1
|
Truong LD, Trostel J, Roncal C, Cara-Fuentes G, Miyazaki M, Miyazaki-Anzai S, Andres-Hernando A, Sasai F, Lanaspa M, Johnson RJ, Garcia GE. Production of Acetylcholine by Podocytes and its Protection from Kidney Injury in GN. J Am Soc Nephrol 2024:00001751-990000000-00423. [PMID: 39302734 DOI: 10.1681/asn.0000000000000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Key Points
Our study demonstrated the sole enzyme responsible for acetylcholine production, choline acetyltransferase, was expressed in podocytes.Acetylcholine decreased glomerular injury in GN by reducing inflammation and protecting endothelium.Choline acetyltransferase/acetylcholine production was induced in podocytes with drugs already available.
Background
One of the most important factors modulating endothelial health is acetylcholine; and while it is associated as a cholinergic neurotransmitter, it is also expressed by non-neuronal cells. However, its role in the kidney, which does not receive cholinergic innervation, remains unknown.
Methods
To determine whether acetylcholine is produced in the kidney, we used choline acetyltransferase (ChAT) (BAC)–enhanced green fluorescent protein (ChAT mice) transgenic mice in which enhanced green fluorescent protein is expressed under the control of the endogenous ChAT transcriptional regulatory elements. We then investigated the role of acetylcholine in kidney disease by inducing antiglomerular basement membrane GN (anti-GBM GN) in ChAT transgenic mice.
Results
We demonstrate ChAT, the sole enzyme responsible for acetylcholine production, was expressed in glomerular podocytes and produced acetylcholine. We also show during anti-GBM GN in ChAT transgenic mice, ChAT expression was induced in the glomeruli, mainly in podocytes, and protects mice from kidney injury with marked reduction of glomerular proliferation/fibrinoid necrosis (by 71%), crescent formation (by 98%), and tubular injury (by 78%). By contrast, specific knockout of podocyte ChAT worsened the severity of the disease. The mechanism of protection included reduction of inflammation, attenuation of angiogenic factors reduction, and increase of endothelial nitric oxide synthase expression. In vitro and in vivo studies demonstrated available drugs such as cholinesterase inhibitors and ChAT inducers increased the expression of podocyte-ChAT and acetylcholine production.
Conclusions
These findings suggest de novo synthesis of acetylcholine by podocytes protected against inflammation and glomerular endothelium damage in anti-GBM GN.
Collapse
Affiliation(s)
- Luan D Truong
- Department of Pathology, Baylor College of Medicine, The Houston Methodist Hospital, Houston, Texas
| | - Jessica Trostel
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carlos Roncal
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fumihiko Sasai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Miguel Lanaspa
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriela E Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Chuhma N, Rayport S. Regional heterogeneity in the membrane properties of mouse striatal neurons. Front Cell Neurosci 2024; 18:1412897. [PMID: 39144155 PMCID: PMC11321984 DOI: 10.3389/fncel.2024.1412897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
The cytoarchitecture of the striatum is remarkably homogeneous, in contrast to the regional variation in striatal functions. Whether differences in the intrinsic membrane properties of striatal neurons contribute to regional heterogeneity has not been addressed systematically. We made recordings throughout the young adult mouse striatum under identical conditions, with synaptic input blocked, from four major striatal neuron types, namely, the two subtypes of spiny projection neurons (SPNs), cholinergic interneurons (ChIs), and fast-spiking GABAergic interneurons (FSIs), sampling at least 100 cells per cell type. Regional variation manifested across all cell types. All cell types in the nucleus accumbens (NAc) shell had higher input impedance and increased excitability. Cells in the NAc core were differentiated from the caudate-putamen (CPu) for both SPN subtypes by smaller action potentials and increased excitability. Similarity between the two SPN subtypes showed regional variation, differing more in the NAc than in the CPu. So, in the Str, both the intrinsic properties of interneurons and projection neurons are regionally heterogeneous, with the greatest difference between the NAc and CPu; greater excitability of NAc shell neurons may make the region more susceptible to activity-dependent plasticity.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| |
Collapse
|
3
|
Biosca-Brull J, Basaure P, Guardia-Escote L, Cabré M, Blanco J, Morales-Navas M, Sánchez-Santed F, Colomina MT. Environmental exposure to chlorpyrifos during gestation, APOE polymorphism and the risk on autistic-like behaviors. ENVIRONMENTAL RESEARCH 2023; 237:116969. [PMID: 37659636 DOI: 10.1016/j.envres.2023.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Autism spectrum disorder (ASD) encompasses several neurodevelopmental conditions characterized by communication and social impairment, as well as repetitive patterns of behavior. However, it can co-occur with other mental conditions such as anxiety. The massive use of chlorpyrifos (CPF) has been linked to the increased prevalence of developmental disorders. Likewise, ASD has also been closely linked to a wide variety of genetic factors. The aims of the present investigation are to study how gestational CPF exposure and APOE polymorphism affects communication skills, early development and mid-term anxiety-like behaviors, as well as, changes in gene expression related to the cholinergic system. C57BL/6J and humanized apoE3 and apoE4 homozygous mice were exposed to 0 or 1 mg/kg/day of CPF through the diet, from gestational day (GD) 12-18. In addition, a group of C57BL/6J females were injected subcutaneously with 300 mg/kg/day of valproic acid (VPA) on GD 12 and 13. This group was used as a positive control for studying some core and associated autism-like behaviors. Communication skills by means of ultrasonic vocalizations and physical/motor development were assessed during the preweaning period, whereas locomotor activity, anxiety-like behaviors and the gene expression of cholinergic elements were evaluated during adolescence. Our results showed that C57BL/6J mice prenatally exposed to CPF or VPA showed a decrease in body weight and a delay in eye opening. Communication and anxiety behavior were affected differently depending on treatment, while gene expression was altered by sex and treatment. In addition, none of the parameters evaluated in apoE transgenic mice exposed to CPF were affected, but there were differences between genotypes. Therefore, we suggest that prenatal CPF exposure and VPA produce divergent effects on communication and anxiety.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Miguel Morales-Navas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| |
Collapse
|
4
|
Chuhma N, Oh SJ, Rayport S. The dopamine neuron synaptic map in the striatum. Cell Rep 2023; 42:112204. [PMID: 36867530 PMCID: PMC10657204 DOI: 10.1016/j.celrep.2023.112204] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Dopamine neurons project to the striatum to control movement, cognition, and motivation via slower volume transmission as well as faster dopamine, glutamate, and GABA synaptic actions capable of conveying the temporal information in dopamine neuron firing. To define the scope of these synaptic actions, recordings of dopamine-neuron-evoked synaptic currents were made in four major striatal neuron types, spanning the entire striatum. This revealed that inhibitory postsynaptic currents are widespread, while excitatory postsynaptic currents are localized to the medial nucleus accumbens and the anterolateral-dorsal striatum, and that all synaptic actions are weak in the posterior striatum. Synaptic actions in cholinergic interneurons are the strongest, variably mediating inhibition throughout the striatum and excitation in the medial accumbens, capable of controlling their activity. This mapping shows that dopamine neuron synaptic actions extend throughout the striatum, preferentially target cholinergic interneurons, and define distinct striatal subregions.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Soo Jung Oh
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
5
|
Tryon SC, Sakamoto IM, Kaigler KF, Gee G, Turner J, Bartley K, Fadel JR, Wilson MA. ChAT::Cre transgenic rats show sex-dependent altered fear behaviors, ultrasonic vocalizations and cholinergic marker expression. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12837. [PMID: 36636833 PMCID: PMC9994175 DOI: 10.1111/gbb.12837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
The cholinergic system is a critical regulator of Pavlovian fear learning and extinction. As such, we have begun investigating the cholinergic system's involvement in individual differences in cued fear extinction using a transgenic ChAT::Cre rat model. The current study extends behavioral phenotyping of a transgenic ChAT::Cre rat line by examining both freezing behavior and ultrasonic vocalizations (USVs) during a Pavlovian cued fear learning and extinction paradigm. Freezing, 22 kHz USVs, and 50 kHz USVs were compared between male and female transgenic ChAT::Cre+ rats and their wildtype (Cre-) littermates during fear learning, contextual and cue-conditioned fear recall, cued fear extinction, and generalization to a novel tone. During contextual and cued fear recall ChAT::Cre+ rats froze slightly more than their Cre- littermates, and displayed significant sex differences in contextual and cue-conditioned freezing, 22 kHz USVs, and 50 kHz USVs. Females showed more freezing than males in fear recall trials, but fewer 22 kHz distress calls during fear learning and recall. Females also produced more 50 kHz USVs during exposure to the testing chambers prior to tone (or shock) presentation compared with males, but this effect was blunted in ChAT::Cre+ females. Corroborating previous studies, ChAT::Cre+ transgenic rats overexpressed vesicular acetylcholine transporter immunolabeling in basal forebrain, striatum, basolateral amygdala, and hippocampus, but had similar levels of acetylcholinesterase and numbers of ChAT+ neurons as Cre- rats. This study suggests that variance in behavior between ChAT::Cre+ and wildtype rats is sex dependent and advances theories that distinct neural circuits and processes regulate sexually divergent fear responses.
