1
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
2
|
Cantu DJ, Kaur S, Murphy AZ, Averitt DL. Sex Differences in the Amygdaloid Projections to the Ventrolateral Periaqueductal Gray and Their Activation During Inflammatory Pain in the Rat. J Chem Neuroanat 2022; 124:102123. [PMID: 35738454 DOI: 10.1016/j.jchemneu.2022.102123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 10/18/2022]
Abstract
Preclinical and clinical studies have reported sex differences in pain and analgesia. These differences may be linked to anatomical structures of the central nervous system pain modulatory circuitry, and/or hormonal milieu. The midbrain periaqueductal gray is a critical brain region for descending inhibition of pain. The PAG projects to the rostral ventromedial medulla (RVM), which projects bilaterally to the spinal cord to inhibit pain. In addition to pain, this descending circuit (or pathway) can be engaged by endogenous opioids (i.e., endorphins) or exogenous opioids (i.e., morphine), and we have previously reported sex differences in the activation of this circuit during pain and analgesia. Forebrain structures, including the amygdala, project to and engage the PAG-RVM circuit during persistent inflammatory pain. However, there are limited studies in females detailing this amygdalar-PAG pathway and its involvement during persistent inflammatory pain. The objective of the present study was to delineate the neural projections from the amygdala to the PAG in male and female rats to determine if they are sexually distinct in their anatomical organization. We also examined the activation of this pathway by inflammatory pain and the co-localization of receptors for estrogen. Injection of the retrograde tracer fluorogold (FG) into the ventrolateral PAG (vlPAG) resulted in dense retrograde labeling in both the central amygdala (CeA) and medial amygdala (MeA). While the number of CeA-vlPAG neurons were comparable between the sexes, there were more MeA-vlPAG neurons in females. Inflammatory pain resulted in greater activation of the amygdala in males; however, females displayed higher Fos expression within CeA-vlPAG projection neurons. Females expressed higher ERα in the MeA and CeA and the same was true of the projection neurons. Together, these data indicate that although the MeA-vlPAG projections are denser in females, inflammatory pain does not significantly activate these projections. In contrast, inflammatory pain resulted in a greater activation of the CeA-vlPAG pathway in females. As females experience a greater number of chronic pain syndromes, the CeA-vlPAG pathway may play a facilitatory (and not inhibitory) role in pain modulation.
Collapse
Affiliation(s)
- Daisy J Cantu
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX 76204
| | - Sukhbir Kaur
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX 76204
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX 76204.
| |
Collapse
|
3
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Pross A, Metwalli AH, Desfilis E, Medina L. Developmental-Based Classification of Enkephalin and Somatostatin Containing Neurons of the Chicken Central Extended Amygdala. Front Physiol 2022; 13:904520. [PMID: 35694397 PMCID: PMC9174674 DOI: 10.3389/fphys.2022.904520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
The central extended amygdala, including the lateral bed nucleus of the stria terminalis and the central amygdala, plays a key role in stress response. To understand how the central extended amygdala regulates stress it is essential to dissect this structure at molecular, cellular and circuit levels. In mammals, the central amygdala contains two distinct cell populations that become active (on cells) or inactive (off cells) during the conditioned fear response. These two cell types inhibit each other and project mainly unidirectionally to output cells, thus providing a sophisticated regulation of stress. These two cell types express either protein kinase C-delta/enkephalin or somatostatin, and were suggested to originate in different embryonic domains of the subpallium that respectively express the transcription factors Pax6 or Nkx2.1 during development. The regulation of the stress response by the central extended amygdala is poorly studied in non-mammals. Using an evolutionary developmental neurobiology approach, we previously identified several subdivisions in the central extended amygdala of chicken. These contain Pax6, Islet1 and Nkx2.1 cells that originate in dorsal striatal, ventral striatal or pallidopreoptic embryonic divisions, and also contain neurons expressing enkephalin and somatostatin. To know the origin of these cells, in this study we carried out multiple fluorescent labeling to analyze coexpression of different transcription factors with enkephalin or somatostatin. We found that many enkephalin cells coexpress Pax6 and likely derive from the dorsal striatal division, resembling the off cells of the mouse central amygdala. In contrast, most somatostatin cells coexpress Nkx2.1 and derive from the pallidal division, resembling the on cells. We also found coexpression of enkephalin and somatostatin with other transcription factors. Our results show the existence of multiple cell types in the central extended amygdala of chicken, perhaps including on/off cell systems, and set the basis for studying the role of these cells in stress regulation.
