1
|
Salama A, Hamed Salama A, Hasanein Asfour M. Tannic acid coated nanosuspension for oral delivery of chrysin intended for anti-schizophrenic effect in mice. Int J Pharm 2024; 656:124085. [PMID: 38580073 DOI: 10.1016/j.ijpharm.2024.124085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Chrysin is a flavonoid drug with numerous therapeutic activities. It suffers from low intestinal absorption owing to its hydrophobicity. Therefore, the aim of this study is to exploit the efficient technique of nanosuspension (NSP) to formulate chrysin-NSP coated with tannic acid (TA) to improve the solubility and anti-schizophrenic activity of chrysin. A 23 full factorial design was constructed where the independent factors were type of polymer, surfactant concentration (0.5 or 1 %) and the aqueous phase volume (5 or 15 mL), while the dependent responses were the particle size (PS) of the obtained formulation as well as the % chrysin dissolved after 2 h (Q2h). The optimum formulation (NSP-4) composed of 1 % PEG 400 and 1 % Cremophor RH40 in 15 mL aqueous phase. It achieved a PS and Q2h values of 108.00 nm and 38.77 %, respectively. NSP-4 was then coated with TA (TA-coated NSP-4) for further enhancement of chrysin solubility. TA-coated NSP-4 revealed PS and zeta potential values of 150 ± 14 nm and -32.54 ± 2.45 mV, respectively. After 6 h, chrysin dissolved % were 53.97 and 80.22 for uncoated NSP-4 and TA-coated NSP-4, respectively, compared with only 9.47 for free chrysin. The developed formulations and free chrysin were assessed regarding their effect on schizophrenia induced in mice by cuprizone (CPZ). Treatment with the developed formulations and free chrysin ameliorated demyelination and behavioral deficit induced by CPZ via elevating MBP and PI3K/PKC activities as well as reducing GFAP expression levels. The developed formulations and free chrysin inhibited Galactin-3 and TGF-β expressions and stimulated GST antioxidant enzyme. Furthermore, they maintained the balances in glutamatergic and dopaminergic neurotransmission via modulation on neuregulin-1 and alleviated nuclear pyknosis and degeneration in the neurons. The order of activity was: TA-coated NSP-4 > NSP-4 > free chrysin.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Alaa Hamed Salama
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
2
|
Chesworth R, Visini G, Karl T. Impaired extinction of operant cocaine in a genetic mouse model of schizophrenia risk. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06386-8. [PMID: 37233814 DOI: 10.1007/s00213-023-06386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Individuals with schizophrenia have high rates of comorbid substance use problems. One potential explanation for this comorbidity is similar neuropathophysiology in substance use and schizophrenia, which may arise from shared genetic risk factors between the two disorders. Here we investigated if genetic risk for schizophrenia could affect drug reward and reinforcement for cocaine in an established mouse model of genetic risk for schizophrenia, the neuregulin 1 transmembrane domain heterozygous (Nrg1 TM HET) mouse. METHODS We examined drug-induced locomotor sensitization and conditioned place preference for several cocaine doses (5, 10, 20, 30 mg/kg) in male adult Nrg1 TM HET and wild-type-like (WT) littermates. We also investigated intravenous self-administration of and motivation for cocaine (doses 0.1, 0.5, 1 mg/kg/infusion), as well as extinction and cue-induced reinstatement of cocaine. In a follow-up experiment, we examined self-administration, extinction and cue-induced reinstatement of a natural reward, oral sucrose. RESULTS Cocaine preference was similar between Nrg1 TM HET mice and WT littermates at all doses tested. Locomotor sensitization to cocaine was not affected by Nrg1 genotype at any dose. Although self-administration and motivation for cocaine was unaffected, extinction of cocaine self-administration was impaired in Nrg1 TM HET compared to WT controls, and cue-induced reinstatement was greater in Nrg1 mutants in the middle of the reinstatement session. Sucrose self-administration and extinction thereof was not affected by genotype, but inactive lever responding was elevated during cue-induced reinstatement for operant sucrose in Nrg1 TM HET mice compared to WTs. DISCUSSION These results suggest impaired response inhibition for cocaine in Nrg1 TM HET mice and suggests Nrg1 mutation may contribute to behaviours which can limit control over cocaine use.
Collapse
Affiliation(s)
- Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| | - Gabriela Visini
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
3
|
Visini G, Brown S, Weston-Green K, Shannon Weickert C, Chesworth R, Karl T. The effects of preventative cannabidiol in a male neuregulin 1 mouse model of schizophrenia. Front Cell Neurosci 2022; 16:1010478. [PMID: 36406747 PMCID: PMC9669370 DOI: 10.3389/fncel.2022.1010478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid with antipsychotic-like properties, however it’s potential to prevent schizophrenia development has not been thoroughly investigated. Brain maturation during adolescence creates a window where CBD could potentially limit the development of schizophrenia. The neuregulin 1 transmembrane domain heterozygous (Nrg1 TM HET) mutant mouse shows face, predictive, and construct validity for schizophrenia. Here we sought to determine if CBD given in adolescence could prevent the development of the schizophrenia-relevant phenotype, as well as susceptibility to the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) in Nrg1 TM HET mice. Adolescent male Nrg1 mutants and wild type-like (WT) animals were administered 30 mg/kg CBD i.p. daily for seven weeks, and were tested for locomotion, social behavior, sensorimotor gating and cognition, and sensitivity to acute THC-induced behaviors. GAD67, GluA1, and NMDAR1 protein levels were measured in the hippocampus, striatum, and prefrontal cortex. Chronic adolescent CBD increased locomotion in animals regardless of genotype, was anxiolytic, and increased social behavior when animals were tested for their acute THC response. CBD did not alleviate the schizophrenia-relevant hyperlocomotive phenotype of Nrg1 mutants, nor deficits in social behaviors. Nrg1 mutant mice treated with CBD and THC showed no habituation to a startle pulse, suggesting CBD increased vulnerability to the startle habituation-reducing effects of THC in mutant mice. CBD increased levels of GluA1, but reduced levels of GAD67 in the hippocampus of Nrg1 mutants. These results suggest adolescent CBD is not effective as a preventative of schizophrenia-relevant behavioral deficits in mutants and may actually contribute to pathological changes in the brain that increase sensitivity to THC in particular behavioral domains.
