMID: 27762555 DOI: 10.1021/acschemneuro.6b00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new Leu-enkephalin peptidomimetic designed to explore the hydrogen bond acceptor ability of the third peptide bond has been prepared and studied. This new analog is produced by replacing the third amide of Leu-enkephalin with a fluoroalkene. An efficient and innovative synthesis of the corresponding dipeptide surrogate Fmoc-Gly-ψ[(Z)CF═CH]-Phe-OH is described. The key step involves the alkylation of a tin dienolate from the less hindered face of its chiral sulfonamide auxiliary derived from camphor. Once its synthesis was complete, its incorporation into the peptidomimetic sequence was achieved on a solid support with chlorotrityl resin following the Fmoc strategy. The peptidomimetic was characterized using competition binding with [125I]-deltorphin I on membrane extracts of HEK293 cells expressing the mouse delta opioid receptor (DOPr) and based on its abilities to inhibit the electrically induced contractions of the mouse vas deferens and to activate the ERK1/2 signaling pathway in DRGF11/DOPr-GFP cells. Together with our previous observations, our findings strongly suggest that the third amide bond of Leu-enkephalin primarily acts as a hydrogen bond acceptor in DOPr. Consequently, this amide bond can be successfully replaced by an ester, a thioamide, or a fluoroalkene without greatly impacting the binding or biological activity of the corresponding analogs. The lipophilicity (LogD7.4) of the active analog was also measured. It appears that fluoroalkenes are almost as efficient at increasing the lipophilicity as normal alkenes.
Collapse
Affiliation(s)
- Jean-François Nadon
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Kristina Rochon
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Sébastien Grastilleur
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Guillaume Langlois
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Thi Thanh Hà Dao
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Véronique Blais
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Gendron
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Yves L. Dory
- Laboratoire de synthèse
supramoléculaire, Département
de chimie, Faculté des sciences ‡Département de pharmacologie-physiologie, §Département
d’anesthésiologie, and ∥Département de médecine
nucléaire et radiobiologie, Faculté
de médecine et des sciences de la santé, ⊥Centre de recherche
du CHUS, #Quebec
Pain Research Network, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
16
|
In vivo activation of the SK channel in the spinal cord reduces the NMDA receptor antagonist dose needed to produce antinociception in an inflammatory pain model. Pain 2016; 156:849-858. [PMID: 25734988 DOI: 10.1097/j.pain.0000000000000124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N-methyl-D-aspartate receptor (NMDAR) antagonists have been shown to reduce mechanical hypersensitivity in animal models of inflammatory pain. However, their clinical use is associated with significant dose-limiting side effects. Small-conductance Ca-activated K channels (SK) have been shown to modulate NMDAR activity in the brain. We demonstrate that in vivo activation of SK channels in the spinal cord can alleviate mechanical hypersensitivity in a rat model of inflammatory pain. Intrathecal (i.t.) administration of the SK channel activator, 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309), attenuates complete Freund adjuvant (CFA)-induced mechanical hypersensitivity in a dose-dependent manner. Postsynaptic expression of the SK channel subunit, SK3, and apamin-sensitive SK channel-mediated currents recorded from superficial laminae are significantly reduced in the dorsal horn (DH) after CFA. Complete Freund adjuvant-induced decrease in SK-mediated currents can be reversed in vitro by bath application of NS309. In addition, immunostaining for the SK3 subunit indicates that SK3-containing channels within DH neurons can have both somatic and dendritic localization. Double immunostaining shows coexpression of SK3 and NMDAR subunit, NR1, compatible with functional interaction. Moreover, we demonstrate that i.t. coadministration of NS309 with an NMDAR antagonist reduces the dose of NMDAR antagonist, DL-2-amino-5-phosphonopentanoic acid (DL-AP5), required to produce antinociceptive effects in the CFA model. This reduction could attenuate the unwanted side effects associated with NMDAR antagonists, giving this combination potential clinical implications.
Collapse
|
17
|
Pradhan AA, Tawfik VL, Tipton AF, Scherrer G. In vivo techniques to investigate the internalization profile of opioid receptors. Methods Mol Biol 2015; 1230:87-104. [PMID: 25293318 DOI: 10.1007/978-1-4939-1708-2_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G-protein-coupled receptors (GPCRs) regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Receptor internalization is commonly observed following agonist binding and activation. Receptor trafficking events have been well characterized in cell systems, but the in vivo significance of GPCR internalization is still poorly understood. To address this issue, we have developed an innovative knock-in mouse model, where an opioid receptor is directly visible in vivo. These knockin mice express functional fluorescent delta opioid receptors (DOR-eGFP) in place of the endogenous receptor, and these receptors are expressed at physiological levels within their native environment. DOR-eGFP mice have proven to be an extraordinary tool in studying receptor neuroanatomy, real-time receptor trafficking in live neurons, and in vivo receptor internalization. We have used this animal model to determine the relationship between receptor trafficking in neurons and receptor function at a behavioral level. Here, we describe in detail the construction and characterization of this knockin mouse. We also outline how to use these mice to examine the behavioral consequences of agonist-specific trafficking at the delta opioid receptor. These techniques are potentially applicable to any GPCR, and highlight the powerful nature of this imaging tool.
Collapse
Affiliation(s)
- Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street, Chicago, IL, 60612, USA,
| | | | | | | |
Collapse
|
18
|
Beaudry H, Mercier-Blais AA, Delaygue C, Lavoie C, Parent JL, Neugebauer W, Gendron L. Regulation of μ and δ opioid receptor functions: involvement of cyclin-dependent kinase 5. Br J Pharmacol 2015; 172:2573-87. [PMID: 25598508 PMCID: PMC4409908 DOI: 10.1111/bph.13088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/18/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Phosphorylation of δ opioid receptors (DOP receptors) by cyclin-dependent kinase 5 (CDK5) was shown to regulate the trafficking of this receptor. Therefore, we aimed to determine the role of CDK5 in regulating DOP receptors in rats treated with morphine or with complete Freund's adjuvant (CFA). As μ (MOP) and DOP receptors are known to be co-regulated, we also sought to determine if CDK5-mediated regulation of DOP receptors also affects MOP receptor functions. Experimental Approach The role of CDK5 in regulating opioid receptors in CFA- and morphine-treated rats was studied using roscovitine as a CDK inhibitor and a cell-penetrant peptide mimicking the second intracellular loop of DOP receptors (C11-DOPri2). Opioid receptor functions were assessed in vivo in a series of behavioural experiments and correlated by measuring ERK1/2 activity in dorsal root ganglia homogenates. Key Results Chronic roscovitine treatment reduced the antinociceptive and antihyperalgesic effects of deltorphin II (Dlt II) in morphine- and CFA-treated rats respectively. Repeated administrations of C11-DOPri2 also robustly decreased Dlt II-induced analgesia. Interestingly, DAMGO-induced analgesia was significantly increased by roscovitine and C11-DOPri2. Concomitantly, in roscovitine-treated rats the Dlt II-induced ERK1/2 activation was decreased, whereas the DAMGO-induced ERK1/2 activation was increased. An acute roscovitine treatment had no effect on Dlt II- or DAMGO-induced analgesia. Conclusions and Implications Together, our results demonstrate that CDK5 is a key player in the regulation of DOP receptors in morphine- and CFA-treated rats and that the regulation of DOP receptors by CDK5 is sufficient to modulate MOP receptor functions through an indirect process.