Collapse
Affiliation(s)
- Sarah C. Tryon
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Iris M. Sakamoto
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Kris F. Kaigler
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Gabriella Gee
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jarrett Turner
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Katherine Bartley
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Marlene A. Wilson
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
- Columbia VA Health Care SystemColumbiaSouth CarolinaUSA
| |
Collapse
|
6
|
Characterization of social behavior in young and middle-aged ChAT-IRES-Cre mouse. PLoS One 2022; 17:e0272141. [PMID: 35925937 PMCID: PMC9352053 DOI: 10.1371/journal.pone.0272141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022] Open
Abstract
The cholinergic system is an important modulator of brain processes. It contributes to the regulation of several cognitive functions and emotional states, hence altering behaviors. Previous works showed that cholinergic (nicotinic) receptors of the prefrontal cortex are needed for adapted social behaviors. However, these data were obtained in mutant mice that also present alterations of several neurotransmitter systems, in addition to the cholinergic system. ChAT-IRES-Cre mice, that express the Cre recombinase specifically in cholinergic neurons, are useful tools to investigate the role of the cholinergic circuits in behavior. However, their own behavioral phenotype has not yet been fully characterized, in particular social behavior. In addition, the consequences of aging on the cholinergic system of ChAT-IRES-Cre mice has never been studied, despite the fact that aging is known to compromise the cholinergic system efficiency. The aim of the current study was thus to characterize the social phenotype of ChAT-IRES-Cre mice both at young (2–3 months) and middle (10–11 months) ages. Our results reveal an alteration of the cholinergic system, evidenced by a decrease of ChAT, CHT and VAChT gene expression in the striatum of the mice, that was accompanied by mild social disturbances and a tendency towards anxiety. Aging decreased social dominance, without being amplified by the cholinergic alterations. Altogether, this study shows that ChAT-IRES-Cre mice are useful models for studying the cholinergic system‘s role in social behavior using appropriate modulating technics (optogenetic or DREADD).
Collapse
|
7
|
Spelta LEW, Torres YYS, de Oliveira SCWSEF, Yonamine M, Bailey A, Camarini R, Garcia RCT, Marcourakis T. Chronic escalating-dose and acute binge cocaine treatments change the hippocampal cholinergic muscarinic system on drug presence and after withdrawal. Toxicol Appl Pharmacol 2022; 447:116068. [PMID: 35597300 DOI: 10.1016/j.taap.2022.116068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/21/2022]
Abstract
Cocaine addiction is a relapsing disorder with loss of control in limiting drug intake. Considering the involvement of acetylcholine in the neurobiology of the disease, our aim was to evaluate whether cocaine induces plastic changes in the hippocampal cholinergic muscarinic system. Male Swiss-Webster mice received saline or cocaine (ip) three times daily (60-min intervals) either acutely or in an escalating-dose binge paradigm for 14 days. Locomotor activity was measured in all treatment days. Dopaminergic and cholinergic muscarinic receptors (D1R, D2R, M1-M5, mAChRs), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT) and acetylcholinesterase (AChE) were quantified in the hippocampus by immunoblotting one hour after the last injection (on drug) or after 14 days of abstinence (withdrawal). Escalating-dose group showed cocaine-induced locomotor sensitization from day 2. M3 mAChR and ChAT significantly increased after the on-drug acute binge treatment. Escalating-dose on-drug group showed increased ChAT, M1, M5 mAChR and D2R; and decreased D1R. Acute-binge withdrawal group showed increased VAChT, M2 mAChR, D1R, and D2R; and decreased M1 mAChR. Escalating-dose withdrawal group presented increased D1R and VAChT and decreased M1 mAChR and D2R. Locomotor activity was negatively correlated with M1 mAChR and AChE in on-drug group and positively correlated with VAChT in withdrawal group. M1 mAChR was positively correlated with M2 mAChR and ChAT in on-drug group, whereas ChAT was positively correlated with M5 mAChR in withdrawal group. The results indicate that cocaine induced an increase in the hippocampal cholinergic tone in the presence of the drug, whereas withdrawal causes a resetting in the system.
Collapse
Affiliation(s)
- Lidia E W Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Yuli Y S Torres
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Sarah C W S E F de Oliveira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil; Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Maurício Yonamine
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Rosana Camarini
- Department of Pharmacology, Laboratory of Neurochemical and Behavior Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Prédio 1, 05508-900 São Paulo/SP, Brazil.
| | - Raphael C T Garcia
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, 1° andar, 09913-030 Diadema/SP, Brazil.
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil.
| |
Collapse
|
8
|
Albin RL, Kanel P, van Laar T, van der Zee S, Roytman S, Koeppe RA, Scott PJH, Bohnen NI. No Dopamine Agonist Modulation of Brain [ 18F]FEOBV Binding in Parkinson's Disease. Mol Pharm 2022; 19:1176-1182. [PMID: 35289620 PMCID: PMC8983523 DOI: 10.1021/acs.molpharmaceut.1c00961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) ligand targets the vesicular acetylcholine transporter. Recent [18F]FEOBV PET rodent studies suggest that regional brain [18F]FEOBV binding may be modulated by dopamine D2-like receptor agents. We examined associations of regional brain [18F]FEOBV PET binding in Parkinson's disease (PD) subjects without versus with dopamine D2-like receptor agonist drug treatment. PD subjects (n = 108; 84 males, 24 females; mean age 68.0 ± 7.6 [SD] years), mean disease duration of 6.0 ± 4.0 years, and mean Movement Disorder Society-revised Unified PD Rating Scale III 35.5 ± 14.2 completed [18F]FEOBV brain PET imaging. Thirty-eight subjects were taking dopamine D2-like agonists. Vesicular monoamine transporter type 2 [11C]dihydrotetrabenazine (DTBZ) PET was available in a subset of 54 patients. Subjects on dopamine D2-like agonists were younger, had a longer duration of disease, and were taking a higher levodopa equivalent dose (LED) compared to subjects not taking dopamine agonists. A group comparison between subjects with versus without dopamine D2-like agonist use did not yield significant differences in cortical, striatal, thalamic, or cerebellar gray matter [18F]FEOBV binding. Confounder analysis using age, duration of disease, LED, and striatal [11C]DTBZ binding also failed to show significant regional [18F]FEOBV binding differences between these two groups. Chronic D2-like dopamine agonist use in PD subjects is not associated with significant alterations of regional brain [18F]FEOBV binding.
Collapse
Affiliation(s)
- Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States.,GRECC & Neurology Service, VAAAHS, Ann Arbor, Michigan 48105, United States.,University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, Michigan 48109, United States
| | - Prabesh Kanel
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Teus van Laar
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sygrid van der Zee
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert A Koeppe
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States.,GRECC & Neurology Service, VAAAHS, Ann Arbor, Michigan 48105, United States.,University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Personalized Management and Treatment of Alzheimer's Disease. Life (Basel) 2022; 12:life12030460. [PMID: 35330211 PMCID: PMC8951963 DOI: 10.3390/life12030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a priority health problem with a high cost to society and a large consumption of medical and social resources. The management of AD patients is complex and multidisciplinary. Over 90% of patients suffer from concomitant diseases and require personalized therapeutic regimens to reduce adverse drug reactions (ADRs), drug−drug interactions (DDIs), and unnecessary costs. Men and women show substantial differences in their AD-related phenotypes. Genomic, epigenetic, neuroimaging, and biochemical biomarkers are useful for predictive and differential diagnosis. The most frequent concomitant diseases include hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60−90%), neuropsychiatric disorders (60−90%), and cancer (10%). Over 90% of AD patients require multifactorial treatments with risk of ADRs and DDIs. The implementation of pharmacogenetics in clinical practice can help optimize the limited therapeutic resources available to treat AD and personalize the use of anti-dementia drugs, in combination with other medications, for the treatment of concomitant disorders.
Collapse
|
10
|
Cacabelos R, Naidoo V, Martínez-Iglesias O, Corzo L, Cacabelos N, Pego R, Carril JC. Pharmacogenomics of Alzheimer's Disease: Novel Strategies for Drug Utilization and Development. Methods Mol Biol 2022; 2547:275-387. [PMID: 36068470 DOI: 10.1007/978-1-0716-2573-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD) is a priority health problem in developed countries with a high cost to society. Approximately 20% of direct costs are associated with pharmacological treatment. Over 90% of patients require multifactorial treatments, with risk of adverse drug reactions (ADRs) and drug-drug interactions (DDIs) for the treatment of concomitant diseases such as hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60-90%), neuropsychiatric disorders (60-90%), and cancer (10%).For the past decades, pharmacological studies in search of potential treatments for AD focused on the following categories: neurotransmitter enhancers (11.38%), multitarget drugs (2.45%), anti-amyloid agents (13.30%), anti-tau agents (2.03%), natural products and derivatives (25.58%), novel synthetic drugs (8.13%), novel targets (5.66%), repository drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and other compounds (<1%).Pharmacogenetic studies have shown that the therapeutic response to drugs in AD is genotype-specific in close association with the gene clusters that constitute the pharmacogenetic machinery (pathogenic, mechanistic, metabolic, transporter, pleiotropic genes) under the regulatory control of epigenetic mechanisms (DNA methylation, histone/chromatin remodeling, microRNA regulation). Most AD patients (>60%) are carriers of over ten pathogenic genes. The genes that most frequently (>50%) accumulate pathogenic variants in the same AD case are A2M (54.38%), ACE (78.94%), BIN1 (57.89%), CLU (63.15%), CPZ (63.15%), LHFPL6 (52.63%), MS4A4E (50.87%), MS4A6A (63.15%), PICALM (54.38%), PRNP (80.7059), and PSEN1 (77.19%). There is also an accumulation of 15 to 26 defective pharmagenes in approximately 85% of AD patients. About 50% of AD patients are carriers of at least 20 mutant pharmagenes, and over 80% are deficient metabolizers for the most common drugs, which are metabolized via the CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 enzymes.The implementation of pharmacogenetics can help optimize drug development and the limited therapeutic resources available to treat AD, and personalize the use of anti-dementia drugs in combination with other medications for the treatment of concomitant disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain.
