1
|
Kermorgant M, Fernagut PO, Meissner WG, Arvanitis DN, N'Guyen D, Senard JM, Pavy-Le Traon A. Age and Gender Differences in Cardiovascular Autonomic Failure in the Transgenic PLP-syn Mouse, a Model of Multiple System Atrophy. Front Neurol 2022; 13:874155. [PMID: 35720100 PMCID: PMC9201283 DOI: 10.3389/fneur.2022.874155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare and progressive neurodegenerative disorder. Autonomic failure (AF) is one main clinical feature which has a significant impact on health-related quality of life. The neuropathological hallmark of MSA is the abnormal accumulation of α-synuclein in oligodendrocytes forming glial cytoplasmic inclusions. Only little is known about gender and age differences in AF in MSA. This study was carried out in 6 and 12 months old transgenic PLP-α-syn and WT male and female mice. Heart rate variability (HRV) was assessed both in time, frequential and non-linear domains. Baroreflex sensitivity (BRS) was estimated by the sequence method. Duration of ventricular depolarization and repolarization (QT/QTc intervals) were evaluated from the ECG signals. Three-way ANOVA (genotype x gender x age) with Sidak's method post-hoc was used to analyze data. BRS was significantly changed in PLP-α-syn mice and was age-dependent. QT and QTc intervals were not significantly modified in PLP-α-syn mice. An impaired HRV was observed at 12 months of age in PLP-α-syn female but not in male mice, indicative of cardiovascular AF.
Collapse
Affiliation(s)
- Marc Kermorgant
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
- French Reference Center for Multiple System Atrophy, Neurology Department, University Hospital of Toulouse, Toulouse, France
- *Correspondence: Marc Kermorgant
| | - Pierre-Olivier Fernagut
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- Laboratoire de Neurosciences Expérimentales et Cliniques INSERM U1084, University of Poitiers, Poitiers, France
| | - Wassilios G. Meissner
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- CRMR AMS, Service de Neurologie - Maladies Neurodégénératives, CHU de Bordeaux, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Dina N. Arvanitis
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
| | - Du N'Guyen
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
| | - Jean-Michel Senard
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
- Department of Clinical Pharmacology, University Hospital of Toulouse, Toulouse, France
| | - Anne Pavy-Le Traon
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
- French Reference Center for Multiple System Atrophy, Neurology Department, University Hospital of Toulouse, Toulouse, France
| |
Collapse
|
2
|
Kwon DH, Hwang JS, Kim SG, Jang YE, Shin TH, Lee G. Cerebrospinal Fluid Metabolome in Parkinson's Disease and Multiple System Atrophy. Int J Mol Sci 2022; 23:ijms23031879. [PMID: 35163800 PMCID: PMC8836409 DOI: 10.3390/ijms23031879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) and multiple system atrophy (MSA) belong to the neurodegenerative group of synucleinopathies; differential diagnosis between PD and MSA is difficult, especially at early stages, owing to their clinical and biological similarities. Thus, there is a pressing need to identify metabolic biomarkers for these diseases. The metabolic profile of the cerebrospinal fluid (CSF) is reported to be altered in PD and MSA; however, the altered metabolites remain unclear. We created a single network with altered metabolites in PD and MSA based on the literature and assessed biological functions, including metabolic disorders of the nervous system, inflammation, concentration of ATP, and neurological disorder, through bioinformatics methods. Our in-silico prediction-based metabolic networks are consistent with Parkinsonism events. Although metabolomics approaches provide a more quantitative understanding of biochemical events underlying the symptoms of PD and MSA, limitations persist in covering molecules related to neurodegenerative disease pathways. Thus, omics data, such as proteomics and microRNA, help understand the altered metabolomes mechanism. In particular, integrated omics and machine learning approaches will be helpful to elucidate the pathological mechanisms of PD and MSA. This review discusses the altered metabolites between PD and MSA in the CSF and omics approaches to discover diagnostic biomarkers.
Collapse
Affiliation(s)
- Do Hyeon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (D.H.K.); (J.S.H.); (S.G.K.); (Y.E.J.)
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (D.H.K.); (J.S.H.); (S.G.K.); (Y.E.J.)
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (D.H.K.); (J.S.H.); (S.G.K.); (Y.E.J.)
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (D.H.K.); (J.S.H.); (S.G.K.); (Y.E.J.)
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (T.H.S.); (G.L.)
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (D.H.K.); (J.S.H.); (S.G.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (T.H.S.); (G.L.)