Collapse
Affiliation(s)
- H Beaudry
- Département de Physiologie et Biophysique, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Beaudry H, Gendron L, Morón JA. Implication of delta opioid receptor subtype 2 but not delta opioid receptor subtype 1 in the development of morphine analgesic tolerance in a rat model of chronic inflammatory pain. Eur J Neurosci 2015; 41:901--7. [PMID: 25639561 DOI: 10.1111/ejn.12829] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/11/2014] [Accepted: 12/10/2014] [Indexed: 12/20/2022]
Abstract
Opioids are well known for their robust analgesic effects. Chronic activation of mu opioid receptors (MOPs) is, however, accompanied by various unwanted effects such as analgesic tolerance. Among other mechanisms, interactions between MOPs and delta opioid receptors (DOPs) are thought to play an important role in morphine-induced behavioral adaptations. Interestingly, certain conditions such as inflammation enhance the function of the DOP through a MOP-dependent mechanism. Here, we investigated the role of DOPs during the development of morphine tolerance in an animal model of chronic inflammatory pain. Using behavioral approaches, we first established that repeated systemic morphine treatment induced morphine analgesic tolerance in rats coping with chronic inflammatory pain. We then observed that blockade of DOPs with subcutaneous naltrindole (NTI), a selective DOP antagonist, significantly attenuated the development of morphine tolerance in a dose-dependent manner. We confirmed that this effect was DOP mediated by showing that an acute injection of NTI had no effect on morphine-induced analgesia in naive animals. Previous pharmacological characterizations revealed the existence of DOP subtype 1 and DOP subtype 2. As opposed to NTI, 7-benzylidenenaltrexone and naltriben were reported to be selective DOP subtype 1 and DOP subtype 2 antagonists, respectively. Interestingly, naltriben but not 7-benzylidenenaltrexone was able to attenuate the development of morphine analgesic tolerance in inflamed rats. Altogether, our results suggest that targeting of DOP subtype 2 with antagonists provides a valuable strategy to attenuate the analgesic tolerance that develops after repeated morphine administration in the setting of chronic inflammatory pain.
Collapse
Affiliation(s)
- H Beaudry
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, P&S Box 46, 630 West 168th Street, New York, NY, 10032, USA; Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | | | | |
Collapse
|
20
|
Pradhan AA, Smith ML, Zyuzin J, Charles A. δ-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br J Pharmacol 2014; 171:2375-84. [PMID: 24467301 DOI: 10.1111/bph.12591] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/10/2013] [Accepted: 01/10/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Migraine is an extraordinarily common brain disorder for which treatment options continue to be limited. Agonists that activate the δ-opioid receptor may be promising for the treatment of migraine as they are highly effective for the treatment of chronic rather than acute pain, do not induce hyperalgesia, have low abuse potential and have anxiolytic and antidepressant properties. The aim of this study was to investigate the therapeutic potential of δ-opioid receptor agonists for migraine by characterizing their effects in mouse migraine models. EXPERIMENTAL APPROACH Mechanical hypersensitivity was assessed in mice treated with acute and chronic doses of nitroglycerin (NTG), a known human migraine trigger. Conditioned place aversion to NTG was also measured as a model of migraine-associated negative affect. In addition, we assessed evoked cortical spreading depression (CSD), an established model of migraine aura, in a thinned skull preparation. KEY RESULTS NTG evoked acute and chronic mechanical and thermal hyperalgesia in mice, as well as conditioned place aversion. Three different δ-opioid receptor agonists, SNC80, ARM390 and JNJ20788560, significantly reduced NTG-evoked hyperalgesia. SNC80 also abolished NTG-induced conditioned place aversion, suggesting that δ-opioid receptor activation may also alleviate the negative emotional state associated with migraine. We also found that SNC80 significantly attenuated CSD, a model that is considered predictive of migraine preventive therapies. CONCLUSIONS AND IMPLICATIONS These data show that δ-opioid receptor agonists modulate multiple basic mechanisms associated with migraine, indicating that δ-opioid receptors are a promising therapeutic target for this disorder.
