1
|
Derue H, Ribeiro-da-Silva A. Therapeutic exercise interventions in rat models of arthritis. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100130. [PMID: 37179770 PMCID: PMC10172998 DOI: 10.1016/j.ynpai.2023.100130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Arthritis is the leading cause of musculoskeletal pain and disability worldwide. Nearly 50% of individuals over the age of 65 have arthritis, which contributes to limited function, articular pain, physical inactivity, and diminished quality of life. Therapeutic exercise is often recommended in clinical settings for patients experiencing arthritic pain, however, there is little practical guidance regarding the use of therapeutic exercise to alleviate arthritic musculoskeletal pain. Rodent models of arthritis allow researchers to control experimental variables, which cannot be done with human participants, providing an opportunity to test therapeutic approaches in preclinical models. This literature review provides a summary of published findings in therapeutic exercise interventions in rat models of arthritis as well as gaps in the existing literature. We reveal that preclinical research in this field has yet to adequately investigate the impact of experimental variables in therapeutic exercise including their modality, intensity, duration, and frequency on joint pathophysiology and pain outcomes.
Collapse
Affiliation(s)
- Hannah Derue
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Corresponding author at: Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
2
|
Supramammillary neurons projecting to the septum regulate dopamine and motivation for environmental interaction in mice. Nat Commun 2021; 12:2811. [PMID: 33990558 PMCID: PMC8121914 DOI: 10.1038/s41467-021-23040-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
The supramammillary region (SuM) is a posterior hypothalamic structure, known to regulate hippocampal theta oscillations and arousal. However, recent studies reported that the stimulation of SuM neurons with neuroactive chemicals, including substances of abuse, is reinforcing. We conducted experiments to elucidate how SuM neurons mediate such effects. Using optogenetics, we found that the excitation of SuM glutamatergic (GLU) neurons was reinforcing in mice; this effect was relayed by their projections to septal GLU neurons. SuM neurons were active during exploration and approach behavior and diminished activity during sucrose consumption. Consistently, inhibition of SuM neurons disrupted approach responses, but not sucrose consumption. Such functions are similar to those of mesolimbic dopamine neurons. Indeed, the stimulation of SuM-to-septum GLU neurons and septum-to-ventral tegmental area (VTA) GLU neurons activated mesolimbic dopamine neurons. We propose that the supramammillo-septo-VTA pathway regulates arousal that reinforces and energizes behavioral interaction with the environment.
Collapse
|
3
|
Gokce A, Gul D, Atik YT. Re: Variation in Brain Subcortical Network Topology Between Men With and Without PE: A Diffusion Tensor Imaging Study. J Sex Med 2020; 17:1044. [DOI: 10.1016/j.jsxm.2020.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 11/29/2022]
|
4
|
Shuboni-Mulligan DD, Cavanaugh BL, Tonson A, Shapiro EM, Gall AJ. Functional and anatomical variations in retinorecipient brain areas in Arvicanthis niloticus and Rattus norvegicus: implications for the circadian and masking systems. Chronobiol Int 2019; 36:1464-1481. [PMID: 31441335 DOI: 10.1080/07420528.2019.1651325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Daily rhythms in light exposure influence the expression of behavior by entraining circadian rhythms and through its acute effects on behavior (i.e., masking). Importantly, these effects of light are dependent on the temporal niche of the organism; for diurnal organisms, light increases activity, whereas for nocturnal organisms, the opposite is true. Here we examined the functional and morphological differences between diurnal and nocturnal rodents in retinorecipient brain regions using Nile grass rats (Arvicanthis niloticus) and Sprague-Dawley (SD) rats (Rattus norvegicus), respectively. We established the presence of circadian rhythmicity in cFOS activation in retinorecipient brain regions in nocturnal and diurnal rodents housed in constant dark conditions to highlight different patterns between the temporal niches. We then assessed masking effects by comparing cFOS activation in constant darkness (DD) to that in a 12:12 light/dark (LD) cycle, confirming light responsiveness of these regions during times when masking occurs in nature. The intergeniculate leaflet (IGL) and olivary pretectal nucleus (OPN) exhibited significant variation among time points in DD of both species, but their expression profiles were not identical, as SD rats had very low expression levels for most timepoints. Light presentation in LD conditions induced clear rhythms in the IGL of SD rats but eliminated them in grass rats. Additionally, grass rats were the only species to demonstrate daily rhythms in LD for the habenula and showed a strong response to light in the superior colliculus. Structurally, we also analyzed the volumes of the visual brain regions using anatomical MRI, and we observed a significant increase in the relative size of several visual regions within diurnal grass rats, including the lateral geniculate nucleus, superior colliculus, and optic tract. Altogether, our results suggest that diurnal grass rats devote greater proportions of brain volume to visual regions than nocturnal rodents, and cFOS activation in these brain regions is dependent on temporal niche and lighting conditions.