| |
Collapse
|
3
|
Ye F, Wang T, Li H, Liang J, Wu X, Sheng W. Serum Cystatin C as a Potential Predictor of the Severity of Multiple System Atrophy With Predominant Cerebellar Ataxia: A Case-Control Study in Chinese Population. Front Neurosci 2021; 15:663980. [PMID: 34566557 PMCID: PMC8461053 DOI: 10.3389/fnins.2021.663980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: Multiple system atrophy (MSA) is a serious neurodegenerative disease that is charactered by progressive neurological disability. The aim of this study was to investigate the correlation of serum oxidant factors with the severity of MSA. Methods: A total of 52 MSA patients and 52 age- and gender- matched healthy subjects were retrospectively enrolled in this study. Enzymatic colorimetric methods were used to assay the concentrations of uric acid (UA), serum creatinine (Scr), blood urea nitrogen (BUN), and cystatin C (Cys-C). Disease severity was evaluated by the Unified Multiple System Atrophy Rating Scale (UMSARS). The disease progression rate was defined by the change in UMSARS-IV (global disability score, GDS) over a 1-year period. Results: Comparisons between the two groups revealed that there were no significant differences in terms of serum Scr (70.81 ± 13.88 vs. 70.92 ± 14.19 μmol/L, p = 0.967). However, the serum levels of the other three biomarkers were significantly higher in the MSA patients (UA: 325.31 ± 84.92 vs. 291.19 ± 64.14 μmol/L, p = 0.023; BUN: 5.68 ± 1.67 vs. 4.60 ± 1.24 mmol/L, p < 0.001; Cys-C: 0.96 ± 0.15 vs. 0.89 ± 0.14 mg/L, p = 0.024). In addition, Pearson correlation analyses revealed that only serum Cys-C was significantly correlated to GDS (r = 0.281, p = 0.044). Subgroup analysis further demonstrated that serum Cys-C was the only factor that was positively associated with the disease severity in patients with MSA and predominant cerebellar ataxia (MSA-C) (r = 0.444, p = 0.018); there was no significant association in MSA patients with predominant Parkinsonism (MSA-P) (r = 0.118, p = 0.582). MSA-C patients with severe disability were shown to express higher serum levels of Cys-C than patients with mild disability (1.03 ± 0.13 vs. 0.88 ± 0.12 mg/L, p = 0.009). Finally, Kaplan-Meier plots revealed a significant difference in the 5-year probability of survival from severe disability between MSA-C patients with high- and low-concentrations of serum Cys-C (Log-rank test: X2 = 4.154, p = 0.042). ROC curve analysis confirmed that serum Cys-C exhibits good performance as a biomarker (AUC = 0.847). Conclusion: Our research indicated that oxidative stress plays a vital role in MSA. Serum Cys-C represents a potential prognostic biomarker to evaluate the severity of disease in patients with MSA-C.
Collapse
Affiliation(s)
- Fei Ye
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianzhu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxin Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Finkbeiner S. Functional genomics, genetic risk profiling and cell phenotypes in neurodegenerative disease. Neurobiol Dis 2020; 146:105088. [PMID: 32977020 PMCID: PMC7686089 DOI: 10.1016/j.nbd.2020.105088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/03/2022] Open
Abstract
Human genetics provides unbiased insights into the causes of human disease, which can be used to create a foundation for effective ways to more accurately diagnose patients, stratify patients for more successful clinical trials, discover and develop new therapies, and ultimately help patients choose the safest and most promising therapeutic option based on their risk profile. But the process for translating basic observations from human genetics studies into pathogenic disease mechanisms and treatments is laborious and complex, and this challenge has particularly slowed the development of interventions for neurodegenerative disease. In this review, we discuss the many steps in the process, the important considerations at each stage, and some of the latest tools and technologies that are available to help investigators translate insights from human genetics into diagnostic and therapeutic strategies that will lead to the sort of advances in clinical care that make a difference for patients.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Center for Systems and Therapeutics, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of Califorina, San Francisco, CA 94158, USA.
| |
Collapse
|
5
|
Lee HJ, Ricarte D, Ortiz D, Lee SJ. Models of multiple system atrophy. Exp Mol Med 2019; 51:1-10. [PMID: 31740682 PMCID: PMC6861264 DOI: 10.1038/s12276-019-0346-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease with diverse clinical manifestations, including parkinsonism, cerebellar syndrome, and autonomic failure. Pathologically, MSA is characterized by glial cytoplasmic inclusions in oligodendrocytes, which contain fibrillary forms of α-synuclein. MSA is categorized as one of the α-synucleinopathy, and α-synuclein aggregation is thought to be the culprit of the disease pathogenesis. Studies on MSA pathogenesis are scarce relative to studies on the pathogenesis of other synucleinopathies, such as Parkinson’s disease and dementia with Lewy bodies. However, recent developments in cellular and animal models of MSA, especially α-synuclein transgenic models, have driven advancements in research on this disease. Here, we review the currently available models of MSA, which include toxicant-induced animal models, α-synuclein-overexpressing cellular models, and mouse models that express α-synuclein specifically in oligodendrocytes through cell type-specific promoters. We will also discuss the results of studies in recently developed transmission mouse models, into which MSA brain extracts were intracerebrally injected. By reviewing the findings obtained from these model systems, we will discuss what we have learned about the disease and describe the strengths and limitations of the models, thereby ultimately providing direction for the design of better models and future research. A review of the models available for studying multiple system atrophy (MSA), a Parkinson’s-like disease, may help identify new treatment options. MSA is difficult to diagnose and unresponsive to drugs. Similar to Parkinson’s disease, it involves accumulation of protein aggregates in brain and spinal cord cells, but the causes are poorly understood. He-Jin Lee at Konkuk University, and Seung-Jae Lee at Seoul National University College of Medicine in South Korea and coworkers have reviewed the models available to study the disease, including toxin-induced and transgenic animal models, and recent evidence that transferring the protein aggregates into cells causes MSA symptoms. Each model mimics some aspects of the disease, but none captures the full range of symptoms. This review helps highlight research pathways that may illuminate treatments for this complex and debilitating adult-onset disease.