Collapse
Affiliation(s)
- Amynah A Pradhan
- Semel Institute for Neuropsychiatry & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Headache Research and Treatment Program, Department of Neurology David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Shirley and Stefan Hatos Center for Neuropharmacology, UCLA, Los Angeles, CA, USA; Department of Psychiatry, University of Illinois at Chicago (UIC), Chicago, IL, USA
| | | | | | | |
Collapse
|
21
|
Mabrouk OS, Viaro R, Volta M, Ledonne A, Mercuri N, Morari M. Stimulation of δ opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate parkinsonism. J Neurosci 2014; 34:12953-62. [PMID: 25253844 PMCID: PMC6608339 DOI: 10.1523/jneurosci.4677-13.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022] Open
Abstract
δ opioid peptide (DOP) receptors are considered a therapeutic target in Parkinson's disease, although the use of DOP agonists may be limited by side effects, including convulsions. To circumvent this issue, we evaluated whether blockade of nociceptin/orphanin FQ (N/OFQ) tone potentiated the antiparkinsonian effects of DOP agonists, thus allowing for reduction of their dosage. Systemic administration of the N/OFQ receptor (NOP) antagonist J-113397 [(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H benzimidazol-2-one] and the DOP receptor agonist SNC-80 [(+)-4-[(αR)-α-(2S,5R)-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N-N-diethylbenzamide] revealed synergistic attenuation of motor deficits in 6-hydroxydopamine hemilesioned rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. In this model, repeated administration of the combination produced reproducible antiparkinsonian effects and was not associated with rescued striatal dopamine terminals. Microdialysis studies revealed that either systemic administration or local intranigral perfusion of J-113397 and SNC-80 led to the enhancement of nigral GABA, reduction of nigral Glu, and reduction of thalamic GABA levels, consistent with the view that NOP receptor blockade and DOP receptor stimulation caused synergistic overinhibition of nigro-thalamic GABA neurons. Whole-cell recording of GABA neurons in nigral slices confirmed that NOP receptor blockade enhanced the DOP receptor-induced effect on IPSCs via presynaptic mechanisms. Finally, SNC-80 more potently stimulated stepping activity in mice lacking the NOP receptor than wild-type controls, confirming the in vivo occurrence of an NOP-DOP receptor interaction. We conclude that endogenous N/OFQ functionally opposes DOP transmission in substantia nigra reticulata and that NOP receptor antagonists might be used in combination with DOP receptor agonists to reduce their dosage while maintaining their full therapeutic efficacy.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy, Department of Robotics, Brain, and Cognitive Sciences, Italian Institute of Technology, 16163 Genoa, Italy
| | - Mattia Volta
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Ada Ledonne
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Nicola Mercuri
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| |
Collapse
|
22
|
Charfi I, Audet N, Bagheri Tudashki H, Pineyro G. Identifying ligand-specific signalling within biased responses: focus on δ opioid receptor ligands. Br J Pharmacol 2014; 172:435-48. [PMID: 24665881 DOI: 10.1111/bph.12705] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Opioids activate GPCRs to produce powerful analgesic actions but at the same time induce side effects and generate tolerance, which restrict their clinical use. Reducing this undesired response profile has remained a major goal of opioid research and the notion of 'biased agonism' is raising increasing interest as a means of separating therapeutic responses from unwanted side effects. However, to fully exploit this opportunity, it is necessary to confidently identify biased signals and evaluate which type of bias may support analgesia and which may lead to undesired effects. The development of new computational tools has made it possible to quantify ligand-dependent signalling and discriminate this component from confounders that may also yield biased responses. Here, we analyse different approaches to identify and quantify ligand-dependent bias and review different types of confounders. Focus is on δ opioid receptor ligands, which are currently viewed as promising agents for chronic pain management. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- I Charfi
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada; Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | | | | | | |
Collapse
|
23
|
Chabot-Doré AJ, Schuster DJ, Stone LS, Wilcox GL. Analgesic synergy between opioid and α2 -adrenoceptors. Br J Pharmacol 2014; 172:388-402. [PMID: 24641506 DOI: 10.1111/bph.12695] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Opioid and α2 -adrenoceptor agonists are potent analgesic drugs and their analgesic effects can synergize when co-administered. These supra-additive interactions are potentially beneficial clinically; by increasing efficacy and/or reducing the total drug required to produce sufficient pain relief, undesired side effects can be minimized. However, combination therapies of opioids and α2 -adrenoceptor agonists remain underutilized clinically, in spite of a large body of preclinical evidence describing their synergistic interaction. One possible obstacle to the translation of preclinical findings to clinical applications is a lack of understanding of the mechanisms underlying the synergistic interactions between these two drug classes. In this review, we provide a detailed overview of the interactions between different opioid and α2 -adrenoceptor agonist combinations in preclinical studies. These studies have identified the spinal cord as an important site of action of synergistic interactions, provided insights into which receptors mediate these interactions and explored downstream signalling events enabling synergy. It is now well documented that the activation of both μ and δ opioid receptors can produce synergy with α2 -adrenoceptor agonists and that α2 -adrenoceptor agonists can mediate synergy through either the α2A or the α2C adrenoceptor subtypes. Current hypotheses surrounding the cellular mechanisms mediating opioid-adrenoceptor synergy, including PKC signalling and receptor oligomerization, and the evidence supporting them are presented. Finally, the implications of these findings for clinical applications and drug discovery are discussed. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- A-J Chabot-Doré
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
24
|
Gendron L, Mittal N, Beaudry H, Walwyn W. Recent advances on the δ opioid receptor: from trafficking to function. Br J Pharmacol 2014; 172:403-19. [PMID: 24665909 DOI: 10.1111/bph.12706] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Within the opioid family of receptors, δ (DOPrs) and μ opioid receptors (MOPrs) are typical GPCRs that activate canonical second-messenger signalling cascades to influence diverse cellular functions in neuronal and non-neuronal cell types. These receptors activate well-known pathways to influence ion channel function and pathways such as the map kinase cascade, AC and PI3K. In addition new information regarding opioid receptor-interacting proteins, downstream signalling pathways and resultant functional effects has recently come to light. In this review, we will examine these novel findings focusing on the DOPr and, in doing so, will contrast and compare DOPrs with MOPrs in terms of differences and similarities in function, signalling pathways, distribution and interactions. We will also discuss and clarify issues that have recently surfaced regarding the expression and function of DOPrs in different cell types and analgesia. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Louis Gendron
- Département de physiologie et biophysique, Institut de pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
25
|
Antkowiak B, Paluch M, Ciechanowska M, Nawrocka M, Bańkowski K, Michalak O, Kocik J, Kowalczyk M, Izdebski J. Antinociceptive effect of D-Lys(2), Dab(4)N-(ureidoethyl)amide, a new cyclic 1-4 dermorphin/deltorphin analog. Pharmacol Rep 2014; 66:600-5. [PMID: 24948060 DOI: 10.1016/j.pharep.2014.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/22/2013] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND A preliminary evaluation of antinociceptive activity of a new cyclic dermorphin/deltorphin tetrapeptide analog restricted via a urea bridge and containing C-terminal ureidoethylamid {[H-Tyr-d-Lys(&(1))-Phe-Dab(&(2))-CH2CH2NHCONH2][&(1)CO&(2)]} (cUP-1) revealed a significant and long-lasting increase of pain threshold to thermal stimulation after systemic application. The current studies were aimed at further evaluation of cUP-1 activity in animal models of somatic and visceral pain. The influence of cUP-1 on motor functions was also investigated. METHODS The influence of cUP-1 (0.5-2mgkg(-1), iv) on nociceptive threshold to mechanical pressure and analgesic efficacy in formalin and acetic acid-induced writhing tests were estimated. The antinociceptive effect of cUP-1 was compared to that of morphine (MF). The influence of cUP-1 (1, 4 and 8mgkg(-1), iv) on locomotor activity, motor coordination and muscle strength was estimated using open field and rota-rod tests and a grip strength measurement. RESULTS Administration of cUP-1 in doses of 1 and 2mgkg(-1) elicited a significant increase of nociceptive threshold to mechanical pressure. MF applied in the same doses induced an antinociceptive effect only at the higher dose (2mgkg(-1)). There were no marked differences between the effect of cUP-1 and MF at each dose, at relative time points. In the writhing test and both phases of the formalin test, cUP-1 showed a significant, dose-dependent antinociceptive effect which did not markedly differ from that of MF. cUP-1 did not significantly affect motor functions of mice. CONCLUSIONS Systemic application of cUP-1 elicited a dose-dependent antinociceptive effect. The analgesic efficacy of cUP-1 on mechanical nociception, visceral and formalin-induced pain was comparable to that of MF. cUP-1 did not impair motor functions of mice.
