1
|
Pelletier OB, Brunori G, Wang Y, Robishaw JD. Post-transcriptional regulation and subcellular localization of G-protein γ7 subunit: implications for striatal function and behavioral responses to cocaine. Front Neuroanat 2024; 18:1394659. [PMID: 38764487 PMCID: PMC11100332 DOI: 10.3389/fnana.2024.1394659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
The striatal D1 dopamine receptor (D1R) and A2a adenosine receptor (A2aR) signaling pathways play important roles in drug-related behaviors. These receptors activate the Golf protein comprised of a specific combination of αolfβ2γ7 subunits. During assembly, the γ7 subunit sets the cellular level of the Golf protein. In turn, the amount of Golf protein determines the collective output from both D1R and A2aR signaling pathways. This study shows the Gng7 gene encodes multiple γ7 transcripts differing only in their non-coding regions. In striatum, Transcript 1 is the predominant isoform. Preferentially expressed in the neuropil, Transcript 1 is localized in dendrites where it undergoes post-transcriptional regulation mediated by regulatory elements in its 3' untranslated region that contribute to translational suppression of the γ7 protein. Earlier studies on gene-targeted mice demonstrated loss of γ7 protein disrupts assembly of the Golf protein. In the current study, morphological analysis reveals the loss of the Golf protein is associated with altered dendritic morphology of medium spiny neurons. Finally, behavioral analysis of conditional knockout mice with cell-specific deletion of the γ7 protein in distinct populations of medium spiny neurons reveals differential roles of the Golf protein in mediating behavioral responses to cocaine. Altogether, these findings provide a better understanding of the regulation of γ7 protein expression, its impact on Golf function, and point to a new potential target and mechanisms for treating addiction and related disorders.
Collapse
Affiliation(s)
- Oliver B. Pelletier
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Gloria Brunori
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Yingcai Wang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Janet D. Robishaw
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Najafi P, Reimer C, Gilthorpe JD, Jacobsen KR, Ramløse M, Paul NF, Simianer H, Tetens J, Falker-Gieske C. Genomic evidence for the suitability of Göttingen Minipigs with a rare seizure phenotype as a model for human epilepsy. Neurogenetics 2024; 25:103-117. [PMID: 38383918 PMCID: PMC11076379 DOI: 10.1007/s10048-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Epilepsy is a complex genetic disorder that affects about 2% of the global population. Although the frequency and severity of epileptic seizures can be reduced by a range of pharmacological interventions, there are no disease-modifying treatments for epilepsy. The development of new and more effective drugs is hindered by a lack of suitable animal models. Available rodent models may not recapitulate all key aspects of the disease. Spontaneous epileptic convulsions were observed in few Göttingen Minipigs (GMPs), which may provide a valuable alternative animal model for the characterisation of epilepsy-type diseases and for testing new treatments. We have characterised affected GMPs at the genome level and have taken advantage of primary fibroblast cultures to validate the functional impact of fixed genetic variants on the transcriptome level. We found numerous genes connected to calcium metabolism that have not been associated with epilepsy before, such as ADORA2B, CAMK1D, ITPKB, MCOLN2, MYLK, NFATC3, PDGFD, and PHKB. Our results have identified two transcription factor genes, EGR3 and HOXB6, as potential key regulators of CACNA1H, which was previously linked to epilepsy-type disorders in humans. Our findings provide the first set of conclusive results to support the use of affected subsets of GMPs as an alternative and more reliable model system to study human epilepsy. Further neurological and pharmacological validation of the suitability of GMPs as an epilepsy model is therefore warranted.
Collapse
Affiliation(s)
- Pardis Najafi
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Christian Reimer
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Höltystr. 10, 31535, Neustadt, Germany
| | - Jonathan D Gilthorpe
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Kirsten R Jacobsen
- Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Maja Ramløse
- Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Nora-Fabienne Paul
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Henner Simianer
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.
| |
Collapse
|
3
|
Wang X, Zhou X, Lee J, Furdui CM, Ma T. In-Depth Proteomic Analysis of De Novo Proteome in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 91:1471-1482. [PMID: 36641677 PMCID: PMC10016629 DOI: 10.3233/jad-221044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common dementia syndrome in the elderly characterized by synaptic failure and unique brain pathology. De novo protein synthesis is required for the maintenance of memory and synaptic plasticity. Mounting evidence links impaired neuronal protein synthesis capacity and overall protein synthesis deficits to AD pathogenesis. Meanwhile, identities of AD-associated dysregulation of "newly synthesized proteome" remain elusive. OBJECTIVE To investigate de novo proteome alterations in the hippocampus of aged Tg19959 AD model mice. METHODS In this study, we combined the bioorthogonal noncanonical amino acid tagging (BONCAT) method with the unbiased large-scale proteomic analysis in acute living brain slices (we name it "BONSPEC") to investigate de novo proteome alterations in the hippocampus of Tg19959 AD model mice. We further applied multiple bioinformatics methods to analyze in-depth the proteomics data. RESULTS In total, 1,742 proteins were detected across the 10 samples with the BONSPEC method. After exclusion of those only detected in less than half of the samples in both groups, 1,362 proteins were kept for further analysis. 37 proteins were differentially expressed (based on statistical analysis) between the WT and Tg19959 groups. Among them, 19 proteins were significantly decreased while 18 proteins were significantly increased in the hippocampi of Tg19959 mice compared to WT mice. The results suggest that proteins involved in synaptic function were enriched in de novo proteome of AD mice. CONCLUSION Our study could provide insights into the future investigation into the molecular signaling mechanisms underlying AD and related dementias (ADRDs).
Collapse
Affiliation(s)
- Xin Wang
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Xueyan Zhou
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
4
|
Casañas JJ, Montesinos ML. Proteomic characterization of spinal cord synaptoneurosomes from Tg-SOD1/G93A mice supports a role for MNK1 and local translation in the early stages of amyotrophic lateral sclerosis. Mol Cell Neurosci 2022; 123:103792. [PMID: 36372157 DOI: 10.1016/j.mcn.2022.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
The isolation of synaptoneurosomes (SNs) represents a useful means to study synaptic events. However, the size and density of synapses varies in different regions of the central nervous system (CNS), and this also depends on the experimental species studied, making it difficult to define a generic protocol for SNs preparation. To characterize synaptic failure in the spinal cord (SC) in the Tg-SOD1/G93A mouse model of amyotrophic lateral sclerosis (ALS), we applied a method we originally designed to isolate cortical and hippocampal SNs to SC tissue. Interestingly, we found that the SC SNs were isolated in a different gradient fraction to the cortical/hippocampal SNs. We compared the relative levels of synaptoneurosomal proteins in wild type (WT) animals, with control (Tg-SOD1) or Tg-SOD1/G93A mice at onset and those that were symptomatic using iTRAQ proteomics. The results obtained suggest that an important regulator of local synaptic translation, MNK1 (MAP kinase interacting serine/threonine kinase 1), might well influence the early stages of ALS.