Collapse
Affiliation(s)
- He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea. .,Research Institute of Medical Science, Konkuk University, Seoul, 05029, South Korea. .,IBST, Konkuk University, Seoul, 05029, South Korea.
| | - Diadem Ricarte
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Darlene Ortiz
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Seung-Jae Lee
- Department of Medicine and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
6
|
Meissner WG, Fernagut PO, Dehay B, Péran P, Traon APL, Foubert-Samier A, Lopez Cuina M, Bezard E, Tison F, Rascol O. Multiple System Atrophy: Recent Developments and Future Perspectives. Mov Disord 2019; 34:1629-1642. [PMID: 31692132 DOI: 10.1002/mds.27894] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disorder characterized by a variable combination of parkinsonism, cerebellar impairment, and autonomic dysfunction. The pathologic hallmark is the accumulation of aggregated α-synuclein in oligodendrocytes, forming glial cytoplasmic inclusions, which qualifies MSA as a synucleinopathy together with Parkinson's disease and dementia with Lewy bodies. The underlying pathogenesis is still not well understood. Some symptomatic treatments are available, whereas neuroprotection remains an urgent unmet treatment need. In this review, we critically appraise significant developments of the past decade with emphasis on pathogenesis, diagnosis, prognosis, and treatment development. We further discuss unsolved questions and highlight some perspectives. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Wassilios G Meissner
- CRMR Atrophie Multisystématisée, CHU Bordeaux, Service de Neurologie, Bordeaux, France.,Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,Dept. of Medicine, University of Otago, Christchurch, New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Pierre-Olivier Fernagut
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Benjamin Dehay
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Toulouse, France
| | - Anne Pavy-Le Traon
- Services de Neurologie, CRMR Atrophie Multisystématisée, Toulouse, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Alexandra Foubert-Samier
- CRMR Atrophie Multisystématisée, CHU Bordeaux, Service de Neurologie, Bordeaux, France.,Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,Inserm, Bordeaux Population Health Research Center, Bordeaux University, Bordeaux, France
| | - Miguel Lopez Cuina
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - François Tison
- CRMR Atrophie Multisystématisée, CHU Bordeaux, Service de Neurologie, Bordeaux, France.,Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Olivier Rascol
- Services de Neurologie et de Pharmacologie Clinique, Centre de Reference AMS, Centre d'Investigation Clinique, Réseau NS-Park/FCRIN et Centre of Excellence for Neurodegenerative Disorders (COEN) de Toulouse, CHU de Toulouse, Toulouse 3 University, Toulouse, France
| |
Collapse
|
7
|
Bassil F, Canron MH, Vital A, Bezard E, Li Y, Greig NH, Gulyani S, Kapogiannis D, Fernagut PO, Meissner WG. Insulin resistance and exendin-4 treatment for multiple system atrophy. Brain 2017; 140:1420-1436. [PMID: 28334990 DOI: 10.1093/brain/awx044] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
See Stayte and Vissel (doi:10.1093/awx064) for a scientific commentary on this article. Multiple system atrophy is a fatal sporadic adult-onset neurodegenerative disorder with no symptomatic or disease-modifying treatment available. The cytopathological hallmark of multiple system atrophy is the accumulation of α-synuclein aggregates in oligodendrocytes, forming glial cytoplasmic inclusions. Impaired insulin/insulin-like growth factor-1 signalling (IGF-1) and insulin resistance (i.e. decreased insulin/IGF-1) have been reported in other neurodegenerative disorders such as Alzheimer's disease. Increasing evidence also suggests impaired insulin/IGF-1 signalling in multiple system atrophy, as corroborated by increased insulin and IGF-1 plasma concentrations in multiple system atrophy patients and reduced IGF-1 brain levels in a transgenic mouse model of multiple system atrophy. We here tested the hypothesis that multiple system atrophy is associated with brain insulin resistance and showed increased expression of the key downstream messenger insulin receptor substrate-1 phosphorylated at serine residue 312 in neurons and oligodendrocytes in the putamen of patients with multiple system atrophy. Furthermore, the expression of insulin receptor substrate 1 (IRS-1) phosphorylated at serine residue 312 was more apparent in inclusion bearing oligodendrocytes in the putamen. By contrast, it was not different between both groups in the temporal cortex, a less vulnerable structure compared to the putamen. These findings suggest that insulin resistance may occur in multiple system atrophy in regions where the neurodegenerative process is most severe and point to a possible relation between α-synuclein aggregates and insulin resistance. We also observed insulin resistance in the striatum of transgenic multiple system atrophy mice and further demonstrate that the glucagon-like peptide-1 analogue exendin-4, a well-tolerated and Federal Drug Agency-approved antidiabetic drug, has positive effects on insulin resistance and monomeric α-synuclein load in the striatum, as well as survival of nigral dopamine neurons. Additionally, plasma levels of exosomal neural-derived IRS-1 phosphorylated at serine residue 307 (corresponding to serine residue 312 in humans) negatively correlated with survival of nigral dopamine neurons in multiple system atrophy mice treated with exendin-4. This finding suggests the potential for developing this peripheral biomarker candidate as an objective outcome measure of target engagement for clinical trials with glucagon-like peptide-1 analogues in multiple system atrophy. In conclusion, our observation of brain insulin resistance in multiple system atrophy patients and transgenic mice together with the beneficial effects of the glucagon-like peptide-1 agonist exendin-4 in transgenic mice paves the way for translating this innovative treatment into a clinical trial.
