1
|
Xanomeline restores endogenous nicotinic acetylcholine receptor signaling in mouse prefrontal cortex. Neuropsychopharmacology 2023; 48:671-682. [PMID: 36635596 PMCID: PMC9938126 DOI: 10.1038/s41386-023-01531-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Cholinergic synapses in prefrontal cortex are vital for attention, but this modulatory system undergoes substantial pre- and post-synaptic alterations during adulthood. To examine the integrated impact of these changes, we optophysiologically probe cholinergic synapses ex vivo, revealing a clear decline in neurotransmission in middle adulthood. Pharmacological dissection of synaptic components reveals a selective reduction in postsynaptic nicotinic receptor currents. Other components of cholinergic synapses appear stable, by contrast, including acetylcholine autoinhibition, metabolism, and excitation of postsynaptic muscarinic receptors. Pursuing strategies to strengthen cholinergic neurotransmission, we find that positive allosteric modulation of nicotinic receptors with NS9283 is effective in young adults but wanes with age. To boost nicotinic receptor availability, we harness the second messenger pathways of the preserved excitatory muscarinic receptors with xanomeline. This muscarinic agonist and cognitive-enhancer restores nicotinic signaling in older mice significantly, in a muscarinic- and PKC-dependent manner. The rescued nicotinic component regains youthful sensitivity to allosteric enhancement: treatment with xanomeline and NS9283 restores cholinergic synapses in older mice to the strength, speed, and receptor mechanism of young adults. Our results reveal a new and efficient strategy to rescue age-related nicotinic signaling deficits, demonstrating a novel pathway for xanomeline to restore cognitively-essential endogenous cholinergic neurotransmission.
Collapse
|
2
|
Chrestia JF, Turani O, Araujo NR, Hernando G, Esandi MDC, Bouzat C. Regulation of nicotinic acetylcholine receptors by post-translational modifications. Pharmacol Res 2023; 190:106712. [PMID: 36863428 DOI: 10.1016/j.phrs.2023.106712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) comprise a family of pentameric ligand-gated ion channels widely distributed in the central and peripheric nervous system and in non-neuronal cells. nAChRs are involved in chemical synapses and are key actors in vital physiological processes throughout the animal kingdom. They mediate skeletal muscle contraction, autonomic responses, contribute to cognitive processes, and regulate behaviors. Dysregulation of nAChRs is associated with neurological, neurodegenerative, inflammatory and motor disorders. In spite of the great advances in the elucidation of nAChR structure and function, our knowledge about the impact of post-translational modifications (PTMs) on nAChR functional activity and cholinergic signaling has lagged behind. PTMs occur at different steps of protein life cycle, modulating in time and space protein folding, localization, function, and protein-protein interactions, and allow fine-tuned responses to changes in the environment. A large body of evidence demonstrates that PTMs regulate all levels of nAChR life cycle, with key roles in receptor expression, membrane stability and function. However, our knowledge is still limited, restricted to a few PTMs, and many important aspects remain largely unknown. There is thus a long way to go to decipher the association of aberrant PTMs with disorders of cholinergic signaling and to target PTM regulation for novel therapeutic interventions. In this review we provide a comprehensive overview of what is known about how different PTMs regulate nAChR.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
3
|
Lunerti V, Li H, Benvenuti F, Shen Q, Domi A, Soverchia L, Concetta Di Martino RM, Bottegoni G, Haass-Koffler CL, Cannella N. The multitarget FAAH inhibitor/D3 partial agonist ARN15381 decreases nicotine self-administration in male rats. Eur J Pharmacol 2022; 928:175088. [PMID: 35690082 DOI: 10.1016/j.ejphar.2022.175088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
Tobacco use disorder is a worldwide health problem for which available medications show limited efficacy. Nicotine is the psychoactive component of tobacco responsible for its addictive liability. Similar to other addictive drugs, nicotine enhances mesolimbic dopamine transmission. Inhibition of the fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide (AEA), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), reduces nicotine-enhanced dopamine transmission and acquisition of nicotine self-administration in rats. Down-regulation of dopamine transmission by antagonists or partial agonists of the dopamine D3 receptor (DRD3) also reduced nicotine self-administration and conditioned place preference. Based on these premises, we evaluated the effect of ARN15381, a multitarget compound showing FAAH inhibition and DRD3 partial agonist activity in the low nanomolar range, on nicotine self-administration in rats. Pretreatment with ARN15381 dose dependently decreased self-administration of a nicotine dose at the top of the nicotine dose/response (D/R) curve, while it did not affect self-administration of a nicotine dose laying on the descending limb of the D/R curve. Conversely, pretreatment with the selective FAAH inhibitor URB597 and the DRD3 partial agonist CJB090 failed to modify nicotine self-administration independent of the nicotine dose self-administered. Our data indicates that the concomitant FAAH inhibition and DRD3 partial agonism produced by ARN15381 is key to the observed reduction of nicotine self-administration, demonstrating that a multitarget approach may hold clinical importance for the treatment of tobacco use disorder.