Collapse
Affiliation(s)
- Juan José Casañas
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain; Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María Luz Montesinos
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain; Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
5
|
Clark LN, Gao Y, Wang GT, Hernandez N, Ashley-Koch A, Jankovic J, Ottman R, Leal SM, Rodriguez SMB, Louis ED. Whole genome sequencing identifies candidate genes for familial essential tremor and reveals biological pathways implicated in essential tremor aetiology. EBioMedicine 2022; 85:104290. [PMID: 36183486 PMCID: PMC9525816 DOI: 10.1016/j.ebiom.2022.104290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Essential tremor (ET), one of the most common neurological disorders, has a phenotypically heterogeneous presentation characterized by bilateral kinetic tremor of the arms and, in some patients, tremor involving other body regions (e.g., head, voice). Genetic studies suggest that ET is genetically heterogeneous. Methods We analyzed whole genome sequence data (WGS) generated on 104 multi-generational white families with European ancestry affected by ET. Genome-wide parametric linkage and association scans were analyzed using adjusted logistic regression models through the application of the Pseudomarker software. To investigate the additional contribution of rare variants in familial ET, we also performed an aggregate variant non-parametric linkage (NPL) analysis using the collapsed haplotype method implemented in CHP-NPL software. Findings Parametric linkage analysis of common variants identified several loci with significant evidence of linkage (HLOD ≥3.6). Among the gene regions within the strongest ET linkage peaks were BTC (4q13.3, HLOD=4.53), N6AMT1 (21q21.3, HLOD=4.31), PCDH9 (13q21.32, HLOD=4.21), EYA1 (8q13.3, HLOD=4.04), RBFOX1 (16p13.3, HLOD=4.02), MAPT (17q21.31, HLOD=3.99) and SCARB2 (4q21.1, HLOD=3.65). CHP-NPL analysis identified fifteen additional genes with evidence of significant linkage (LOD ≥3.8). These genes include TUBB2A, VPS33B, STEAP1B, SPINK5, ZRANB1, TBC1D3C, PDPR, NPY4R, ETS2, ZNF736, SPATA21, ARL17A, PZP, BLK and CCDC94. In one ET family contributing to the linkage peak on chromosome 16p13.3, we identified a likely pathogenic heterozygous canonical splice acceptor variant in exon 2 of RBFOX1 (ENST00000547372; c.4-2A>G), that co-segregated with the ET phenotype in the family. Interpretation Linkage and association analyses of WGS identified several novel ET candidate genes, which are implicated in four major pathways that include 1) the epidermal growth factor receptor-phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha-AKT serine/threonine kinase 1 (EGFR-PI3K-AKT) and Mitogen-activated protein Kinase 1 (ERK) pathways, 2) Reactive oxygen species (ROS) and DNA repair, 3) gamma-aminobutyric acid-ergic (GABAergic) system and 4) RNA binding and regulation of RNA processes. Our study provides evidence for a possible overlap in the genetic architecture of ET, neurological disease, cancer and aging. The genes and pathways identified can be prioritized in future genetic and functional studies. Funding National Institutes of Health, NINDS, NS073872 (USA) and NIA AG058131(USA).
Collapse
Affiliation(s)
- Lorraine N Clark
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA.
| | - Yizhe Gao
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gao T Wang
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Nora Hernandez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston TX, USA
| | - Ruth Ottman
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Suzanne M Leal
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra M Barral Rodriguez
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA.
| |
Collapse
|
6
|
Muslimov IA, Berardi V, Stephenson S, Ginzler EM, Hanly JG, Tiedge H. Autoimmune RNA dysregulation and seizures: therapeutic prospects in neuropsychiatric lupus. Life Sci Alliance 2022; 5:5/12/e202201496. [PMID: 36229064 PMCID: PMC9559755 DOI: 10.26508/lsa.202201496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Lupus autoimmunity frequently presents with neuropsychiatric manifestations, but underlying etiology remains poorly understood. Human brain cytoplasmic 200 RNA (BC200 RNA) is a translational regulator in neuronal synapto-dendritic domains. Here, we show that a BC200 guanosine-adenosine dendritic transport motif is recognized by autoantibodies from a subset of neuropsychiatric lupus patients. These autoantibodies impact BC200 functionality by quasi irreversibly displacing two RNA transport factors from the guanosine-adenosine transport motif. Such anti-BC autoantibodies, which can gain access to brains of neuropsychiatric lupus patients, give rise to clinical manifestations including seizures. To establish causality, naive mice with a permeabilized blood-brain barrier were injected with anti-BC autoantibodies from lupus patients with seizures. Animals so injected developed seizure susceptibility with high mortality. Seizure activity was entirely precluded when animals were injected with lupus anti-BC autoantibodies together with BC200 decoy autoantigen. Seizures are a common clinical manifestation in neuropsychiatric lupus, and our work identifies anti-BC autoantibody activity as a mechanistic cause. The results demonstrate potential utility of BC200 decoys for autoantibody-specific therapeutic interventions in neuropsychiatric lupus.
Collapse
Affiliation(s)
- Ilham A Muslimov
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| | - Valerio Berardi
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stacy Stephenson
- Division of Comparative Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ellen M Ginzler
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - John G Hanly
- Division of Rheumatology, Department of Medicine, Department of Pathology, Queen Elizabeth II Health Sciences Center and Dalhousie University, Halifax, Canada
| | - Henri Tiedge
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| |
Collapse
|
7
|
Rosado J, Bui VD, Haas CA, Beck J, Queisser G, Vlachos A. Calcium modeling of spine apparatus-containing human dendritic spines demonstrates an “all-or-nothing” communication switch between the spine head and dendrite. PLoS Comput Biol 2022; 18:e1010069. [PMID: 35468131 PMCID: PMC9071165 DOI: 10.1371/journal.pcbi.1010069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/05/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Dendritic spines are highly dynamic neuronal compartments that control the synaptic transmission between neurons. Spines form ultrastructural units, coupling synaptic contact sites to the dendritic shaft and often harbor a spine apparatus organelle, composed of smooth endoplasmic reticulum, which is responsible for calcium sequestration and release into the spine head and neck. The spine apparatus has recently been linked to synaptic plasticity in adult human cortical neurons. While the morphological heterogeneity of spines and their intracellular organization has been extensively demonstrated in animal models, the influence of spine apparatus organelles on critical signaling pathways, such as calcium-mediated dynamics, is less well known in human dendritic spines. In this study we used serial transmission electron microscopy to anatomically reconstruct nine human cortical spines in detail as a basis for modeling and simulation of the calcium dynamics between spine and dendrite. The anatomical study of reconstructed human dendritic spines revealed that the size of the postsynaptic density correlates with spine head volume and that the spine apparatus volume is proportional to the spine volume. Using a newly developed simulation pipeline, we have linked these findings to spine-to-dendrite calcium communication. While the absence of a spine apparatus, or the presence of a purely passive spine apparatus did not enable any of the reconstructed spines to relay a calcium signal to the dendritic shaft, the calcium-induced calcium release from this intracellular organelle allowed for finely tuned “all-or-nothing” spine-to-dendrite calcium coupling; controlled by spine morphology, neck plasticity, and ryanodine receptors. Our results suggest that spine apparatus organelles are strategically positioned in the neck of human dendritic spines and demonstrate their potential relevance to the maintenance and regulation of spine-to-dendrite calcium communication. During the past decade it has become increasingly clear that abnormal synaptic plasticity is a major hallmark of neurological and cognitive disorders. Developing a better understanding of the synaptic plasticity process, which describes the ability of neurons to adapt their contacts in an activity-dependent manner, will lead to improved treatment of many neurological and cognitive disorders. It is known that calcium-dependent events such as synaptic transmission, intracellular calcium release, and calcium wave propagation, are required for many types of synaptic plasticity expression. However, the biological significance of these processes in neurons of the adult human cortex remains unknown. Due to technical limitations and ethical concerns, experimental data addressing this biologically and clinically relevant topic are not available. Therefore, we have implemented a computational model to study the intracellular calcium dynamics in realistic human dendritic spines based on detailed morphological reconstructions. With our model and simulations, we have established the morphological and biological requirements for the propagation of calcium from spines into the dendrites. Our results suggest a critical role for the calcium-storing spine apparatus organelle in regulating calcium homeostasis and propagation in human dendritic spines.