Collapse
Affiliation(s)
- Bożena Antkowiak
- Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Warsaw, Poland.
| | - Małgorzata Paluch
- Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Warsaw, Poland
| | - Magdalena Ciechanowska
- Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Warsaw, Poland
| | - Małgorzata Nawrocka
- Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Warsaw, Poland
| | | | | | - Janusz Kocik
- Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Warsaw, Poland
| | - Marek Kowalczyk
- Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Warsaw, Poland; Józef Piłsudski University of Physical Education, Warsaw, Poland
| | - Jan Izdebski
- Warsaw University, Department of Chemistry, Warsaw, Poland
| |
Collapse
|
26
|
Gurtskaia G, Tsiklauri N, Nozadze I, Nebieridze M, Tsagareli MG. Antinociceptive tolerance to NSAIDs microinjected into dorsal hippocampus. BMC Pharmacol Toxicol 2014; 15:10. [PMID: 24576352 PMCID: PMC3945813 DOI: 10.1186/2050-6511-15-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/20/2014] [Indexed: 12/25/2022] Open
Abstract
Background Pain is characterized as a complex experience, dependent not only on the regulation of nociceptive sensory systems, but also on the activation of mechanisms that control emotional processes in limbic brain areas such as the amygdala and the hippocampus. Several lines of investigations have shown that in some brain areas, particularly the midbrain periaqueductal gray matter, rostral ventro-medial medulla, central nucleus of amygdala and nucleus raphe magnus, microinjections of non-steroidal anti-inflammatory drugs (NSAIDs) induce antinociception with distinct development of tolerance. The present study was designed to examine whether microinjection of NSAIDs, clodifen, ketorolac and xefocam into the dorsal hippocampus (DH) leads to the development of antinociceptive tolerance in male rats. Methods The experiments were carried out on experimental and control (with saline) white male rats. Animals were implanted with a guide cannula in the DH and tested for antinociception following microinjection of NSAIDs into the DH in the tail-flick (TF) and hot plate (HP) tests. Repeated measures of analysis of variance with post-hoc Tukey-Kramer multiple comparison tests were used for statistical evaluations. Results We found that microinjection of these NSAIDs into the DH induces antinociception as revealed by a latency increase in the TF and HP tests compared to controls treated with saline into the DH. Subsequent tests on days 2 and 3, however, showed that the antinociceptive effect of NSAIDs progressively decreased, suggesting tolerance developed to this effect of NSAIDs. Both pretreatment and post-treatment with the opioid antagonist naloxone into the DH significantly reduced the antinociceptive effect of NSAIDs in both pain models. Conclusions Our results indicate that microinjection of NSAIDs into the DH induces antinociception which is mediated via the opioid system and exhibits tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Merab G Tsagareli
- Dept of Neurophysiology, Ivane Beritashvili Center for Experimental Biomedicine, Gotua Street 14, Tbilisi 0160, Georgia.
| |
Collapse
|
27
|
Tudashki HB, Robertson DN, Schiller PW, Pineyro G. Endocytic profiles of δ-opioid receptor ligands determine the duration of rapid but not sustained cAMP responses. Mol Pharmacol 2014; 85:148-61. [PMID: 24174495 PMCID: PMC3868905 DOI: 10.1124/mol.113.089003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/30/2013] [Indexed: 01/01/2023] Open
Abstract
Traditional assays that monitor cAMP inhibition by opioid receptor ligands require second-messenger accumulation over periods of 10-20 minutes. Since receptor regulation occurs within a similar time frame, such assays do not discriminate the actual signal from its modulation. Here we used bioluminescence resonance energy transfer to monitor inhibition of cAMP production by δ-opioid receptor (DOR) agonists in real time. cAMP inhibition elicited by different agonists over a period of 15 minutes was biphasic, with response buildup during the first 6 to 7 minutes, followed by a second phase of response decay or of no further increment. The rate at which the cAMP response disappeared was correlated with operational parameters describing ligand efficiency [log(τ/KA)] to promote Gαi activation, as well as with ligand ability to promote internalization during the time course of the assay. Thus, ligands that displayed low signaling efficiency and poor sequestration(SB235863 ([8R-(4bS*,8aα,8aβ,12bβ)]7,10-dimethyl-1-methoxy-11-(2-ethylpropyl)oxycarbonyl 5,6,7,8,12,12b-hexahydro-(9H)-4,8-methanobenzofuro[3,2-e]pyrrolo[2,3-g]isoquinoline hydrochloride), morphine) had minimal or no response decay. On the other hand, the decay rate was pronounced for deltorphin II, [d-Pen(2), d-pen(5)]-enkephalin, met-enkephalin, and SNC-80 ((+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide), which displayed high signaling efficiency and internalization. Moreover, inhibition of internalization by dynasore reduced or abolished response decay by internalizing ligands. Unlike acute responses, endocytic profiles were not predictive of whether an agonist would induce prolonged cAMP inhibition over sustained (30-120 minutes) DOR stimulation. Taken together, the data indicate that ligand ability to evoke G-protein activation or promote endocytosis was predictive of response duration over short, but not over sustained periods of cAMP inhibition.