Collapse
Affiliation(s)
- Gabriela Visini
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Samara Brown
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | | | - Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- *Correspondence: Rose Chesworth,
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Tim Karl,
| |
Collapse
|
4
|
Parks C, Rogers CM, Prins P, Williams RW, Chen H, Jones BC, Moore BM, Mulligan MK. Genetic Modulation of Initial Sensitivity to Δ9-Tetrahydrocannabinol (THC) Among the BXD Family of Mice. Front Genet 2021; 12:659012. [PMID: 34367237 PMCID: PMC8343140 DOI: 10.3389/fgene.2021.659012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Cannabinoid receptor 1 activation by the major psychoactive component in cannabis, Δ9-tetrahydrocannabinol (THC), produces motor impairments, hypothermia, and analgesia upon acute exposure. In previous work, we demonstrated significant sex and strain differences in acute responses to THC following administration of a single dose (10 mg/kg, i.p.) in C57BL/6J (B6) and DBA/2J (D2) inbred mice. To determine the extent to which these differences are heritable, we quantified acute responses to a single dose of THC (10 mg/kg, i.p.) in males and females from 20 members of the BXD family of inbred strains derived by crossing and inbreeding B6 and D2 mice. Acute THC responses (initial sensitivity) were quantified as changes from baseline for: 1. spontaneous activity in the open field (mobility), 2. body temperature (hypothermia), and 3. tail withdrawal latency to a thermal stimulus (antinociception). Initial sensitivity to the immobilizing, hypothermic, and antinociceptive effects of THC varied substantially across the BXD family. Heritability was highest for mobility and hypothermia traits, indicating that segregating genetic variants modulate initial sensitivity to THC. We identified genomic loci and candidate genes, including Ndufs2, Scp2, Rps6kb1 or P70S6K, Pde4d, and Pten, that may control variation in THC initial sensitivity. We also detected strong correlations between initial responses to THC and legacy phenotypes related to intake or response to other drugs of abuse (cocaine, ethanol, and morphine). Our study demonstrates the feasibility of mapping genes and variants modulating THC responses in the BXDs to systematically define biological processes and liabilities associated with drug use and abuse.
Collapse
Affiliation(s)
- Cory Parks
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Agriculture, Biology and Health Sciences, Cameron University, Lawton, OK, United States
| | - Chris M. Rogers
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Byron C. Jones
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Bob M. Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
5
|
Zhang Z, Li Y, He F, Cui Y, Zheng Y, Li R. Sex differences in circulating neuregulin1-β1 and β-secretase 1 expression in childhood-onset schizophrenia. Compr Psychiatry 2020; 100:152176. [PMID: 32430144 DOI: 10.1016/j.comppsych.2020.152176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Early-onset schizophrenia is a severe and rare form of schizophrenia that is clinically and neurobiologically continuous with the adult form of schizophrenia. Neuregulin1 (NRG1)-mediated signaling is crucial for early neurodevelopment, which exerts its function by limited β-secretase 1 (BACE1) proteolysis processing. However, circulating neuregulin1-β1 (NRG1-β1), an isoform of NRG1, and its cleavage enzyme BACE1 have not been studied in early-onset patients with schizophrenia. METHODS In this study, we collected plasma and clinical information from 71 young patients (7 ≤ age years ≤20) with schizophrenia and 53 age- and sex-matched healthy controls. Immunoassay was used to test levels of circulating NRG1-β1 and BACE1 expression. We further analyzed the relationship of disease-onset age and gender with NRG1-β1 and BACE1 levels. RESULTS We found that circulating plasma levels of NRG1-β1 were significantly decreased in young patients with early-onset schizophrenia. In males with childhood onset schizophrenia (COS), NRG1-β1 was reduced and was inversely correlated with positive symptom of PANSS; moreover, these male patients with higher plasma BACE1 levels showed more severe general symptoms of PANSS and defective social functioning; whereas, no aforementioned results were found in adolescent-onset schizophrenia (AOS). Notably, young female patients with COS and AOS had no significant change in NRG1-β1 and BACE1, which demonstrated a sex-dependent effect in early-onset schizophrenia. CONCLUSION Our results suggest that decreased levels of NRG1-β1 and its cleavage enzyme BACE1 contribute to increased risk of etiology of schizophrenia. Synthetic biomarkers may have clinical applications for the early diagnosis of male COS.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Fan He
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yonghua Cui
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yi Zheng
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Rena Li
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Genes dysregulated in the blood of people with Williams syndrome are enriched in protein-coding genes positively selected in humans. Eur J Med Genet 2020; 63:103828. [DOI: 10.1016/j.ejmg.2019.103828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 12/21/2019] [Indexed: 12/29/2022]
|
7
|
Zieba J, Morris MJ, Karl T. Behavioural effects of high fat diet exposure starting in late adolescence in neuregulin 1 transmembrane domain mutant mice. Behav Brain Res 2019; 373:112074. [DOI: 10.1016/j.bbr.2019.112074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
|
8
|
Zhang Z, Cui J, Gao F, Li Y, Zhang G, Liu M, Yan R, Shen Y, Li R. Elevated cleavage of neuregulin-1 by beta-secretase 1 in plasma of schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:161-168. [PMID: 30500411 DOI: 10.1016/j.pnpbp.2018.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 01/22/2023]
Abstract