Collapse
Affiliation(s)
- Alessandra Pross
- Department of Experimental Medicine. University of Lleida, Lleida, Spain
- Lleida’s Institute for Biomedical Research—Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Alek H. Metwalli
- Department of Experimental Medicine. University of Lleida, Lleida, Spain
- Lleida’s Institute for Biomedical Research—Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine. University of Lleida, Lleida, Spain
- Lleida’s Institute for Biomedical Research—Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine. University of Lleida, Lleida, Spain
- Lleida’s Institute for Biomedical Research—Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- *Correspondence: Loreta Medina,
| |
Collapse
|
5
|
Cooper AH, Hedden NS, Corder G, Lamerand SR, Donahue RR, Morales-Medina JC, Selan L, Prasoon P, Taylor BK. Endogenous µ-opioid receptor activity in the lateral and capsular subdivisions of the right central nucleus of the amygdala prevents chronic postoperative pain. J Neurosci Res 2022; 100:48-65. [PMID: 33957003 PMCID: PMC8571119 DOI: 10.1002/jnr.24846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
Tissue injury induces a long-lasting latent sensitization (LS) of spinal nociceptive signaling that is kept in remission by an opposing µ-opioid receptor (MOR) constitutive activity. To test the hypothesis that supraspinal sites become engaged, we induced hindpaw inflammation, waited 3 weeks for mechanical hypersensitivity to resolve, and then injected the opioid receptor inhibitors naltrexone, CTOP or β-funaltrexamine subcutaneously, and/or into the cerebral ventricles. Intracerebroventricular injection of each inhibitor reinstated hypersensitivity and produced somatic signs of withdrawal, indicative of LS and endogenous opioid dependence, respectively. In naïve or sham controls, systemic naloxone (3 mg/kg) produced conditioned place aversion, and systemic naltrexone (3 mg/kg) increased Fos expression in the central nucleus of the amygdala (CeA). In LS animals tested 3 weeks after plantar incision, systemic naltrexone reinstated mechanical hypersensitivity and produced an even greater increase in Fos than in sham controls, particularly in the capsular subdivision of the right CeA. One third of Fos+ profiles co-expressed protein kinase C delta (PKCδ), and 35% of PKCδ neurons co-expressed tdTomato+ in Oprm1Cre ::tdTomato transgenic mice. CeA microinjection of naltrexone (1 µg) reinstated mechanical hypersensitivity only in male mice and did not produce signs of somatic withdrawal. Intra-CeA injection of the MOR-selective inhibitor CTAP (300 ng) reinstated hypersensitivity in both male and female mice. We conclude that MORs in the capsular subdivision of the right CeA prevent the transition from acute to chronic postoperative pain.
Collapse
Affiliation(s)
- Andrew H. Cooper
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naomi S. Hedden
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gregory Corder
- Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney R. Lamerand
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neurosciences at the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Renee R. Donahue
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Lindsay Selan
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Rossi GC, Bodnar RJ. Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak. Cell Mol Neurobiol 2021; 41:863-897. [PMID: 32970288 DOI: 10.1007/s10571-020-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Almost a half century of research has elaborated the discoveries of the central mechanisms governing the analgesic responses of opiates, including their receptors, endogenous peptides, genes and their putative spinal and supraspinal sites of action. One of the central tenets of "gate-control theories of pain" was the activation of descending supraspinal sites by opiate drugs and opioid peptides thereby controlling further noxious input. This review in the Special Issue dedicated to the research of Dr. Gavril Pasternak indicates his contributions to the understanding of supraspinal mediation of opioid analgesic action within the context of the large body of work over this period. This review will examine (a) the relevant supraspinal sites mediating opioid analgesia, (b) the opioid receptor subtypes and opioid peptides involved, (c) supraspinal site analgesic interactions and their underlying neurophysiology, (d) molecular (particularly AS) tools identifying opioid receptor actions, and (e) relevant physiological variables affecting site-specific opioid analgesia. This review will build on classic initial studies, specify the contributions that Gavril Pasternak and his colleagues did in this specific area, and follow through with studies up to the present.