Collapse
Affiliation(s)
- Dorela D Shuboni-Mulligan
- Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing , MI , USA.,Department of Radiology, Michigan State University , East Lansing , MI , USA
| | | | - Anne Tonson
- Department of Physiology, Michigan State University , East Lansing , MI , USA
| | - Erik M Shapiro
- Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing , MI , USA.,Department of Radiology, Michigan State University , East Lansing , MI , USA
| | - Andrew J Gall
- Department of Psychology, Hope College , Holland , MI , USA.,Neuroscience Program, Hope College , Holland , MI , USA
| |
Collapse
|
5
|
Nunez AA, Yan L, Smale L. The Cost of Activity during the Rest Phase: Animal Models and Theoretical Perspectives. Front Endocrinol (Lausanne) 2018; 9:72. [PMID: 29563894 PMCID: PMC5845863 DOI: 10.3389/fendo.2018.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/19/2018] [Indexed: 01/31/2023] Open
Abstract
For humans, activity during the night is correlated with multiple pathologies that may reflect a lack of harmony among components of the circadian system; however, it remains difficult to identify causal links between nocturnal activity and different pathologies based on the data available from epidemiological studies. Animal models that use forced activity or timed sleep deprivation provide evidence of circadian disruptions that may be at the core of the health risks faced by human night and shift workers. One valuable insight from that work is the importance of changes in the distribution of food intake as a cause of metabolic imbalances associated with activity during the natural rest phase. Limitations of those models stem from the use of only nocturnal laboratory rodents and the fact that they do not replicate situations in which humans engage in work with high cognitive demands or engage voluntarily in nocturnal activity (i.e., human eveningness). Temporal niche switches by rodents have been observed in the wild and interpreted as adaptive responses to energetic challenges, but possible negative outcomes, similar to those associated with human eveningness, have not been systematically studied. Species in which a proportion of animals shows a switch from a day-active to a night-active (e.g., grass rats) when given access to running wheels provide a unique opportunity to model human eveningness in a diurnal rodent. In particular, the mosaic of phases of brain oscillators in night-active grass rats may provide clues about the circadian challenges faced by humans who show voluntary nocturnal wakefulness.
Collapse
Affiliation(s)
- Antonio A. Nunez
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, United States
- *Correspondence: Antonio A. Nunez,
| | - Lily Yan
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Laura Smale
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Soler JE, Robison AJ, Núñez AA, Yan L. Light modulates hippocampal function and spatial learning in a diurnal rodent species: A study using male nile grass rat (Arvicanthis niloticus). Hippocampus 2017; 28:189-200. [PMID: 29251803 DOI: 10.1002/hipo.22822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023]
Abstract
The effects of light on cognitive function have been well-documented in human studies, with brighter illumination improving cognitive performance in school children, healthy adults, and patients in early stages of dementia. However, the underlying neural mechanisms are not well understood. The present study examined how ambient light affects hippocampal function using the diurnal Nile grass rats (Arvicanthis niloticus) as the animal model. Grass rats were housed in either a 12:12 h bright light-dark (brLD, 1,000 lux) or dim light-dark (dimLD, 50 lux) cycle. After 4 weeks, the dimLD group showed impaired spatial memory in the Morris Water Maze (MWM) task. The impairment in their MWM performance were reversed when the dimLD group were transferred to the brLD condition for another 4 weeks. The results suggest that lighting conditions influence cognitive function of grass rats in a way similar to that observed in humans, such that bright light is beneficial over dim light for cognitive performance. In addition to the behavioral changes, grass rats in the dimLD condition exhibited reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, most notably in the CA1 subregion. There was also a reduction in dendritic spine density in CA1 apical dendrites in dimLD as compared to the brLD group, and the reduction was mostly in the number of mushroom and stubby spines. When dimLD animals were transferred to the brLD condition for 4 weeks, the hippocampal BDNF and dendritic spine density significantly increased. The results illustrate that not only does light intensity affect cognitive performance, but that it also impacts hippocampal structural plasticity. These studies serve as a starting point to further understand how ambient light modulates neuronal and cognitive functions in diurnal species. A mechanistic understanding of the effects of light on cognition can help to identify risk factors for cognitive decline and contribute to the development of more effective prevention and treatment of cognitive impairment in clinical populations.