Neuregulin 1 (NRG1) is a key candidate susceptibility gene for schizophrenia. It is reported that the function of NRG1 can be regulated by cleavage via the β-Secretase (BACE1), particularly during early development. While current knowledge suggested that schizophrenia might have different phenotypes, it is unknown whether BACE1-cleaved-NRG1 (BACE1-NRG1) activity is related to clinical phenotypes of schizophrenia. In the current study, we used a newly developed enzymatic assay to detect BACE1-NRG1 activity in the human plasma and investigated the levels of cleavage of NRG1 by BACE1 in the plasma from schizophrenia patients. Our results are the first to demonstrate that the level of plasma BACE1-NRG1 activity was significantly increased in subjects affected with schizophrenia compared with healthy controls. Interestingly, the elevated BACE1-NRG1 activity was correlated with the disease severity and duration of schizophrenia, such as patients suffering from shorter-term course and worse disease status expressed higher BACE1-NRG1 activity levels compared to whom with longer duration and less severity of the disease. Furthermore, this is also the first report that the alternation of BACE1-NRG1 activity was a substrate -specific event in schizophrenia. Together, our findings suggested that the plasma BACE1-NRG1 activity can be a potential biomarker for the early diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jie Cui
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA
| | - Feng Gao
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Guofu Zhang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Min Liu
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Riqiang Yan
- Department of Neurosciences, University of Connecticut School of Medicine, Farmington, CT 06269, USA
| | - Yong Shen
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Rena Li
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
10
|
Altered hippocampal gene expression and structure in transgenic mice overexpressing neuregulin 1 (Nrg1) type I. Transl Psychiatry 2018; 8:229. [PMID: 30348978 PMCID: PMC6197224 DOI: 10.1038/s41398-018-0288-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022] Open
Abstract
Transgenic mice overexpressing the type I isoform of neuregulin 1 (Nrg1; NRG1) have alterations in hippocampal gamma oscillations and an age-emergent deficit in hippocampus-dependent spatial working memory. Here, we examined the molecular and morphological correlates of these findings. Microarrays showed over 100 hippocampal transcripts differentially expressed in Nrg1tg-type I mice, with enrichment of genes related to neuromodulation and, in older mice, of genes involved in inflammation and immunity. Nrg1tg-type I mice had an enlarged hippocampus with a widened dentate gyrus. The results show that Nrg1 type I impacts on hippocampal gene expression and structure in a multifaceted and partly age-related way, complementing the evidence implicating Nrg1 signaling in aspects of hippocampal function. The findings are also relevant to the possible role of NRG1 signaling in the pathophysiology of schizophrenia or other disorders affecting this brain region.
Collapse
|
11
|
Kupferschmidt DA, Gordon JA. The dynamics of disordered dialogue: Prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain Neurosci Adv 2018; 2. [PMID: 31058245 PMCID: PMC6497416 DOI: 10.1177/2398212818771821] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex is central to the orchestrated brain network communication that gives rise to working memory and other cognitive functions. Accordingly, working memory deficits in schizophrenia are increasingly thought to derive from prefrontal cortex dysfunction coupled with broader network disconnectivity. How the prefrontal cortex dynamically communicates with its distal network partners to support working memory and how this communication is disrupted in individuals with schizophrenia remain unclear. Here we review recent evidence that prefrontal cortex communication with the hippocampus and thalamus is essential for normal spatial working memory, and that miscommunication between these structures underlies spatial working memory deficits in schizophrenia. We focus on studies using normal rodents and rodent models designed to probe schizophrenia-related pathology to assess the dynamics of neural interaction between these brain regions. We also highlight recent preclinical work parsing roles for long-range prefrontal cortex connections with the hippocampus and thalamus in normal and disordered spatial working memory. Finally, we discuss how emerging rodent endophenotypes of hippocampal- and thalamo-prefrontal cortex dynamics in spatial working memory could translate into richer understanding of the neural bases of cognitive function and dysfunction in humans.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joshua A Gordon
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Stewart EM, Wu Z, Huang XF, Kapsa RMI, Wallace GG. Use of conducting polymers to facilitate neurite branching in schizophrenia-related neuronal development. Biomater Sci 2018; 4:1244-51. [PMID: 27376413 DOI: 10.1039/c6bm00212a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Schizophrenia (SCZ) is a debilitating mental disorder which results in high healthcare and loss of productivity costs to society. This disease remains poorly understood, however there is increasing evidence suggesting a role for oxidative damage in the disease etiology. We aimed to examine the effect of the conducting polymer polypyrrole on the growth and morphology of both wildtype and neuregulin-1 knock out (NRG-1 +/-) explant cells. Polypyrrole is an organic conducting polymer known to be cytocompatible and capable of acting as a platform for effective stimulation of neurons. Here we demonstrate for the first time the ability of this material to mediate processes occurring in disease affected neurons: schizophrenic model cortical neurons. Prefrontal cortical cells were grown on conducting polymer scaffolds of specific composition and showed significantly increased neurite branching and outgrowth length on the polymers compared to controls. Concurrently, a more significant enhancement was seen in both parameters in the NRG-1 +/- model cells. This finding implies that conducting polymers such as polypyrrole may be utilised to overcome neuro-functional deficits associated with neurological disease in humans.