Collapse
Affiliation(s)
- Grace C Rossi
- Department of Psychology, C.W. Post College, Long Island University, Post Campus, Brookville, NY, USA.
| | - Richard J Bodnar
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
- CUNY Neuroscience Collaborative, Graduate Center, CUNY, New York, NY, USA
| |
Collapse
|
7
|
Pantazis CB, Gonzalez LA, Tunstall BJ, Carmack SA, Koob GF, Vendruscolo LF. Cues conditioned to withdrawal and negative reinforcement: Neglected but key motivational elements driving opioid addiction. SCIENCE ADVANCES 2021; 7:7/15/eabf0364. [PMID: 33827822 PMCID: PMC8026136 DOI: 10.1126/sciadv.abf0364] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 05/07/2023]
Abstract
Opioid use disorder (OUD) is a debilitating disorder that affects millions of people. Neutral cues can acquire motivational properties when paired with the positive emotional effects of drug intoxication to stimulate relapse. However, much less research has been devoted to cues that become conditioned to the aversive effects of opioid withdrawal. We argue that environmental stimuli promote motivation for opioids when cues are paired with withdrawal (conditioned withdrawal) and generate opioid consumption to terminate conditioned withdrawal (conditioned negative reinforcement). We review evidence that cues associated with pain drive opioid consumption, as patients with chronic pain may misuse opioids to escape physical and emotional pain. We highlight sex differences in withdrawal-induced stress reactivity and withdrawal cue processing and discuss neurocircuitry that may underlie withdrawal cue processing in dependent individuals. These studies highlight the importance of studying cues associated with withdrawal in dependent individuals and point to areas for exploration in OUD research.
Collapse
Affiliation(s)
- Caroline B Pantazis
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Luis A Gonzalez
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephanie A Carmack
- Center for Adaptive Systems of Brain-Body Interactions, George Mason University, Fairfax, VA, USA
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
8
|
Selective modulation of tonic aversive qualities of neuropathic pain by morphine in the central nucleus of the amygdala requires endogenous opioid signaling in the anterior cingulate cortex. Pain 2021; 161:609-618. [PMID: 31725062 DOI: 10.1097/j.pain.0000000000001748] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The amygdala is a key subcortical region believed to contribute to emotional components of pain. As opioid receptors are found in both the central (CeA) and basolateral (BLA) nuclei of the amygdala, we investigated the effects of morphine microinjection on evoked pain responses, pain-motivated behaviors, dopamine release in the nucleus accumbens (NAc), and descending modulation in rats with left-side spinal nerve ligation (SNL). Morphine administered into the right or left CeA had no effect on nerve injury-induced tactile allodynia or mechanical hyperalgesia. Right, but not left, CeA morphine produced conditioned place preference (CPP) and increased extracellular dopamine in the NAc selectively in SNL rats, suggesting relief of aversive qualities of ongoing pain. In SNL rats, CPP and NAc dopamine release following right CeA morphine was abolished by blocking mu opioid receptor signaling in the rostral anterior cingulate cortex (rACC). Right CeA morphine also significantly restored SNL-induced loss of the diffuse noxious inhibitory controls, a spino-bulbo-spinal pain modulatory mechanism, termed conditioned pain modulation in humans. Microinjection of morphine into the BLA had no effects on evoked behaviors and did not produce CPP in nerve-injured rats. These findings demonstrate that the amygdalar action of morphine is specific to the right CeA contralateral to the side of injury and results in enhancement of net descending inhibition. In addition, engagement of mu opioid receptors in the right CeA modulates affective qualities of ongoing pain through endogenous opioid neurotransmission within the rACC, revealing opioid-dependent functional connections from the CeA to the rACC.