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Olaia Martínez-Iglesias
- Department of Medical Epigenetics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Rocío Pego
- Department of Neuropsychology, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Juan C Carril
- Department of Genomics and Pharmacogenomics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
11
|
Xhima K, Markham-Coultes K, Kofoed RH, Saragovi HU, Hynynen K, Aubert I. Ultrasound delivery of a TrkA agonist confers neuroprotection to Alzheimer-associated pathologies. Brain 2021; 145:2806-2822. [PMID: 34919633 PMCID: PMC9420023 DOI: 10.1093/brain/awab460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Early degeneration of basal forebrain cholinergic neurons (BFCNs) contributes substantially to cognitive decline in Alzheimer's disease (AD). Evidence from preclinical models of neuronal injury and aging support a pivotal role for nerve growth factor (NGF) in neuroprotection, resilience, and cognitive function. However, whether NGF can provide therapeutic benefit in the presence of AD-related pathologies remains unresolved. Perturbations in the NGF signaling system in AD may render neurons unable to benefit from NGF administration. Additionally, challenges related to brain delivery remain for clinical translation of NGF-based therapies in AD. To be safe and efficient, NGF-related agents should stimulate the NGF receptor, tropomyosin receptor kinase A (TrkA), avoid activation through the p75 neurotrophin receptor (p75NTR), and be delivered non-invasively to targeted brain areas using real-time monitoring. We addressed these limitations using MRI-guided focused ultrasound (MRIgFUS) to increase blood-brain barrier (BBB) permeability locally and transiently, allowing an intravenously administered TrkA agonist that does not activate p75NTR, termed D3, to enter targeted brain areas. Here, we report the therapeutic potential of selective TrkA activation in a transgenic mouse model that recapitulates numerous AD-associated pathologies. Repeated MRIgFUS-mediated delivery of D3 (D3/FUS) improved cognitive function in the TgCRND8 model of AD. Mechanistically, D3/FUS treatment effectively attenuated cholinergic degeneration and promoted functional recovery. D3/FUS treatment also resulted in widespread reduction of brain amyloid pathology and dystrophic neurites surrounding amyloid plaques. Furthermore, D3/FUS markedly enhanced hippocampal neurogenesis in TgCRND8 mice, implicating TrkA agonism as a novel therapeutic target to promote neurogenesis in the context of AD-related pathology. Thus, this study provides evidence that selective TrkA agonism confers neuroprotection to effectively counteract AD-related vulnerability. Recent clinical trials demonstrate that non-invasive BBB modulation using MRIgFUS is safe, feasible and reversible in AD patients. TrkA receptor agonists coupled with MRIgFUS delivery constitute a promising disease-modifying strategy to foster brain health and counteract cognitive decline in AD.
Collapse
Affiliation(s)
- Kristiana Xhima
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kelly Markham-Coultes
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Rikke Hahn Kofoed
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - H. Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Ophthalmology and Vision Sciences, McGill University, Montreal, QC, H4A 3S5, Canada
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Isabelle Aubert
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
12
|
Tassone A, Martella G, Meringolo M, Vanni V, Sciamanna G, Ponterio G, Imbriani P, Bonsi P, Pisani A. Vesicular Acetylcholine Transporter Alters Cholinergic Tone and Synaptic Plasticity in DYT1 Dystonia. Mov Disord 2021; 36:2768-2779. [PMID: 34173686 PMCID: PMC9291835 DOI: 10.1002/mds.28698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background Acetylcholine‐mediated transmission plays a central role in the impairment of corticostriatal synaptic activity and plasticity in multiple DYT1 mouse models. However, the nature of such alteration remains unclear. Objective The aim of the present work was to characterize the mechanistic basis of cholinergic dysfunction in DYT1 dystonia to identify potential targets for pharmacological intervention. Methods We utilized electrophysiology recordings, immunohistochemistry, enzymatic activity assays, and Western blotting techniques to analyze in detail the cholinergic machinery in the dorsal striatum of the Tor1a+/− mouse model of DYT1 dystonia. Results We found a significant increase in the vesicular acetylcholine transporter (VAChT) protein level, the protein responsible for loading acetylcholine (ACh) from the cytosol into synaptic vesicles, which indicates an altered cholinergic tone. Accordingly, in Tor1a+/− mice we measured a robust elevation in basal ACh content coupled to a compensatory enhancement of acetylcholinesterase (AChE) enzymatic activity. Moreover, pharmacological activation of dopamine D2 receptors, which is expected to reduce ACh levels, caused an abnormal elevation in its content, as compared to controls. Patch‐clamp recordings revealed a reduced effect of AChE inhibitors on cholinergic interneuron excitability, whereas muscarinic autoreceptor function was preserved. Finally, we tested the hypothesis that blockade of VAChT could restore corticostriatal long‐term synaptic plasticity deficits. Vesamicol, a selective VAChT inhibitor, rescued a normal expression of synaptic plasticity. Conclusions Overall, our findings indicate that VAChT is a key player in the alterations of striatal plasticity and a novel target to normalize cholinergic dysfunction observed in DYT1 dystonia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vanni
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
13
|
Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Metab Toxicol 2020; 16:673-701. [PMID: 32520597 DOI: 10.1080/17425255.2020.1779700] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cholinergic dysfunction, demonstrated in the late 1970s and early 1980s, led to the introduction of acetylcholinesterase inhibitors (AChEIs) in 1993 (Tacrine) to enhance cholinergic neurotransmission as the first line of treatment against Alzheimer's disease (AD). The new generation of AChEIs, represented by Donepezil (1996), Galantamine (2001) and Rivastigmine (2002), is the only treatment for AD to date, together with Memantine (2003). AChEIs are not devoid of side-effects and their cost-effectiveness is limited. An option to optimize the correct use of AChEIs is the implementation of pharmacogenetics (PGx) in the clinical practice. AREAS COVERED (i) The cholinergic system in AD, (ii) principles of AD PGx, (iii) PGx of Donepezil, Galantamine, Rivastigmine, Huperzine and other treatments, and (iv) practical recommendations. EXPERT OPINION The most relevant genes influencing AChEI efficacy and safety are APOE and CYPs. APOE-4 carriers are the worst responders to AChEIs. With the exception of Rivastigmine (UGT2B7, BCHE-K), the other AChEIs are primarily metabolized via CYP2D6, CYP3A4, and UGT enzymes, with involvement of ABC transporters and cholinergic genes (CHAT, ACHE, BCHE, SLC5A7, SLC18A3, CHRNA7) in most ethnic groups. Defective variants may affect the clinical response to AChEIs. PGx geno-phenotyping is highly recommended prior to treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine , Bergondo, Corunna, Spain
| |
Collapse
|
14
|
Xhima K, Markham-Coultes K, Nedev H, Heinen S, Saragovi HU, Hynynen K, Aubert I. Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eaax6646. [PMID: 32010781 PMCID: PMC6976301 DOI: 10.1126/sciadv.aax6646] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 05/24/2023]
Abstract
The degeneration of cholinergic neurons is a prominent feature of Alzheimer's disease (AD). In animal models of injury and aging, nerve growth factor (NGF) enhances cholinergic cell survival and function, contributing to improved memory. In the presence of AD pathology, however, NGF-related therapeutics have yet to fulfill their regenerative potential. We propose that stimulating the TrkA receptor, without p75NTR activation, is key for therapeutic efficacy. Supporting this hypothesis, the selective TrkA agonist D3 rescued neurotrophin signaling in TgCRND8 mice, whereas NGF, interacting with both TrkA and p75NTR, did not. D3, delivered intravenously and noninvasively to the basal forebrain using MRI-guided focused ultrasound (MRIgFUS)-mediated blood-brain barrier (BBB) permeability activated TrkA-related signaling cascades and enhanced cholinergic neurotransmission. Recent clinical trials support the safety and feasibility of MRIgFUS BBB modulation in AD patients. Neuroprotective agents targeting TrkA, combined with MRIgFUS BBB modulation, represent a promising strategy to counter neurodegeneration in AD.