Collapse
Affiliation(s)
- Hanieh Bagheri Tudashki
- Centre de Recherche, Sainte-Justine Hospital, Montréal, Québec, Canada (H.B.T., D.N.R., G.P.); Department of Pharmacology, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada (H.B.T., P.W.S., G.P.); and Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montréal, Québec, Canada (P.W.S.)
| | | | | | | |
Collapse
|
28
|
Rochon K, Proteau-Gagné A, Bourassa P, Nadon JF, Côté J, Bournival V, Gobeil F, Guérin B, Dory YL, Gendron L. Preparation and evaluation at the delta opioid receptor of a series of linear leu-enkephalin analogues obtained by systematic replacement of the amides. ACS Chem Neurosci 2013; 4:1204-16. [PMID: 23650868 PMCID: PMC3750687 DOI: 10.1021/cn4000583] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/07/2013] [Indexed: 12/16/2022] Open
Abstract
Leu-enkephalin analogues, in which the amide bonds were sequentially and systematically replaced either by ester or N-methyl amide bonds, were prepared using classical organic chemistry as well as solid phase peptide synthesis (SPPS). The peptidomimetics were characterized using competition binding, ERK1/2 phosphorylation, receptor internalization, and contractility assays to evaluate their pharmacological profile over the delta opioid receptor (DOPr). The lipophilicity (LogD7.4) and plasma stability of the active analogues were also measured. Our results revealed that the last amide bond can be successfully replaced by either an ester or an N-methyl amide bond without significantly decreasing the biological activity of the corresponding analogues when compared to Leu-enkephalin. The peptidomimetics with an N-methyl amide function between residues Phe and Leu were found to be more lipophilic and more stable than Leu-enkephalin. Findings from the present study further revealed that the hydrogen-bond donor properties of the fourth amide of Leu-enkephalin are not important for its biological activity on DOPr. Our results show that the systematic replacement of amide bonds by isosteric functions represents an efficient way to design and synthesize novel peptide analogues with enhanced stability. Our findings further suggest that such a strategy can also be useful to study the biological roles of amide bonds.
Collapse
Affiliation(s)
- Kristina Rochon
- Département de Physiologie
et Biophysique, Laboratoire de Synthèse Supramoléculaire, Département
de Chimie, Département de pharmacologie, and Département de Médecine
Nucléaire et Radiobiologie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Arnaud Proteau-Gagné
- Département de Physiologie
et Biophysique, Laboratoire de Synthèse Supramoléculaire, Département
de Chimie, Département de pharmacologie, and Département de Médecine
Nucléaire et Radiobiologie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Philippe Bourassa
- Département de Physiologie
et Biophysique, Laboratoire de Synthèse Supramoléculaire, Département
de Chimie, Département de pharmacologie, and Département de Médecine
Nucléaire et Radiobiologie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean-François Nadon
- Département de Physiologie
et Biophysique, Laboratoire de Synthèse Supramoléculaire, Département
de Chimie, Département de pharmacologie, and Département de Médecine
Nucléaire et Radiobiologie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Jérome Côté
- Département de Physiologie
et Biophysique, Laboratoire de Synthèse Supramoléculaire, Département
de Chimie, Département de pharmacologie, and Département de Médecine
Nucléaire et Radiobiologie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Véronique Bournival
- Département de Physiologie
et Biophysique, Laboratoire de Synthèse Supramoléculaire, Département
de Chimie, Département de pharmacologie, and Département de Médecine
Nucléaire et Radiobiologie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Fernand Gobeil
- Département de Physiologie
et Biophysique, Laboratoire de Synthèse Supramoléculaire, Département
de Chimie, Département de pharmacologie, and Département de Médecine
Nucléaire et Radiobiologie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Département de Physiologie
et Biophysique, Laboratoire de Synthèse Supramoléculaire, Département
de Chimie, Département de pharmacologie, and Département de Médecine
Nucléaire et Radiobiologie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Yves L. Dory
- Département de Physiologie
et Biophysique, Laboratoire de Synthèse Supramoléculaire, Département
de Chimie, Département de pharmacologie, and Département de Médecine
Nucléaire et Radiobiologie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Louis Gendron
- Département de Physiologie
et Biophysique, Laboratoire de Synthèse Supramoléculaire, Département
de Chimie, Département de pharmacologie, and Département de Médecine
Nucléaire et Radiobiologie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
29
|
Systematic replacement of amides by 1,4-disubstituted[1,2,3]triazoles in Leu-enkephalin and the impact on the delta opioid receptor activity. Bioorg Med Chem Lett 2013; 23:5267-9. [PMID: 23988352 DOI: 10.1016/j.bmcl.2013.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 12/28/2022]
Abstract
Using Cu(I)-catalyzed azide-alkyne cycloaddition in a mixed classical organic phase and solid phase peptide synthesis approach, we synthesized four analogs of Leu-enkephalin to systematically replace amides by 1,4-disubstituted[1,2,3]triazoles. The peptidomimetics obtained were characterized by competitive binding, contractility assays and ERK1/2 phosphorylation. The present study reveals that the analog bearing a triazole between Phe and Leu retains some potency, more than all the others, suggesting that the hydrogen bond acceptor capacity of the last amide of Leu-enkephalin is essential for the biological activity of the peptide.
Collapse
|
30
|
Normandin A, Luccarini P, Molat JL, Gendron L, Dallel R. Spinal μ and δ opioids inhibit both thermal and mechanical pain in rats. J Neurosci 2013; 33:11703-14. [PMID: 23843537 PMCID: PMC3855450 DOI: 10.1523/jneurosci.1631-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 11/21/2022] Open
Abstract
The expression and contribution of μ (MOPR) and δ opioid receptors (DOPR) in polymodal nociceptors have been recently challenged. Indeed, MOPR and DOPR were shown to be expressed in distinct subpopulation of nociceptors where they inhibit pain induced by noxious heat and mechanical stimuli, respectively. In the present study, we used electrophysiological measurements to assess the effect of spinal MOPR and DOPR activation on heat-induced and mechanically induced diffuse noxious inhibitory controls (DNICs). We recorded from wide dynamic range neurons in the spinal trigeminal nucleus of anesthetized rats. Trains of 105 electrical shocks were delivered to the excitatory cutaneous receptive field. DNICs were triggered either by immersion of the hindpaw in 49°C water or application of 300 g of mechanical pressure. To study the involvement of peptidergic primary afferents in the activation of DNIC by noxious heat and mechanical stimulations, substance P release was measured in the spinal cord by visualizing neurokinin type 1 receptor internalization. We found that the activation of spinal MOPR and DOPR similarly attenuates the DNIC and neurokinin type 1 receptor internalization induced either by heat or mechanical stimuli. Our results therefore reveal that the activation of spinal MOPR and DOPR relieves both heat-induced and mechanically induced pain with similar potency and suggest that these receptors are expressed on polymodal, substance P-expressing neurons.