Collapse
Affiliation(s)
- Veronica Lunerti
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Hongwu Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy; School of Chemical Engineering, Changchun University of Changchung, 130012, China
| | | | - Qianwei Shen
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Laura Soverchia
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | | | - Giovanni Bottegoni
- School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom; Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Department of Behavioral and Social Sciences, School of Public Health, Carney Institute for Brain Science, Brown University, USA
| | | |
Collapse
|
4
|
Varani AP, Pedrón VT, Aon AJ, Canero EM, Balerio GN. GABA B receptors blockage modulates somatic and aversive manifestations induced by nicotine withdrawal. Biomed Pharmacother 2021; 140:111786. [PMID: 34144406 DOI: 10.1016/j.biopha.2021.111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
There is substantial evidence that GABAB agonist, baclofen, prevents somatic and motivational responses induced by nicotine withdrawal and may target drug cue vulnerabilities in humans. In this context, we explored different aspects associated with the possible mechanisms whereby the GABAB receptors might influence nicotine withdrawal. Male mice received nicotine (2.5 mg/kg, s.c.) 4 times daily, for 7 consecutive days. Nicotine-treated mice received the nicotinic acetylcholine receptor antagonist, mecamylamine (MEC, 2 or 3.5 mg/kg, s.c.), to precipitate the withdrawal state. A second group of dependent mice received 2-hydroxysaclofen (GABAB receptor antagonist, 1 mg/kg, s.c.) before MEC-precipitated abstinence. Somatic signs of nicotine withdrawal were measured for 30 min. Anxiogenic-like response associated to nicotine withdrawal was assessed by the elevated plus maze test. The dysphoric/aversive effect induced by nicotine withdrawal was evaluated using conditioned place aversion paradigm. Dopamine, serotonin and its metabolites concentrations were determined by HPLC in the striatum, cortex and hippocampus. Finally, α4β2 nicotinic acetylcholine receptor density was determined in several brain regions using autoradiography assays. The results showed that MEC-precipitated nicotine withdrawal induced somatic manifestations, anxiogenic-like response and dysphoric/aversive effect, and 2-hydroxysaclofen potentiated these behavioral responses. Additionally, 2-hydroxysaclofen was able to change striatal dopamine levels and α4β2 nicotinic acetylcholine receptor density, both altered by MEC-precipitated nicotine withdrawal. These findings provide important contributions to elucidate neurobiological mechanisms implicated in nicotine withdrawal. We suggest that GABAB receptor activity is necessary to control alterations induced by nicotine withdrawal, which supports the idea of targeting GABAB receptors to treat tobacco addiction in humans.
Collapse
Affiliation(s)
- A P Varani
- CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - V T Pedrón
- CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - A J Aon
- CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - E M Canero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica (FFYB), Cátedra de Farmacología, Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina; CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - G N Balerio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica (FFYB), Cátedra de Farmacología, Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina; CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
5
|
Moen JK, DeBaker MC, Myjak JE, Wickman K, Lee AM. Bidirectional sex-dependent regulation of α6 and β3 nicotinic acetylcholine receptors by protein kinase Cε. Addict Biol 2021; 26:e12954. [PMID: 32776643 PMCID: PMC7873155 DOI: 10.1111/adb.12954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 11/29/2022]
Abstract
Nicotine and alcohol are the most commonly abused substances worldwide and are frequently coabused. Nicotinic acetylcholine receptors (nAChRs) containing the α6 and β3 subunits are expressed in neural reward circuits and are critical for nicotine and alcohol reward. nAChRs are dynamically regulated by signaling molecules such as protein kinase C epsilon (PKCε), which impact transcription of α6 and β3 subunit mRNA (Chrna6 and Chrnb3, respectively). Previous work found decreased expression of Chrna6 and Chrnb3 transcripts in the ventral midbrain of male PKCε-/- mice, who also consume less nicotine and alcohol compared with wild-type (WT) littermates. Using RT-qPCR, we show that female PKCε-/- mice have higher expression of Chrna6 and Chrnb3 transcripts in the ventral midbrain, which functionally impacts nAChR-dependent behavior as female but not male PKCε-/- mice exhibit locomotor hypersensitivity to low-dose (0.25 mg/kg i.p.) nicotine. Female PKCε-/- mice show no differences in alcohol-induced sedation in the loss-of-righting reflex assay (4.0 g/kg i.p.) compared with WT littermates, whereas male PKCε-/- mice have enhanced sedation compared with WT mice. Female PKCε-/- mice also show reduced immobility time in response to varenicline (1.0 mg/kg i.p.) compared with WT littermates in the tail suspension test, and this effect was absent in male mice. Additionally, we found that female PKCε-/- mice show altered alcohol and nicotine consumption patterns in chronic voluntary two-bottle choice assays. Our data reveal a bidirectional effect of sex in the transcriptional regulation of nicotinic receptors by PKCε, highlighting the importance of studying both sexes in preclinical animal models.
