1
|
Ye J, Fan M, Zhang X, Liang Q, Zhang Y, Zhao X, Lin CT, Zhang D. A novel biomimetic electrochemical taste-biosensor based on conformational changes of the taste receptor. Biosens Bioelectron 2024; 249:116001. [PMID: 38199084 DOI: 10.1016/j.bios.2024.116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Taste sensor, a useful tool which could detect and identify thousands of different chemical substances in liquid environments, has attracted continuous concern from beverage and foodstuff industry and its consumers. Although many taste sensing methods have been extensively developed, the assessment of tastant content remains challenging due to the limitations of sensor selectivity and sensitivity. Here we present a novel biomimetic electrochemical taste-biosensor based on bioactive sensing elements and immune amplification with nanomaterials carrier to address above concerns, while taking sweet taste perception as a model. The proposed biosensor based on ligand binding domain (T1R2 VFT) of human sweet taste receptor protein showed human mimicking character and initiated the application of immune recognition in gustation biosensor, which can precisely and sensitively distinguish sweet substances against other related gustation substances with detection limit of 5.1 pM, far less than that of taste sensors without immune amplification whose detection limit was 0.48 nM. The performance test demonstrated the biosensor has the capacity of monitoring the response of sweet substances in real food environments, which is crucial in practical. This biomimetic electrochemical taste-biosensor can work as a new screening platform for newly developed tastants and disclose sweet perception mechanism.
Collapse
Affiliation(s)
- Jing Ye
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Qi Liang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Cheng-Te Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Brancato A, Castelli V, Lavanco G, D'Amico C, Feo S, Pizzolanti G, Kuchar M, Cannizzaro C. Social stress under binge-like alcohol withdrawal in adolescence: evidence of cannabidiol effect on maladaptive plasticity in rats. Psychol Med 2023; 53:5538-5550. [PMID: 36065905 DOI: 10.1017/s0033291722002744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Alcohol binge drinking may compromise the functioning of the nucleus accumbens (NAc), i.e. the neural hub for processing reward and aversive responses. METHODS As socially stressful events pose particular challenges at developmental stages, this research applied the resident-intruder paradigm as a model of social stress, to highlight behavioural neuroendocrine and molecular maladaptive plasticity in rats at withdrawal from binge-like alcohol exposure in adolescence. In search of a rescue agent, cannabidiol (CBD) was selected due to its favourable effects on alcohol- and stress-related harms. RESULTS Binge-like alcohol exposed intruder rats displayed a compromised defensive behaviour against the resident and a blunted response of the stress system, in addition to indexes of abnormal dopamine (DA)/glutamate plasticity and dysfunctional spine dynamics in the NAc. CBD administration (60 mg/kg) was able to: (1) increase social exploration in the binge-like alcohol exposed intruder rats, at the expenses of freezing time, and in control rats, which received less aggressive attacks from the resident; (2) reduce corticosterone levels independently on alcohol previous exposure; (3) restore DA transmission and (4) facilitate excitatory postsynaptic strength and remodelling. CONCLUSIONS Overall, the maladaptive behavioural and synaptic plasticity promoted by the intersection between binge-like alcohol withdrawal and exposure to adverse social stress can be rescued by a CBD détente effect that results in a successful defensive strategy, supported by a functional endocrine and synaptic plasticity. The current data highlight CBD's relevant therapeutic potential in alcohol- and stress-related harms, and prompt further investigation on its molecular targets.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties 'G. D' Alessandro', University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties 'G. D' Alessandro', University of Palermo, Palermo, Italy
| | - Cesare D'Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- ATEN Center, Genomic and Proteomic Laboratory, University of Palermo, Palermo, Italy
| | - Giuseppe Pizzolanti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties 'G. D' Alessandro', University of Palermo, Palermo, Italy
| | - Martin Kuchar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Carla Cannizzaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Maingret F, Groc L. Characterization of the Functional Cross-Talk between Surface GABA A and Dopamine D5 Receptors. Int J Mol Sci 2021; 22:4867. [PMID: 34064454 PMCID: PMC8125140 DOI: 10.3390/ijms22094867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/17/2023] Open
Abstract
The γ-aminobutyric acid type A receptor (GABAAR) plays a major role in fast inhibitory synaptic transmission and is highly regulated by the neuromodulator dopamine. In this aspect, most of the attention has been focused on the classical intracellular signaling cascades following dopamine G-protein-coupled receptor activation. Interestingly, the GABAAR and dopamine D5 receptor (D5R) have been shown to physically interact in the hippocampus, but whether a functional cross-talk occurs is still debated. In the present study, we use a combination of imaging and single nanoparticle tracking in live hippocampal neurons to provide evidence that GABAARs and D5Rs form dynamic surface clusters. Disrupting the GABAAR-D5R interaction with a competing peptide leads to an increase in the diffusion coefficient and the explored area of both receptors, and a drop in immobile synaptic GABAARs. By means of patch-clamp recordings, we show that this fast lateral redistribution of surface GABAARs correlates with a robust depression in the evoked GABAergic currents. Strikingly, it also shifts in time the expression of long-term potentiation at glutamatergic synapses. Together, our data both set the plasma membrane as the primary stage of a functional interplay between GABAAR and D5R, and uncover a non-canonical role in regulating synaptic transmission.