Collapse
Affiliation(s)
- Fares Bassil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Marie-Hélène Canron
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Anne Vital
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,Service de Pathologie, CHU de Bordeaux, 33000 Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Seema Gulyani
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.,Centre de Référence Maladie Rare AMS, Hôpital Pellegrin, CHU de Bordeaux, F-33076 Bordeaux, France.,Service de Neurologie, Hôpital Pellegrin, CHU de Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
8
|
Bassil F, Guerin PA, Dutheil N, Li Q, Klugmann M, Meissner WG, Bezard E, Fernagut PO. Viral-mediated oligodendroglial alpha-synuclein expression models multiple system atrophy. Mov Disord 2017; 32:1230-1239. [PMID: 28556404 DOI: 10.1002/mds.27041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND MSA is a fatal neurodegenerative disorder characterized by a combination of autonomic dysfunction, cerebellar ataxia, and l-dopa unresponsive parkinsonism. The hallmark of MSA is the accumulation of α-synuclein, forming cytoplasmic inclusions in oligodendrocytes. Adeno-associated viruses allow efficient targeting of disease-associated genes in selected cellular ensembles and have proven efficient for the neuronal overexpression of α-synuclein in the substantia nigra in the context of PD. OBJECTIVES We aimed to develop viral-based models of MSA. METHODS Chimeric viral vectors expressing either human wild-type α-synuclein or green fluorescent protein under the control of mouse myelin basic protein were injected in the striatum of rats and monkeys. Rats underwent a longitudinal motor assessment before histopathological analysis at 3 and 6 months. RESULTS Injection of vectors expressing α-synuclein in the striatum resulted in >80% oligodendroglial selectivity in rats and >60% in monkeys. Rats developed progressive motor deficits that were l-dopa unresponsive when assessed at 6 months. Significant loss of dopaminergic neurons occurred at 3 months, further progressing at 6 months, together with a loss of striatal neurons. Prominent α-synuclein accumulation, including phosphorylated and proteinase-K-resistant α-synuclein, was detected in the striatum and substantia nigra. CONCLUSIONS Viral-mediated oligodendroglial expression of α-synuclein allows replicating some of the key features of MSA. This flexible strategy can be used to investigate, in several species, how α-synuclein accumulation in selected oligodendroglial populations contributes to the pathophysiology of MSA and offers a new framework for preclinical validation of therapeutic strategies. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fares Bassil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Paul A Guerin
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Dutheil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Qin Li
- China Academy of Medical Sciences, Institute of Lab Animal Sciences, Beijing, China.,Motac neuroscience Ltd, Manchester, United Kingdom
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Wassilios G Meissner
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Service de Neurologie, CHU de Bordeaux, Bordeaux, France.,Centre de référence atrophie multisystématisée, CHU de Bordeaux, Bordeaux, France
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,China Academy of Medical Sciences, Institute of Lab Animal Sciences, Beijing, China.,Motac neuroscience Ltd, Manchester, United Kingdom
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
9
|
Soria FN, Pampliega O, Bourdenx M, Meissner WG, Bezard E, Dehay B. Exosomes, an Unmasked Culprit in Neurodegenerative Diseases. Front Neurosci 2017; 11:26. [PMID: 28197068 PMCID: PMC5281572 DOI: 10.3389/fnins.2017.00026] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/16/2017] [Indexed: 12/31/2022] Open
Abstract
Exosomes are extracellular nanovesicles (30–100 nm) generated from endosomal membranes and known to be released by all cell lineages of the Central Nervous System (CNS). They constitute important vesicles for the secretion and transport of multilevel information, including signaling, toxic, and regulatory molecules. Initially thought to have a function merely in waste disposal, the involvement of exosomes in neuronal development, maintenance, and regeneration through its paracrine and endocrine signaling functions has drawn particular attention in recent years. These vesicles, being involved in the clearance and cell-to-cell spreading of toxic molecules, have been naturally implicated in aging, and in several neurodegenerative diseases associated with pathological conversion of proteins, as well as in the transport of other disease-associated molecules, such as nucleic acids or pro-inflammatory cytokines. Our understanding of such unique form of communication may provide not only answers about (patho)physiological processes in the brain, but can also offer means to exploit these vesicles as vehicles for the delivery of biologically relevant molecules or as tools to monitor brain diseases in a non-invasive way. A promising field in expansion, the study of exosomes and related extracellular vesicles has just commenced to unveil their potential as therapeutic tools for brain disorders as well as biomarkers of disease state.
Collapse
Affiliation(s)
- Federico N Soria
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Olatz Pampliega
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Mathieu Bourdenx
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Wassilios G Meissner
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Benjamin Dehay
- Institut des Maladies Neurodégénératives, UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| |
Collapse
|
10
|
Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy. Proc Natl Acad Sci U S A 2016; 113:9593-8. [PMID: 27482103 DOI: 10.1073/pnas.1609291113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (α-syn) aggregates in affected oligodendrocytes. Several studies point to α-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of α-syn in vitro and in neuronal cell models of α-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn pathology and to mediate neuroprotection in proteolipid protein α-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of α-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated α-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting α-syn accumulation.