Collapse
Affiliation(s)
- Janna K. Moen
- Graduate Program in Neuroscience, University of Minnesota, USA
| | | | - Julia E. Myjak
- Department of Pharmacology, University of Minnesota, USA
| | - Kevin Wickman
- Graduate Program in Neuroscience, University of Minnesota, USA
- Department of Pharmacology, University of Minnesota, USA
| | - Anna M. Lee
- Graduate Program in Neuroscience, University of Minnesota, USA
- Department of Pharmacology, University of Minnesota, USA
| |
Collapse
|
6
|
Sherafat Y, Bautista M, Fowler CD. Multidimensional Intersection of Nicotine, Gene Expression, and Behavior. Front Behav Neurosci 2021; 15:649129. [PMID: 33828466 PMCID: PMC8019722 DOI: 10.3389/fnbeh.2021.649129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The cholinergic system plays a crucial role in nervous system function with important effects on developmental processes, cognition, attention, motivation, reward, learning, and memory. Nicotine, the reinforcing component of tobacco and e-cigarettes, directly acts on the cholinergic system by targeting nicotinic acetylcholine receptors (nAChRs) in the brain. Activation of nAChRs leads to a multitude of immediate and long-lasting effects in specific cellular populations, thereby affecting the addictive properties of the drug. In addition to the direct actions of nicotine in binding to and opening nAChRs, the subsequent activation of circuits and downstream signaling cascades leads to a wide range of changes in gene expression, which can subsequently alter further behavioral expression. In this review, we provide an overview of the actions of nicotine that lead to changes in gene expression and further highlight evidence supporting how these changes can often be bidirectional, thereby inducing subsequent changes in behaviors associated with further drug intake.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| |
Collapse
|
7
|
Lee AM, Picciotto MR. Effects of nicotine on DARPP-32 and CaMKII signaling relevant to addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:89-115. [PMID: 33706940 PMCID: PMC8008986 DOI: 10.1016/bs.apha.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Paul Greengard brought to neuroscience the idea of, and evidence for, the role of second messenger systems in neuronal signaling. The fundamental nature of his contributions is evident in the far reach of his work, relevant to various subfields and topics in neuroscience. In this review, we discuss some of Greengard's work from the perspective of nicotinic acetylcholine receptors and their relevance to nicotine addiction. Specifically, we review the roles of dopamine- and cAMP-regulated phospho-protein of 32kDa (DARPP-32) and Ca2+/calmodulin-dependent kinase II (CaMKII) in nicotine-dependent behaviors. For each protein, we discuss the historical context of their discovery and initial characterization, focusing on the extensive biochemical and immunohistochemical work conducted by Greengard and colleagues. We then briefly summarize contemporary understanding of each protein in key intracellular signaling cascades and evidence for the role of each protein with respect to systems and behaviors relevant to nicotine addiction.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Psychiatry, Yale University, New Haven, CT, United States; Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States; Yale Interdepartmental Neuroscience Program, New Haven, CT, United States.