Collapse
Affiliation(s)
- Elise M Stewart
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW, Australia.
| | - Zhixiang Wu
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
| | - Xu Feng Huang
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
| | - Robert M I Kapsa
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW, Australia.
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW, Australia.
| |
Collapse
|
13
|
Chesworth R, Long LE, Weickert CS, Karl T. The Endocannabinoid System across Postnatal Development in Transmembrane Domain Neuregulin 1 Mutant Mice. Front Psychiatry 2018; 9:11. [PMID: 29467679 PMCID: PMC5808294 DOI: 10.3389/fpsyt.2018.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
The use of cannabis is a well-established component risk factor for schizophrenia, particularly in adolescent individuals with genetic predisposition for the disorder. Alterations to the endocannabinoid system have been found in the prefrontal cortex of patients with schizophrenia. Thus, we assessed whether molecular alterations exist in the endocannabinoid signalling pathway during brain development in a mouse model for the schizophrenia risk gene neuregulin 1 (Nrg1). We analysed transcripts encoding key molecules of the endocannabinoid system in heterozygous transmembrane domain Nrg1 mutant mice (Nrg1 TM HET), which is known to have increased sensitivity to cannabis exposure. Tissue from the prelimbic cortex and hippocampus of male and female Nrg1 TM HET mice and wild type-like littermates was collected at postnatal days (PNDs) 7, 10, 14, 21, 28, 35, 49, and 161. Quantitative polymerase chain reaction was conducted to assess mRNA levels of cannabinoid receptor 1 (CB1R) and enzymes for the synthesis and breakdown of the endocannabinoid 2-arachidonoylglycerol [i.e., diacylglycerol lipase alpha (DAGLα), monoglyceride lipase (MGLL), and α/β-hydrolase domain-containing 6 (ABHD6)]. No sex differences were found for any transcripts in either brain region; thus, male and female data were pooled. Hippocampal and cortical mRNA expression of DAGLα, MGLL, and ABHD6 increased until PND 21-35 and then decreased and stabilised for the rest of postnatal development. Hippocampal CB1R mRNA expression increased until PND 21 and decreased after this age. Expression levels of these endocannabinoid markers did not differ in Nrg1 TM HET compared to control mice at any time point. Here, we demonstrate dynamic changes in the developmental trajectory of several key endocannabinoid system transcripts in the mouse brain, which may correspond with periods of endocannabinoid system maturation. Nrg1 TM HET mutation did not alter the developmental trajectory of the endocannabinoid markers assessed, suggesting that other mechanisms may be responsible for the exaggerated cannabinoid susceptibility in these mice.
Collapse
Affiliation(s)
- Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Leonora E Long
- Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia.,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Schizophrenia Research Institute, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
14
|
Skirzewski M, Karavanova I, Shamir A, Erben L, Garcia-Olivares J, Shin JH, Vullhorst D, Alvarez VA, Amara SG, Buonanno A. ErbB4 signaling in dopaminergic axonal projections increases extracellular dopamine levels and regulates spatial/working memory behaviors. Mol Psychiatry 2018; 23:2227-2237. [PMID: 28727685 PMCID: PMC5775946 DOI: 10.1038/mp.2017.132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
Genetic variants of Neuregulin 1 (NRG1) and its neuronal tyrosine kinase receptor ErbB4 are associated with risk for schizophrenia, a neurodevelopmental disorder characterized by excitatory/inhibitory imbalance and dopamine (DA) dysfunction. To date, most ErbB4 studies have focused on GABAergic interneurons in the hippocampus and neocortex, particularly fast-spiking parvalbumin-positive (PV+) basket cells. However, NRG has also been shown to modulate DA levels, suggesting a role for ErbB4 signaling in dopaminergic neuron function. Here we report that ErbB4 in midbrain DAergic axonal projections regulates extracellular DA levels and relevant behaviors. Mice lacking ErbB4 in tyrosine hydroxylase-positive (TH+) neurons, but not in PV+ GABAergic interneurons, exhibit different regional imbalances of basal DA levels and fail to increase DA in response to local NRG1 infusion into the dorsal hippocampus, medial prefrontal cortex and dorsal striatum measured by reverse microdialysis. Using Lund Human Mesencephalic (LUHMES) cells, we show that NRG/ErbB signaling increases extracellular DA levels, at least in part, by reducing DA transporter (DAT)-dependent uptake. Interestingly, TH-Cre;ErbB4f/f mice manifest deficits in learning, spatial and working memory-related behaviors, but not in numerous other behaviors altered in PV-Cre;ErbB4f/f mice. Importantly, microinjection of a Cre-inducible ErbB4 virus (AAV-ErbB4.DIO) into the mesencephalon of TH-Cre;ErbB4f/f mice, which selectively restores ErbB4 expression in DAergic neurons, rescues DA dysfunction and ameliorates behavioral deficits. Our results indicate that direct NRG/ErbB4 signaling in DAergic axonal projections modulates DA homeostasis, and that NRG/ErbB4 signaling in both GABAergic interneurons and DA neurons contribute to the modulation of behaviors relevant to psychiatric disorders.