Collapse
Affiliation(s)
- James Rosado
- Department of Mathematics, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Viet Duc Bui
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carola A. Haas
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gillian Queisser
- Department of Mathematics, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (GQ); (AV)
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail: (GQ); (AV)
| |
Collapse
|
8
|
Modeling material transport regulation and traffic jam in neurons using PDE-constrained optimization. Sci Rep 2022; 12:3902. [PMID: 35273238 PMCID: PMC8913697 DOI: 10.1038/s41598-022-07861-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
The intracellular transport process plays an important role in delivering essential materials throughout branched geometries of neurons for their survival and function. Many neurodegenerative diseases have been associated with the disruption of transport. Therefore, it is essential to study how neurons control the transport process to localize materials to necessary locations. Here, we develop a novel optimization model to simulate the traffic regulation mechanism of material transport in complex geometries of neurons. The transport is controlled to avoid traffic jam of materials by minimizing a pre-defined objective function. The optimization subjects to a set of partial differential equation (PDE) constraints that describe the material transport process based on a macroscopic molecular-motor-assisted transport model of intracellular particles. The proposed PDE-constrained optimization model is solved in complex tree structures by using isogeometric analysis (IGA). Different simulation parameters are used to introduce traffic jams and study how neurons handle the transport issue. Specifically, we successfully model and explain the traffic jam caused by reduced number of microtubules (MTs) and MT swirls. In summary, our model effectively simulates the material transport process in healthy neurons and also explains the formation of a traffic jam in abnormal neurons. Our results demonstrate that both geometry and MT structure play important roles in achieving an optimal transport process in neuron.
Collapse
|
9
|
Far from the nuclear crowd: Cytoplasmic lncRNA and their implications in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 185:107522. [PMID: 34547434 DOI: 10.1016/j.nlm.2021.107522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022]
Abstract
A striking proportion of long non-coding RNAs are expressed specifically in the mammalian brain. Advances in genome-wide sequencing detected widespread diversity in neuronal lncRNAs based on their expression pattern, localization and function. A growing body of literature proposes that localization of lncRNAs is a critical determinant of their function. A rising number of recent findings documented distinct cytoplasmic functions of lncRNAs that are linked to activity-induced control of synaptic plasticity. However, the comprehensive role of cytoplasmic lncRNAs in neuronal functions is less understood. This review surveys our current understanding of lncRNAs that regulate the cytoplasmic life of mRNAs. We discuss the necessity of subcellular localization of lncRNAs in neuronal dendrites and the impact of their compartmentalized positioning on localized translation at the synapse. We have highlighted how lncRNAs modify a functional compartment to meet the demand for input-specific control of synaptic plasticity and memory.
Collapse
|
10
|
Rajgor D, Welle TM, Smith KR. The Coordination of Local Translation, Membranous Organelle Trafficking, and Synaptic Plasticity in Neurons. Front Cell Dev Biol 2021; 9:711446. [PMID: 34336865 PMCID: PMC8317219 DOI: 10.3389/fcell.2021.711446] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Neurons are highly complex polarized cells, displaying an extraordinary degree of spatial compartmentalization. At presynaptic and postsynaptic sites, far from the cell body, local protein synthesis is utilized to continually modify the synaptic proteome, enabling rapid changes in protein production to support synaptic function. Synapses undergo diverse forms of plasticity, resulting in long-term, persistent changes in synapse strength, which are paramount for learning, memory, and cognition. It is now well-established that local translation of numerous synaptic proteins is essential for many forms of synaptic plasticity, and much work has gone into deciphering the strategies that neurons use to regulate activity-dependent protein synthesis. Recent studies have pointed to a coordination of the local mRNA translation required for synaptic plasticity and the trafficking of membranous organelles in neurons. This includes the co-trafficking of RNAs to their site of action using endosome/lysosome “transports,” the regulation of activity-dependent translation at synapses, and the role of mitochondria in fueling synaptic translation. Here, we review our current understanding of these mechanisms that impact local translation during synaptic plasticity, providing an overview of these novel and nuanced regulatory processes involving membranous organelles in neurons.
Collapse
Affiliation(s)
- Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
11
|
Gamarra M, de la Cruz A, Blanco-Urrejola M, Baleriola J. Local Translation in Nervous System Pathologies. Front Integr Neurosci 2021; 15:689208. [PMID: 34276318 PMCID: PMC8279726 DOI: 10.3389/fnint.2021.689208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Dendrites and axons can extend dozens to hundreds of centimeters away from the cell body so that a single neuron can sense and respond to thousands of stimuli. Thus, for an accurate function of dendrites and axons the neuronal proteome needs to be asymmetrically distributed within neurons. Protein asymmetry can be achieved by the transport of the protein itself or the transport of the mRNA that is then translated at target sites in neuronal processes. The latter transport mechanism implies local translation of localized mRNAs. The role of local translation in nervous system (NS) development and maintenance is well established, but recently there is growing evidence that this mechanism and its deregulation are also relevant in NS pathologies, including neurodegenerative diseases. For instance, upon pathological signals disease-related proteins can be locally synthesized in dendrites and axons. Locally synthesized proteins can exert their effects at or close to the site of translation, or they can be delivered to distal compartments like the nucleus and induce transcriptional responses that lead to neurodegeneration, nerve regeneration and other cell-wide responses. Relevant key players in the process of local protein synthesis are RNA binding proteins (RBPs), responsible for mRNA transport to neurites. Several neurological and neurodegenerative disorders, including amyotrophic lateral sclerosis or spinal motor atrophy, are characterized by mutations in genes encoding for RBPs and consequently mRNA localization and local translation are impaired. In other diseases changes in the local mRNA repertoire and altered local protein synthesis have been reported. In this review, we will discuss how deregulation of localized translation at different levels can contribute to the development and progression of nervous system pathologies.