Collapse
Affiliation(s)
- François Maingret
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, 33076 Bordeaux, France;
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, 33076 Bordeaux, France;
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| |
Collapse
|
4
|
High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection. Biosens Bioelectron 2018; 117:628-636. [DOI: 10.1016/j.bios.2018.06.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 11/19/2022]
|
5
|
Krzystanek M, Bogus K, Pałasz A, Wiaderkiewicz A, Filipczyk Ł, Rojczyk E, Worthington J, Wiaderkiewicz R. Extended neuroleptic administration modulates NMDA-R subunit immunoexpression in the rat neocortex and diencephalon. Pharmacol Rep 2016; 68:990-5. [PMID: 27391358 DOI: 10.1016/j.pharep.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND This study aimed to evaluate the effect of extended olanzapine, clozapine and haloperidol administration on NMDA-R subunit immunoexpression in the rat neocortex and diencephalon. METHODS To explore NR1, NR2A and NR2B subunit protein expression, densytometric analysis of immunohistochemically stained brain slices was performed. RESULTS Interestingly, all neuroleptics caused a downregulation of NMDA-R subunit expression in the thalamus but increased the level of NR1 in the hypothalamus. Olanzapine upregulated hypothalamic NR2A expression, while clozapine and haloperidol decreased hypothalamic levels. We observed no significant changes in NR2B immunoreactivity. None of the studied medications had significant influence on NMDA-R subunit expression in the neocortex. CONCLUSIONS Neuroleptic-induced reduction in the expression of thalamic NMDA-R subunits may play an important role in the regulation of glutamatergic transmission disorders in cortico-striato-thalamo-cortical loop in schizophrenia. A decrease in NMDA signaling in this region after long-term neuroleptic administration may also cautiously explain the incomplete effectiveness of these drugs in the therapy of schizophrenia-related cognitive disturbances.
Collapse
Affiliation(s)
- Marek Krzystanek
- Department and Clinic of Psychiatric Rehabilitation, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Katarzyna Bogus
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia,, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia,, Katowice, Poland
| | - Anna Wiaderkiewicz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia,, Katowice, Poland
| | - Łukasz Filipczyk
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia,, Katowice, Poland
| | - Ewa Rojczyk
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia,, Katowice, Poland
| | - John Worthington
- Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Greater Manchester, UK; Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Ryszard Wiaderkiewicz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia,, Katowice, Poland
| |
Collapse
|
6
|
Purification and functional reconstitution of human olfactory receptor expressed in Escherichia coli. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0897-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Gardoni F, Bellone C. Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases. Front Cell Neurosci 2015; 9:25. [PMID: 25784855 PMCID: PMC4345909 DOI: 10.3389/fncel.2015.00025] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) plays a major role in motor and cognitive functions as well as in reward processing by regulating glutamatergic inputs. In particular in the striatum the release of DA rapidly influences synaptic transmission modulating both AMPA and NMDA receptors. Several neurodegenerative and neuropsychiatric disorders, including Parkinson, Huntington and addiction-related diseases, manifest a dysregulation of glutamate and DA signaling. Here, we will focus our attention on the mechanisms underlying the modulation of the glutamatergic transmission by DA in striatal circuits.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milano Milano, Italy
| | - Camilla Bellone
- Department of Fundamental Neuroscience, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
8
|
Effects of long-term treatment with the neuroleptics haloperidol, clozapine and olanzapine on immunoexpression of NMDA receptor subunits NR1, NR2A and NR2B in the rat hippocampus. Pharmacol Rep 2015; 67:965-9. [PMID: 26398392 DOI: 10.1016/j.pharep.2015.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Antagonists of the N-methyl-d-aspartate receptor (NMDA-R) are associated with symptoms of schizophrenia, leading to the hypothesis that NMDA-R hypofunction leads to the pathogenesis of disease. We evaluated the long-term effect of neuroleptic administration on the NMDA subunits via immunohistochemical analysis. METHODS Rats received olanzapine, clozapine and haloperidol before evaluation of the expression of the NR1, NR2A and NR2B subunit proteins in the hippocampal areas of the brain, via a densytometric analysis of immunoexpression in the rat hippocampus. RESULTS All of the neuroleptics examined caused a decrease in the expression of the NR1 subunit, and thus, one can assume that both olanzapine, clozapine and haloperidol decreased the number of NMDA receptors in the CA1 and CA2 areas of the brain. CONCLUSIONS A decrease in hippocampal glutamatergic signalling after long-term neuroleptic administration may cautiously explain the incomplete effectiveness of these drugs in the therapy of schizophrenia-related cognitive disturbances.