Collapse
|
11
|
Cao B, Guo X, Chen K, Song W, Huang R, Wei Q, Zhao B, Shang HF. Serum creatinine is associated with the prevalence but not disease progression of multiple system atrophy in Chinese population. Neurol Res 2016; 38:255-60. [PMID: 26351825 DOI: 10.1179/1743132815y.0000000095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bei Cao
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - XiaoYan Guo
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - Ke Chen
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - Wei Song
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - Rui Huang
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - QianQian Wei
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - Bi Zhao
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - Hui-Fang Shang
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| |
Collapse
|
12
|
Cao B, Wei QQ, Ou R, Yang J, Shang HF. Association of serum uric acid level with cognitive function among patients with multiple system atrophy. J Neurol Sci 2015; 359:363-6. [PMID: 26671143 DOI: 10.1016/j.jns.2015.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Oxidative stress is involved in the pathogenesis of multiple system atrophy (MSA) and cognitive impairment. Uric acid has an anti-oxidative effect. Our objective is to clarify the correlations between serum uric acid and cognitive function as well as frontal lobe function in Chinese MSA patients. METHODS All of MSA patients were evaluated using Addenbrooke's Cognitive Examination-Revised (ACE-R), Frontal Assessment Battery (FAB), and Unified MSA Rating Scale (UMSARS). The fasting serum uric acid concentrations of MSA patients were measured. RESULTS A total of 89 probable MSA patients with a mean age of 58.6 ± 10.0 years old and disease duration of 2.6 ± 1.5 years were included. Thirty-three patients (37.1%) had global cognitive deficits according to ACE-R. Based on FAB, 35 patients (39.3%) had frontal lobe dysfunction. After adjusting for educational years, patients with cognitive deficits had lower uric acid level than patients without cognitive deficits. Patients with frontal lobe dysfunction had lower uric acid level after adjusting for UMSARS scores. In a forward multiple linear regression, uric acid level and educational years were the variables predicting the ACE-R score (F=36.540, R(2)=0.459, p=0.0001), uric acid accounting for 14% of the total variables. Uric acid was the only variable contributing to the FAB score (F=18.551, R(2)=0.176, p=0.0001). CONCLUSION Our study suggested that low level of serum uric acid was associated with cognitive deficits in MSA. Low uric acid level predicting cognitive decline in MSA needs more studies.
Collapse
Affiliation(s)
- Bei Cao
- Department of Neurology, West China Hospital, SiChuan University, 610041 Chengdu, Sichuan, People's Republic of China
| | - Qian-Qian Wei
- Department of Neurology, West China Hospital, SiChuan University, 610041 Chengdu, Sichuan, People's Republic of China
| | - Ruwei Ou
- Department of Neurology, West China Hospital, SiChuan University, 610041 Chengdu, Sichuan, People's Republic of China
| | - Jing Yang
- Department of Neurology, West China Hospital, SiChuan University, 610041 Chengdu, Sichuan, People's Republic of China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, SiChuan University, 610041 Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Perez-Lloret S, Flabeau O, Fernagut PO, Pavy-Le Traon A, Rey MV, Foubert-Samier A, Tison F, Rascol O, Meissner WG. Current Concepts in the Treatment of Multiple System Atrophy. Mov Disord Clin Pract 2015; 2:6-16. [PMID: 30363880 DOI: 10.1002/mdc3.12145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/13/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022] Open
Abstract
MSA is a progressive neurodegenerative disorder characterized by autonomic failure and a variable combination of poor levodopa-responsive parkinsonism and cerebellar ataxia (CA). Current therapeutic management is based on symptomatic treatment. Almost one third of MSA patients may benefit from l-dopa for the symptomatic treatment of parkinsonism, whereas physiotherapy remains the best therapeutic option for CA. Only midodrine and droxidopa were found to be efficient for neurogenic hypotension in double-blind, controlled studies, whereas other symptoms of autonomic failure may be managed with off-label treatments. To date, no curative treatment is available for MSA. Recent results of neuroprotective and -restorative trials have provided some hope for future advances. Considerations for future clinical trials are also discussed in this review.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Laboratory of Epidemiology and Experimental Pharmacology Institute for Biomedical Research (BIOMED) School of Medical Sciences Pontifical Catholic University of Argentina (UCA) Buenos Aires Argentina.,The National Scientific and Technical Research Council (CONICET) Buenos Aires Argentina
| | - Olivier Flabeau
- Department of Neurology Center Hospitalier de la Côte Basque Bayonne France
| | - Pierre-Olivier Fernagut
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France
| | - Anne Pavy-Le Traon
- Departments of Clinical Pharmacology and Neurosciences University Hospital and University of Toulouse 3 Toulouse France.,French Reference Center for MSA Toulouse University Hospital Toulouse France
| | - María Verónica Rey
- Laboratory of Epidemiology and Experimental Pharmacology Institute for Biomedical Research (BIOMED) School of Medical Sciences Pontifical Catholic University of Argentina (UCA) Buenos Aires Argentina.,The National Scientific and Technical Research Council (CONICET) Buenos Aires Argentina
| | - Alexandra Foubert-Samier
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France.,French Reference Center for MSA Bordeaux University Hospital Bordeaux France
| | - Francois Tison
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France.,French Reference Center for MSA Bordeaux University Hospital Bordeaux France
| | - Olivier Rascol
- Departments of Clinical Pharmacology and Neurosciences University Hospital and University of Toulouse 3 Toulouse France.,French Reference Center for MSA Toulouse University Hospital Toulouse France
| | - Wassilios G Meissner
- Institut des Maladies Neurodégénératives Université de Bordeaux Bordeaux France.,CNRS Institut des Maladies Neurodégénératives Bordeaux France.,French Reference Center for MSA Bordeaux University Hospital Bordeaux France
| |
Collapse
|
14
|
Federoff M, Schottlaender LV, Houlden H, Singleton A. Multiple system atrophy: the application of genetics in understanding etiology. Clin Auton Res 2015; 25:19-36. [PMID: 25687905 PMCID: PMC5217460 DOI: 10.1007/s10286-014-0267-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022]
Abstract
Classically defined phenotypically by a triad of cerebellar ataxia, parkinsonism, and autonomic dysfunction in conjunction with pyramidal signs, multiple system atrophy (MSA) is a rare and progressive neurodegenerative disease affecting an estimated 3-4 per every 100,000 individuals among adults 50-99 years of age. With a pathological hallmark of alpha-synuclein-immunoreactive glial cytoplasmic inclusions (GCIs; Papp-Lantos inclusions), MSA patients exhibit marked neurodegenerative changes in the striatonigral and/or olivopontocerebellar structures of the brain. As a member of the alpha-synucleinopathy family, which is defined by its well-demarcated alpha-synuclein-immunoreactive inclusions and aggregation, MSA's clinical presentation exhibits several overlapping features with other members including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Given the extensive fund of knowledge regarding the genetic etiology of PD revealed within the past several years, a genetic investigation of MSA is warranted. While a current genome-wide association study is underway for MSA to further clarify the role of associated genetic loci and single-nucleotide polymorphisms, several cases have presented solid preliminary evidence of a genetic etiology. Naturally, genes and variants manifesting known associations with PD (and other phenotypically similar neurodegenerative disorders), including SNCA and MAPT, have been comprehensively investigated in MSA patient cohorts. More recently variants in COQ2 have been linked to MSA in the Japanese population although this finding awaits replication. Nonetheless, significant positive associations with subsequent independent replication studies have been scarce. With very limited information regarding genetic mutations or alterations in gene dosage as a cause of MSA, the search for novel risk genes, which may be in the form of common variants or rare variants, is the logical nexus for MSA research. We believe that the application of next generation genetic methods to MSA will provide valuable insight into the underlying causes of this disease, and will be central to the identification of etiologic-based therapies.