Collapse
Affiliation(s)
- Joel E Soler
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Antonio A Núñez
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Basal Forebrain Cholinergic Neurons Primarily Contribute to Inhibition of Electroencephalogram Delta Activity, Rather Than Inducing Behavioral Wakefulness in Mice. Neuropsychopharmacology 2016; 41:2133-46. [PMID: 26797244 PMCID: PMC4908644 DOI: 10.1038/npp.2016.13] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/24/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
The basal forebrain (BF) cholinergic neurons have long been thought to be involved in behavioral wakefulness and cortical activation. However, owing to the heterogeneity of BF neurons and poor selectivity of traditional methods, the precise role of BF cholinergic neurons in regulating the sleep-wake cycle remains unclear. We investigated the effects of cell-selective manipulation of BF cholinergic neurons on the sleep-wake behavior and electroencephalogram (EEG) power spectrum using the pharmacogenetic technique, the 'designer receptors exclusively activated by designer drugs (DREADD)' approach, and ChAT-IRES-Cre mice. Our results showed that activation of BF cholinergic neurons expressing hM3Dq receptors significantly and lastingly decreased the EEG delta power spectrum, produced low-delta non-rapid eye movement sleep, and slightly increased wakefulness in both light and dark phases, whereas inhibition of BF cholinergic neurons expressing hM4Di receptors significantly increased EEG delta power spectrum and slightly decreased wakefulness. Next, the projections of BF cholinergic neurons were traced by humanized Renilla green fluorescent protein (hrGFP). Abundant and highly dense hrGFP-positive fibers were observed in the secondary motor cortex and cingulate cortex, and sparse hrGFP-positive fibers were observed in the ventrolateral preoptic nucleus, a known sleep-related structure. Finally, we found that activation of BF cholinergic neurons significantly increased c-Fos expression in the secondary motor cortex and cingulate cortex, but decreased c-Fos expression in the ventrolateral preoptic nucleus. Taken together, these findings reveal that the primary function of BF cholinergic neurons is to inhibit EEG delta activity through the activation of cerebral cortex, rather than to induce behavioral wakefulness.
Collapse
|
8
|
Martin-Fairey CA, Ramanathan C, Stowie A, Walaszczyk E, Smale L, Nunez AA. Plastic oscillators and fixed rhythms: changes in the phase of clock-gene rhythms in the PVN are not reflected in the phase of the melatonin rhythm of grass rats. Neuroscience 2015; 288:178-86. [PMID: 25575946 PMCID: PMC4323925 DOI: 10.1016/j.neuroscience.2014.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/31/2022]
Abstract
The same clock-genes, including Period (PER) 1 and 2, that show rhythmic expression in the suprachiasmatic nucleus (SCN) are also rhythmically expressed in other brain regions that serve as extra-SCN oscillators. Outside the hypothalamus, the phase of these extra-SCN oscillators appears to be reversed when diurnal and nocturnal mammals are compared. Based on mRNA data, PER1 protein is expected to peak in the late night in the paraventricular nucleus of the hypothalamus (PVN) of nocturnal laboratory rats, but comparable data are not available for a diurnal species. Here we use the diurnal grass rat (Arvicanthis niloticus) to describe rhythms of PER1 and 2 proteins in the PVN of animals that either show the species-typical day-active (DA) profile, or that adopt a night-active (NA) profile when given access to running wheels. For DA animals housed with or without wheels, significant rhythms of PER1 or PER2 protein expression featured peaks in the late morning; NA animals showed patterns similar to those expected from nocturnal laboratory rats. Since the PVN is part of the circuit that controls pineal rhythms, we also measured circulating levels of melatonin during the day and night in DA animals with and without wheels and in NA wheel runners. All three groups showed elevated levels of melatonin at night, with higher levels during both the day and night being associated with the levels of activity displayed by each group. The differential phase of rhythms in the clock-gene protein in the PVN of diurnal and nocturnal animals presents a possible mechanism for explaining species differences in the phase of autonomic rhythms controlled, in part, by the PVN. The present study suggests that the phase of the oscillator of the PVN does not determine that of the melatonin rhythm in diurnal and nocturnal species or in diurnal and nocturnal chronotypes within a species.