Collapse
Affiliation(s)
- María Gamarra
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Aida de la Cruz
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Maite Blanco-Urrejola
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Departamento de Biología Celular e Histología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Jimena Baleriola
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Biología Celular e Histología, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Di Paolo A, Garat J, Eastman G, Farias J, Dajas-Bailador F, Smircich P, Sotelo-Silveira JR. Functional Genomics of Axons and Synapses to Understand Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:686722. [PMID: 34248504 PMCID: PMC8267896 DOI: 10.3389/fncel.2021.686722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Functional genomics studies through transcriptomics, translatomics and proteomics have become increasingly important tools to understand the molecular basis of biological systems in the last decade. In most cases, when these approaches are applied to the nervous system, they are centered in cell bodies or somatodendritic compartments, as these are easier to isolate and, at least in vitro, contain most of the mRNA and proteins present in all neuronal compartments. However, key functional processes and many neuronal disorders are initiated by changes occurring far away from cell bodies, particularly in axons (axopathologies) and synapses (synaptopathies). Both neuronal compartments contain specific RNAs and proteins, which are known to vary depending on their anatomical distribution, developmental stage and function, and thus form the complex network of molecular pathways required for neuron connectivity. Modifications in these components due to metabolic, environmental, and/or genetic issues could trigger or exacerbate a neuronal disease. For this reason, detailed profiling and functional understanding of the precise changes in these compartments may thus yield new insights into the still intractable molecular basis of most neuronal disorders. In the case of synaptic dysfunctions or synaptopathies, they contribute to dozens of diseases in the human brain including neurodevelopmental (i.e., autism, Down syndrome, and epilepsy) as well as neurodegenerative disorders (i.e., Alzheimer's and Parkinson's diseases). Histological, biochemical, cellular, and general molecular biology techniques have been key in understanding these pathologies. Now, the growing number of omics approaches can add significant extra information at a high and wide resolution level and, used effectively, can lead to novel and insightful interpretations of the biological processes at play. This review describes current approaches that use transcriptomics, translatomics and proteomic related methods to analyze the axon and presynaptic elements, focusing on the relationship that axon and synapses have with neurodegenerative diseases.
Collapse
Affiliation(s)
- Andres Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Joaquin Garat
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Polo de Desarrollo Universitario “Espacio de Biología Vegetal del Noreste”, Centro Universitario Regional Noreste, Universidad de la República (UdelaR), Tacuarembó, Uruguay
| | - Federico Dajas-Bailador
- School of Life Sciences, Medical School Building, University of Nottingham, Nottingham, United Kingdom
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
13
|
Deep learning of material transport in complex neurite networks. Sci Rep 2021; 11:11280. [PMID: 34050208 PMCID: PMC8163783 DOI: 10.1038/s41598-021-90724-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Neurons exhibit complex geometry in their branched networks of neurites which is essential to the function of individual neuron but also brings challenges to transport a wide variety of essential materials throughout their neurite networks for their survival and function. While numerical methods like isogeometric analysis (IGA) have been used for modeling the material transport process via solving partial differential equations (PDEs), they require long computation time and huge computation resources to ensure accurate geometry representation and solution, thus limit their biomedical application. Here we present a graph neural network (GNN)-based deep learning model to learn the IGA-based material transport simulation and provide fast material concentration prediction within neurite networks of any topology. Given input boundary conditions and geometry configurations, the well-trained model can predict the dynamical concentration change during the transport process with an average error less than 10% and [Formula: see text] times faster compared to IGA simulations. The effectiveness of the proposed model is demonstrated within several complex neurite networks.
Collapse
|
14
|
RNA Localization and Local Translation in Glia in Neurological and Neurodegenerative Diseases: Lessons from Neurons. Cells 2021; 10:cells10030632. [PMID: 33809142 PMCID: PMC8000831 DOI: 10.3390/cells10030632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cell polarity is crucial for almost every cell in our body to establish distinct structural and functional domains. Polarized cells have an asymmetrical morphology and therefore their proteins need to be asymmetrically distributed to support their function. Subcellular protein distribution is typically achieved by localization peptides within the protein sequence. However, protein delivery to distinct cellular compartments can rely, not only on the transport of the protein itself but also on the transport of the mRNA that is then translated at target sites. This phenomenon is known as local protein synthesis. Local protein synthesis relies on the transport of mRNAs to subcellular domains and their translation to proteins at target sites by the also localized translation machinery. Neurons and glia specially depend upon the accurate subcellular distribution of their proteome to fulfil their polarized functions. In this sense, local protein synthesis has revealed itself as a crucial mechanism that regulates proper protein homeostasis in subcellular compartments. Thus, deregulation of mRNA transport and/or of localized translation can lead to neurological and neurodegenerative diseases. Local translation has been more extensively studied in neurons than in glia. In this review article, we will summarize the state-of-the art research on local protein synthesis in neuronal function and dysfunction, and we will discuss the possibility that local translation in glia and deregulation thereof contributes to neurological and neurodegenerative diseases.
Collapse
|
15
|
Non-genomic mechanisms mediate androgen-induced PSD95 expression. Aging (Albany NY) 2020; 11:2281-2294. [PMID: 31005955 PMCID: PMC6520003 DOI: 10.18632/aging.101913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
The non-genomic actions of androgen-induced synaptic plasticity have been extensively studied. However, the underlying mechanisms remain controversial. We recently found that testosterone-fetal bovine serum albumin (T-BSA), a cell membrane-impermeable complex, led to a rapid increase in the postsynaptic density 95 (PSD95) protein level through a transcription-independent mechanism in mouse hippocampal HT22 cells. Using T-BSA conjugated FITC, we verified the presence of membrane androgen-binding sites. Here, we show that T-BSA-induced PSD95 expression is mediated by G-protein-coupled receptor (GPCR)-zinc transporter ZIP9 (SLC39A9), one of the androgen membrane binding sites, rather than the membrane-localized androgen receptor. Furthermore, we found that T-BSA induced an interaction between ZIP9 and Gnα11 that lead to the phosphorylation of Erk1/2 MAPK and eIF4E, which are critical in the mRNA translation process. The PSD95 and p-eIF4E expression decreased when knockdown of ZIP9 or Gnα11 expression or inhibition of Erk1/2 activation. Taken together, these findings suggest that ZIP9 mediates the non-genomic action of androgen on synaptic protein PSD95 synthesis through the Gnα11/Erk1/2/eIF4E pathway in HT22 cells. This novel mechanism provides a theoretical basis to understand the neuroprotective mechanism of androgen.
Collapse
|
16
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
17
|
Di S, Jiang Z, Wang S, Harrison LM, Castro-Echeverry E, Stuart TC, Wolf ME, Tasker JG. Labile Calcium-Permeable AMPA Receptors Constitute New Glutamate Synapses Formed in Hypothalamic Neuroendocrine Cells during Salt Loading. eNeuro 2019; 6:ENEURO.0112-19.2019. [PMID: 31300543 PMCID: PMC6675872 DOI: 10.1523/eneuro.0112-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
Magnocellular neuroendocrine cells (MNCs) of the hypothalamus play a critical role in the regulation of fluid and electrolyte homeostasis. They undergo a dramatic structural and functional plasticity under sustained hyperosmotic conditions, including an increase in afferent glutamatergic synaptic innervation. We tested for a postulated increase in glutamate AMPA receptor expression and signaling in magnocellular neurons of the male rat hypothalamic supraoptic nucleus (SON) induced by chronic salt loading. While without effect on GluA1-4 subunit mRNA, salt loading with 2% saline for 5-7 d resulted in a selective increase in AMPA receptor GluA1 protein expression in the SON, with no change in GluA2-4 protein expression, suggesting an increase in the ratio of GluA1 to GluA2 subunits. Salt loading induced a corresponding increase in EPSCs in both oxytocin (OT) and vasopressin (VP) neurons, with properties characteristic of calcium-permeable AMPA receptor-mediated currents. Unexpectedly, the emergent AMPA synaptic currents were silenced by blocking protein synthesis and mammalian target of rapamycin (mTOR) activity in the slices, suggesting that the new glutamate synapses induced by salt loading require continuous dendritic protein synthesis for maintenance. These findings indicate that chronic salt loading leads to the induction of highly labile glutamate synapses in OT and VP neurons that are comprised of calcium-permeable homomeric GluA1 AMPA receptors. The glutamate-induced calcium influx via calcium-permeable AMPA receptors would be expected to play a key role in the induction and/or maintenance of activity-dependent synaptic plasticity that occurs in the magnocellular neurons during chronic osmotic stimulation.