| |
Collapse
|
8
|
Wang J, He X, Guo F, Cheng X, Wang Y, Wang X, Feng Z, Vreugdenhil M, Lu C. Multiple Kinases Involved in the Nicotinic Modulation of Gamma Oscillations in the Rat Hippocampal CA3 Area. Front Cell Neurosci 2017; 11:57. [PMID: 28321180 PMCID: PMC5337687 DOI: 10.3389/fncel.2017.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022] Open
Abstract
Neuronal synchronization at gamma band frequency (20–80 Hz, γ oscillations) is closely associated with higher brain function, such as learning, memory and attention. Nicotinic acetylcholine receptors (nAChRs) are highly expressed in the hippocampus, and modulate hippocampal γ oscillations, but the intracellular mechanism underlying such modulation remains elusive. We explored multiple kinases by which nicotine can modulate γ oscillations induced by kainate in rat hippocampal area CA3 in vitro. We found that inhibitors of cyclic AMP dependent kinase (protein kinase A, PKA), protein kinase C (PKC), N-methyl-D-aspartate receptor (NMDA) receptors, Phosphoinositide 3-kinase (PI3K) and extracellular signal-related kinases (ERK), each individually could prevent the γ oscillation-enhancing effect of 1 μM nicotine, whereas none of them affected baseline γ oscillation strength. Inhibition of the serine/threonine kinase Akt increased baseline γ oscillations and partially blocked its nicotinic enhancement. We propose that the PKA-NMDAR-PI3K-ERK pathway modifies cellular properties required for the nicotinic enhancement of γ oscillations, dependent on a PKC-ERK mediated pathway. These signaling pathways provide clues for restoring γ oscillations in pathological conditions affecting cognition. The suppression of γ oscillations at 100 μM nicotine was only dependent on PKA-NMDAR activation and may be due to very high intracellular calcium levels.
Collapse
Affiliation(s)
- JianGang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Department of Pathophysiology, Xinxiang Medical UniversityXinxinang, China
| | - XiaoLong He
- Key Laboratory of Neuronal Oscillation and Disease, Yantze University Medical School JingZhou, China
| | - Fangli Guo
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxinang, China
| | - XiangLin Cheng
- Department of Laboratory Medicine, Yantze University Affiliated Hospital JingZhou, China
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxinang, China
| | - XiaoFang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University Xinxinang, China
| | - ZhiWei Feng
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University Xinxinang, China
| | - Martin Vreugdenhil
- Department of Psychology, Xinxiang Medical UniversityXinxinang, China; School of Life Sciences, Birmingham City UniversityBirmingham, UK
| | - ChengBiao Lu
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Key Laboratory of Neuronal Oscillation and Disease, Yantze University Medical SchoolJingZhou, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxinang, China
| |
Collapse
|
9
|
Zhao J, Zheng Y, Xue F, Chang Y, Yang H, Zhang J. Molecular basis of reactive oxygen species-induced inactivation of α4β2 nicotinic acetylcholine receptors. Free Radic Biol Med 2016; 97:520-530. [PMID: 27445102 DOI: 10.1016/j.freeradbiomed.2016.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/03/2016] [Accepted: 07/16/2016] [Indexed: 01/11/2023]
Abstract
The α4β2 neuronal nicotinic acetylcholine receptors (nAChRs) are the most widespread heteromeric nAChR subtype in the brain, mediating fast synaptic transmission. Previous studies showed that α4β2 nAChRs could be inactivated by reactive oxygen species (ROS), but the underlying mechanism is still obscure. We found that H2O2 induced the rundown of ACh-evoked currents in human α4β2 nAChRs and the replacement of the conserved cysteine in the M1-M2 linker of either α4 Cys245 or β2 Cys237 with an alanine residue could prevent the current rundown. Structurally, α4 Cys245 and β2 Cys237 are hypothesized to be in close proximity when the receptor is activated. Western blotting results showed that α4 and β2 subunits were cross-linked when the agonist-bound receptor encountered H2O2, which could be prevented by the substitution of the conserved cysteine in the M1-M2 linker to an alanine. Thus, when agonist bound to the receptor, α4 Cys245 and β2 Cys237 came close to each other and ROS oxidized these conserved cysteines, leading subunits to be cross-linked and trapping α4β2 nAChRs into the inactivation state. In addition, we mimicked an experimental Parkinson's disease (PD) model in PC12 cells and found that ROS, generated by 6-hydroxydopamine (6-OHDA), could cause the current rundown in α4β2 nAChRs, which may play a role in PD.
Collapse
Affiliation(s)
- Junjun Zhao
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China
| | - Yan Zheng
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China
| | - Fenqin Xue
- Medical Experiment and Test Center, Capital Medical University, Beijing 100069, China
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Hui Yang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China.
| | - Jianliang Zhang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing 100069, China.