Collapse
Affiliation(s)
- K. Xhima
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - K. Markham-Coultes
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - H. Nedev
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - S. Heinen
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - H. U. Saragovi
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - K. Hynynen
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - I. Aubert
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Mantanona CP, Alsiö J, Elson JL, Fisher BM, Dalley JW, Bussey T, Pienaar IS. Altered motor, anxiety-related and attentional task performance at baseline associate with multiple gene copies of the vesicular acetylcholine transporter and related protein overexpression in ChAT::Cre+ rats. Brain Struct Funct 2019; 224:3095-3116. [PMID: 31506825 PMCID: PMC6875150 DOI: 10.1007/s00429-019-01957-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Transgenic rodents expressing Cre recombinase cell specifically are used for exploring mechanisms regulating behavior, including those mediated by cholinergic signaling. However, it was recently reported that transgenic mice overexpressing a bacterial artificial chromosome containing choline acetyltransferase (ChAT) gene, for synthesizing the neurotransmitter acetylcholine, present with multiple vesicular acetylcholine transporter (VAChT) gene copies, resulting in altered cholinergic tone and accompanying behavioral abnormalities. Since ChAT::Cre+ rats, used increasingly for understanding the biological basis of CNS disorders, utilize the mouse ChAT promotor to control Cre recombinase expression, we assessed for similar genotypical and phenotypical differences in such rats compared to wild-type siblings. The rats were assessed for mouse VAChT copy number, VAChT protein expression levels and for sustained attention, response control and anxiety. Rats were also subjected to a contextual fear conditioning paradigm using an unconditional fear-inducing stimulus (electrical foot shocks), with blood samples taken at baseline, the fear acquisition phase and retention testing, for measuring blood plasma markers of hypothalamic-pituitary-adrenal gland (HPA)-axis activity. ChAT::Cre+ rats expressed multiple mouse VAChT gene copies, resulting in significantly higher VAChT protein expression, revealed anxiolytic behavior, hyperlocomotion and deficits in tasks requiring sustained attention. The HPA-axis was intact, with unaltered circulatory levels of acute stress-induced corticosterone, leptin and glucose. Our findings, therefore, reveal that in ChAT::Cre+ rats, VAChT overexpression associates with significant alterations of certain cognitive, motor and affective functions. Although highly useful as an experimental tool, it is essential to consider the potential effects of altered cholinergic transmission on baseline behavior in ChAT::Cre rats.
Collapse
Affiliation(s)
- Craig P Mantanona
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Johan Alsiö
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Beth M Fisher
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Timothy Bussey
- Department of Psychology, The Behavioral and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, UK.
| |
Collapse
|
16
|
Perez-Medina AL, Galligan JJ. Optogenetic analysis of neuromuscular transmission in the colon of ChAT-ChR2-YFP BAC transgenic mice. Am J Physiol Gastrointest Liver Physiol 2019; 317:G569-G579. [PMID: 31411893 PMCID: PMC6879885 DOI: 10.1152/ajpgi.00089.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Propulsion of luminal content along the gut requires coordinated contractions and relaxations of gastrointestinal smooth muscles controlled by the enteric nervous system. Activation of excitatory motor neurons (EMNs) causes muscle contractions, whereas inhibitory motor neuron (IMN) activation causes muscle relaxation. EMNs release acetylcholine (ACh), which acts at muscarinic receptors on smooth muscle cells and adjacent interstitial cells of Cajal, causing excitatory junction potentials (EJPs). IMNs release ATP (or another purine) and nitric oxide to cause inhibitory junction potentials (IJPs) and muscle relaxation. We used commercially available choline acetyltransferase (ChAT)-channelrhodopsin-2 (ChR2)-yellow fluorescent protein (YFP) bacterial artificial chromosome (BAC) transgenic mice, which express ChR2 in cholinergic neurons, to study cholinergic neuromuscular transmission in the colon. Intracellular microelectrodes were used to record IJPs and EJPs from circular muscle cells. We used blue light stimulation (BLS, 470 nm, 20 mW/mm2) and electrical field stimulation (EFS) to activate myenteric neurons. EFS evoked IJPs only, whereas BLS evoked EJPs and IJPs. Mecamylamine (10 µM, nicotinic cholinergic receptor antagonist) reduced BLS-evoked IJPs by 50% but had no effect on electrically evoked IJPs. MRS 2179 (10 µM, a P2Y1 receptor antagonist) blocked BLS-evoked IJPs. MRS 2179 and Nω-nitro-l-arginine (100 µM, nitric oxide synthase inhibitor) isolated the EJP, which was blocked by scopolamine (1 µM, muscarinic ACh receptor antagonist). Immunohistochemistry revealed ChAT expression in ~88% of enhanced YFP (eYFP)-expressing neurons, whereas 12% of eYFP neurons expressed nitric oxide synthase. These data show that cholinergic interneurons synapse with EMNs and IMNs to cause contraction and relaxation of colonic smooth muscle.NEW & NOTEWORTHY Electrical stimulation of interganglionic connectives has been used widely to study synaptic transmission in the enteric nervous system. However, electrical stimulation will activate many types of neurons and nerve fibers, which complicates data interpretation. Optogenetic activation of enteric neurons using genetically modified mice expressing channelrhodopsin-2 in cholinergic neurons offers a new approach that provides more specificity for nerve stimulation when studying myenteric plexus nerve circuitry.
Collapse
Affiliation(s)
| | - James J. Galligan
- 1Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan,2Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
17
|
Arvin MC, Jin XT, Yan Y, Wang Y, Ramsey MD, Kim VJ, Beckley NA, Henry BA, Drenan RM. Chronic Nicotine Exposure Alters the Neurophysiology of Habenulo-Interpeduncular Circuitry. J Neurosci 2019; 39:4268-4281. [PMID: 30867261 PMCID: PMC6538858 DOI: 10.1523/jneurosci.2816-18.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/11/2019] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
Antagonism of nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb) or interpeduncular nucleus (IPN) triggers withdrawal-like behaviors in mice chronically exposed to nicotine, implying that nicotine dependence involves the sensitization of nicotinic signaling. Identification of receptor and/or neurophysiological mechanisms underlying this sensitization is important, as it could promote novel therapeutic strategies to reduce tobacco use. Using an approach involving photoactivatable nicotine, we previously demonstrated that chronic nicotine (cNIC) potently enhances nAChR function in dendrites of MHb neurons. However, whether cNIC modulates downstream components of the habenulo-interpeduncular (Hb-IP) circuit is unknown. In this study, cNIC-mediated changes to Hb-IP nAChR function were examined in mouse (male and female) brain slices using molecular, electrophysiological, and optical techniques. cNIC enhanced action potential firing and modified spike waveform characteristics in MHb neurons. Nicotine uncaging revealed nAChR functional enhancement by cNIC on proximal axonal membranes. Similarly, nAChR-driven glutamate release from MHb axons was enhanced by cNIC. In IPN, the target structure of MHb axons, neuronal morphology, and nAChR expression is complex, with stronger nAChR function in the rostral subnucleus [rostral IPN (IPR)]. As in MHb, cNIC induced strong upregulation of nAChR function in IPN neurons. This, coupled with cNIC-enhanced nicotine-stimulated glutamate release, was associated with stronger depolarization responses to brief (1 ms) nicotine uncaging adjacent to IPR neurons. Together, these results indicate that chronic exposure to nicotine dramatically alters nicotinic cholinergic signaling and cell excitability in Hb-IP circuits, a key pathway involved in nicotine dependence.SIGNIFICANCE STATEMENT This study uncovers several neuropharmacological alterations following chronic exposure to nicotine in a key brain circuit involved in nicotine dependence. These results suggest that smokers or regular users of electronic nicotine delivery systems (i.e., "e-cigarettes") likely undergo sensitization of cholinergic circuitry in the Hb-IP system. Reducing the activity of Hb-IP nAChRs, either volitionally during smoking cessation or inadvertently via receptor desensitization during nicotine intake, may be a key trigger of withdrawal in nicotine dependence. Escalation of nicotine intake in smokers, or tolerance, may involve stimulation of these sensitized cholinergic pathways. Smoking cessation therapeutics are only marginally effective, and by identifying cellular/receptor mechanisms of nicotine dependence, our results take a step toward improved therapeutic approaches for this disorder.
Collapse
Affiliation(s)
- Matthew C Arvin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Xiao-Tao Jin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yijin Yan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yong Wang
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Matthew D Ramsey
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Veronica J Kim
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Nicole A Beckley
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Brittany A Henry
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
18
|
Kalinina DS, Vasilev DS, Volnova AB, Nalivaeva NN, Zhuravin IA. Age-Dependent Electrocorticogram Dynamics and Epileptogenic Responsiveness in Rats Subjected to Prenatal Hypoxia. Dev Neurosci 2019; 41:56-66. [PMID: 30904914 DOI: 10.1159/000497224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 01/24/2019] [Indexed: 11/19/2022] Open
Abstract
Using electrocorticogram (ECoG) analysis, we compared age-related dynamics of general neuronal activity and convulsive epileptiform responsiveness induced by intracortical microinjections of 4-aminopyridine (4-AP) in control Wistar rats and those subjected to prenatal hypoxia (Hx; E14; 7% O2, 3 h). The studies were carried out in three age periods roughly corresponding to childhood (P20-27), adolescence (P30-45), and adulthood (P90-120). It was found that in the process of postnatal development of the control rats, the peak of the ECoG power spectrum density (PSD) of the theta rhythm during wakefulness shifted from the low to the higher frequency, while in the Hx rats this shift had the opposite direction. Moreover, the Hx rats had different frequency characteristics of the ECoG PSD and longer episodes of spike-and-wave discharges caused by 4-AP injections compared to the controls. The total ECoG PSD of slow-wave sleep (1-5 Hz) was also dramatically decreased in the process of development of the Hx rats. Such alterations in PSD could be explained by the changes in balance of the excitation and inhibition processes in the cortical networks. Analyzing protein levels of neurotransmitter transporters in the brain structures of the Hx rats, we found that the content of the glutamate transporter EAAT1 was higher in the parietal cortex in all age groups of Hx rats while in the hippocampus it decreased during postnatal development compared to controls. Furthermore, the content of the vesicular acetylcholine transporter in the parietal cortex, and of the inhibitory GABA transporter 1 in the hippocampus, was also affected by prenatal Hx. These data suggest that prenatal Hx results in a shift in the excitatory and inhibitory balance in the rat cortex towards excitation, making the rat's brain more vulnerable to the effects of proconvulsant drugs and predisposing animals to epileptogenesis during postnatal life.