Collapse
Affiliation(s)
- M Skirzewski
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - I Karavanova
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - A Shamir
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - L Erben
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA ,0000 0001 2240 3300grid.10388.32Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - J Garcia-Olivares
- 0000 0001 2297 5165grid.94365.3dLaboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - J H Shin
- 0000 0001 2297 5165grid.94365.3dLaboratory for Integrative Neuroscience, Section on Neuronal Structure, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - D Vullhorst
- 0000 0001 2297 5165grid.94365.3dSection on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - V A Alvarez
- 0000 0001 2297 5165grid.94365.3dLaboratory for Integrative Neuroscience, Section on Neuronal Structure, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - S G Amara
- 0000 0001 2297 5165grid.94365.3dLaboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - A Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Zhang Z, Huang J, Shen Y, Li R. BACE1-Dependent Neuregulin-1 Signaling: An Implication for Schizophrenia. Front Mol Neurosci 2017; 10:302. [PMID: 28993723 PMCID: PMC5622153 DOI: 10.3389/fnmol.2017.00302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a chronic psychiatric disorder with a lifetime prevalence of about 1% in the general population. Recent studies have shown that Neuregulin-1 (Nrg1) is a candidate gene for schizophrenia. At least 15 alternative splicing of NRG1 isoforms all contain an extracellular epidermal growth factor (EGF)-like domain, which is sufficient for Nrg1 biological activity including the formation of myelin sheaths and the regulation of synaptic plasticity. It is known that Nrg1 can be cleaved by β-secretase (BACE1) and the resulting N-terminal fragment (Nrg1-ntf) binds to receptor tyrosine kinase ErbB4, which activates Nrg1/ErbB4 signaling. While changes in Nrg1 expression levels in schizophrenia still remain controversial, understanding the BACE1-cleaved Nrg1-ntf and Nrg1/ErbB4 signaling in schizophrenia neuropathogenesis is essential and important. In this review paper, we included three major parts: (1) Nrg1 structure and cleavage pattern by BACE1; (2) BACE1-dependent Nrg1 cleavage associated with schizophrenia in human studies; and (3) Animal studies of Nrg1 and BACE1 mutations with behavioral observations. Our review will provide a better understanding of Nrg1 in schizophrenia and a potential strategy for using BACE1 cleavage of Nrg1 as a unique biomarker for diagnosis, as well as a new therapeutic target, of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China
| | - Yong Shen
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of ChinaHefei, China.,Center for Therapeutic Strategies for Brain Disorders, Roskamp Institute, SarasotaFL, United States.,Center for Hormone Advanced Science and Education, Roskamp Institute, SarasotaFL, United States
| | - Rena Li
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China.,Center for Therapeutic Strategies for Brain Disorders, Roskamp Institute, SarasotaFL, United States.,Center for Hormone Advanced Science and Education, Roskamp Institute, SarasotaFL, United States.,Beijing Institute for Brain Disorders, Capital Medical UniversityBeijing, China
| |
Collapse
|
16
|
Rohleder C, Müller JK, Lange B, Leweke FM. Cannabidiol as a Potential New Type of an Antipsychotic. A Critical Review of the Evidence. Front Pharmacol 2016; 7:422. [PMID: 27877130 PMCID: PMC5099166 DOI: 10.3389/fphar.2016.00422] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
There is urgent need for the development of mechanistically different and less side-effect prone antipsychotic compounds. The endocannabinoid system has been suggested to represent a potential new target in this indication. While the chronic use of cannabis itself has been considered a risk factor contributing to the development of schizophrenia, triggered by the phytocannabinoid delta-9-tetrahydrocannabinol (Δ9-THC), cannabidiol, the second most important phytocannabinoid, appears to have no psychotomimetic potential. Although, results from animal studies are inconsistent to a certain extent and seem to depend on behavioral paradigms, treatment duration and experimental conditions applied, cannabidiol has shown antipsychotic properties in both rodents and rhesus monkeys. After some individual treatment attempts, the first randomized, double-blind controlled clinical trial demonstrated that in acute schizophrenia cannabidiol exerts antipsychotic properties comparable to the antipsychotic drug amisulpride while being accompanied by a superior, placebo-like side effect profile. As the clinical improvement by cannabidiol was significantly associated with elevated anandamide levels, it appears likely that its antipsychotic action is based on mechanisms associated with increased anandamide concentrations. Although, a plethora of mechanisms of action has been suggested, their potential relevance for the antipsychotic effects of cannabidiol still needs to be investigated. The clarification of these mechanisms as well as the establishment of cannabidiol’s antipsychotic efficacy and its hopefully benign side-effect profile remains the subject of a number of previously started clinical trials.
Collapse
Affiliation(s)
- Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| | - Juliane K Müller
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| | - Bettina Lange
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| | - F M Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim Germany
| |
Collapse
|
17
|
Neuregulin-1 Regulates Cortical Inhibitory Neuron Dendrite and Synapse Growth through DISC1. Neural Plast 2016; 2016:7694385. [PMID: 27847649 PMCID: PMC5099462 DOI: 10.1155/2016/7694385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/05/2016] [Accepted: 09/05/2016] [Indexed: 11/20/2022] Open
Abstract
Cortical inhibitory neurons play crucial roles in regulating excitatory synaptic networks and cognitive function and aberrant development of these cells have been linked to neurodevelopmental disorders. The secreted neurotrophic factor Neuregulin-1 (NRG1) and its receptor ErbB4 are established regulators of inhibitory neuron connectivity, but the developmental signalling mechanisms regulating this process remain poorly understood. Here, we provide evidence that NRG1-ErbB4 signalling functions through the multifunctional scaffold protein, Disrupted in Schizophrenia 1 (DISC1), to regulate the development of cortical inhibitory interneuron dendrite and synaptic growth. We found that NRG1 increases inhibitory neuron dendrite complexity and glutamatergic synapse formation onto inhibitory neurons and that this effect is blocked by expression of a dominant negative DISC1 mutant, or DISC1 knockdown. We also discovered that NRG1 treatment increases DISC1 expression and its localization to glutamatergic synapses being made onto cortical inhibitory neurons. Mechanistically, we determined that DISC1 binds ErbB4 within cortical inhibitory neurons. Collectively, these data suggest that a NRG1-ErbB4-DISC1 signalling pathway regulates the development of cortical inhibitory neuron dendrite and synaptic growth. Given that NRG1, ErbB4, and DISC1 are schizophrenia-linked genes, these findings shed light on how independent risk factors may signal in a common developmental pathway that contributes to neural connectivity defects and disease pathogenesis.