Collapse
Affiliation(s)
- Shi Di
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - ZhiYing Jiang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Sen Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Laura M Harrison
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | | | - Thomas C Stuart
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| |
Collapse
|
18
|
Altered Glutamate Receptor Ionotropic Delta Subunit 2 Expression in Stau2-Deficient Cerebellar Purkinje Cells in the Adult Brain. Int J Mol Sci 2019; 20:ijms20071797. [PMID: 30979012 PMCID: PMC6480955 DOI: 10.3390/ijms20071797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/13/2023] Open
Abstract
Staufen2 (Stau2) is an RNA-binding protein that is involved in dendritic spine morphogenesis and function. Several studies have recently investigated the role of Stau2 in the regulation of its neuronal target mRNAs, with particular focus on the hippocampus. Here, we provide evidence for Stau2 expression and function in cerebellar Purkinje cells. We show that Stau2 downregulation (Stau2GT) led to an increase of glutamate receptor ionotropic delta subunit 2 (GluD2) in Purkinje cells when animals performed physical activity by voluntary wheel running compared with the age-matched wildtype (WT) mice (C57Bl/6J). Furthermore, Stau2GT mice showed lower performance in motor coordination assays but enhanced motor learning abilities than did WT mice, concomitantly with an increase in dendritic GluD2 expression. Together, our results suggest the novel role of Stau2 in Purkinje cell synaptogenesis in the mouse cerebellum.
Collapse
|
19
|
Margvelani G, Meparishvili M, Kiguradze T, McCabe BJ, Solomonia R. Micro-RNAs, their target proteins, predispositions and the memory of filial imprinting. Sci Rep 2018; 8:17444. [PMID: 30487553 PMCID: PMC6262022 DOI: 10.1038/s41598-018-35097-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022] Open
Abstract
Visual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The intermediate medial mesopallium (IMM) in the domestic chick forebrain is critical for visual imprinting and contributes to molecular regulation of memory formation. We investigated the role of micro-RNAs (miRNAs) in such regulation. Twenty-four hours after training, miRNA spectra in the left IMM were compared between chicks with high preference scores (strong memory for imprinting stimulus), and chicks with low preference scores (weak memory for imprinting stimulus). Using criteria of significance and expression level, we chose gga-miR-130b-3p for further study and found that down-regulation correlated with learning strength. No effect was detected in posterior nidopallium, a region not involved in imprinting. We studied two targets of gga-miR-130b-3p, cytoplasmic polyadenylation element binding proteins 1 (CPEB-1) and 3 (CPEB-3), in two subcellular fractions (P2 membrane-mitochondrial and cytoplasmic) of IMM and posterior nidopallium. Only in the left IMM was a learning-related effect observed, in membrane CPEB-3. Variances from the regression with preference score and untrained chicks suggest that, in the IMM, gga-miR-130b-3p level reflects a predisposition, i.e. capacity to learn, whereas P2 membrane-mitochondrial CPEB-3 is up-regulated in a learning-specific way.
Collapse
Affiliation(s)
- Giorgi Margvelani
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Maia Meparishvili
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.,I. Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| | - Tamar Kiguradze
- I. Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| | - Brian J McCabe
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Revaz Solomonia
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia. .,I. Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia.
| |
Collapse
|
20
|
ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay. Proc Natl Acad Sci U S A 2018; 115:E11904-E11913. [PMID: 30455313 PMCID: PMC6304956 DOI: 10.1073/pnas.1810413115] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by preferential motor neuron death. Approximately 15% of ALS cases are familial, and mutations in the fused in sarcoma (FUS) gene contribute to a subset of familial ALS cases. FUS is a multifunctional protein participating in many RNA metabolism pathways. ALS-linked mutations cause a liquid-liquid phase separation of FUS protein in vitro, inducing the formation of cytoplasmic granules and inclusions. However, it remains elusive what other proteins are sequestered into the inclusions and how such a process leads to neuronal dysfunction and degeneration. In this study, we developed a protocol to isolate the dynamic mutant FUS-positive cytoplasmic granules. Proteomic identification of the protein composition and subsequent pathway analysis led us to hypothesize that mutant FUS can interfere with protein translation. We demonstrated that the ALS mutations in FUS indeed suppressed protein translation in N2a cells expressing mutant FUS and fibroblast cells derived from FUS ALS cases. In addition, the nonsense-mediated decay (NMD) pathway, which is closely related to protein translation, was altered by mutant FUS. Specifically, NMD-promoting factors UPF1 and UPF3b increased, whereas a negative NMD regulator, UPF3a, decreased, leading to the disruption of NMD autoregulation and the hyperactivation of NMD. Alterations in NMD factors and elevated activity were also observed in the fibroblast cells of FUS ALS cases. We conclude that mutant FUS suppresses protein biosynthesis and disrupts NMD regulation, both of which likely contribute to motor neuron death.
Collapse
|
21
|
Gallagher C, Ramos A. Joining the dots - protein-RNA interactions mediating local mRNA translation in neurons. FEBS Lett 2018; 592:2932-2947. [PMID: 29856909 DOI: 10.1002/1873-3468.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/26/2023]
Abstract
Establishing and maintaining the complex network of connections required for neuronal communication requires the transport and in situ translation of large groups of mRNAs to create local proteomes. In this Review, we discuss the regulation of local mRNA translation in neurons and the RNA-binding proteins that recognise RNA zipcode elements and connect the mRNAs to the cellular transport networks, as well as regulate their translation control. However, mRNA recognition by the regulatory proteins is mediated by the combinatorial action of multiple RNA-binding domains. This increases the specificity and affinity of the interaction, while allowing the protein to recognise a diverse set of targets and mediate a range of mechanisms for translational regulation. The structural and molecular understanding of the interactions can be used together with novel microscopy and transcriptome-wide data to build a mechanistic framework for the regulation of local mRNA translation.