Collapse
Affiliation(s)
- Monica Federoff
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
15
|
Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 2015; 16:109-20. [PMID: 25588378 DOI: 10.1038/nrn3887] [Citation(s) in RCA: 547] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The progression of many neurodegenerative diseases is thought to be driven by the template-directed misfolding, seeded aggregation and cell-cell transmission of characteristic disease-related proteins, leading to the sequential dissemination of pathological protein aggregates. Recent evidence strongly suggests that the anatomical connections made by neurons - in addition to the intrinsic characteristics of neurons, such as morphology and gene expression profile - determine whether they are vulnerable to degeneration in these disorders. Notably, this common pathogenic principle opens up opportunities for pursuing novel targets for therapeutic interventions for these neurodegenerative disorders. We review recent evidence that supports the notion of neuron-neuron protein propagation, with a focus on neuropathological and positron emission tomography imaging studies in humans.
Collapse
|
16
|
Yoon HH, Kim YH, Shin ES, Jeon SR. A rat model of striatonigral degeneration generated by simultaneous injection of 6-hydroxydopamine into the medial forebrain bundle and quinolinic acid into the striatum. J Korean Med Sci 2014; 29:1555-61. [PMID: 25408589 PMCID: PMC4234925 DOI: 10.3346/jkms.2014.29.11.1555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/03/2014] [Indexed: 11/24/2022] Open
Abstract
A double toxin-double lesion strategy is well-known to generate a rat model of striatonigral degeneration (SND) such as multiple system atrophy-parkinsonian type. However, with this model it is difficult to distinguish SND from Parkinson's disease (PD). In this study, we propose a new rat model of SND, which is generated by simultaneous injection of 6-hydroxydopamine into the medial forebrain bundle and quinolinic acid into the striatum. Stepping tests performed 30 min after intraperitoneal L-dopa administration at 6 weeks post-surgery revealed an L-dopa response in the PD group but not the SND group. Apomorphine-induced rotation tests revealed no rotational bias in the SND group, which persisted for 2 months, but contralateral rotations in the PD group. MicroPET scans revealed glucose hypometabolism and dopamine transporter impairment on the lesioned striatum in the SND group. Tyrosine hydroxylase immunostaining in the SND group revealed that 74.7% of nigral cells on the lesioned side were lost after lesion surgery. These results suggest that the proposed simultaneous double toxin-double lesion method successfully created a rat model of SND that had behavioral outcomes, multitracer microPET evaluation, and histological aspects consistent with SND pathology. This model will be useful for future study of SND.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Hwan Kim
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eun Sil Shin
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Altered expression of miR-202 in cerebellum of multiple-system atrophy. Mol Neurobiol 2014; 51:180-6. [PMID: 24981430 DOI: 10.1007/s12035-014-8788-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Cerebellar degeneration is a devastating manifestation of cerebellar-type multiple-system atrophy (MSA), a rapidly progressive neurodegenerative disease, and the exact pathogenesis is unknown. Here, we examined the expression of micro-RNAs (miRNAs), which are short noncoding RNAs, in the cerebellum of MSA and the key target genes. miRNA microarray found 11 miRNAs with significantly different expression in MSA cerebellum compared to cerebellum from age-, sex-, and postmortem interval-matched controls. miR-202 was the most upregulated in the MSA samples. In silico analysis, followed by target gene luciferase assay, in vitro transfection, and Western blotting in human samples showed that miR-202 downregulates Oct1 (Pou2f1), a transcription factor expressed in cerebellar Purkinje cells. Transfection of Neuro-2a cells with miR-202 enhanced oxidative stress-induced cell death, and an antagomir to miR-202 inhibited this effect of miR-202. This study provides novel insight into the role of miRNA in cerebellar degeneration and suggests that miR-202 is a key miRNA mediating the pathogenesis of MSA.