Collapse
Affiliation(s)
- Audrey Normandin
- Département de physiologie et biophysique, Faculté de médecine et des sciences de la santé
| | - Philippe Luccarini
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000, CLERMONT-FERRAND Inserm, U1107, F-63001 Clermont-Ferrand, France
| | - Jean-Louis Molat
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000, CLERMONT-FERRAND Inserm, U1107, F-63001 Clermont-Ferrand, France
| | - Louis Gendron
- Département de physiologie et biophysique, Faculté de médecine et des sciences de la santé
- Institut de pharmacologie de Sherbrooke, and
- Centre de recherche clinique Étienne-Le Bel, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada, and
| | - Radhouane Dallel
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000, CLERMONT-FERRAND Inserm, U1107, F-63001 Clermont-Ferrand, France
| |
Collapse
|
31
|
Pradhan AA, Smith ML, Kieffer BL, Evans CJ. Ligand-directed signalling within the opioid receptor family. Br J Pharmacol 2013; 167:960-9. [PMID: 22708627 DOI: 10.1111/j.1476-5381.2012.02075.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The classic model of GPCR activation proposed that all agonists induce the same active receptor conformation. However, research over the last decade has shown that GPCRs exist in multiple conformations, and that agonists can stabilize different active states. The distinct receptor conformations induced by ligands result in distinct receptor-effector complexes, which produce varying levels of activation or inhibition of subsequent signalling cascades. This concept, referred to as ligand-directed signalling or biased agonism has important biological and therapeutic implications. Opioid receptors are G(i/o) GPCRs and regulate a number of important physiological functions, including pain, reward, mood, stress, gastrointestinal transport and respiration. A number of in vitro studies have shown biased agonism at the three opioid receptors (µ, δ and κ); however, in vivo consequences of this phenomenon have only recently been demonstrated. For the µ and δ opioid receptors, the majority of reported ligand selective behavioural effects are observed as differential adaptations to repeated drug administration. In terms of the κ opioid receptor, clear links between ligand-selective signalling events and specific in vivo responses have been recently characterized. Drugs for all three receptors are either already used or are being developed for clinical applications. There is clearly a need to better characterize the specific events that occur following agonist stimulation and how these relate to in vivo responses. This understanding could eventually lead to the development of tailor-made pharmacotherapies where advantageous drug effects can be selectively targeted over adverse effects.
Collapse
Affiliation(s)
- Amynah A Pradhan
- Semel Institute for Neuropsychiatry & Human Behavior, University of California Los Angeles, Los Angeles, CA 90024-1759, USA.
| | | | | | | |
Collapse
|
32
|
Differential association of receptor-Gβγ complexes with β-arrestin2 determines recycling bias and potential for tolerance of δ opioid receptor agonists. J Neurosci 2012; 32:4827-40. [PMID: 22492038 DOI: 10.1523/jneurosci.3734-11.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Opioid tendency to generate analgesic tolerance has been previously linked to biased internalization. Here, we assessed an alternative possibility; whether tolerance of delta opioid receptor agonists (DORs) could be related to agonist-specific recycling. A first series of experiments revealed that DOR internalization by DPDPE and SNC-80 was similar, but only DPDPE induced recycling. We then established that the non-recycling agonist SNC-80 generated acute analgesic tolerance that was absent in mice treated with DPDPE. Furthermore, both agonists stabilized different conformations, whose distinct interaction with Gβγ subunits led to different modalities of β-arrestin2 (βarr2) recruitment. In particular, bioluminescence resonance energy transfer (BRET) assays revealed that sustained activation by SNC-80 drew the receptor C terminus in close proximity of the N-terminal domain of Gγ2, causing βarr2 to interact with receptors and Gβγ subunits. DPDPE moved the receptor C-tail away from the Gβγ dimer, resulting in βarr2 recruitment to the receptor but not in the vicinity of Gγ2. These differences were associated with stable DOR-βarr2 association, poor recycling, and marked desensitization following exposure to SNC-80, while DPDPE promoted transient receptor interaction with βarr2 and effective recycling, which conferred protection from desensitization. Together, these data indicate that DORs may adopt ligand-specific conformations whose distinct recycling properties determine the extent of desensitization and are predictive of analgesic tolerance. Based on these findings, we propose that the development of functionally selective DOR ligands that favor recycling could constitute a valid strategy for the production of longer acting opioid analgesics.
Collapse
|
33
|
Hervera A, Leánez S, Pol O. The inhibition of the nitric oxide-cGMP-PKG-JNK signaling pathway avoids the development of tolerance to the local antiallodynic effects produced by morphine during neuropathic pain. Eur J Pharmacol 2012; 685:42-51. [PMID: 22546233 DOI: 10.1016/j.ejphar.2012.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Tolerance to the local antiallodynic effects of morphine, DPDPE ([D-Pen(2),D-Pen(5)]-Enkephalin) or JWH-015 ((2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone) after their repeated administration during neuropathic pain was evaluated. The role of the nitric oxide-cGMP-protein kinase G (PKG)-c-Jun N-terminal kinase (JNK) signaling pathway on the peripheral morphine-induced tolerance after the chronic constriction of sciatic nerve in mice was also assessed. The mechanical and thermal antiallodynic effects produced by a high dose of morphine, DPDPE or JWH-015 subplantarly administered daily from days 10 to 20 after nerve injury were estimated with the von Frey filaments and cold plate tests. The antiallodynic effects of the repeated administration of morphine combined with a sub-analgesic dose of a selective inducible nitric oxide synthase (NOS2) (L-N(6)-(1-iminoethyl)-lysine; L-NIL), L-guanylate cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; ODQ), PKG ((Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate; Rp-8-pCPT-cGMPs) or JNK (anthra[1,9-cd]pyrazol-6(2H)-one; SP600125) inhibitor from days 10 to 20 after injury were also evaluated. The repeated administration of morphine, but not DPDPE or JWH-015, produced a rapid development of tolerance to its mechanical and thermal antiallodynic effects in sciatic nerve-injured mice. The co-administration of morphine with L-NIL, ODQ, Rp-8-pCPT-cGMPs or SP600125 avoided the development of morphine antiallodynic tolerance after nerve injury. These findings reveal that the repeated local administration of DPDPE or JWH-015 did not induce antinociceptive tolerance after sciatic nerve injury-induced neuropathic pain. Our data also indicate that the peripheral nitric oxide-cGMP-PKG-JNK signaling pathway participates in the development of morphine tolerance after nerve injury and propose the inactivation of this pathway as a promising strategy to avoid morphine tolerance during neuropathic pain.