Collapse
Affiliation(s)
- C A Martin-Fairey
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - C Ramanathan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - A Stowie
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - E Walaszczyk
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA.
| | - L Smale
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - A A Nunez
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015; 20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 02/03/2023]
Abstract
The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost.
Collapse
|
10
|
Langel J, Yan L, Nunez AA, Smale L. Behavioral Masking and cFos Responses to Light in Day- and Night-Active Grass Rats. J Biol Rhythms 2014; 29:192-202. [DOI: 10.1177/0748730414533289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Light not only entrains the circadian system but also has acute effects on physiology and behavior, a phenomenon known as masking. Behavioral masking responses to bright light differ in diurnal and nocturnal species, such that light increases arousal in the former and decreases it in the latter. Comparisons made within a species that displays both diurnal and nocturnal patterns of behavior may provide insight into how masking differs between chronotypes and the association between mechanisms controlling masking and the circadian drive for activity. Nile grass rats ( Arvicanthis niloticus) provide a useful model for studying such issues because when these animals are housed with running wheels, some run primarily during day, while others run at night. Here we compared behavioral masking responses to 2-h pulses of light and darkness given across a 12:12 light/dark cycle in day-active (DA) and night-active (NA) grass rats. Both wheel-running activity (WRA) and general activity (GA) were monitored. Light pulses at night tended to increase both WRA and GA overall in the DA grass rats, while in NA grass rats, light pulses significantly reduced WRA but had no effect on GA. Dark pulses during the day tended to decrease both WRA and GA in the DA grass rats, while in the NA grass rats, they tended to increase WRA in the early day but had no effect on GA overall. Next, we measured cFos expression within 2 brain areas potentially involved in masking, the intergeniculate leaflet (IGL) and the olivary pretectal area (OPT), of DA and NA grass rats either sacrificed on a control night or after a 1-h light pulse at ZT14. In DA grass rats, light at ZT14 induced cFos in the IGL and OPT, whereas in NA grass rats, cFos levels in both structures were high at ZT14 and were not altered by a 1-h light pulse. Overall, these results suggest that masking responses to light and darkness are dependent on the chronotype of the individual and that the responsiveness of the IGL and OPT to light may depend on or contribute to the behavioral response of these animals.
Collapse
Affiliation(s)
- Jennifer Langel
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Lily Yan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Antonio A. Nunez
- Neuroscience Program, Michigan State University, East Lansing, Michigan
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Laura Smale
- Neuroscience Program, Michigan State University, East Lansing, Michigan
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Department of Zoology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
11
|
Mammalian rest/activity patterns explained by physiologically based modeling. PLoS Comput Biol 2013; 9:e1003213. [PMID: 24039566 PMCID: PMC3764015 DOI: 10.1371/journal.pcbi.1003213] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythms are fundamental to life. In mammals, these rhythms are generated by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is remarkably consistent in structure and function between species, yet mammalian rest/activity patterns are extremely diverse, including diurnal, nocturnal, and crepuscular behaviors. Two mechanisms have been proposed to account for this diversity: (i) modulation of SCN output by downstream nuclei, and (ii) direct effects of light on activity. These two mechanisms are difficult to disentangle experimentally and their respective roles remain unknown. To address this, we developed a computational model to simulate the two mechanisms and their influence on temporal niche. In our model, SCN output is relayed via the subparaventricular zone (SPZ) to the dorsomedial hypothalamus (DMH), and thence to ventrolateral preoptic nuclei (VLPO) and lateral hypothalamus (LHA). Using this model, we generated rich phenotypes that closely resemble experimental data. Modulation of SCN output at the SPZ was found to generate a full spectrum of diurnal-to-nocturnal phenotypes. Intriguingly, we also uncovered a novel mechanism for crepuscular behavior: if DMH/VLPO and DMH/LHA projections act cooperatively, daily activity is unimodal, but if they act competitively, activity can become bimodal. In addition, we successfully reproduced diurnal/nocturnal switching in the rodent Octodon degu using coordinated inversions in both masking and circadian modulation. Finally, the model correctly predicted the SCN lesion phenotype in squirrel monkeys: loss of circadian rhythmicity and emergence of ∼4-h sleep/wake cycles. In capturing these diverse phenotypes, the model provides a powerful new framework for understanding rest/activity patterns and relating them to underlying physiology. Given the ubiquitous effects of temporal organization on all aspects of animal behavior and physiology, this study sheds light on the physiological changes required to orchestrate adaptation to various temporal niches.