Collapse
|
18
|
Multiple system atrophy: a prototypical synucleinopathy for disease-modifying therapeutic strategies. Neurobiol Dis 2014; 67:133-9. [PMID: 24727096 DOI: 10.1016/j.nbd.2014.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 02/08/2023] Open
Abstract
Despite active fundamental, translational and clinical research, no therapeutic intervention has yet shown convincing effects on disease progression in Parkinson's disease (PD) patients. Indeed, several disease-modification trials failed or proved to be inconclusive due to lack of consistency between clinical rating scales and putative surrogate markers of disease progression, or confounding symptomatic effects of the tested compound. Multiple system atrophy (MSA) is a rapidly progressing orphan disorder leading to severe motor disability within a few years. Together with PD and dementia with Lewy bodies (DLB), MSA belongs to the synucleinopathies, a group of neurodegenerative disorders characterized by the abnormal accumulation of alpha-synuclein. Crucial milestones have been reached for successfully conducting clinical intervention trials in a large number of patients with MSA. In this personal view, we will review evidence, and discuss why MSA could prove the most relevant clinical model for assessing treatments that target mechanisms operating in all synucleinopathies.
Collapse
|
19
|
Lin DJ, Hermann KL, Schmahmann JD. Multiple system atrophy of the cerebellar type: clinical state of the art. Mov Disord 2014; 29:294-304. [PMID: 24615754 DOI: 10.1002/mds.25847] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/27/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023] Open
Abstract
Multiple system atrophy (MSA) is a late-onset, sporadic neurodegenerative disorder clinically characterized by autonomic failure and either poorly levodopa-responsive parkinsonism or cerebellar ataxia. It is neuropathologically defined by widespread and abundant central nervous system α-synuclein-positive glial cytoplasmic inclusions and striatonigral and/or olivopontocerebellar neurodegeneration. There are two clinical subtypes of MSA distinguished by the predominant motor features: the parkinsonian variant (MSA-P) and the cerebellar variant (MSA-C). Despite recent progress in understanding the pathobiology of MSA, investigations into the symptomatology and natural history of the cerebellar variant of the disease have been limited. MSA-C presents a unique challenge to both clinicians and researchers alike. A key question is how to distinguish early in the disease course between MSA-C and other causes of adult-onset cerebellar ataxia. This is a particularly difficult question, because the clinical framework for conceptualizing and studying sporadic adult-onset ataxias continues to undergo flux. To date, several investigations have attempted to identify clinical features, imaging, and other biomarkers that may be predictive of MSA-C. This review presents a clinically oriented overview of our current understanding of MSA-C with a focus on evidence for distinguishing MSA-C from other sporadic, adult-onset ataxias.
Collapse
Affiliation(s)
- David J Lin
- Ataxia Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
20
|
Flabeau O, Meissner WG, Ozier A, Berger P, Tison F, Fernagut PO. Breathing variability and brainstem serotonergic loss in a genetic model of multiple system atrophy. Mov Disord 2014; 29:388-95. [PMID: 24442757 DOI: 10.1002/mds.25804] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/25/2013] [Accepted: 11/06/2013] [Indexed: 12/12/2022] Open
Abstract
Breathing disorders like sleep apnea, stridor, and dysrythmic breathing are frequent in patients with multiple system atrophy (MSA). These observations have been related to neurodegeneration in several pontomedullary respiratory nuclei and may explain the occurrence of sudden death. In this study, we sought to determine whether these functional and neuropathological characteristics could be replicated in a transgenic model of MSA. Mice expressing human wild-type α-synuclein under the control of the proteolipid promoter (PLP-αSYN) were compared with age-matched controls. Using whole-body, unrestrained plethysmography, the following breathing parameters were measured: inspiratory and expiratory times, tidal volume, expiratory volume, peak inspiratory and expiratory flows, and respiratory frequency. For each category, the mean, coefficient of variation, and irregularity score were analyzed. Brains were then processed for stereological cell counts of pontomedullary respiratory nuclei. A significant increase in the coefficient of variation and irregularity score was observed for inspiratory time, tidal volume, and expiratory volume in PLP-αSYN mice (P < 0.05). Glial cytoplasmic inclusions were found in the medullary raphe of PLP-αSYN mice, together with a loss of serotonergic immunoreactivity in the raphe obscurus (P < 0.001) and pallidus (P < 0.01). There was a negative correlation between α-synuclein burden and raphe pallidus cell counts (P < 0.05). There was no significant neuronal loss in the pre-Botzinger complex. The PLP-αSYN mouse model replicates the breathing variability and part of the neuronal depletion in pontomedullary respiratory nuclei observed in patients with MSA. Our findings support the use of this model for future candidate drugs in the breathing disorders observed in MSA.
Collapse
Affiliation(s)
- Olivier Flabeau
- Service de Neurologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | | | | | | | | | | |
Collapse
|
21
|
Hatami A, Chesselet MF. Transgenic rodent models to study alpha-synuclein pathogenesis, with a focus on cognitive deficits. Curr Top Behav Neurosci 2014; 22:303-30. [PMID: 25218491 DOI: 10.1007/7854_2014_355] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aggregation of alpha-synuclein (aSyn) has been implicated in a number of degenerative diseases collectively termed synucleinopathies. Although most cases of synucleinopathies are idiopathic in nature, there are familial cases of these diseases that are due to mutations or multiplications of the gene coding for aSyn. Two of the most common synucleinopathies are Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Both of these diseases present with cognitive deficits, though with different clinical and temporal features. In PD, cognitive deficits are subtle, may occur before the onset of the classical motor symptoms, and only occasionally lead to dementia in the later stages of the disease. In contrast, dementia is the dominating feature of DLB from the disease onset. The impact of aSyn pathology on the development of neurobiological and behavioral impairments can be investigated using rodent models. There are currently several lines of transgenic mice overexpressing wild-type or mutated aSyn under various promoters. This review will provide an updated synopsis of the mouse lines available, summarize their cognitive deficits, and reflect on how deficits observed in these mice relate to the disease process in humans. In addition, we will review mouse lines where knockout strategies have been applied to study the effects of aSyn on various cognitive tasks and comment on how these lines have been used in combination with other transgenic strains, or with human aSyn overexpression by viral vectors. Finally, we will discuss the recent advent of bacterial artificial chromosome (BAC) transgenic models of PD and their effectiveness in modeling cognitive decline in PD.