Collapse
Affiliation(s)
- Daria S Kalinina
- Saint Petersburg State University, Saint Petersburg, Russian Federation.,I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Dmitrii S Vasilev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russian Federation.,Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russian Federation
| | - Anna B Volnova
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Natalia N Nalivaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Igor A Zhuravin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russian Federation, .,Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russian Federation,
| |
Collapse
|
19
|
Janickova H, Kljakic O, Rosborough K, Raulic S, Matovic S, Gros R, Saksida LM, Bussey TJ, Inoue W, Prado VF, Prado MAM. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress. FASEB J 2019; 33:7018-7036. [PMID: 30857416 DOI: 10.1096/fj.201802108r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pedunculopontine tegmental nucleus (PPT) and laterodorsal tegmental nucleus (LDT) are heterogeneous brainstem structures that contain cholinergic, glutamatergic, and GABAergic neurons. PPT/LDT neurons are suggested to modulate both cognitive and noncognitive functions, yet the extent to which acetylcholine (ACh) signaling from the PPT/LDT is necessary for normal behavior remains uncertain. We addressed this issue by using a mouse model in which PPT/LDT cholinergic signaling is highly decreased by selective deletion of the vesicular ACh transporter (VAChT) gene. This approach interferes exclusively with ACh signaling, leaving signaling by other neurotransmitters from PPT/LDT cholinergic neurons intact and sparing other cells. VAChT mutants were examined on different PPT/LDT-associated cognitive domains. Interestingly, VAChT mutants showed no attentional deficits and only minor cognitive flexibility impairments while presenting large deficiencies in both spatial and cued Morris water maze (MWM) tasks. Conversely, working spatial memory determined with the Y-maze and spatial memory measured with the Barnes maze were not affected, suggesting that deficits in MWM were unrelated to spatial memory abnormalities. Supporting this interpretation, VAChT mutants exhibited alterations in anxiety-like behavior and increased corticosterone levels after exposure to the MWM, suggesting altered stress response. Thus, PPT/LDT VAChT-mutant mice present little cognitive impairment per se, yet they exhibit increased susceptibility to stress, which may lead to performance deficits in more stressful conditions.-Janickova, H., Kljakic, O., Rosborough, K., Raulic, S., Matovic, S., Gros, R., Saksida, L. M., Bussey, T. J., Inoue, W., Prado, V. F., Prado, M. A. M. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress.
Collapse
Affiliation(s)
- Helena Janickova
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kaie Rosborough
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sanda Raulic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sara Matovic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and
| | - Robert Gros
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and
| | - Lisa M Saksida
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Arvin MC, Wokosin DL, Banala S, Lavis LD, Drenan RM. Probing Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices via Laser Flash Photolysis of Photoactivatable Nicotine. J Vis Exp 2019. [PMID: 30735191 DOI: 10.3791/58873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acetylcholine (ACh) acts through receptors to modulate a variety of neuronal processes, but it has been challenging to link ACh receptor function with subcellular location within cells where this function is carried out. To study the subcellular location of nicotinic ACh receptors (nAChRs) in native brain tissue, an optical method was developed for precise release of nicotine at discrete locations near neuronal membranes during electrophysiological recordings. Patch-clamped neurons in brain slices are filled with dye to visualize their morphology during 2-photon laser scanning microscopy, and nicotine uncaging is executed with a light flash by focusing a 405 nm laser beam near one or more cellular membranes. Cellular current deflections are measured, and a high-resolution three-dimensional (3D) image of the recorded neuron is made to allow reconciliation of nAChR responses with cellular morphology. This method allows for detailed analysis of nAChR functional distribution in complex tissue preparations, promising to enhance the understanding of cholinergic neurotransmission.
Collapse
Affiliation(s)
- Matthew C Arvin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine
| | - David L Wokosin
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | | | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine;
| |
Collapse
|
21
|
Brown TC, Bond CE, Hoover DB. Variable expression of GFP in different populations of peripheral cholinergic neurons of ChAT BAC-eGFP transgenic mice. Auton Neurosci 2017; 210:44-54. [PMID: 29288022 DOI: 10.1016/j.autneu.2017.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022]
Abstract
Immunohistochemistry is used widely to identify cholinergic neurons, but this approach has some limitations. To address these problems, investigators developed transgenic mice that express enhanced green fluorescent protein (GFP) directed by the promoter for choline acetyltransferase (ChAT), the acetylcholine synthetic enzyme. Although, it was reported that these mice express GFP in all cholinergic neurons and non-neuronal cholinergic cells, we could not detect GFP in cardiac cholinergic nerves in preliminary experiments. Our goals for this study were to confirm our initial observation and perform a qualitative screen of other representative autonomic structures for the presences of GFP in cholinergic innervation of effector tissues. We evaluated GFP fluorescence of intact, unfixed tissues and the cellular localization of GFP and vesicular acetylcholine transporter (VAChT), a specific cholinergic marker, in tissue sections and intestinal whole mounts. Our experiments identified two major tissues where cholinergic neurons and/or nerve fibers lacked GFP: 1) most cholinergic neurons of the intrinsic cardiac ganglia and all cholinergic nerve fibers in the heart and 2) most cholinergic nerve fibers innervating airway smooth muscle. Most cholinergic neurons in airway ganglia stained for GFP. Cholinergic systems in the bladder and intestines were fully delineated by GFP staining. GFP labeling of input to ganglia with long preganglionic projections (vagal) was sparse or weak, while that to ganglia with short preganglionic projections (spinal) was strong. Total absence of GFP might be due to splicing out of the GFP gene. Lack of GFP in nerve projections from GFP-positive cell bodies might reflect a transport deficiency.