| |
Collapse
|
10
|
Gade AR, Kang M, Khan F, Grider JR, Damaj MI, Dewey WL, Akbarali HI. Enhanced Sensitivity of α3β4 Nicotinic Receptors in Enteric Neurons after Long-Term Morphine: Implication for Opioid-Induced Constipation. J Pharmacol Exp Ther 2016; 357:520-8. [PMID: 27068812 DOI: 10.1124/jpet.116.233304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/08/2016] [Indexed: 11/22/2022] Open
Abstract
Opioid-induced constipation is a major side effect that persists with long-term opioid use. Previous studies demonstrated that nicotine-induced contractions are enhanced after long-term morphine exposure in guinea pig ileum. In the present study, we examined whether the increased sensitivity to nicotine could be observed in single enteric neurons after long-term morphine exposure, determined the subunits in mouse enteric neurons, and examined the effect of nicotine in reversing opioid-induced constipation. Nicotine (0.03-1 mM) dose-dependently induced inward currents from a holding potential of -60 mV in isolated single enteric neurons from the mouse ileum. The amplitude of the currents, but not the potency to nicotine, was significantly increased in neurons receiving long-term (16-24 h) but not short-term (10 min) exposure to morphine. Quantitative mRNA analysis showed that nicotinic acetylcholine receptor (nAChR) subunit expression in the mouse ileum was α3 ≥ β2 > β4 > α5 > α4 > β3 > α6. Nicotine-induced currents were obtained in neurons from α7, β2, α5, and α6 knockout mice. The currents were, however, inhibited by mecamylamine (10 μM) and the α3β4 blocker α-conotoxin AuIB (3 μM), suggesting that nicotine-induced currents were mediated by the α3β4 subtype of nAChRs on enteric neurons. Conversely, NS3861, a partial agonist at α3β4 nAChR, enhanced fecal pellet expulsion in a dose-dependent manner in mice that received long-term, but not short-term, morphine treatment. Overall, our findings suggest that the efficacy of nAChR agonists on enteric neurons is enhanced after long-term morphine exposure, and activation of the α3β4 subtype of nAChR reverses chronic, but not acute, morphine-induced constipation.
Collapse
Affiliation(s)
- Aravind R Gade
- Department of Pharmacology and Toxicology (A.R.G., M.K., F.K., M.I.D., W.L.D., H.I.A.), and Department of Physiology and Biophysics (J.R.G.), and VCU Program in Enteric Neuromuscular Sciences (J.R.G., H.I.A.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Minho Kang
- Department of Pharmacology and Toxicology (A.R.G., M.K., F.K., M.I.D., W.L.D., H.I.A.), and Department of Physiology and Biophysics (J.R.G.), and VCU Program in Enteric Neuromuscular Sciences (J.R.G., H.I.A.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Fayez Khan
- Department of Pharmacology and Toxicology (A.R.G., M.K., F.K., M.I.D., W.L.D., H.I.A.), and Department of Physiology and Biophysics (J.R.G.), and VCU Program in Enteric Neuromuscular Sciences (J.R.G., H.I.A.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - John R Grider
- Department of Pharmacology and Toxicology (A.R.G., M.K., F.K., M.I.D., W.L.D., H.I.A.), and Department of Physiology and Biophysics (J.R.G.), and VCU Program in Enteric Neuromuscular Sciences (J.R.G., H.I.A.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - M Imad Damaj
- Department of Pharmacology and Toxicology (A.R.G., M.K., F.K., M.I.D., W.L.D., H.I.A.), and Department of Physiology and Biophysics (J.R.G.), and VCU Program in Enteric Neuromuscular Sciences (J.R.G., H.I.A.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - William L Dewey
- Department of Pharmacology and Toxicology (A.R.G., M.K., F.K., M.I.D., W.L.D., H.I.A.), and Department of Physiology and Biophysics (J.R.G.), and VCU Program in Enteric Neuromuscular Sciences (J.R.G., H.I.A.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology (A.R.G., M.K., F.K., M.I.D., W.L.D., H.I.A.), and Department of Physiology and Biophysics (J.R.G.), and VCU Program in Enteric Neuromuscular Sciences (J.R.G., H.I.A.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
11
|
Lee AM, Wu DF, Dadgar J, Wang D, McMahon T, Messing RO. PKCε phosphorylates α4β2 nicotinic ACh receptors and promotes recovery from desensitization. Br J Pharmacol 2015; 172:4430-41. [PMID: 26103136 DOI: 10.1111/bph.13228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic (ACh) receptor recovery from desensitization is modulated by PKC, but the PKC isozymes and the phosphorylation sites involved have not been identified. We investigated whether PKCε phosphorylation of α4β2 nAChRs regulates receptor recovery from desensitization. EXPERIMENTAL APPROACH Receptor recovery from desensitization was investigated by electrophysiological characterization of human α4β2 nAChRs. Phosphorylation of the α4 nAChR subunit was assessed by immunoblotting of mouse synaptosomes. Hypothermia induced by sazetidine-A and nicotine was measured in Prkce(-/-) and wild-type mice. KEY RESULTS Inhibiting PKCε impaired the magnitude of α4β2 nAChR recovery from desensitization. We identified five putative PKCε phosphorylation sites in the large intracellular loop of the α4 subunit, and mutating four sites to alanines also impaired recovery from desensitization. α4 nAChR subunit phosphorylation was reduced in synaptosomes from Prkce(-/-) mice. Sazetidine-A-induced hypothermia, which is mediated by α4β2 nAChR desensitization, was more severe and prolonged in Prkce(-/-) than in wild-type mice. CONCLUSIONS AND IMPLICATIONS PKCε phosphorylates the α4 nAChR subunit and regulates recovery from receptor desensitization. This study illustrates the importance of phosphorylation in regulating α4β2 receptor function, and suggests that reducing phosphorylation prolongs receptor desensitization and decreases the number of receptors available for activation.