Collapse
|
18
|
Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, Karl T, Weickert CS, Everall IP, Bousman CA. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev 2016; 68:387-409. [DOI: 10.1016/j.neubiorev.2016.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
|
19
|
Engel M, Snikeris P, Matosin N, Newell KA, Huang XF, Frank E. mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia. Psychopharmacology (Berl) 2016; 233:1349-59. [PMID: 26861891 DOI: 10.1007/s00213-016-4230-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
RATIONALE An imbalance of excitatory and inhibitory neurotransmission underlies the glutamate hypothesis of schizophrenia. Agonists of group II metabotropic glutamate receptors, mGluR2/3, have been proposed as novel therapeutic agents to correct this imbalance. However, the influence of mGluR2/3 activity on excitatory and inhibitory neurotransmitter receptors has not been explored. OBJECTIVES We aimed to investigate the ability of a novel mGluR2/3 agonist, LY379268, to modulate the availability of the excitatory N-methyl-D-aspartate receptor (NMDA-R) and the inhibitory gamma-aminobutyrate-A receptor (GABAA-R), in a two-hit mouse model of schizophrenia. METHODS Wild type (WT) and heterozygous neuregulin 1 transmembrane domain mutant mice (NRG1 HET) were treated daily with phencyclidine (10 mg/kg ip) or saline for 14 days. After a 14-day washout, an acute dose of the mGluR2/3 agonist LY379268 (3 mg/kg), olanzapine (antipsychotic drug comparison, 1.5 mg/kg), or saline was administered. NMDA-R and GABAA-R binding densities were examined by receptor autoradiography in several schizophrenia-relevant brain regions. RESULTS In both WT and NRG1 HET mice, phencyclidine treatment significantly reduced NMDA-R and GABAA-R binding density in the prefrontal cortex, hippocampus, and nucleus accumbens. Acute treatment with LY379268 restored NMDA-R and GABAA-R levels in the two-hit mouse model comparable to olanzapine. CONCLUSIONS We demonstrate that the mGluR2/3 agonist LY379268 restores excitatory and inhibitory deficits with similar efficiency as olanzapine in our two-hit schizophrenia mouse model. This study significantly contributes to our understanding of the mechanisms underlying the therapeutic effects of LY379268 and supports the use of agents aimed at mGluR2/3.
Collapse
Affiliation(s)
- Martin Engel
- Schizophrenia Research Institute, Sydney, Australia. .,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia. .,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia. .,School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| | - Peta Snikeris
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Natalie Matosin
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Kelly Anne Newell
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Xu-Feng Huang
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Elisabeth Frank
- Schizophrenia Research Institute, Sydney, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
20
|
Brzózka MM, Unterbarnscheidt T, Schwab MH, Rossner MJ. OSO paradigm--A rapid behavioral screening method for acute psychosocial stress reactivity in mice. Neuroscience 2015; 314:1-11. [PMID: 26628400 DOI: 10.1016/j.neuroscience.2015.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022]
Abstract
Chronic psychosocial stress is an important environmental risk factor for the development of psychiatric diseases. However, studying the impact of chronic psychosocial stress in mice is time consuming and thus not optimally suited to 'screen' increasing numbers of genetically manipulated mouse models for psychiatric endophenotypes. Moreover, many studies focus on restraint stress, a strong physical stressor with limited relevance for psychiatric disorders. Here, we describe a simple and a rapid method based on the resident-intruder paradigm to examine acute effects of mild psychosocial stress in mice. The OSO paradigm (open field--social defeat--open field) compares behavioral consequences on locomotor activity, anxiety and curiosity before and after exposure to acute social defeat stress. We first evaluated OSO in male C57Bl/6 wildtype mice where a single episode of social defeat reduced locomotor activity, increased anxiety and diminished exploratory behavior. Subsequently, we applied the OSO paradigm to mouse models of two schizophrenia (SZ) risk genes. Transgenic mice with neuronal overexpression of Neuregulin-1 (Nrg1) type III showed increased risk-taking behavior after acute stress exposure suggesting that NRG1 dysfunction is associated with altered affective behavior. In contrast, Tcf4 transgenic mice displayed a normal stress response which is in line with the postulated predominant contribution of TCF4 to cognitive deficits of SZ. In conclusion, the OSO paradigm allows for rapid screening of selected psychosocial stress-induced behavioral endophenotypes in mouse models of psychiatric diseases.
Collapse
Affiliation(s)
- M M Brzózka
- Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany.
| | - T Unterbarnscheidt
- Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - M H Schwab
- Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - M J Rossner
- Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstrasse 7, 80336 Munich, Germany; Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany.
| |
Collapse
|
21
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
22
|
Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Mol Psychiatry 2015; 20:959-73. [PMID: 25266126 DOI: 10.1038/mp.2014.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/01/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Neuregulin 1 (NRG1) is a trophic factor that has an essential role in the nervous system by modulating neurodevelopment, neurotransmission and synaptic plasticity. Despite the evidence that NRG1 and its receptors, ErbB tyrosine kinases, are expressed in mesencephalic dopaminergic nuclei and their functional alterations are reported in schizophrenia and Parkinson's disease, the role of NRG1/ErbB signalling in dopaminergic neurons remains unclear. Here we found that NRG1 selectively increases the metabotropic glutamate receptor 1 (mGluR1)-activated currents by inducing synthesis and trafficking to membrane of functional receptors and stimulates phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K-Akt-mTOR) pathway, which is required for mGluR1 function. Notably, an endogenous NRG1/ErbB tone is necessary to maintain mGluR1 function, by preserving its surface membrane expression in dopaminergic neurons. Consequently, it enables striatal mGluR1-induced dopamine outflow in in vivo conditions. Our results identify a novel role of NRG1 in the dopaminergic neurons, whose functional alteration might contribute to devastating diseases, such as schizophrenia and Parkinson's disease.