Collapse
|
9
|
Zhang J, Saur T, Duke AN, Grant SGN, Platt DM, Rowlett JK, Isacson O, Yao WD. Motor impairments, striatal degeneration, and altered dopamine-glutamate interplay in mice lacking PSD-95. J Neurogenet 2014; 28:98-111. [PMID: 24702501 DOI: 10.3109/01677063.2014.892486] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Excessive activation of the N-methyl-d-aspartate (NMDA) receptor and the neurotransmitter dopamine (DA) mediate neurotoxicity and neurodegeneration under many neurological conditions, including Huntington's disease (HD), an autosomal dominant neurodegenerative disease characterized by the preferential loss of medium spiny projection neurons (MSNs) in the striatum. PSD-95 is a major scaffolding protein in the postsynaptic density (PSD) of dendritic spines, where a classical role for PSD-95 is to stabilize glutamate receptors at sites of synaptic transmission. Our recent studies indicate that PSD-95 also interacts with the D1 DA receptor localized in spines and negatively regulates spine D1 signaling. Moreover, PSD-95 forms ternary protein complexes with D1 and NMDA receptors, and plays a role in limiting the reciprocal potentiation between both receptors from being escalated. These studies suggest a neuroprotective role for PSD-95. Here we show that mice lacking PSD-95, resulting from genetic deletion of the GK domain of PSD-95 (PSD-95-ΔGK mice), sporadically develop progressive neurological impairments characterized by hypolocomotion, limb clasping, and loss of DARPP-32-positive MSNs. Electrophysiological experiments indicated that NMDA receptors in mutant MSNs were overactive, suggested by larger, NMDA receptor-mediated miniature excitatory postsynaptic currents (EPSCs) and higher ratios of NMDA- to AMPA-mediated corticostriatal synaptic transmission. In addition, NMDA receptor currents in mutant cortical neurons were more sensitive to potentiation by the D1 receptor agonist SKF81297. Finally, repeated administration of the psychostimulant cocaine at a dose regimen not producing overt toxicity-related phenotypes in normal mice reliably converted asymptomatic mutant mice to clasping symptomatic mice. These results support the hypothesis that deletion of PSD-95 in mutant mice produces concomitant overactivation of both D1 and NMDA receptors that makes neurons more susceptible to NMDA excitotoxicity, causing neuronal damage and neurological impairments. Understanding PSD-95-dependent neuroprotective mechanisms may help elucidate processes underlying neurodegeneration in HD and other neurological disorders.