Collapse
Affiliation(s)
- Arnau Hervera
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
34
|
Lee BS, Jun IG, Kim SH, Park JY. Interaction of morphine and selective serotonin receptor inhibitors in rats experiencing inflammatory pain. J Korean Med Sci 2012; 27:430-6. [PMID: 22468108 PMCID: PMC3314857 DOI: 10.3346/jkms.2012.27.4.430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 01/20/2012] [Indexed: 01/25/2023] Open
Abstract
Citalopram and paroxetine are selective serotonin reuptake inhibitors and also have antinociceptive effects. We investigated the antiallodynic and antihyperalgesic effects of intrathecally administered morphine, citalopram, paroxetine, and combinations thereof, in a rat model in which peripheral inflammation was induced by complete Freund's adjuvant (CFA). Drugs were intrathecally administered via direct lumbar puncture. Mechanical allodynia was measured using a Dynamic Plantar Aesthesiometer. Thermal hyperalgesia and cold allodynia were determined by measuring latency of paw withdrawal in response to radiant heat and cold water. Behavioral tests were run before and 15, 30, 45, and 60 min after intrathecal injection. Intraplantar injection of CFA produced mechanical allodynia, thermal hyperalgesia, and cold allodynia. Intrathecally administered morphine (0.3 or 1 µg) had antiallodynic or antihyperalgesic effects (24.0%-71.9% elevation). The effects of morphine were significantly increased when a combination of citalopram (100 µg) and paroxetine (100 µg) was added (35.2%-95.1% elevation). This rise was reversed by naloxone and methysergide. The effects of citalopram and paroxetine were also reversed by naloxone and methysergide. We suggest that the mu opioid receptor and serotonin receptors play major roles in production of the antiallodynic and antihyperalgesic effects of morphine, citalopram, paroxetine, and combinations thereof, in animals experiencing inflammatory pain.
Collapse
Affiliation(s)
- Byung-Sang Lee
- Department of Anesthesiology and Pain Medicine, CHA Medical Center, CHA University, Gumi, Korea
| | - In-Gu Jun
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Hoon Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Yeon Park
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Stockton SD, Devi LA. Functional relevance of μ-δ opioid receptor heteromerization: a role in novel signaling and implications for the treatment of addiction disorders: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend 2012; 121:167-72. [PMID: 22115888 PMCID: PMC3288266 DOI: 10.1016/j.drugalcdep.2011.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/20/2011] [Accepted: 10/22/2011] [Indexed: 11/28/2022]
Abstract
Morphine and other opiates are among the most widely prescribed and clinically useful medications for the treatment of chronic pain. However, the applicability of these compounds has been severely hampered by the rapid development of tolerance and physical dependence that typically accompanies their repeated use. A growing body of evidence has implicated the regulated functioning of μ-δ opioid receptor heteromers in both the modulation of morphine-mediated antinociception, and in the limitation of undesirable side effects resulting from chronic opiate exposure. Moreover, μ-δ heteromers exhibit unique ligand binding characteristics and signaling properties, indicating that pharmacological targeting of the μ-δ heteromer may represent a novel therapeutic approach for the management of chronic pain and addiction disorders. Therefore, the present review will attempt to summarize the latest relevant findings regarding the regulation and functional characteristics of the μ-δ heteromer both in vitro and in vivo.
Collapse
Affiliation(s)
| | - Lakshmi A. Devi
- Corresponding author: , Phone: (212) 241-8345; Fax: (212) 996-7214
| |
Collapse
|
36
|
Parent AJ, Beaudet N, Beaudry H, Bergeron J, Bérubé P, Drolet G, Sarret P, Gendron L. Increased anxiety-like behaviors in rats experiencing chronic inflammatory pain. Behav Brain Res 2012; 229:160-7. [PMID: 22245257 DOI: 10.1016/j.bbr.2012.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/29/2011] [Accepted: 01/02/2012] [Indexed: 01/01/2023]
Abstract
For many patients, chronic pain is often accompanied, and sometimes amplified, by co-morbidities such as anxiety and depression. Although it represents important challenges, the establishment of appropriate preclinical behavioral models contributes to drug development for treating chronic inflammatory pain and associated psychopathologies. In this study, we investigated whether rats experiencing persistent inflammatory pain induced by intraplantar injection of complete Freund's adjuvant (CFA) developed anxiety-like behaviors, and whether clinically used analgesic and anxiolytic drugs were able to reverse CFA-induced anxiety-related phenotypes. These behaviors were evaluated over 28 days in both CFA- and saline-treated groups with a variety of behavioral tests. CFA-induced mechanical allodynia resulted in increased anxiety-like behaviors as evidenced by: (1) a significant decrease in percentage of time spent and number of entries in open arms of the elevated-plus maze (EPM), (2) a decrease in number of central squares visited in the open field (OF), and (3) a reduction in active social interactions in the social interaction test (SI). The number of entries in closed arms in the EPM and the distance traveled in the OF used as indicators of locomotor performance did not differ between treatments. Our results also reveal that in CFA-treated rats, acute administration of morphine (3mg/kg, s.c.) abolished tactile allodynia and anxiety-like behaviors, whereas acute administration of diazepam (1mg/kg, s.c) solely reversed anxiety-like behaviors. Therefore, pharmacological treatment of anxiety-like behaviors induced by chronic inflammatory pain can be objectively evaluated using multiple behavioral tests. Such a model could help identify/validate alternative potential targets that influence pain and cognitive dimensions of anxiety.
Collapse
Affiliation(s)
- Alexandre J Parent
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Paris JJ, Reilley KJ, McLaughlin JP. Kappa Opioid Receptor-Mediated Disruption of Novel Object Recognition: Relevance for Psychostimulant Treatment. ACTA ACUST UNITED AC 2011; S4. [PMID: 22900234 DOI: 10.4172/2155-6105.s4-007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kappa opioid receptor (KOR) agonists are potentially valuable as therapeutics for the treatment of psychostimulant reward as they suppress dopamine signaling in reward circuitry to repress drug seeking behavior. However, KOR agonists are also associated with sedation and cognitive dysfunction. The extent to which learning and memory disruption or hypolocomotion underlie KOR agonists' role in counteracting the rewarding effects of psychostimulants is of interest. C57BL/6J mice were pretreated with vehicle (saline, 0.9%), the KOR agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1- pyrrolidinyl)-cyclohexyl] benzeneacetamide (U50,488), or the peripherally-restricted agonist D-Phe-D-Phe-D-lle-D-Arg- NH(2) (ffir-NH(2)), through central (i.c.v.) or peripheral (i.p.) routes of administration. Locomotor activity was assessed via activity monitoring chambers and rotorod. Cognitive performance was assessed in a novel object recognition task. Prolonged hypolocomotion was observed following administration of 1.0 and 10.0, but not 0.3 mg/kg U50,488. Central, but not peripheral, administration of ffir-NH(2) (a KOR agonist that does not cross the blood-brain barrier) also reduced motor behavior. Systemic pretreatment with the low dose of U50,488 (0.3 mg/kg, i.p.) significantly impaired performance in the novel object recognition task. Likewise, ffir-NH(2) significantly reduced novel object recognition after central (i.c.v.), but not peripheral (i.p.), administration. U50,488- and ffir-NH(2)-mediated deficits in novel object recognition were prevented by pretreatment with KOR antagonists. Cocaine-induced conditioned place preference was subsequently assessed and was reduced by pretreatment with U50,488 (0.3 mg/kg, i.p.). Together, these results suggest that the activation of centrally-located kappa opioid receptors may induce cognitive and mnemonic disruption independent of hypolocomotor effects which may contribute to the KOR-mediated suppression of psychostimulant reward.