Collapse
Affiliation(s)
- Christopher Gallagher
- Institute of Structural and Molecular Biology, University College London, UK.,The Francis Crick Institute, London, UK
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, UK
| |
Collapse
|
22
|
Stefanik MT, Sakas C, Lee D, Wolf ME. Ionotropic and metabotropic glutamate receptors regulate protein translation in co-cultured nucleus accumbens and prefrontal cortex neurons. Neuropharmacology 2018; 140:62-75. [PMID: 30077883 DOI: 10.1016/j.neuropharm.2018.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023]
Abstract
The regulation of protein translation by glutamate receptors and its role in plasticity have been extensively studied in the hippocampus. In contrast, very little is known about glutamatergic regulation of translation in nucleus accumbens (NAc) medium spiny neurons (MSN), despite their critical role in addiction-related plasticity and recent evidence that protein translation contributes to this plasticity. We used a co-culture system, containing NAc MSNs and prefrontal cortex (PFC) neurons, and fluorescent non-canonical amino acid tagging (FUNCAT) to visualize newly synthesized proteins in neuronal processes of NAc MSNs and PFC pyramidal neurons. First, we verified that the FUNCAT signal reflects new protein translation. Next, we examined the regulation of translation by group I metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors by incubating co-cultures with agonists or antagonists during the 2-h period of non-canonical amino acid labeling. In NAc MSNs, basal translation was modestly reduced by blocking Ca2+-permeable AMPARs whereas blocking all AMPARs or suppressing constitutive mGluR5 signaling enhanced translation. Activating group I mGluRs with dihydroxyphenylglycine increased translation in an mGluR1-dependent manner in NAc MSNs and PFC pyramidal neurons. Disinhibiting excitatory transmission with bicuculline also increased translation. In MSNs, this was reversed by antagonists of mGluR1, mGluR5, AMPARs or NMDARs. In PFC neurons, AMPAR or NMDAR antagonists blocked bicuculline-stimulated translation. Our study, the first to examine glutamatergic regulation of translation in MSNs, demonstrates regulatory mechanisms specific to MSNs that depend on the level of neuronal activation. This sets the stage for understanding how translation may be altered in addiction.
Collapse
Affiliation(s)
- Michael T Stefanik
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Courtney Sakas
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Dennis Lee
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
23
|
ZBP1 phosphorylation at serine 181 regulates its dendritic transport and the development of dendritic trees of hippocampal neurons. Sci Rep 2017; 7:1876. [PMID: 28500298 PMCID: PMC5431813 DOI: 10.1038/s41598-017-01963-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/07/2017] [Indexed: 11/23/2022] Open
Abstract
Local protein synthesis occurs in axons and dendrites of neurons, enabling fast and spatially restricted responses to a dynamically changing extracellular environment. Prior to local translation, mRNA that is to be translated is packed into ribonucleoprotein particles (RNPs) where RNA binding proteins ensure mRNA silencing and provide a link to molecular motors. ZBP1 is a component of RNP transport particles and is known for its role in the local translation of β-actin mRNA. Its binding to mRNA is regulated by tyrosine 396 phosphorylation, and this particular modification was shown to be vital for axonal growth and dendritic branching. Recently, additional phosphorylation of ZBP1 at serine 181 (Ser181) was described in non-neuronal cells. In the present study, we found that ZBP1 is also phosphorylated at Ser181 in neurons in a mammalian/mechanistic target of rapamycin complex 2-, Src kinase-, and mRNA binding-dependent manner. Furthermore, Ser181 ZBP1 phosphorylation was essential for the proper dendritic branching of hippocampal neurons that were cultured in vitro and for the proper ZBP1 dendritic distribution and motility.
Collapse
|
24
|
Donlin-Asp PG, Rossoll W, Bassell GJ. Spatially and temporally regulating translation via mRNA-binding proteins in cellular and neuronal function. FEBS Lett 2017; 591:1508-1525. [PMID: 28295262 DOI: 10.1002/1873-3468.12621] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/20/2022]
Abstract
Coordinated regulation of mRNA localization and local translation are essential steps in cellular asymmetry and function. It is increasingly evident that mRNA-binding proteins play critical functions in controlling the fate of mRNA, including when and where translation occurs. In this review, we discuss the robust and complex roles that mRNA-binding proteins play in the regulation of local translation that impact cellular function in vertebrates. First, we discuss the role of local translation in cellular polarity and possible links to vertebrate development and patterning. Next, we discuss the expanding role for local protein synthesis in neuronal development and function, with special focus on how a number of neurological diseases have given us insight into the importance of translational regulation. Finally, we discuss the ever-increasing set of tools to study regulated translation and how these tools will be vital in pushing forward and addressing the outstanding questions in the field.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
25
|
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to a family of small secreted proteins that also include nerve growth factor, neurotrophin 3, and neurotrophin 4. BDNF stands out among all neurotrophins by its high expression levels in the brain and its potent effects at synapses. Several aspects of BDNF biology such as transcription, processing, and secretion are regulated by synaptic activity. Such observations prompted the suggestion that BDNF may regulate activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP), a sustained enhancement of excitatory synaptic efficacy thought to underlie learning and memory. Here, we will review the evidence pointing to a fundamental role of this neurotrophin in LTP, especially within the hippocampus. Prominent questions in the field, including the release and action sites of BDNF during LTP, as well as the signaling and molecular mechanisms involved, will also be addressed. The diverse effects of BDNF at excitatory synapses are determined by the activation of TrkB receptors and downstream signaling pathways, and the functions, typically opposing in nature, of its immature form (proBDNF). The activation of p75NTR receptors by proBDNF and the implications for long-term depression will also be addressed. Finally, we discuss the synergy between TrkB and glucocorticoid receptor signaling to determine cellular responses to stress.
Collapse
Affiliation(s)
- G Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - C R Bramham
- K.G. Jebsen Center for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
26
|
mTOR and MAPK: from localized translation control to epilepsy. BMC Neurosci 2016; 17:73. [PMID: 27855659 PMCID: PMC5114760 DOI: 10.1186/s12868-016-0308-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/09/2016] [Indexed: 01/03/2023] Open
Abstract
Background Epilepsy is one of the most common neurological diseases characterized by excessive hyperexcitability of neurons. Molecular mechanisms of epilepsy are diverse and not really understood. All in common is the misregulation of proteins that determine excitability such as potassium and sodium channels as well as GABA receptors; which are all known as biomarkers for epilepsy. Two recently identified key pathways involve the kinases mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinases (MAPK). Interestingly, mRNAs coding for those biomarkers are found to be localized at or near synapses indicating a local misregulation of synthesis and activity. Results Research in the last decade indicates that RNA-binding proteins (RBPs) responsible for mRNA localization, stability and translation mediate local expression control. Among others, they are affected by mTOR and MAPK to guide expression of epileptic factors. These results suggest that mTOR/MAPK act on RBPs to regulate the fate of mRNAs, indicating a misregulation of protein expression at synapses in epilepsy. Conclusion We propose that mTOR and MAPK regulate RBPs, thereby guiding the local expression of their target-mRNAs encoding for markers of epilepsy. Thus, misregulated mTOR/MAPK-RBP interplay may result in excessive local synthesis of ion channels and receptors thereby leading to hyperexcitability. Continuous stimulation of synapses further activates mTOR/MAPK pathway reinforcing their effect on RBP-mediated expression control establishing the basis for epilepsy. Here, we highlight findings showing the tight interplay between mTOR as well as MAPK with RBPs to control expression for epileptic biomarkers.