Collapse
|
23
|
Deng C, Pan B, Hu CH, Han M, Huang XF. Differential effects of short- and long-term antipsychotic treatment on the expression of neuregulin-1 and ErbB4 receptors in the rat brain. Psychiatry Res 2015; 225:347-54. [PMID: 25576368 DOI: 10.1016/j.psychres.2014.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/08/2014] [Accepted: 12/03/2014] [Indexed: 01/09/2023]
Abstract
Neuregulin-1 (NRG1) and ErbB4 genes have been identified as candidate genes for schizophrenia. Post-mortem studies indicated that NRG1-ErbB4 signalling is impaired in schizophrenia subjects. This study investigated whether short- or long-term antipsychotic treatment has different effects on the expression of NRG1 and ErbB4 receptors. Female Sprague-Dawley rats were treated orally with either aripiprazole (0.75 mg/kg), haloperidol (0.1 mg/kg), olanzapine (0.5 mg/kg), or vehicle, 3 times/day for 1 or 12 weeks. Western blotting was performed to examine the expression of NRG1 isoforms (135 kDa, 70 kDa and 40 kDa) and ErbB4 receptors. Both 1-week haloperidol and olanzapine treatment increased NRG1-70kDa expression in the hippocampus; haloperidol also up-regulated ErbB4 levels in the prefrontal cortex (PFC). In the 12-week group, aripiprazole decreased the expression of all three NRG1 isoforms and ErbB4 receptors in the PFC, NRG1-70 kDa and -40 kDa in the cingulate cortex (Cg), and NRG1-135 kDa, -70 kDa and ErbB4 receptors in the hippocampus; haloperidol reduced NRG1-135 kDa in the PFC, NRG1-40 kDa in all three brain regions, and ErbB4 receptor levels in the PFC and hippocampus; NRG1-40 kDa in the PFC and Cg was also down-regulated by olanzapine. These results suggest that the time-dependent and region-specific effects of antipsychotics on NRG1-ErbB4 signalling may contribute to the efficacy of antipsychotics to treat schizophrenia.
Collapse
Affiliation(s)
- Chao Deng
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, NSW, Australia.
| | - Bo Pan
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Chang-Hua Hu
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Institute of Modern Biopharmaceuticals, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing, People׳s Republic of China
| | - Mei Han
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, NSW, Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, NSW, Australia
| |
Collapse
|
24
|
Barz CS, Bessaih T, Abel T, Feldmeyer D, Contreras D. Sensory encoding in Neuregulin 1 mutants. Brain Struct Funct 2014; 221:1067-81. [PMID: 25515311 DOI: 10.1007/s00429-014-0955-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Schizophrenic patients show altered sensory perception as well as changes in electrical and magnetic brain responses to sustained, frequency-modulated sensory stimulation. Both the amplitude and temporal precision of the neural responses differ in patients as compared to control subjects, and these changes are most pronounced for stimulation at gamma frequencies (20-40 Hz). In addition, patients display enhanced spontaneous gamma oscillations, which has been interpreted as 'neural noise' that may interfere with normal stimulus processing. To investigate electrophysiological markers of aberrant sensory processing in a model of schizophrenia, we recorded neuronal activity in primary somatosensory cortex of mice heterozygous for the schizophrenia susceptibility gene Neuregulin 1. Sensory responses to sustained 20-70 Hz whisker stimulation were analyzed with respect to firing rates, spike precision (phase locking) and gamma oscillations, and compared to baseline conditions. The mutants displayed elevated spontaneous firing rates, a reduced gain in sensory-evoked spiking and gamma activity, and reduced spike precision of 20-40 Hz responses. These findings present the first in vivo evidence of the linkage between a genetic marker and altered stimulus encoding, thus suggesting a novel electrophysiological endophenotype of schizophrenia.