Collapse
Affiliation(s)
- A M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - D-F Wu
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - J Dadgar
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - D Wang
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - T McMahon
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - R O Messing
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Hogan EM, Casserly AP, Scofield MD, Mou Z, Zhao-Shea R, Johnson CW, Tapper AR, Gardner PD. miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family. RNA (NEW YORK, N.Y.) 2014; 20:1890-1899. [PMID: 25344397 PMCID: PMC4238110 DOI: 10.1261/rna.034066.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3'-untranslated regions (3' UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3' UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3' UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.
Collapse
Affiliation(s)
- Eric M Hogan
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Alison P Casserly
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA UMMS MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Michael D Scofield
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Zhongming Mou
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Rubing Zhao-Shea
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Chris W Johnson
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA UMMS MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | - Paul D Gardner
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA UMMS MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| |
Collapse
|
13
|
Changeux JP. The concept of allosteric modulation: an overview. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e223-8. [PMID: 24050272 DOI: 10.1016/j.ddtec.2012.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A brief historical overview of the concept of allosteric interaction is presented together with the different kinds of allosteric control recognized, in the past decades, with the model system of pentameric ligandgated ion channels. Multiple levels of allosteric modulation are identified that include sites distributed in the extracellular ligand binding domain (e.g. Ca2+ or benzodiazepines), the transmembrane domain (e.g. general anesthetic and various allosteric modulators) and the cytoplasmic domain, as potential targets for drug design. The new opportunities offered by the recent technological developments are discussed.
Collapse
|
14
|
Nicotine-modulated subunit stoichiometry affects stability and trafficking of α3β4 nicotinic receptor. J Neurosci 2013; 33:12316-28. [PMID: 23884938 DOI: 10.1523/jneurosci.2393-13.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heteromeric nAChRs are pentameric cation channels, composed of combinations of two or three α and three or two β subunits, which play key physiological roles in the central and peripheral nervous systems. The prototypical agonist nicotine acts intracellularly to upregulate many nAChR subtypes, a phenomenon that is thought to contribute to the nicotine dependence of cigarette smokers. The α3β4 subtype has recently been genetically linked to nicotine dependence and lung cancer; however, the mode of action of nicotine on this receptor subtype has been incompletely investigated. Here, using transfected mammalian cells as model system, we characterized the response of the human α3β4 receptor subtype to nicotine and the mechanism of action of the drug. Nicotine, when present at 1 mm concentration, elicited a ∼5-fold increase of cell surface α3β4 and showed a more modest upregulatory effect also at concentrations as low as 10 μM. Upregulation was obtained if nicotine was present during, but not after, pentamer assembly and was caused by increased stability and trafficking of receptors assembled in the presence of the drug. Experimental determinations as well as computational studies of subunit stoichiometry showed that nicotine favors assembly of pentamers with (α3)2(β4)3 stoichiometry; these are less prone than (α3)3(β4)2 receptors to proteasomal degradation and, because of the presence in the β subunit of an endoplasmic reticulum export motif, more efficiently transported to the plasma membrane. Our findings uncover a novel mechanism of nicotine-induced α3β4 nAChR upregulation that may be relevant also for other nAChR subtypes.