Collapse
|
9
|
Kissiwaa SA, Patel SD, Winters BL, Bagley EE. Opioids differentially modulate two synapses important for pain processing in the amygdala. Br J Pharmacol 2020; 177:420-431. [PMID: 31596498 PMCID: PMC6989950 DOI: 10.1111/bph.14877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Pain is a subjective experience involving sensory discriminative and emotionally aversive components. Consistent with its role in pain processing and emotions, the amygdala modulates the aversive component of pain. The laterocapsular region of the central nucleus of the amygdala (CeLC) receives nociceptive information from the parabrachial nucleus (PB) and polymodal, including nociceptive, inputs from the basolateral nucleus of the amygdala (BLA). Opioids are strong analgesics and reduce both the sensory discriminative and the affective component of pain. However, it is unknown whether opioids regulate activity at the two nociceptive inputs to the amygdala. EXPERIMENTAL APPROACH Using whole-cell electrophysiology, optogenetics, and immunohistochemistry, we investigated whether opioids inhibit the rat PB-CeLC and BLA-CeLC synapses. KEY RESULTS Opioids inhibited glutamate release at the PB-CeLC and BLA-CeLC synapses. Opioid inhibition is via the μ-receptor at the PB-CeLC synapse, while at the BLA-CeLC synapse, inhibition is via μ-receptors in all neurons and via δ-receptors and κ-receptors in a subset of neurons. CONCLUSIONS AND IMPLICATIONS Agonists of μ-receptors inhibited two of the synaptic inputs carrying nociceptive information into the laterocapsular amygdala. Therefore, μ-receptor agonists, such as morphine, will inhibit glutamate release from PB and BLA in the CeLC, and this could serve as a mechanism through which opioids reduce the affective component of pain and pain-induced associative learning. The lower than expected regulation of BLA synaptic outputs by δ-receptors does not support the proposal that opioid receptor subtypes segregate into subnuclei of brain regions.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/metabolism
- Amygdala/physiopathology
- Analgesics, Opioid/pharmacology
- Animals
- Glutamic Acid/metabolism
- Male
- Neural Inhibition/drug effects
- Nociception/drug effects
- Nociceptive Pain/metabolism
- Nociceptive Pain/physiopathology
- Nociceptive Pain/prevention & control
- Optogenetics
- Pain Perception/drug effects
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Synapses/drug effects
- Synapses/metabolism
Collapse
Affiliation(s)
- Sarah A. Kissiwaa
- Discipline of Pharmacology and Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| | - Sahil D. Patel
- Discipline of Pharmacology and Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| | - Bryony L. Winters
- Pain Management Research Institute, Kolling Institute of Medical ResearchThe University of Sydney, Royal North Shore HospitalSt LeonardsNSWAustralia
| | - Elena E. Bagley
- Discipline of Pharmacology and Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| |
Collapse
|
10
|
Modulation of the Negative Affective Dimension of Pain: Focus on Selected Neuropeptidergic System Contributions. Int J Mol Sci 2019; 20:ijms20164010. [PMID: 31426473 PMCID: PMC6720937 DOI: 10.3390/ijms20164010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that emotions can interfere with the perception of physical pain, as well as with the development and maintenance of painful conditions. On the other hand, somatic pain can have significant consequences on an individual’s affective behavior. Indeed, pain is defined as a complex and multidimensional experience, which includes both sensory and emotional components, thus exhibiting the features of a highly subjective experience. Over the years, neural pathways involved in the modulation of the different components of pain have been identified, indicating the existence of medial and lateral pain systems, which, respectively, project from medial or lateral thalamic nuclei to reach distinct cortex regions relating to specific functions. However, owing to the limited information concerning how mood state and painful input affect each other, pain treatment is frequently unsatisfactory. Different neuromodulators, including endogenous neuropeptides, appear to be involved in pain-related emotion and in its affective influence on pain perception, thus playing key roles in vulnerability and clinical outcome. Hence, this review article focuses on evidence concerning the modulation of the sensory and affective dimensions of pain, with particular attention given to some selected neuropeptidergic system contributions.
Collapse
|
11
|
Paretkar T, Dimitrov E. Activation of enkephalinergic (Enk) interneurons in the central amygdala (CeA) buffers the behavioral effects of persistent pain. Neurobiol Dis 2018; 124:364-372. [PMID: 30572023 DOI: 10.1016/j.nbd.2018.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/23/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Enk neurons in CeA modulate the activity of the amygdala projection neurons and it is very likely that changes of Enk signaling cause the heightened anxiety that accompanies chronic pain. We use chemogenetics and transgenic mice to investigate the effects of acute and continuous activation of the amygdala Enk neurons on persistent pain and anxiodepressive-like behavior in mice. Enk-cre mice were injected bilaterally into the CeA with cre-activated AAV-DREADD/Gq/mCherry, while neuropathic pain was induced by sciatic nerve constriction. A single injection of DREADD's ligand CNO decreased the anxiety-like behavior in both, uninjured mice and in mice with neuropathic pain and produced robust analgesia that lasted for 24 h. Furthermore, the activation of Enk neurons by the DREADD ligand led to increased c-Fos expression in PKC-δ interneurons of the CeA and in non-serotonergic neurons in the ventrolateral periaqueductal gray (vlPAG), a brain structure that is an essential part of the descending pain inhibitory system. Next, we added CNO to the drinking water of the experimental mice for 14 days in order to assess the effects of continuous activation of CeA Enk interneurons on anxiodepressive-like behavior, which is affected by chronic pain. The prolonged activation of the CeA Enk interneurons reduced neohypophagia in the novelty suppressed feeding test and increased ΔFosB (a marker for sustained neuronal activation) in the vlPAG of mice with chronic pain. All together, the results of our experiments point to an important role of the CeA Enk neurons in the control of both nociception and emotion. Activation of Enk neurons resulted in sustained analgesia accompanied by anxiolysis and antidepressant effects. Very likely, these effects of CeA Enk neurons are result of the activation of vlPAG, a brain region that is essential not only for descending inhibition of pain but it is also a core element in the resilience to stress.