Collapse
Affiliation(s)
- T Christopher Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Cherie E Bond
- School of Natural Sciences and Mathematics, Ferrum College, Ferrum, VA 24088, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
22
|
López-Hernández GY, Ananth M, Jiang L, Ballinger EC, Talmage DA, Role LW. Electrophysiological properties of basal forebrain cholinergic neurons identified by genetic and optogenetic tagging. J Neurochem 2017; 142 Suppl 2:103-110. [PMID: 28791701 DOI: 10.1111/jnc.14073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 01/24/2023]
Abstract
Recent developments in the generation of neuronal population-specific, genetically modified mouse lines have allowed precise identification and selective stimulation of cholinergic neurons in vivo. Although considerably less laborious than studies conducted with post hoc identification of cholinergic neurons by immunostaining, it is not known whether the genetically based labeling procedures that permit in vivo identification are electrophysiologically benign. In this study, we use mice carrying a bacterial artificial chromosome transgene that drives expression of a tau-green fluorescent fusion protein specifically in cholinergic neurons. This allowed us to visualize basal forebrain cholinergic neurons in acute slice preparations. Using whole cell, patch clamp electrophysiological recording in acute brain slices, here we present original data about the basic electrical properties of these genetically tagged cholinergic neurons including firing rate, resting membrane potential, rheobase, and various characteristics of their action potentials and after-hyperpolarization potentials. The basic electrical properties are compared (i) with non-cholinergic neurons in the same brain regions; (ii) in cholinergic neurons between immature animals and young adults; and (iii) with cholinergic neurons that are expressing light-sensitive channels. Our conclusions based on these data are (i) cholinergic neurons are less excitable then their non-cholinergic neighbors, (ii) the basic properties of cholinergic neurons do not significantly change between adolescence and young adulthood and (iii) these properties are not significantly affected by chronic expression of the excitatory opsin, oChIEF. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Gretchen Y López-Hernández
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Mala Ananth
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA.,Program in Neurosciences, Stony Brook University, Stony Brook, NY, USA
| | - Li Jiang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Elizabeth C Ballinger
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA.,Program in Neurosciences, Stony Brook University, Stony Brook, NY, USA.,Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, USA
| | - David A Talmage
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA.,Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Lorna W Role
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
23
|
Janickova H, Prado VF, Prado MAM, El Mestikawy S, Bernard V. Vesicular acetylcholine transporter (VAChT) over-expression induces major modifications of striatal cholinergic interneuron morphology and function. J Neurochem 2017. [DOI: 10.1111/jnc.14105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Helena Janickova
- Department of Physiology and Pharmacology and Department of Anatomy & Cell Biology; Robarts Research Institute; Molecular Medicine Laboratories; The University of Western Ontario; London Ontario Canada
| | - Vania F. Prado
- Department of Physiology and Pharmacology and Department of Anatomy & Cell Biology; Robarts Research Institute; Molecular Medicine Laboratories; The University of Western Ontario; London Ontario Canada
| | - Marco A. M. Prado
- Department of Physiology and Pharmacology and Department of Anatomy & Cell Biology; Robarts Research Institute; Molecular Medicine Laboratories; The University of Western Ontario; London Ontario Canada
| | - Salah El Mestikawy
- Sorbonne Universités; Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130; Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS); Paris France
- Department of Psychiatry; Douglas Mental Health University Institute; McGill University; Montreal Canada
| | - Véronique Bernard
- Sorbonne Universités; Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130; Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS); Paris France
| |
Collapse
|
24
|
Cholinergic circuits in cognitive flexibility. Neuroscience 2017; 345:130-141. [DOI: 10.1016/j.neuroscience.2016.09.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 01/10/2023]
|
25
|
Veleanu M, Axen TE, Kristensen MP, Kohlmeier KA. Comparison of bNOS and chat immunohistochemistry in the laterodorsal tegmentum (LDT) and the pedunculopontine tegmentum (PPT) of the mouse from brain slices prepared for electrophysiology. J Neurosci Methods 2016; 263:23-35. [DOI: 10.1016/j.jneumeth.2016.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 01/16/2023]
|
26
|
Blusztajn JK, Rinnofner J. Intrinsic Cholinergic Neurons in the Hippocampus: Fact or Artifact? Front Synaptic Neurosci 2016; 8:6. [PMID: 27014052 PMCID: PMC4785141 DOI: 10.3389/fnsyn.2016.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
It is generally agreed that hippocampal acetylcholine (ACh) is synthesized and released exclusively from the terminals of the long-axon afferents whose cell bodies reside in the medial septum and diagonal band. The search for intrinsic cholinergic neurons in the hippocampus has a long history; however evidence for the existence of these neurons has been inconsistent, with most investigators failing to detect them using in situ hybridization or immunohistochemical staining of the cholinergic markers, choline acetyltransferase (ChAT) or vesicular acetylcholine transporter (VAChT). Advances in the use of bacterial artificial chromosome (BAC) transgenic mice expressing a reporter protein under the control of the genomic elements of the Chat gene (Chat-BAC mice) have facilitated studies of cholinergic neurons. Such mice show robust and faithful expression of the reporter proteins in all known cholinergic cell populations. The availability of the Chat-BAC mice re-ignited interest in hippocampal cholinergic interneurons, because a small number of such reporter-expressing cells is frequently observed in the hippocampus of these mice. However, to date, attempts to confirm that these neurons co-express the endogenous cholinergic marker ChAT, or release ACh, have been unsuccessful. Without such confirmatory evidence it is best to conclude that there are no cholinergic neurons in the hippocampus. Similar considerations apply to other BAC transgenic lines, whose utility as a discovery tool for cell populations heretofore not known to express the genes of interest encoded by the BACs, must be validated by methods that detect expression of the endogenous genes.
Collapse
Affiliation(s)
- Jan Krzysztof Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine Boston, MA, USA
| | - Jasmine Rinnofner
- Department of Applied Life Sciences, University of Applied Sciences Vienna, Austria
| |
Collapse
|
27
|
Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson's Disease. J Neurosci 2016; 35:14983-99. [PMID: 26558771 DOI: 10.1523/jneurosci.2124-15.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson's disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson's disease and related disorders. SIGNIFICANCE STATEMENT Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson's disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a Parkinson's disease model, the mice show normal motor behavior. They also show fewer abnormal motor behaviors (dyskinesias) in response to l-3,4-dihydroxyphenylalanine, the principal treatment for Parkinson's disease. The work thus suggests new avenues for the development of novel treatment strategies for Parkinson's disease and potentially other basal-ganglia-related disorders.
Collapse
|
28
|
Chen L, Yao Y, Wei C, Sun Y, Ma X, Zhang R, Xu X, Hao J. T cell immunity to glatiramer acetate ameliorates cognitive deficits induced by chronic cerebral hypoperfusion by modulating the microenvironment. Sci Rep 2015; 5:14308. [PMID: 26391515 PMCID: PMC4585746 DOI: 10.1038/srep14308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/24/2015] [Indexed: 11/09/2022] Open
Abstract
Vascular dementia (VaD) is a progressive and highly prevalent disorder. However, in a very large majority of cases, a milieu of cellular and molecular events common for multiple neurodegenerative diseases is involved. Our work focused on whether the immunomodulating effect of glatiramer acetate (GA) could restore normalcy to the microenvironment and ameliorate cognitive decline induced by chronic cerebral hypoperfusion. We assessed cognitive function by rats’ performance in a Morris water maze (MWM), electrophysiological recordings and by pathologic changes. The results suggest that GA reduced cognitive deficits by reestablishing an optimal microenvironment such as increasing expression of the brain-derived neurotrophic factor (BDNF) and modulating the Th1/Th2 cytokine balance in the hippocampus. When microenvironmental homeostasis is restored, cholinergic activity becomes involved in ameliorating cellular damage. Since vaccination with GA can boost “protective autoimmunity” in this way, a similar strategy may have therapeutic potential for alleviating VaD disease.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yang Yao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Changjuan Wei
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yanan Sun
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaofeng Ma
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Rongxin Zhang
- Center for Basic Medical Science Research, Tianjin Medical University, Tianjin 300070, China
| | - Xiaolin Xu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
29
|
Granja MG, Braga LEG, Carpi-Santos R, de Araujo-Martins L, Nunes-Tavares N, Calaza KC, Dos Santos AA, Giestal-de-Araujo E. IL-4 Induces Cholinergic Differentiation of Retinal Cells In Vitro. Cell Mol Neurobiol 2015; 35:689-701. [PMID: 25682112 DOI: 10.1007/s10571-015-0164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 12/01/2022]
Abstract
Interleukin-4 (IL-4) is a pleiotropic cytokine that regulates several phenomena, among them survival and differentiation of neuronal and glial cells. The aim of this work was to investigate the effect of IL-4 on the cholinergic differentiation of neonatal rat retinal cells in vitro, evaluating its effect on the levels of cholinergic markers (CHT1-high-affinity choline transporter; VAChT-vesicular acetylcholine transporter, ChAT-choline acetyltransferase, AChE-acetylcholinesterase), muscarinic receptors, and on the signaling pathways involved. Lister Hooded rat pups were used in postnatal days 0-2 (P0-P2). Our results show that IL-4 treatment (50 U/mL) for 48 h increases the levels of the cholinergic transporters VAChT and CHT1, the acetylcholinesterase activity, and the number of ChAT-positive cells. It also induces changes in muscarinic receptor levels, leading to a small decrease in M1 levels and a significant increase in M3 and M5 levels after 48 h of treatment. We also showed that IL-4 effect on M3 receptors is dependent on type I IL-4 receptor and on an increase in NFκB phosphorylation. These results indicate that IL-4 stimulates cholinergic differentiation of retinal cells.
Collapse
Affiliation(s)
- Marcelo Gomes Granja
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n -Campus Valonguinho. Centro - Niterói, Rio de Janeiro, CEP: 24020-140, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ishibashi M, Gumenchuk I, Kang B, Steger C, Lynn E, Molina NE, Eisenberg LM, Leonard CS. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca(2+)-Dependent Resonance in LDT and PPT Cholinergic Neurons. Front Neurol 2015; 6:120. [PMID: 26082752 PMCID: PMC4451588 DOI: 10.3389/fneur.2015.00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/11/2015] [Indexed: 01/29/2023] Open
Abstract
A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz) - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca(2+)-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca(2+)-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca(2+)-dependent resonance that peaked in the theta and alpha frequency range (4-14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca(2+) dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma.
Collapse
Affiliation(s)
- Masaru Ishibashi
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Iryna Gumenchuk
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Bryan Kang
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Catherine Steger
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Elizabeth Lynn
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Nancy E Molina
- Department of Physiology, New York Medical College , Valhalla, NY , USA
| | - Leonard M Eisenberg
- Department of Physiology, New York Medical College , Valhalla, NY , USA ; Department of Medicine, New York Medical College , Valhalla, NY , USA
| | | |
Collapse
|
31
|
Nagy PM, Aubert I. Overexpression of the vesicular acetylcholine transporter enhances dendritic complexity of adult-born hippocampal neurons and improves acquisition of spatial memory during aging. Neurobiol Aging 2015; 36:1881-9. [DOI: 10.1016/j.neurobiolaging.2015.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 11/25/2022]
|
32
|
Roy A, Guatimosim S, Prado VF, Gros R, Prado MAM. Cholinergic activity as a new target in diseases of the heart. Mol Med 2015; 20:527-37. [PMID: 25222914 DOI: 10.2119/molmed.2014.00125] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system is an important modulator of cardiac signaling in both health and disease. In fact, the significance of altered parasympathetic tone in cardiac disease has recently come to the forefront. Both neuronal and nonneuronal cholinergic signaling likely play a physiological role, since modulating acetylcholine (ACh) signaling from neurons or cardiomyocytes appears to have significant consequences in both health and disease. Notably, many of these effects are solely due to changes in cholinergic signaling, without altered sympathetic drive, which is known to have significant adverse effects in disease states. As such, it is likely that enhanced ACh-mediated signaling not only has direct positive effects on cardiomyocytes, but it also offsets the negative effects of hyperadrenergic tone. In this review, we discuss recent studies that implicate ACh as a major regulator of cardiac remodeling and provide support for the notion that enhancing cholinergic signaling in human patients with cardiac disease can reduce morbidity and mortality. These recent results support the idea of developing large clinical trials of strategies to increase cholinergic tone, either by stimulating the vagus or by increased availability of Ach, in heart failure.