Collapse
Affiliation(s)
- Jason J Paris
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | | | | |
Collapse
|
38
|
Delta opioid receptor analgesia: recent contributions from pharmacology and molecular approaches. Behav Pharmacol 2011; 22:405-14. [PMID: 21836459 DOI: 10.1097/fbp.0b013e32834a1f2c] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Delta opioid receptors represent a promising target for the development of novel analgesics. A number of tools have been developed recently that have significantly improved our knowledge of δ receptor function in pain control. These include several novel δ agonists with potent analgesic properties, and genetic mouse models with targeted mutations in the δ opioid receptor gene. Also, recent findings have further documented the regulation of δ receptor function at cellular level, which impacts on the pain-reducing activity of the receptor. These regulatory mechanisms occur at transcriptional and post-translational levels, along agonist-induced receptor activation, signaling and trafficking, or in interaction with other receptors and neuromodulatory systems. All these tools for in-vivo research, and proposed mechanisms at molecular level, have tremendously increased our understanding of δ receptor physiology, and contribute to designing innovative strategies for the treatment of chronic pain and other diseases such as mood disorders.
Collapse
|
39
|
Activation of spinal mu- and delta-opioid receptors potently inhibits substance P release induced by peripheral noxious stimuli. J Neurosci 2011; 31:13068-77. [PMID: 21917790 DOI: 10.1523/jneurosci.1817-11.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Over the past few years, δ-opioid receptors (DOPRs) and μ-opioid receptors (MOPRs) have been shown to interact with each other. We have previously seen that expression of MOPR is essential for morphine and inflammation to potentiate the analgesic properties of selective DOPR agonists. In vivo, it is not clear whether MOPRs and DOPRs are expressed in the same neurons. Indeed, it was recently proposed that these receptors are segregated in different populations of nociceptors, with MOPRs and DOPRs expressed by peptidergic and nonpeptidergic fibers, respectively. In the present study, the role and the effects of DOPR- and MOPR-selective agonists in two different pain models were compared. Using preprotachykinin A knock-out mice, we first confirmed that substance P partly mediates intraplantar formalin- and capsaicin-induced pain behaviors. These mice had a significant reduction in pain behavior compared with wild-type mice. We then measured the effects of intrathecal deltorphin II (DOPR agonist) and DAMGO (MOPR agonist) on pain-like behavior, neuronal activation, and substance P release following formalin and capsaicin injection. We found that both agonists were able to decrease formalin- and capsaicin-induced pain, an effect that was correlated with a reduction in the number of c-fos-positive neurons in the superficial laminae of the lumbar spinal cord. Finally, visualization of NK(1) (neurokinin 1) receptor internalization revealed that DOPR and MOPR activation strongly reduced formalin- and capsaicin-induced substance P release via direct action on primary afferent fibers. Together, our results indicate that functional MOPRs and DOPRs are both expressed by peptidergic nociceptors.
Collapse
|
40
|
Nagi K, Piñeyro G. Regulation of opioid receptor signalling: implications for the development of analgesic tolerance. Mol Brain 2011; 4:25. [PMID: 21663702 PMCID: PMC3138391 DOI: 10.1186/1756-6606-4-25] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022] Open
Abstract
Opiate drugs are the most effective analgesics available but their clinical use is restricted by severe side effects. Some of these undesired actions appear after repeated administration and are related to adaptive changes directed at counteracting the consequences of sustained opioid receptor activation. Here we will discuss adaptations that contribute to the development of tolerance. The focus of the first part of the review is set on molecular mechanisms involved in the regulation of opioid receptor signalling in heterologous expression systems and neurons. In the second part we assess how adaptations that take place in vivo may contribute to analgesic tolerance developed during repeated opioid administration.
Collapse
Affiliation(s)
- Karim Nagi
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Canada
| | | |
Collapse
|
41
|
Audet N, Archer-Lahlou E, Richard-Lalonde M, Piñeyro-Filpo G. [Functional selectivity of opioid receptors ligands]. Med Sci (Paris) 2010; 26:734-9. [PMID: 20819711 DOI: 10.1051/medsci/2010268-9734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.
Collapse
Affiliation(s)
- Nicolas Audet
- Départements de pharmacologie et de psychiatrie, Université de Montréal, Montréal, Canada
| | | | | | | |
Collapse
|
42
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
43
|
Proteau-Gagné A, Bournival V, Rochon K, Dory YL, Gendron L. Exploring the Backbone of Enkephalins To Adjust Their Pharmacological Profile for the δ-Opioid Receptor. ACS Chem Neurosci 2010; 1:757-69. [PMID: 22778812 DOI: 10.1021/cn1000759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/08/2010] [Indexed: 12/23/2022] Open
Abstract
The role of each of the four amide bonds in Leu(5)-enkephalin was investigated by systematically and sequentially replacing each with its corresponding trans-alkene. Six Leu(5)-enkephalin analogs based on six dipeptide surrogates and two Met(5)-enkephalin analogs were synthesized and thoroughly tested using a δ-opioid receptor internalization assay, an ERK1/2 activation assay, and a competition binding assay to evaluate their biological properties. We observed that an E-alkene can efficiently replace the first amide bond of Leu(5)- and Met(5)-enkephalin without significantly affecting biological activity. By contrast, the second amide bond was found to be highly sensitive to the same modification, suggesting that it is involved in biologically essential intra- or intermolecular interactions. Finally, we observed that the affinity and activity of analogs containing an E-alkene at either the third or fourth position were partially reduced, indicating that these amide bonds are less important for these intra- or intermolecular interactions. Overall, our study demonstrates that the systematic and sequential replacement of amide bonds by E-alkene represents an efficient way to explore peptide backbones.
Collapse
Affiliation(s)
| | | | | | - Yves L. Dory
- Laboratoire de synthèse supramoléculaire, Département de chimie,
| | | |
Collapse
|
44
|
Dubois D, Gendron L. Delta opioid receptor-mediated analgesia is not altered in preprotachykinin A knockout mice. Eur J Neurosci 2010; 32:1921-9. [DOI: 10.1111/j.1460-9568.2010.07466.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|