Collapse
Affiliation(s)
- Tanvi Paretkar
- Department of Physiology and Biophysics, Chicago Medical School Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd., North Chicago, IL 60064, United States.
| | - Eugene Dimitrov
- Department of Physiology and Biophysics, Chicago Medical School Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd., North Chicago, IL 60064, United States.
| |
Collapse
|
12
|
Bagdas D, Meade JA, Alkhlaif Y, Muldoon PP, Carroll FI, Damaj MI. Effect of nicotine and alpha-7 nicotinic modulators on visceral pain-induced conditioned place aversion in mice. Eur J Pain 2018; 22:10.1002/ejp.1231. [PMID: 29633429 PMCID: PMC6179949 DOI: 10.1002/ejp.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Preclinical assays of affective and sensorial aspects of nociception play a key role in research on both the neurobiology of pain and the development of novel analgesics. Therefore, we investigated the effects of nicotine and alpha-7 nicotinic acetylcholine receptor (nAChR) modulators in the negative affective and sensory components of visceral pain in mice. METHODS AND RESULTS Intraperitoneal acetic acid (AA) administration resulted in a robust stretching behaviour and conditioned place aversion (CPA) in mice. We observed a dose-dependent reduction in AA-induced stretching and CPA by the nonselective nAChRs agonist nicotine. Mecamylamine, a nonselective nAChRs agonist, was able to block its effects; however, hexamethonium, a peripherally restricted nonselective nicotinic antagonist, was able to block nicotine's effect on stretching behaviour but not on CPA. In addition, systemic administration of α7 nAChR full agonists PHA543613 and PNU282987 was failed to block stretching and CPA behaviour induced by AA. However, the α7 nAChR-positive allosteric modulator PNU120596 blocked AA-induced CPA in a dose-dependent manner without reducing stretching behaviours. CONCLUSIONS Our data revealed that while nonselective nAChR activation induces antinociceptive properties on the sensorial and affective signs of visceral pain in mice, α7 nAChRS activation has no effect on these responses. In addition, nonselective nAChR activation-induced antinociceptive effect on stretching behaviour was mediated by central and peripheral mechanisms. However, the effect of nonselective nAChR activation on CPA was mediated centrally. Furthermore, our data suggest a pivotal role of allosteric modulation of α7 nAChRS in the negative affective, but not sensory, component of visceral pain. SIGNIFICANCE The present results suggest that allosteric modulation of α7 nAChR may provide new strategies in affective aspects of nociception.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
- The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Julie A. Meade
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Pretal P. Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - F. Ivy Carroll
- Center for Drug Discovery, Research Triangle Institute, PO Box 12194, Research Triangle Park, NC 27709-2194
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| |
Collapse
|
13
|
N-palmitoylethanolamide in the anterior cingulate cortex attenuates inflammatory pain behaviour indirectly via a CB1 receptor-mediated mechanism. Pain 2017; 157:2687-2696. [PMID: 27649266 DOI: 10.1097/j.pain.0000000000000687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neural substrates and mechanisms mediating the antinociceptive effects of the endogenous bioactive lipid, N-palmitoylethanolamide (PEA), require further investigation. We investigated the effects of exogenous PEA administration into the anterior cingulate cortex (ACC), an important brain region linked with cognitive and affective modulation of pain, on formalin-evoked nociceptive behaviour in rats. Potential involvement of peroxisome proliferator-activated receptor isoforms (PPAR) α and γ or endocannabinoid-mediated entourage effects at cannabinoid1 (CB1) receptors or transient receptor potential subfamily V member 1 (TRPV1) in mediating the effects of PEA was also investigated. Intra-ACC administration of PEA significantly attenuated the first and early second phases of formalin-evoked nociceptive behaviour. This effect was attenuated by the CB1 receptor antagonist AM251, but not by the PPARα antagonist GW6471, the PPARγ antagonist GW9662, or the TRPV1 antagonist 5'-iodo resiniferatoxin. All antagonists, administered alone, significantly reduced formalin-evoked nociceptive behaviour, suggesting facilitatory/permissive roles for these receptors in the ACC in inflammatory pain. Post-mortem tissue analysis revealed a strong trend for increased levels of the endocannabinoid anandamide in the ACC of rats that received intra-ACC PEA. Expression of c-Fos, a marker of neuronal activity, was significantly reduced in the basolateral nucleus of the amygdala, but not in the central nucleus of the amygdala, the rostral ventromedial medulla or the dorsal horn of the spinal cord. In conclusion, these data indicate that PEA in the ACC can reduce inflammatory pain-related behaviour, possibly via AEA-induced activation of CB1 receptors and associated modulation of neuronal activity in the basolateral amygdala.