Collapse
Affiliation(s)
- Ashbeel Roy
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Robert Gros
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
33
|
Wang L, Ennis M, Szabó G, Armstrong WE. Characteristics of GABAergic and cholinergic neurons in perinuclear zone of mouse supraoptic nucleus. J Neurophysiol 2014; 113:754-67. [PMID: 25376783 DOI: 10.1152/jn.00561.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perinuclear zone (PNZ) of the supraoptic nucleus (SON) contains some GABAergic and cholinergic neurons thought to innervate the SON proper. In mice expressing enhanced green fluorescent protein (eGFP) in association with glutamate decarboxylase (GAD)65 we found an abundance of GAD65-eGFP neurons in the PNZ, whereas in mice expressing GAD67-eGFP, there were few labeled PNZ neurons. In mice expressing choline acetyltransferase (ChAT)-eGFP, large, brightly fluorescent and small, dimly fluorescent ChAT-eGFP neurons were present in the PNZ. The small ChAT-eGFP and GAD65-eGFP neurons exhibited a low-threshold depolarizing potential consistent with a low-threshold spike, with little transient outward rectification. Large ChAT-eGFP neurons exhibited strong transient outward rectification and a large hyperpolarizing spike afterpotential, very similar to that of magnocellular vasopressin and oxytocin neurons. Thus the large soma and transient outward rectification of large ChAT-eGFP neurons suggest that these neurons would be difficult to distinguish from magnocellular SON neurons in dissociated preparations by these criteria. Large, but not small, ChAT-eGFP neurons were immunostained with ChAT antibody (AB144p). Reconstructed neurons revealed a few processes encroaching near and passing through the SON from all types but no clear evidence of a terminal axon arbor. Large ChAT-eGFP neurons were usually oriented vertically and had four or five dendrites with multiple branches and an axon with many collaterals and local arborizations. Small ChAT-eGFP neurons had a more restricted dendritic tree compared with parvocellular GAD65 neurons, the latter of which had long thin processes oriented mediolaterally. Thus many of the characteristics found previously in unidentified, small PNZ neurons are also found in identified GABAergic neurons and in a population of smaller ChAT-eGFP neurons.
Collapse
Affiliation(s)
- Lie Wang
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Matthew Ennis
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Gábor Szabó
- Department of Gene Technology and Developmental Biology, Institute of Experimental Medicine, Budapest, Hungary
| | - William E Armstrong
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
34
|
Lee B, Sur B, Shim J, Hahm DH, Lee H. Acupuncture stimulation improves scopolamine-induced cognitive impairment via activation of cholinergic system and regulation of BDNF and CREB expressions in rats. Altern Ther Health Med 2014; 14:338. [PMID: 25231482 PMCID: PMC4180318 DOI: 10.1186/1472-6882-14-338] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022]
Abstract
Background Acupuncture is an alternative therapy that is widely used to treat various neurodegenerative diseases and effectively improve cognitive and memory impairment. The aim of this study was to examine whether acupuncture stimulation at the Baihui (GV20) acupoint improves memory defects caused by scopolamine (SCO) administration in rats. We also investigated the effects of acupuncture stimulation at GV20 on the cholinergic system as well as the expression of brain-derived neurotrophic factor (BDNF) and cAMP-response element-binding protein (CREB) in the hippocampus. Methods SCO (2 mg/kg, i.p.) was administered to male rats once daily for 14 days. Acupuncture stimulation at GV20 was performed for 5 min before SCO injection. After inducing cognitive impairment via SCO administration, we conducted a passive avoidance test (PAT) and the Morris water maze (MWM) test to assess behavior. Results Acupuncture stimulation at GV20 improved memory impairment as measured by the PAT and reduced the escape latency for finding the platform in the MWM test. Acupuncture stimulation at GV20 significantly alleviated memory-associated decreases in the levels of choline acetyltransferase (ChAT), BDNF and CREB proteins in the hippocampus. Additionally, acupuncture stimulation at GV20 significantly restored the expression of choline transporter 1 (CHT1), vesicular acetylcholine transporter (VAChT), BDNF and CREB mRNA in the hippocampus. These results demonstrate that acupuncture stimulation at GV20 exerts significant neuroprotective effects against SCO-induced neuronal impairment and memory dysfunction in rats. Conclusions These findings suggest that acupuncture stimulation at GV20 might be useful in various neurodegenerative diseases to improve cognitive functioning via stimulating cholinergic enzyme activities and regulating BDNF and CREB expression in the brain.
Collapse
|
35
|
Abstract
The motor and learning functions of the striatum are critically dependent on synaptic transmission from midbrain dopamine neurons and striatal cholinergic interneurons (CINs). Both neural populations alter their discharge in vivo in response to salient sensory stimuli, albeit in opposite directions. Whereas midbrain dopamine neurons respond to salient stimuli with a brief burst of activity, CINs exhibit a distinct pause in firing that is often followed by a period of increased excitability. Although this "pause-rebound" sensory response requires dopaminergic signaling, the precise mechanisms underlying the modulation of CIN firing by dopaminergic afferents remain unclear. Here, we show that phasic activation of nigrostriatal afferents in a mouse striatal slice preparation is sufficient to evoke a pause-rebound response in CINs. Using a combination of optogenetic, electrophysiological, and pharmacological approaches, we demonstrate that synaptically released dopamine inhibits CINs through type 2 dopamine receptors, while another unidentified transmitter mediates the delayed excitation. These findings imply that, in addition to their direct effects on striatal projection neurons, midbrain dopamine neurons indirectly modulate striatal output by dynamically controlling cholinergic tone. In addition, our data suggest that phasic dopaminergic activity may directly participate in the characteristic pause-rebound sensory response that CINs exhibit in vivo in response to salient and conditioned stimuli.
Collapse
|
36
|
Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc Natl Acad Sci U S A 2014; 111:9977-82. [PMID: 24979780 DOI: 10.1073/pnas.1402134111] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.
Collapse
|
37
|
Crittenden JR, Lacey CJ, Lee T, Bowden HA, Graybiel AM. Severe drug-induced repetitive behaviors and striatal overexpression of VAChT in ChAT-ChR2-EYFP BAC transgenic mice. Front Neural Circuits 2014; 8:57. [PMID: 24904300 PMCID: PMC4036131 DOI: 10.3389/fncir.2014.00057] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/12/2014] [Indexed: 01/01/2023] Open
Abstract
In drug users, drug-related cues alone can induce dopamine release in the dorsal striatum. Instructive cues activate inputs to the striatum from both dopaminergic and cholinergic neurons, which are thought to work together to support motor learning and motivated behaviors. Imbalances in these neuromodulatory influences can impair normal action selection and might thus contribute to pathologically repetitive and compulsive behaviors such as drug addiction. Dopamine and acetylcholine can have either antagonistic or synergistic effects on behavior, depending on the state of the animal and the receptor signaling systems at play. Semi-synchronized activation of cholinergic interneurons in the dorsal striatum drives dopamine release via presynaptic nicotinic acetylcholine receptors located on dopamine terminals. Nicotinic receptor blockade is known to diminish abnormal repetitive behaviors (stereotypies) induced by psychomotor stimulants. By contrast, blockade of postsynaptic acetylcholine muscarinic receptors in the dorsomedial striatum exacerbates drug-induced stereotypy, exemplifying how different acetylcholine receptors can also have opposing effects. Although acetylcholine release is known to be altered in animal models of drug addiction, predicting whether these changes will augment or diminish drug-induced behaviors thus remains a challenge. Here, we measured amphetamine-induced stereotypy in BAC transgenic mice that have been shown to overexpress the vesicular acetylcholine transporter (VAChT) with consequent increased acetylcholine release. We found that drug-induced stereotypies, consisting of confined sniffing and licking behaviors, were greatly increased in the transgenic mice relative to sibling controls, as was striatal VAChT protein. These findings suggest that VAChT-mediated increases in acetylcholine could be critical in exacerbating drug-induced stereotypic behaviors and promoting exaggerated behavioral fixity.