Collapse
Affiliation(s)
- Jingping Zhang
- New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts , USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Jankowski Z, Kumaratilake J, Henneberg M, Gos T, Henneberg M, Gos T. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry 2014; 5:47. [PMID: 24904434 PMCID: PMC4032934 DOI: 10.3389/fpsyt.2014.00047] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Abstract
Dopamine is an inhibitory neurotransmitter involved in the pathology of schizophrenia. The revised dopamine hypothesis states that dopamine abnormalities in the mesolimbic and prefrontal brain regions exist in schizophrenia. However, recent research has indicated that glutamate, GABA, acetylcholine, and serotonin alterations are also involved in the pathology of schizophrenia. This review provides an in-depth analysis of dopamine in animal models of schizophrenia and also focuses on dopamine and cognition. Furthermore, this review provides not only an overview of dopamine receptors and the antipsychotic effects of treatments targeting them but also an outline of dopamine and its interaction with other neurochemical models of schizophrenia. The roles of dopamine in the evolution of the human brain and human mental abilities, which are affected in schizophrenia patients, are also discussed.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Arthur Saniotis
- School of Medical Sciences, The University of Adelaide , Adelaide, SA , Australia ; Centre for Evolutionary Medicine, University of Zurich , Zurich , Switzerland
| | - Rainer Wolf
- Department of Psychiatry and Psychotherapy, Ruhr University Bochum , Bochum , Germany
| | - Hendrik Bielau
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Katharina Braun
- Department of Zoology, Institute of Biology, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| |
Collapse
|
11
|
Low dopamine D5 receptor density in hippocampus in an animal model of attention-deficit/hyperactivity disorder (ADHD). Neuroscience 2013; 242:11-20. [DOI: 10.1016/j.neuroscience.2013.03.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/23/2022]
|
12
|
A noncanonical postsynaptic transport route for a GPCR belonging to the serotonin receptor family. J Neurosci 2013; 32:17998-8008. [PMID: 23238716 DOI: 10.1523/jneurosci.1804-12.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Postsynaptic receptor trafficking plays an essential role in tuning neurotransmission and signal plasticity and has emerged as a potential therapeutic target in neuropsychiatric disease. Using a novel application of fluorescence recovery after photobleaching in rat hippocampal neurons, we examined transport from the soma to dendrites of seven G-protein-coupled receptors (GPCRs) implicated in mood disorders. Most GPCRs were delivered to dendrites via lateral diffusion, but one GPCR, the serotonin 1B receptor (5-HT(1B)), was delivered to the dendrites in secretory vesicles. Within the dendrites, 5-HT(1B) were stored in a reservoir of accessible vesicles that were recruited to preferential sites in plasma membrane, as observed with superecliptic pHluorin labeling. After membrane recruitment, 5-HT(1B) transport via lateral diffusion and temporal confinement to inhibitory and excitatory synapses was monitored by single particle tracking. These results suggest an alternative mechanism for control of neuronal activity via a GPCR that has been implicated in mood regulation.
Collapse
|
13
|
Wang M, Wong AH, Liu F. Interactions between NMDA and dopamine receptors: A potential therapeutic target. Brain Res 2012; 1476:154-63. [DOI: 10.1016/j.brainres.2012.03.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/08/2012] [Accepted: 03/10/2012] [Indexed: 11/26/2022]
|
14
|
Vastagh C, Gardoni F, Bagetta V, Stanic J, Zianni E, Giampà C, Picconi B, Calabresi P, Di Luca M. N-methyl-D-aspartate (NMDA) receptor composition modulates dendritic spine morphology in striatal medium spiny neurons. J Biol Chem 2012; 287:18103-14. [PMID: 22493505 DOI: 10.1074/jbc.m112.347427] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic spines of medium spiny neurons represent an essential site of information processing between NMDA and dopamine receptors in striatum. Even if activation of NMDA receptors in the striatum has important implications for synaptic plasticity and disease states, the contribution of specific NMDA receptor subunits still remains to be elucidated. Here, we show that treatment of corticostriatal slices with NR2A antagonist NVP-AAM077 or with NR2A blocking peptide induces a significant increase of spine head width. Sustained treatment with D1 receptor agonist (SKF38393) leads to a significant decrease of NR2A-containing NMDA receptors and to a concomitant increase of spine head width. Interestingly, co-treatment of corticostriatal slices with NR2A antagonist (NVP-AAM077) and D1 receptor agonist augmented the increase of dendritic spine head width as obtained with SKF38393. Conversely, NR2B antagonist (ifenprodil) blocked any morphological effect induced by D1 activation. These results indicate that alteration of NMDA receptor composition at the corticostriatal synapse contributes not only to the clinical features of disease states such as experimental parkinsonism but leads also to a functional and morphological outcome in dendritic spines of medium spiny neurons.
Collapse
Affiliation(s)
- Csaba Vastagh
- Department of Pharmacological Sciences, University of Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Muly E, Maddox M, Khan Z. Distribution of D1 and D5 dopamine receptors in the primate nucleus accumbens. Neuroscience 2010; 169:1557-66. [DOI: 10.1016/j.neuroscience.2010.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/10/2010] [Accepted: 06/12/2010] [Indexed: 10/19/2022]
|