Collapse
|
15
|
Lewis AS, Picciotto MR. High-affinity nicotinic acetylcholine receptor expression and trafficking abnormalities in psychiatric illness. Psychopharmacology (Berl) 2013; 229:477-85. [PMID: 23624811 PMCID: PMC3766461 DOI: 10.1007/s00213-013-3126-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 12/22/2022]
Abstract
RATIONALE Nicotinic acetylcholine receptors (nAChRs) are a critical component of the cholinergic system of neurotransmission in the brain that modulates important physiological processes such as reward, cognition, and mood. Abnormalities in this system are accordingly implicated in multiple psychiatric illnesses, including addiction, schizophrenia, and mood disorders. There is significantly increased tobacco use, and therefore nicotine intake, in patient populations, and pharmacological agents that act on various nicotinic receptor subtypes ameliorate clinical features of these disorders. Better understanding of the molecular mechanisms underlying cholinergic dysfunction in psychiatric disease will permit more targeted design of novel therapeutic agents. RESULTS The objective of this review is to describe the multiple cellular pathways through which chronic nicotine exposure regulates nAChR expression, and to juxtapose these mechanisms with evidence for altered expression of high-affinity nAChRs in human psychiatric illness. Here, we summarize multiple studies from pre-clinical animal models to human in vivo imaging and post-mortem experiments demonstrating changes in nAChR regulation and expression in psychiatric illness. CONCLUSIONS We conclude that a mechanistic explanation of nAChR abnormalities in psychiatric illness will arise from a fuller understanding of normal nAChR trafficking, along with the detailed study of human tissue, perhaps using novel biotechnological advances, such as induced pluripotent stem cells.
Collapse
Affiliation(s)
| | - Marina R. Picciotto
- Correspondence Dr. Marina R. Picciotto, Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA, , Phone: (203) 737-2041
| |
Collapse
|
16
|
Varani AP, Antonelli MC, Balerio GN. Mecamylamine-precipitated nicotine withdrawal syndrome and its prevention with baclofen: an autoradiographic study of α4β2 nicotinic acetylcholine receptors in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:217-25. [PMID: 23500668 DOI: 10.1016/j.pnpbp.2013.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/13/2013] [Accepted: 02/27/2013] [Indexed: 11/26/2022]
Abstract
A previous study from our laboratory showed that baclofen (BAC, GABAB receptor agonist) was able to prevent the behavioral expression of nicotine (NIC) withdrawal syndrome. To further investigate the mechanisms underlying this effect, we conducted this study, with the aims of analyzing α4β2 nicotinic receptor density during NIC withdrawal and, in case we found any changes, of determining whether they could be prevented by pretreatment with BAC. Swiss Webster albino mice received NIC (2.5 mg/kg, s.c.) 4 times daily, for 7 days. On the 8th day, NIC-treated mice received the nicotinic antagonist mecamylamine (MEC; 2 mg/kg, i.p.) 1 h after the last dose of NIC. A second group of NIC-treated mice received BAC (2 mg/kg, i.p.) prior to MEC administration. Thirty minutes after MEC, mice were sacrificed and brain autoradiography with [(3)H]epibatidine was carried out at five different anatomical levels. Autoradiographic mapping showed a significant increase of α4β2 nicotinic receptor labeling during NIC withdrawal in the nucleus accumbens shell (AcbSh), medial habenular nucleus (HbM), thalamic nuclei, dorsal lateral geniculate (DLG) nucleus, fasciculus retroflexus (fr), ventral tegmental area, interpeduncular nucleus and superior colliculus. BAC pretreatment prevented the increased α4β2 nicotinic receptor binding sites in the AcbSh, MHb, thalamic nuclei, DLG nucleus and fr. The present results suggest a relationship between BAC's preventive effect of the expression of NIC withdrawal signs, and its ability to restore the changes in α4β2 nicotinic receptor labeling, evidenced in specific brain areas in NIC withdrawn animals.