Collapse
|
12
|
Castillo-Ruiz A, Gall AJ, Smale L, Nunez AA. Day-night differences in neural activation in histaminergic and serotonergic areas with putative projections to the cerebrospinal fluid in a diurnal brain. Neuroscience 2013; 250:352-63. [PMID: 23867764 DOI: 10.1016/j.neuroscience.2013.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/17/2013] [Accepted: 07/05/2013] [Indexed: 01/05/2023]
Abstract
In nocturnal rodents, brain areas that promote wakefulness have a circadian pattern of neural activation that mirrors the sleep/wake cycle, with more neural activation during the active phase than during the rest phase. To investigate whether differences in temporal patterns of neural activity in wake-promoting regions contribute to differences in daily patterns of wakefulness between nocturnal and diurnal species, we assessed Fos expression patterns in the tuberomammillary (TMM), supramammillary (SUM), and raphe nuclei of male grass rats maintained in a 12:12 h light-dark cycle. Day-night profiles of Fos expression were observed in the ventral and dorsal TMM, in the SUM, and in specific subpopulations of the raphe, including serotonergic cells, with higher Fos expression during the day than during the night. Next, to explore whether the cerebrospinal fluid is an avenue used by the TMM and raphe in the regulation of target areas, we injected the retrograde tracer cholera toxin subunit beta (CTB) into the ventricular system of male grass rats. While CTB labeling was scarce in the TMM and other hypothalamic areas including the suprachiasmatic nucleus, which contains the main circadian pacemaker, a dense cluster of CTB-positive neurons was evident in the caudal dorsal raphe, and the majority of these neurons appeared to be serotonergic. Since these findings are in agreement with reports for nocturnal rodents, our results suggest that the evolution of diurnality did not involve a change in the overall distribution of neuronal connections between systems that support wakefulness and their target areas, but produced a complete temporal reversal in the functioning of those systems.
Collapse
Affiliation(s)
- A Castillo-Ruiz
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
13
|
Adidharma W, Leach G, Yan L. Orexinergic signaling mediates light-induced neuronal activation in the dorsal raphe nucleus. Neuroscience 2012; 220:201-7. [PMID: 22710065 DOI: 10.1016/j.neuroscience.2012.06.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/09/2012] [Accepted: 06/07/2012] [Indexed: 01/19/2023]
Abstract
Seasonal affective disorder (SAD), a major depressive disorder recurring in the fall and winter, is caused by the reduction of light in the environment, and its depressive symptoms can be alleviated by bright light therapy. Both circadian and monoaminergic systems have been implicated in the etiology of SAD. However, the underlying neural pathways through which light regulates mood are not well understood. The present study utilized a diurnal rodent model, Arvicanthis niloticus, to explore the neural pathways mediating the effects of light on brain regions involved in mood regulation. Animals kept in constant darkness received light exposure in early subjective day, the time when light therapy is usually applied. The time course of neural activity following light exposure was assessed using Fos protein as a marker in the following brain regions/cells: the suprachiasmatic nucleus (SCN), orexin neurons in the perifornical-lateral hypothalamic area (PF-LHA) and the dorsal raphe nucleus (DRN). A light-induced increase in Fos expression was observed in orexin neurons and the DRN, but not in the SCN. As the DRN is densely innervated by orexinergic inputs, the involvement of orexinergic signaling in mediating the effects of light on the DRN was tested in the second experiment. The animals were injected with the selective orexin receptor type 1 (OXR1) antagonist SB-334867 prior to the light exposure. The treatment of SB-334867 significantly inhibited the Fos induction in the DRN. The results collectively point to the role of orexin neurons in mediating the effects of light on the mood-regulating monoaminergic areas, suggesting an orexinergic pathway that underlies light-dependent mood fluctuation and the beneficial effects of light therapy.