Collapse
|
27
|
Intra-axonal protein synthesis in development and beyond. Int J Dev Neurosci 2016; 55:140-149. [PMID: 26970010 DOI: 10.1016/j.ijdevneu.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Proteins can be locally produced in the periphery of a cell, allowing a rapid and spatially precise response to the changes in its environment. This process is especially relevant in highly polarized and morphologically complex cells such as neurons. The study of local translation in axons has evolved from being primarily focused on developing axons, to the notion that also mature axons can produce proteins. Axonal translation has been implied in several physiological and pathological conditions, and in all cases it shares common molecular actors and pathways as well as regulatory mechanisms. Here, we review the main findings in these fields, and attempt to highlight shared principles.
Collapse
|
28
|
Abstract
UNLABELLED Fragile X syndrome (FXS), the most common form of inherited mental retardation, is a neurodevelopmental disorder caused by silencing of the FMR1 gene, which in FXS becomes inactivated during human embryonic development. We have shown recently that this process is recapitulated by in vitro neural differentiation of FX human embryonic stem cells (FX-hESCs), derived from FXS blastocysts. In the present study, we analyzed morphological and functional properties of neurons generated from FX-hESCs. Human FX neurons can fire single action potentials (APs) to depolarizing current commands, but are unable to discharge trains of APs. Their APs are of a reduced amplitudes and longer durations than controls. These are reflected in reduced inward Na(+) and outward K(+) currents. In addition, human FX neurons contain fewer synaptic vesicles and lack spontaneous synaptic activity. Notably, synaptic activity in these neurons can be restored by coculturing them with normal rat hippocampal neurons, demonstrating a critical role for synaptic mechanisms in FXS pathology. This is the first extensive functional analysis of human FX neurons derived in vitro from hESCs that provides a convenient tool for studying molecular mechanisms underlying the impaired neuronal functions in FXS. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by silencing of the FMR1 gene. In this study, we describe for the first time the properties of neurons developed from human embryonic stem cells (hESCs) that carry the FMR1 mutation and are grown in culture for extended periods. These neurons are retarded compared with controls in several morphological and functional properties. In vitro neural differentiation of FX hESCs can thus serve as a most relevant system for the analysis of molecular mechanisms underlying the impaired neuronal functions in FXS.
Collapse
|
29
|
Jiang L, Li Y, Qiao L, Chen X, He Y, Zhang Y, Li G. Discovery of potential negative allosteric modulators of mGluR5 from natural products using pharmacophore modeling, molecular docking, and molecular dynamics simulation studies. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mGluR5, which belongs to the G-protein-coupled receptor superfamily, is believed to be associated with many human diseases, such as a wide range of neurological disorders, gastroesophageal reflux disease, and cancer. Comparing with compounds that target on the orthosteric binding site, significant roles have been established for mGluR5 negative allosteric modulators (NAMs) due to their higher subtype selectivity and more suitable pharmacokinetic profiles. Nevertheless, to date, none of them have come to market for various reasons. In this study, a 3D quantitative pharmacophore model was generated by using the HypoGen module in Discovery Studio 4.0. With several validation methods ultilized, the optimal pharmacophore model Hypo2 was selected to discover potential mGluR5 NAMs from natural products. Two hundred and seventeen potential NAMs were obtained after being filtered by Lipinski’s rule (≥4). Then, molecular docking was used to refine the pharmacophore-based screening results and analyze the binding mode of NAMs and mGluR5. Three compounds, aglaiduline, 5-O-ethyl-hirsutanonol, and yakuchinone A, with good ADMET properties, acceptable Fit value and estimated value, and high docking score, were reserved for a molecular dynamics simulation study. All of them have stability of ligand binding. From our computational results, there might exhibit drug-like negative allosteric moderating effects on mGluR5 in these natural products. This work provides a reliable method for discovering mGluR5 NAMs from natural products.
Collapse
Affiliation(s)
- Ludi Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Liansheng Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xi Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yusu He
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yanling Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Gongyu Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| |
Collapse
|
30
|
Hussain S, Bashir ZI. The epitranscriptome in modulating spatiotemporal RNA translation in neuronal post-synaptic function. Front Cell Neurosci 2015; 9:420. [PMID: 26582006 PMCID: PMC4628113 DOI: 10.3389/fncel.2015.00420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/04/2015] [Indexed: 01/08/2023] Open
Abstract
The application of next-generation-sequencing based methods has recently allowed the sequence-specific occurrence of RNA modifications to be investigated in transcriptome-wide settings. This has led to the emergence of a new field of molecular genetics research termed “epitranscriptomics.” Investigations have shown that these modifications can exert control over protein synthesis via various mechanisms, and particularly when occurring on messenger RNAs, can be dynamically regulated. Here, we propose that RNA modifications may be a critical regulator over the spatiotemporal control of protein-synthesis in neurons, which is supported by our finding that the RNA methylase NSun2 colocalizes with the translational-repressor FMRP at neuronal dendrites. We also observe that NSun2 commonly methylates mRNAs which encode components of the postsynaptic proteome, and further find that NSun2 and FMRP likely share a common subset of mRNA targets which include those that are known to be translated at dendrites in an activity-dependent manner. We consider potential roles for RNA modifications in space- time- and activity-dependent regulation of protein synthesis in neuronal physiology, with a particular focus on synaptic plasticity modulation.
Collapse
Affiliation(s)
- Shobbir Hussain
- Department of Biology and Biochemistry, University of Bath Bath, UK
| | - Zafar I Bashir
- School of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
31
|
Jasińska M, Miłek J, Cymerman IA, Łęski S, Kaczmarek L, Dziembowska M. miR-132 Regulates Dendritic Spine Structure by Direct Targeting of Matrix Metalloproteinase 9 mRNA. Mol Neurobiol 2015; 53:4701-12. [PMID: 26319558 PMCID: PMC4965491 DOI: 10.1007/s12035-015-9383-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023]
Abstract
Mir-132 is a neuronal activity-regulated microRNA that controls the morphology of dendritic spines and neuronal transmission. Similar activities have recently been attributed to matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease. In the present study, we provide evidence that miR-132 directly regulates MMP-9 mRNA in neurons to modulate synaptic plasticity. With the use of luciferase reporter system, we show that miR-132 binds to the 3’UTR of MMP-9 mRNA to regulate its expression in neurons. The overexpression of miR-132 in neurons reduces the level of endogenous MMP-9 protein secretion. In synaptoneurosomes, metabotropic glutamate receptor (mGluR)-induced signaling stimulates the dissociation of miR-132 from polyribosomal fractions and shifts it towards the messenger ribonucleoprotein (mRNP)-containing fraction. Furthermore, we demonstrate that the overexpression of miR-132 in the cultured hippocampal neurons from Fmr1 KO mice that have increased synaptic MMP-9 level provokes enlargement of the dendritic spine heads, a process previously implicated in enhanced synaptic plasticity. We propose that activity-dependent miR-132 regulates structural plasticity of dendritic spines through matrix metalloproteinase 9.