Collapse
Affiliation(s)
- Andrés P Varani
- Instituto de Investigaciones Farmacológicas (UBA-CONICET), Junín 956, 5° Piso, C1113AAD, Buenos Aires, Argentina
| | | | | |
Collapse
|
17
|
Dau A, Komal P, Truong M, Morris G, Evans G, Nashmi R. RIC-3 differentially modulates α4β2 and α7 nicotinic receptor assembly, expression, and nicotine-induced receptor upregulation. BMC Neurosci 2013; 14:47. [PMID: 23586521 PMCID: PMC3637639 DOI: 10.1186/1471-2202-14-47] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 04/03/2013] [Indexed: 12/04/2022] Open
Abstract
Background Recent work has shown that the chaperone resistant to inhibitors of acetylcholinesterase (RIC-3) is critical for the folding, maturation and functional expression of a variety of neuronal nicotinic acetylcholine receptors. α7 nicotinic receptors can only assemble and functionally express in select lines of cells, provided that RIC-3 is present. In contrast, α4β2 nicotinic receptors can functionally express in many cell lines even without the presence of RIC-3. Depending on the cell line, RIC-3 has differential effects on α4β2 receptor function – enhancement in mammalian cells but inhibition in Xenopus oocytes. Other differences between the two receptor types include nicotine-induced upregulation. When expressed in cell lines, α4β2 receptors readily and robustly upregulate with chronic nicotine exposure. However, α7 nicotinic receptors appear more resistant and require higher concentrations of nicotine to induce upregulation. Could the coexpression of RIC-3 modulate the extent of nicotine-induced upregulation not only for α7 receptors but also α4β2 receptors? We compared and contrasted the effects of RIC-3 on assembly, trafficking, protein expression and nicotine-induced upregulation on both α7 and α4β2 receptors using fluorescent protein tagged nicotinic receptors and Förster resonance energy transfer (FRET) microscopy imaging. Results RIC-3 increases assembly and cell surface trafficking of α7 receptors but does not alter α7 protein expression in transfected HEK293T cells. In contrast, RIC-3 does not affect assembly of α4β2 receptors but increases α4 and β2 subunit protein expression. Acute nicotine (30 min exposure) was sufficient to upregulate FRET between α4 and β2 subunits. Surprisingly, when RIC-3 was coexpressed with α4β2 receptors nicotine-induced upregulation was prevented. α7 receptors did not upregulate with acute nicotine in the presence or absence of RIC-3. Conclusions These results provide interesting novel data that RIC-3 differentially regulates assembly and expression of different nicotinic receptor subunits. These results also show that nicotine-mediated upregulation of α4β2 receptors can be dynamically regulated by the presence of the chaperone, RIC-3. This could explain a novel mechanism why high affinity α4β2 receptors are upregulated in specific neuronal subtypes in the brain and not others.
Collapse
|
18
|
Nicotine-induced upregulation of native neuronal nicotinic receptors is caused by multiple mechanisms. J Neurosci 2012; 32:2227-38. [PMID: 22323734 DOI: 10.1523/jneurosci.5438-11.2012] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nicotine causes changes in brain nicotinic acetylcholine receptors (nAChRs) during smoking that initiate addiction. Nicotine-induced upregulation is the long-lasting increase in nAChR radioligand binding sites in brain resulting from exposure. The mechanisms causing upregulation are not established. Many different mechanisms have been reported with the assumption that there is a single underlying cause. Using live rat cortical neurons, we examined for the first time how exposure and withdrawal of nicotine shape the kinetics of native α4β2-containing nAChR upregulation in real time. Upregulation kinetics demonstrates that at least two different mechanisms underlie this phenomenon. First, a transient upregulation occurs that rapidly reverses, faster than nAChR degradation, and corresponds to nAChR conformational changes as assayed by conformational-dependent, subunit-specific antibodies. Second, a long-lasting process occurs correlating with increases in nAChR numbers caused by decreased proteasomal subunit degradation. Previous radioligand binding measurements to brain tissue have measured the second process and largely missed the first. We conclude that nicotine-induced upregulation is composed of multiple processes occurring at different rates with different underlying causes.
Collapse
|
19
|
Hussmann GP, Yasuda RP, Xiao Y, Wolfe BB, Kellar KJ. Endogenously expressed muscarinic receptors in HEK293 cells augment up-regulation of stably expressed α4β2 nicotinic receptors. J Biol Chem 2011; 286:39726-37. [PMID: 21940627 DOI: 10.1074/jbc.m111.289546] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotine-induced up-regulation of neuronal nicotinic receptors (nAChRs) has been known and studied for more than 25 years. Other nAChR ligands can also up-regulate nAChRs, but it is not known if these ligands induce up-regulation by mechanisms similar to that of nicotine. In this study, we compared up-regulation by three different nicotinic agonists and a competitive antagonist of several different nAChR subtypes expressed in HEK293 cells. Nicotine markedly increased α4β2 nAChR binding site density and β2 subunit protein. Carbachol, a known nAChR and muscarinic receptor agonist, up-regulated both α4β2 nAChR binding sites and subunit protein 2-fold more than did nicotine. This increased up-regulation was shown pharmacologically to involve endogenously expressed muscarinic receptors, and stimulation of these muscarinic receptors also correlated with a 2-fold increase in α4 and β2 mRNA. Muscarinic receptor activation in these cells appears to affect CMV promoter activity only minimally (∼1.2 fold), suggesting that the increase in α4 and β2 nAChR mRNA may not be dependent on enhanced transcription. Instead, other mechanisms may contribute to the increase in mRNA and a consequent increase in receptor subunits and binding site density. These studies demonstrate the possibility of augmenting nAChR expression in a cell model through mechanisms and targets other than the nAChR receptor itself.
Collapse
Affiliation(s)
- Gregory P Hussmann
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|