Collapse
Affiliation(s)
- Jill R Crittenden
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Carolyn J Lacey
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Tyrone Lee
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Hilary A Bowden
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ann M Graybiel
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
38
|
Hao C, Huang ZH, Song SW, Shi YQ, Cheng XW, Murohara T, Lu W, Su DF, Duan JL. Arterial baroreflex dysfunction impairs ischemia-induced angiogenesis. J Am Heart Assoc 2014; 3:e000804. [PMID: 24820655 PMCID: PMC4309071 DOI: 10.1161/jaha.114.000804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Endothelium‐derived acetylcholine (eACh) plays an important role in the regulation of vascular actions in response to hypoxia, whereas arterial baroreflex (ABR) dysfunction impairs the eACh system. We investigated the effects of ABR dysfunction on ischemia‐induced angiogenesis in animal models of hindlimb ischemia with a special focus on eACh/nicotinic ACh receptor (nAChR) signaling activation. Methods and Results Male Sprague‐Dawley rats were randomly assigned to 1 of 3 groups that received (1) sham operation (control group), (2) sinoaortic denervation (SAD)‐induced ABR dysfunction (SAD group), or (3) SAD rats on diet with an acetylcholinesterase inhibitor pyridostigmine (30 mg/kg per day, SAD+Pyr group). After 4 weeks of the SAD intervention, unilateral limb ischemia was surgically induced in all animals. At postoperative day 14, SAD rats exhibited impaired angiogenic action (skin temperature and capillary density) and decreased angiogenic factor expressions (vascular endothelial growth factor [VEGF] and hypoxic inducible factor [HIF]‐1α) in ischemic muscles. These changes were restored by acetylcholinesterase inhibition. Rats with ABR dysfunction had lower eACh levels than did control rats, and this effect was recovered in SAD+Pyr rats. In α7‐nAChR knockout mice, pyridostigmine improved ischemia‐induced angiogenic responses and increased the levels of VEGF and HIF‐1α. Moreover, nicotinic receptor blocker inhibited VEGF expression and VEGF receptor 2 phosphorylation (p‐VEGFR2) induced by ACh analog. Conclusions Thus, ABR dysfunction appears to impair ischemia‐induced angiogenesis through the reduction of eACh/α7‐nAChR‐dependent and ‐independent HIF‐1α/VEGF‐VEGFR2 signaling activation.
Collapse
Affiliation(s)
- Changning Hao
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Altered acetylcholine release in the hippocampus of dystrophin-deficient mice. Neuroscience 2014; 269:173-83. [PMID: 24704431 DOI: 10.1016/j.neuroscience.2014.03.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 12/29/2022]
Abstract
Mild cognitive impairments have been described in one-third of patients with Duchenne muscle dystrophy (DMD). DMD is characterized by progressive and irreversible muscle degeneration caused by mutations in the dystrophin gene and lack of the protein expression. Previously, we have reported altered concentrations of α7- and β2-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal membranes of dystrophic (mdx) mice. This suggests that alterations in the central cholinergic synapses are associated with dystrophin deficiency. In this study, we examined the release of acetylcholine (ACh) and the level of the vesicular ACh transporter (VAChT) using synaptosomes isolated from brain regions that normally have a high density of dystrophin (cortex, hippocampus and cerebellum), in control and mdx mice at 4 and 12months of age. ACh release evoked by nicotinic stimulation or K(+) depolarization was measured as the tritium outflow from superfused synaptosomes preloaded with [(3)H]-choline. The results showed that the evoked tritium release was Ca(2+)-dependent and mostly formed by [(3)H]-ACh. β2-containing nAChRs were involved in agonist-evoked [(3)H]-ACh release in control and mdx preparations. In hippocampal synaptosomes from 12-month-old mdx mice, nAChR-evoked [(3)H]-ACh release increased by 57% compared to age-matched controls. Moreover, there was a 98% increase in [(3)H]-ACh release compared to 4-month-old mdx mice. [(3)H]-ACh release evoked by K(+) depolarization was not altered, while the VAChT protein level was decreased (19%) compared to that of age-matched controls. In cortical and cerebellar preparations, there was no difference in nAChR-evoked [(3)H]-ACh release and VAChT levels between mdx and age-matched control groups. Our previous findings and the presynaptic alterations observed in the hippocampi of 12-month-old mdx mice indicate possible dysfunction of nicotinic cholinergic synapses associated with dystrophin deficiency. These changes may contribute to the cognitive and behavioral abnormalities described in dystrophic mice and patients with DMD.
Collapse
|
40
|
Extrasynaptic muscarinic acetylcholine receptors on neuronal cell bodies regulate presynaptic function in Caenorhabditis elegans. J Neurosci 2013; 33:14146-59. [PMID: 23986249 DOI: 10.1523/jneurosci.1359-13.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) is a potent neuromodulator in the brain, and its effects on cognition and memory formation are largely performed through muscarinic acetylcholine receptors (mAChRs). mAChRs are often preferentially distributed on specialized membrane regions in neurons, but the significance of mAChR localization in modulating neuronal function is not known. Here we show that the Caenorhabditis elegans homolog of the M1/M3/M5 family of mAChRs, gar-3, is expressed in cholinergic motor neurons, and GAR-3-GFP fusion proteins localize to cell bodies where they are enriched at extrasynaptic regions that are in contact with the basal lamina. The GAR-3 N-terminal extracellular domain is necessary and sufficient for this asymmetric distribution, and mutation of a predicted N-linked glycosylation site within the N-terminus disrupts GAR-3-GFP localization. In transgenic animals expressing GAR-3 variants that are no longer asymmetrically localized, synaptic transmission at neuromuscular junctions is impaired and there is a reduction in the abundance of the presynaptic protein sphingosine kinase at release sites. Finally, GAR-3 can be activated by endogenously produced ACh released from neurons that do not directly contact cholinergic motor neurons. Together, our results suggest that humoral activation of asymmetrically localized mAChRs by ACh is an evolutionarily conserved mechanism by which ACh modulates neuronal function.
Collapse
|
41
|
ChAT-ChR2-EYFP mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains. J Neurosci 2013; 33:10427-38. [PMID: 23785154 DOI: 10.1523/jneurosci.0395-13.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine (ACh) is an important neuromodulator in the nervous system implicated in many forms of cognitive and motor processing. Recent studies have used bacterial artificial chromosome (BAC) transgenic mice expressing channelrhodopsin-2 (ChR2) protein under the control of the choline acetyltransferase (ChAT) promoter (ChAT-ChR2-EYFP) to dissect cholinergic circuit connectivity and function using optogenetic approaches. We report that a mouse line used for this purpose also carries several copies of the vesicular acetylcholine transporter gene (VAChT), which leads to overexpression of functional VAChT and consequently increased cholinergic tone. We demonstrate that these mice have marked improvement in motor endurance. However, they also present severe cognitive deficits, including attention deficits and dysfunction in working memory and spatial memory. These results suggest that increased VAChT expression may disrupt critical steps in information processing. Our studies demonstrate that ChAT-ChR2-EYFP mice show altered cholinergic tone that fundamentally differentiates them from wild-type mice.
Collapse
|
42
|
Nagy PM, Aubert I. B6eGFPChAT mice overexpressing the vesicular acetylcholine transporter exhibit spontaneous hypoactivity and enhanced exploration in novel environments. Brain Behav 2013; 3:367-83. [PMID: 24381809 PMCID: PMC3869679 DOI: 10.1002/brb3.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022] Open
Abstract
Cholinergic innervation is extensive throughout the central and peripheral nervous systems. Among its many roles, the neurotransmitter acetylcholine (ACh) contributes to the regulation of motor function, locomotion, and exploration. Cholinergic deficits and replacement strategies have been investigated in neurodegenerative disorders, particularly in cases of Alzheimer's disease (AD). Focus has been on blocking acetylcholinesterase (AChE) and enhancing ACh synthesis to improve cholinergic neurotransmission. As a first step in evaluating the physiological effects of enhanced cholinergic function through the upregulation of the vesicular acetylcholine transporter (VAChT), we used the hypercholinergic B6eGFPChAT congenic mouse model that has been shown to contain multiple VAChT gene copies. Analysis of biochemical and behavioral paradigms suggest that modest increases in VAChT expression can have a significant effect on spontaneous locomotion, reaction to novel stimuli, and the adaptation to novel environments. These observations support the potential of VAChT as a therapeutic target to enhance cholinergic tone, thereby decreasing spontaneous hyperactivity and increasing exploration in novel environments.
Collapse
Affiliation(s)
- Paul M Nagy
- Brain Sciences, Biological Sciences, Sunnybrook Research Institute2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Isabelle Aubert
- Brain Sciences, Biological Sciences, Sunnybrook Research Institute2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
43
|
Abstract
Acetylcholine, the first chemical to be identified as a neurotransmitter, is packed in synaptic vesicles by the activity of VAChT (vesicular acetylcholine transporter). A decrease in VAChT expression has been reported in a number of diseases, and this has consequences for the amount of acetylcholine loaded in synaptic vesicles as well as for neurotransmitter release. Several genetically modified mice targeting the VAChT gene have been generated, providing novel models to understand how changes in VAChT affect transmitter release. A surprising finding is that most cholinergic neurons in the brain also can express a second type of vesicular neurotransmitter transporter that allows these neurons to secrete two distinct neurotransmitters. Thus a given neuron can use two neurotransmitters to regulate different physiological functions. In addition, recent data indicate that non-neuronal cells can also express the machinery used to synthesize and release acetylcholine. Some of these cells rely on VAChT to secrete acetylcholine with potential physiological consequences in the periphery. Hence novel functions for the oldest neurotransmitter known are emerging with the potential to provide new targets for the treatment of several pathological conditions.
Collapse
|