Collapse
Affiliation(s)
- W Adidharma
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
14
|
Novak CM, Burghardt PR, Levine JA. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward. Neurosci Biobehav Rev 2012; 36:1001-1014. [PMID: 22230703 DOI: 10.1016/j.neubiorev.2011.12.012] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/07/2011] [Accepted: 12/22/2011] [Indexed: 12/21/2022]
Abstract
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity.
Collapse
Affiliation(s)
- Colleen M Novak
- Department of Biological Sciences, Kent State University, PO Box 5190, 222 Cunningham Hall, Kent, OH 44242, United States
| | | | - James A Levine
- Mayo Clinic, Endocrine Research Unit, Rochester, MN 55905, United States
| |
Collapse
|
15
|
Myślińska D, Plucińska K, Glac W, Wrona D. Blood natural killer cell cytotoxicity enhancement correlates with an increased activity in brain motor structures following chronic stimulation of the bed nucleus of the stria terminalis in rats. Brain Res Bull 2011; 87:212-20. [PMID: 22230108 DOI: 10.1016/j.brainresbull.2011.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/10/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
The present study indicates that a chronic 14 day electrical stimulation of the bed nucleus of the stria terminalis (BST) increased blood but not spleen natural killer cell (NK) cytotoxicity and a large granular lymphocyte (LGL) number. These immune changes positively correlated with the increased activity in brain cortical and subcortical motor structures that influence the BST stimulation-induced behavioral response. No significant changes in blood and spleen leukocyte population numbers and plasma corticosterone concentration after the stimulation were found. The obtained results suggest that this immunoenhancing effect on blood NK cell function and number is dependent on the behavioral outcome of the BST stimulation rather than endocrine response.
Collapse
Affiliation(s)
- Dorota Myślińska
- Department of Animal Physiology, University of Gdańsk, 24 Kładki St., 80-822 Gdańsk, Poland
| | | | | | | |
Collapse
|
16
|
The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res 2011; 221:466-80. [DOI: 10.1016/j.bbr.2010.11.039] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/23/2023]
|
17
|
Castillo-Ruiz A, Nunez AA. Fos expression in arousal and reward areas of the brain in grass rats following induced wakefulness. Physiol Behav 2011; 103:384-92. [PMID: 21402088 DOI: 10.1016/j.physbeh.2011.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/23/2011] [Accepted: 03/08/2011] [Indexed: 11/28/2022]
Abstract
In the diurnal grass rat nocturnal voluntary wakefulness induces Fos expression in specific cellular populations of arousal and reward areas of the brain. Here, we evaluated whether involuntary wakefulness would result in similar patterns of Fos expression. We assessed this question using male grass rats that were sleep deprived for 6h by gentle stimulation (SD group), starting 2h before lights off (12:12 LD cycle). Then, we examined expression of Fos in cholinergic cells of the basal forebrain (BF), as well as in dopaminergic cells of the reward system, and compared these results to those obtained from an undisturbed control group. Different from previous results with grass rats that were voluntary awake, the BF of SD animals only showed a significant increase in Fos expression in non-cholinergic neurons of the medial septum (MS). These observations differ from reports for nocturnal rodents that are sleep deprived. Thus, our results show that voluntary and induced wakefulness have different effects on neural systems involved in wakefulness and reward, and that the effects of sleep deprivation are different across species. We also investigated whether other arousal promoting regions and circadian and stress related areas responded to sleep deprivation by changing the level of Fos expression. Among these areas, only the lateral hypothalamus (LH) and the ventro lateral preoptic area showed significant effects of sleep deprivation that dissipated after a 2h period of sleep recovery, as it was also the case for the non-cholinergic MS. In addition, we found that Fos expression in the LH was robustly associated with Fos expression in other arousal and reward areas of the brain. This is consistent with the view that the arousal system of the LH modulates neural activity of other arousal regions of the brain, as described for nocturnal rodents.