Collapse
Affiliation(s)
- Magdalena Jasińska
- Laboratory of Neurobiology, The Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland.,Laboratory of Molecular Basis of Synaptic Plasticity, Center of New Technologies, University of Warsaw, Warsaw, Poland.,School of Molecular Medicine, Żwirki i Wigury 61, 02-091, Warsaw, Poland
| | - Jacek Miłek
- Laboratory of Neurobiology, The Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland.,Laboratory of Molecular Basis of Synaptic Plasticity, Center of New Technologies, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, 02-106, Warsaw, Poland
| | - Iwona A Cymerman
- Laboratory of Molecular and Cellular Neurobiology, The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Szymon Łęski
- Laboratory of Neuroinformatics, The Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, The Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland.
| | - Magdalena Dziembowska
- Laboratory of Neurobiology, The Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland. .,Laboratory of Molecular Basis of Synaptic Plasticity, Center of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
32
|
Single-Molecule Imaging of PSD-95 mRNA Translation in Dendrites and Its Dysregulation in a Mouse Model of Fragile X Syndrome. J Neurosci 2015; 35:7116-30. [PMID: 25948262 DOI: 10.1523/jneurosci.2802-14.2015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of the fragile X mental retardation protein (FMRP), an RNA binding protein that regulates translation of numerous target mRNAs, some of which are dendritically localized. Our previous biochemical studies using synaptoneurosomes demonstrate a role for FMRP and miR-125a in regulating the translation of PSD-95 mRNA. However, the local translation of PSD-95 mRNA within dendrites and spines, as well as the roles of FMRP or miR-125a, have not been directly studied. Herein, local synthesis of a Venus-PSD-95 fusion protein was directly visualized in dendrites and spines using single-molecule imaging of a diffusion-restricted Venus-PSD-95 reporter under control of the PSD-95 3'UTR. The basal translation rates of Venus-PSD-95 mRNA was increased in cultured hippocampal neurons from Fmr1 KO mice compared with WT neurons, which correlated with a transient elevation of endogenous PSD-95 within dendrites. Following mGluR stimulation with (S)-3,5-dihydroxyphenylglycine, the rate of Venus-PSD-95 mRNA translation increased rapidly in dendrites of WT hippocampal neurons, but not in those of Fmr1 KO neurons or when the binding site of miR125a, previously shown to bind PSD-95 3'UTR, was mutated. This study provides direct support for the hypothesis that local translation within dendrites and spines is dysregulated in FXS. Impairments in the regulated local synthesis of PSD-95, a critical regulator of synaptic structure and function, may affect the spatiotemporal control of PSD-95 levels and affect dendritic spine development and synaptic plasticity in FXS.
Collapse
|
33
|
Heise C, Gardoni F, Culotta L, di Luca M, Verpelli C, Sala C. Elongation factor-2 phosphorylation in dendrites and the regulation of dendritic mRNA translation in neurons. Front Cell Neurosci 2014; 8:35. [PMID: 24574971 PMCID: PMC3918593 DOI: 10.3389/fncel.2014.00035] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/23/2014] [Indexed: 11/13/2022] Open
Abstract
Neuronal activity results in long lasting changes in synaptic structure and function by regulating mRNA translation in dendrites. These activity dependent events yield the synthesis of proteins known to be important for synaptic modifications and diverse forms of synaptic plasticity. Worthy of note, there is accumulating evidence that the eukaryotic Elongation Factor 2 Kinase (eEF2K)/eukaryotic Elongation Factor 2 (eEF2) pathway may be strongly involved in this process. Upon activation, eEF2K phosphorylates and thereby inhibits eEF2, resulting in a dramatic reduction of mRNA translation. eEF2K is activated by elevated levels of calcium and binding of Calmodulin (CaM), hence its alternative name calcium/CaM-dependent protein kinase III (CaMKIII). In dendrites, this process depends on glutamate signaling and N-methyl-D-aspartate receptor (NMDAR) activation. Interestingly, it has been shown that eEF2K can be activated in dendrites by metabotropic glutamate receptor (mGluR) 1/5 signaling, as well. Therefore, neuronal activity can induce local proteomic changes at the postsynapse by altering eEF2K activity. Well-established targets of eEF2K in dendrites include brain-derived neurotrophic factor (BDNF), activity-regulated cytoskeletal-associated protein (Arc), the alpha subunit of calcium/CaM-dependent protein kinase II (αCaMKII), and microtubule-associated protein 1B (MAP1B), all of which have well-known functions in different forms of synaptic plasticity. In this review we will give an overview of the involvement of the eEF2K/eEF2 pathway at dendrites in regulating the translation of dendritic mRNA in the context of altered NMDAR- and neuronal activity, and diverse forms of synaptic plasticity, such as metabotropic glutamate receptor-dependent-long-term depression (mGluR-LTD). For this, we draw on studies carried out both in vitro and in vivo.
Collapse
Affiliation(s)
- Christopher Heise
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Lorenza Culotta
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Monica di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Chiara Verpelli
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan Milan, Italy
| | - Carlo Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan Milan, Italy ; Neuromuscular Diseases and Neuroimmunology, Foundation Carlo Besta Neurological Institute Milan, Italy
| |
Collapse
|
34
|
Crispino M, Chun JT, Cefaliello C, Perrone Capano C, Giuditta A. Local gene expression in nerve endings. Dev Neurobiol 2013; 74:279-91. [PMID: 23853157 DOI: 10.1002/dneu.22109] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/28/2013] [Accepted: 07/05/2013] [Indexed: 12/11/2022]
Abstract
At the Nobel lecture for physiology in 1906, Ramón y Cajal famously stated that "the nerve elements possess reciprocal relationships in contiguity but not in continuity," summing up the neuron doctrine. Sixty years later, by the time the central dogma of molecular biology formulated the axis of genetic information flow from DNA to mRNA, and then to protein, it became obvious that neurons with extensive ramifications and long axons inevitably incur an innate problem: how can the effect of gene expression be extended from the nucleus to the remote and specific sites of the cell periphery? The most straightforward solution would be to deliver soma-produced proteins to the target sites. The influential discovery of axoplasmic flow has supported this scheme of protein supply. Alternatively, mRNAs can be dispatched instead of protein, and translated locally at the strategic target sites. Over the past decades, such a local system of protein synthesis has been demonstrated in dendrites, axons, and presynaptic terminals. Moreover, the local protein synthesis in neurons might even involve intercellular trafficking of molecules. The innovative concept of glia-neuron unit suggests that the local protein synthesis in the axonal and presynaptic domain of mature neurons is sustained by a local supply of RNAs synthesized in the surrounding glial cells and transferred to these domains. Here, we have reviewed some of the evidence indicating the presence of a local system of protein synthesis in axon terminals, and have examined its regulation in various model systems.
Collapse
Affiliation(s)
- Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | | |
Collapse
|
35
|
Progress toward treatments for synaptic defects in autism. Nat Med 2013; 19:685-94. [PMID: 23744158 DOI: 10.1038/nm.3193] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/11/2013] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) encompasses a range of disorders that are characterized by social and communication deficits and repetitive behaviors. For the majority of affected individuals, the cause of ASD remains unknown, but in at least 20% of the cases, a genetic cause can be identified. There is currently no cure for ASD; however, results from mouse models indicate that some forms of the disorder could be alleviated even at the adult stage. Genes involved in ASD seem to converge on common pathways altering synaptic homeostasis. We propose, given the clinical heterogeneity of ASD, that specific 'synaptic clinical trials' should be designed and launched with the aim of establishing whether phenotype 'reversals' could also occur in humans.
Collapse
|