Collapse
Affiliation(s)
- Asa Hatami
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA,
| | | |
Collapse
|
22
|
Fernagut PO, Meissner WG, Biran M, Fantin M, Bassil F, Franconi JM, Tison F. Age-related motor dysfunction and neuropathology in a transgenic mouse model of multiple system atrophy. Synapse 2013; 68:98-106. [PMID: 24243499 DOI: 10.1002/syn.21719] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by a progressive degeneration of the striatonigral, olivo-ponto-cerebellar, and autonomic systems. Glial cytoplasmic inclusions (GCIs) containing alpha-synuclein represent the hallmark of MSA and are recapitulated in mice expressing alpha-synuclein in oligodendrocytes. To assess if oligodendroglial expression of human wild-type alpha-synuclein in mice (proteolipid promoter, PLP-SYN) could be associated with age-related deficits, PLP-SYN and wild-type mice were assessed for motor function, brain morphometry, striatal levels of dopamine and metabolites, dopaminergic loss, and distribution of GCIs. PLP-SYN displayed age-related impairments on a beam-traversing task. MRI revealed a significantly smaller brain volume in PLP-SYN mice at 12 months, which further decreased at 18 months together with increased volume of ventricles and cortical atrophy. The distribution of GCIs was reminiscent of MSA with a high burden in the basal ganglia. Mild dopaminergic cell loss was associated with decreased dopamine turnover at 18 months. These data indicate that PLP-SYN mice may recapitulate some of the progressive features of MSA and deliver endpoints for the evaluation of therapeutic strategies.
Collapse
Affiliation(s)
- P O Fernagut
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Cao B, Guo X, Chen K, Song W, Huang R, Wei QQ, Zhao B, Shang HF. Uric acid is associated with the prevalence but not disease progression of multiple system atrophy in Chinese population. J Neurol 2013; 260:2511-5. [PMID: 23801150 DOI: 10.1007/s00415-013-7006-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 02/05/2023]
Abstract
Oxidative stress is involved in the pathogenesis of multiple system atrophy (MSA). Uric acid has an antioxidative effect. Our aim is to clarify the correlations between serum uric acid and MSA in Chinese population. A total of 234 patients with probable MSA and 240 age- and gender- matched healthy controls were included in the study. The serum uric acid levels of all the patients and controls were evaluated. The Unified MSA Rating Scale (UMSARS) was used to assess the severity and the mean rate of annualized changes of UMSARS to assess the progression of MSA. The mean age of MSA patients was 58.90 ± 9.00 years and the mean disease duration was 2.60 ± 1.75 years. The serum uric acid levels of MSA patients were significantly lower than that of controls in males (p = 0.0001). The occurrence of MSA was increased in the lowest uric acid quartiles compared with the highest uric acid quartiles (p = 0.005). In a gender-specific analysis, increased occurrence was found in the lowest quartiles and second quartiles compared with the highest quartiles in males (p = 0.001 and p = 0.0001 respectively), but not in females. No correlation was found between the mean rate of annualized changes and serum levels of uric acid, as well as other independent factors, such as age, BMI, gender, subtype (C-type or P-type) and disease duration at the initial visit in 107 followed-up patients. MSA patients have lower levels of serum uric acid than controls. High levels of serum uric acid may be associated with a lower prevalence of MSA in the Chinese population, especially in males. However, serum uric acid does not deteriorate or ameliorate the progression of MSA.
Collapse
Affiliation(s)
- Bei Cao
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, 610041, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Multiple system atrophy (MSA) is a predominantly sporadic, adult-onset, fatal neurodegenerative disease of unknown etiology. MSA is characterized by autonomic failure, levodopa-unresponsive parkinsonism, cerebellar ataxia and pyramidal signs in any combination. MSA belongs to a group of neurodegenerative disorders termed α-synucleinopathies, which also include Parkinson's disease and dementia with Lewy bodies. Their common pathological feature is the occurrence of abnormal α-synuclein positive inclusions in neurons or glial cells. In MSA, the main cell type presenting aggregates composed of α-synuclein are oligodendroglial cells . This pathological hallmark, also called glial cytoplasmic inclusions (GCIs) , is associated with progressive and profound neuronal loss in various regions of the brain. The development of animal models of MSA is justified by the limited understanding of the mechanisms of neurodegeneration and GCIs formation, which is paralleled by a lack of therapeutic strategies. Two main types of rodent models have been generated to replicate different features of MSA neuropathology. On one hand, neurotoxin-based models have been produced to reproduce neuronal loss in substantia nigra pars compacta and striatum. On the other hand, transgenic mouse models with overexpression of α-synuclein in oligodendroglia have been used to reproduce GCIs-related pathology. This chapter gives an overview of the atypical Parkinson's syndrome MSA and summarizes the currently available MSA animal models and their relevance for pre-clinical testing of disease-modifying therapies.
Collapse
Affiliation(s)
- Lisa Fellner
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria,
| | | | | |
Collapse
|