Collapse
Affiliation(s)
- Alexandra Castillo-Ruiz
- Department of Psychology and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
18
|
Otalora BB, Vivanco P, Madariaga AM, Madrid JA, Rol MA. Internal temporal order in the circadian system of a dual-phasing rodent, the Octodon degus. Chronobiol Int 2011; 27:1564-79. [PMID: 20854135 DOI: 10.3109/07420528.2010.503294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Daily rhythms in different biochemical and hematological variables have been widely described in either diurnal or nocturnal species, but so far no studies in the rhythms of these variables have been conducted in a dual-phasing species such as the degus. The Octodon degus is a rodent that has the ability to switch from diurnal to nocturnal activity under laboratory conditions in response to wheel-running availability. This species may help us discover whether a complete temporal order inversion occurs parallel to the inversion that has been observed in this rodent's activity pattern. The aim of the present study is to determine the phase relationships among 26 variables, including behavioral, physiological, biochemical, and hematological variables, during the day and at night, in diurnal and nocturnal degus chronotypes induced under controlled laboratory conditions through the availability of wheel running. A total of 39 male degus were individually housed under a 12:12 light-dark (LD) cycle, with free wheel-running access. Wheel-running activity (WRA) and body temperature (Tb) rhythms were recorded throughout the experiment. Melatonin, hematological, and biochemical variables were determined by means of blood samples obtained every 6 h (ZT1, ZT7, ZT13, and ZT19). In spite of great differences in WRA and Tb rhythms between nocturnal and diurnal degus, no such differences were observed in the temporal patterns of most of the biological variables analyzed for the two chronotypes. Variation was only found in plasma urea level and lymphocyte number. A slight delay in the phase of the melatonin rhythm was also observed. This study shows the internal temporal order of a dual-phasing mammal does not show a complete inversion in accordance with its activity and body temperature pattern; it would appear that the switching mechanism involved in the degu's nocturnalism is located downstream from the pacemaker.
Collapse
Affiliation(s)
- Beatriz Baño Otalora
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
19
|
Ramanathan C, Stowie A, Smale L, Nunez AA. Phase preference for the display of activity is associated with the phase of extra-suprachiasmatic nucleus oscillators within and between species. Neuroscience 2010; 170:758-72. [PMID: 20682334 PMCID: PMC2950020 DOI: 10.1016/j.neuroscience.2010.07.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/25/2010] [Accepted: 07/26/2010] [Indexed: 12/21/2022]
Abstract
Many features of the suprachiasmatic nucleus (SCN) are the same in diurnal and nocturnal animals, suggesting that differences in phase preference are determined by mechanisms downstream from the SCN. Here, we examined this hypothesis by characterizing rhythmic expression of Period 1 (PER1) and Period 2 (PER2) in several extra-SCN areas in the brains of a diurnal murid rodent, Arvicanthis niloticus (grass rats). In the shell of the nucleus accumbens, dorsal striatum, piriform cortex, and CA1 of the hippocampus, both PER1 and PER2 were rhythmic, with peak expression occurring at ZT10. PER1 in the dentate gyrus also peaked at ZT10, but PER2 was arrhythmic in this region. In general, these patterns are 180 degrees out of phase with those reported for nocturnal species. In a second study, we examined inter-individual differences in the multioscillator system of grass rats. Here, we housed grass rats in cages with running wheels, under which conditions some individuals spontaneously adopt a day active (DA) and others a night active (NA) phase preference. In the majority of the extra-SCN regions sampled, the patterns of PER1 and PER2 expression of NA grass rats resembled those of nocturnal species, while those of DA grass rats were similar to the ones seen in grass without access to running wheels. In contrast, the rhythmic expression of both PER proteins was identical in the SCN and ventral subparaventricular zone (vSPZ) of DA and NA animals. Differences in the phase of oscillators downstream from the SCN, and perhaps the vSPZ, appear to determine the phase preference of particular species, as well as that of members of a diurnal species that show voluntary phase reversals. The latter observation has important implications for the understanding of health problems associated with human shift work.
Collapse
Affiliation(s)
- Chidambaram Ramanathan
- Department of Psychology, Michigan State University, East Lansing, MI 48824
- Neuroscience Program, Michigan State University, East Lansing, MI 48824
| | - Adam Stowie
- Department of Psychology, Michigan State University, East Lansing, MI 48824
- Neuroscience Program, Michigan State University, East Lansing, MI 48824
| | - Laura Smale
- Department of Psychology, Michigan State University, East Lansing, MI 48824
- Neuroscience Program, Michigan State University, East Lansing, MI 48824
- Department of Zoology, Michigan State University, East Lansing, MI 48824
| | - Antonio A. Nunez
- Department of Psychology, Michigan State University, East Lansing, MI 48824
- Neuroscience Program, Michigan State University, East Lansing, MI 48824
| |
Collapse
|