Collapse
Affiliation(s)
- Claudia S Barz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany. .,Department of Neuropathology, Medical School, RWTH Aachen University, Aachen, Germany. .,Department of Ophthalmology, Medical School, RWTH Aachen University, Aachen, Germany. .,IZKF Aachen, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Thomas Bessaih
- Sorbonne Universités, UPMC Univ Paris 06, UM 119, Neuroscience Paris Seine (NPS), Paris, 75005, France.,CNRS, UMR 8246, NPS, Paris, 75005, France.,INSERM, U1130, NPS, Paris, 75005, France
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, USA.,Smilow Center for Translational Research, Philadelphia, USA
| | - Dirk Feldmeyer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen, Germany
| | - Diego Contreras
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
25
|
Chohan TW, Nguyen A, Todd SM, Bennett MR, Callaghan P, Arnold JC. Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex. Front Behav Neurosci 2014; 8:298. [PMID: 25324742 PMCID: PMC4179617 DOI: 10.3389/fnbeh.2014.00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/13/2014] [Indexed: 02/02/2023] Open
Abstract
Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1) and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs) which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET) and wild-type (WT) mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV) and the dentate gyrus (DG) of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL) subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However, in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Tariq W Chohan
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| | - An Nguyen
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation Sydney, NSW, Australia
| | - Stephanie M Todd
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| | - Maxwell R Bennett
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia
| | - Paul Callaghan
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation Sydney, NSW, Australia
| | - Jonathon C Arnold
- The Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia ; Discipline of Pharmacology, School of Medical Science, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
26
|
O'Tuathaigh CMP, Gantois I, Waddington JL. Genetic dissection of the psychotomimetic effects of cannabinoid exposure. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:33-40. [PMID: 24239593 DOI: 10.1016/j.pnpbp.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022]
Abstract
Cannabis use is an established risk factor for the development of schizophrenia and related psychotic disorders. Factors that may mediate susceptibility to the psychosis-inducing effects of cannabis include the age at onset of first cannabis use, genetic predisposition, as well as interaction with other environmental risk variables. Clinical and preclinical genetic studies provide increasing evidence that, in particular, genes encoding proteins implicated in dopamine signalling are implicated in the cannabis-psychosis association. In the present review, we focus on both human and animal studies which have focused on identifying the neuronal basis of these interactions. We conclude that further studies are required to provide greater mechanistic insight into the long-term and neurodevelopmental effects of cannabis use, with implications for improved understanding of the cannabis-psychosis relationship.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; School of Medicine, University College Cork, Cork, Ireland.
| | - Ilse Gantois
- Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - John L Waddington
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
27
|
Szutorisz H, DiNieri JA, Sweet E, Egervari G, Michaelides M, Carter JM, Ren Y, Miller ML, Blitzer RD, Hurd YL. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology 2014; 39:1315-23. [PMID: 24385132 PMCID: PMC3988557 DOI: 10.1038/npp.2013.352] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022]
Abstract
Recent attention has been focused on the long-term impact of cannabis exposure, for which experimental animal studies have validated causal relationships between neurobiological and behavioral alterations during the individual's lifetime. Here, we show that adolescent exposure to Δ(9)-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, results in behavioral and neurobiological abnormalities in the subsequent generation of rats as a consequence of parental germline exposure to the drug. Adult F1 offspring that were themselves unexposed to THC displayed increased work effort to self-administer heroin, with enhanced stereotyped behaviors during the period of acute heroin withdrawal. On the molecular level, parental THC exposure was associated with changes in the mRNA expression of cannabinoid, dopamine, and glutamatergic receptor genes in the striatum, a key component of the neuronal circuitry mediating compulsive behaviors and reward sensitivity. Specifically, decreased mRNA and protein levels, as well as NMDA receptor binding were observed in the dorsal striatum of adult offspring as a consequence of germline THC exposure. Electrophysiologically, plasticity was altered at excitatory synapses of the striatal circuitry that is known to mediate compulsive and goal-directed behaviors. These findings demonstrate that parental history of germline THC exposure affects the molecular characteristics of the striatum, can impact offspring phenotype, and could possibly confer enhanced risk for psychiatric disorders in the subsequent generation.
Collapse
Affiliation(s)
- Henrietta Szutorisz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer A DiNieri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Sweet
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Michaelides
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenna M Carter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yanhua Ren
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael L Miller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert D Blitzer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA,James J Peters Veterans Medical Center, Bronx, NY, USA,Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA, Tel.: +1 212 824 8314, Fax: +1 646 527 9598, E-mail:
| |
Collapse
|
28
|
Moran PM, O'Tuathaigh CM, Papaleo F, Waddington JL. Dopaminergic function in relation to genes associated with risk for schizophrenia. PROGRESS IN BRAIN RESEARCH 2014; 211:79-112. [DOI: 10.1016/b978-0-444-63425-2.00004-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
GlyT-1 Inhibitors: From Hits to Clinical Candidates. SMALL MOLECULE THERAPEUTICS FOR SCHIZOPHRENIA 2014. [DOI: 10.1007/7355_2014_53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Kipanyula MJ, Kimaro WH, Yepnjio FN, Aldebasi YH, Farahna M, Nwabo Kamdje AH, Abdel-Magied EM, Seke Etet PF. Signaling pathways bridging fate determination of neural crest cells to glial lineages in the developing peripheral nervous system. Cell Signal 2013; 26:673-82. [PMID: 24378534 DOI: 10.1016/j.cellsig.2013.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/13/2013] [Accepted: 12/22/2013] [Indexed: 11/29/2022]
Abstract
Fate determination of neural crest cells is an essential step for the development of different crest cell derivatives. Peripheral glia development is marked by the choice of the neural crest cells to differentiate along glial lineages. The molecular mechanism underlying fate acquisition is poorly understood. However, recent advances have identified different transcription factors and genes required for the complex instructive signaling process that comprise both local environmental and cell intrinsic cues. Among others, at least the roles of Sox10, Notch, and neuregulin 1 have been documented in both in vivo and in vitro models. Cooperative interactions of such factors appear to be necessary for the switch from multipotent neural crest cells to glial lineage precursors in the peripheral nervous system. This review summarizes recent advances in the understanding of fate determination of neural crest cells into different glia subtypes, together with the potential implications in regenerative medicine.
Collapse
Affiliation(s)
- Maulilio John Kipanyula
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania.
| | - Wahabu Hamisi Kimaro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania
| | - Faustin N Yepnjio
- Neurology Department, Yaoundé Central Hospital, Department of Internal Medicine and Specialties, University of Yaoundé I, P.O. Box 1937, Yaoundé, Cameroon
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Mohammed Farahna
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | | | - Eltuhami M Abdel-Magied
- Department of Anatomy and Histology, College of Medicine, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Paul Faustin Seke Etet
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia.
| |
Collapse
|