Collapse
|
14
|
Wu Y, Yao X, Jiang Y, He X, Shao X, Du J, Shen Z, He Q, Fang J. Pain aversion and anxiety-like behavior occur at different times during the course of chronic inflammatory pain in rats. J Pain Res 2017; 10:2585-2593. [PMID: 29158690 PMCID: PMC5683785 DOI: 10.2147/jpr.s139679] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pain is considered a multidimensional conscious experience that includes a sensory component and a negative affective-motivational component. The negative affective-motivational component of pain is different from the sensory component and amplifies the pain experience. Nowadays, a significant number of preclinical research groups have focused their attention on the affective symptoms of pain. In the present study, we investigated the pain aversion and anxiety-like behavior of the complete Freund’s adjuvant (CFA)-induced chronic pain model. CFA rats experienced spontaneous pain during pain-paired conditioning (pain aversion) and spontaneous pain produces an affective response (anxiety-like behavior). Moreover, pain aversion was gradually attenuated, while the anxiety-like behavior increased in 4 weeks. Therefore, although the negative effect (including pain aversion and anxiety) is always associated with hyperalgesia, the manifestations of negative effect may follow different time courses, which may influence the progress of primary disease. The findings illustrate that targeted therapy should focus on a specific aspect in different stages of pain. Our study emphasizes the necessity of using multiple tests to study pain comorbidities.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Xinmiao Yao
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Yongliang Jiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Xiaofen He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Zui Shen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Qiaoying He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| |
Collapse
|
15
|
Anti-nociceptive effect of patchouli alcohol: Involving attenuation of cyclooxygenase 2 and modulation of mu-opioid receptor. Chin J Integr Med 2017; 25:454-461. [PMID: 28795389 DOI: 10.1007/s11655-017-2952-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels. METHODS The acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA's target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA. RESULTS PA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (P<0.01) and allodynia after intra-plantar formalin (P<0.01) in mice. PA also up-regulated COX2 mRNA and protein (P<0.05) with a down-regulation of MOR (P<0.05) both in in vivo and in vitro experiments, which devote to the analgesic effect of PA. A decrease in the intracellular calcium level (P<0.05) induced by PA may play an important role in its anti-nociceptive effect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect. CONCLUSIONS Both COX2 and MOR are involved in the mechanism of PA's anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA's effect on MOR.
Collapse
|
16
|
Li Z, Yin P, Chen J, Jin S, Liu J, Luo F. CaMKIIα may modulate fentanyl-induced hyperalgesia via a CeLC-PAG-RVM-spinal cord descending facilitative pain pathway in rats. PLoS One 2017; 12:e0177412. [PMID: 28489932 PMCID: PMC5425219 DOI: 10.1371/journal.pone.0177412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
Each of the lateral capsular division of central nucleus of amygdala(CeLC), periaqueductal gray (PAG), rostral ventromedial medulla(RVM) and spinal cord has been proved to contribute to the development of opioid-induced hyperalgesia(OIH). Especially, Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) in CeLC and spinal cord seems to play a key role in OIH modulation. However, the pain pathway through which CaMKIIα modulates OIH is not clear. The pathway from CeLC to spinal cord for this modulation was explored in the present study. Mechanical and thermal hyperalgesia were tested by von Frey test or Hargreaves test, respectively. CaMKIIα activity (phospho-CaMKIIα, p-CaMKIIα) was evaluated by western blot analysis. CaMKIIα antagonist (KN93) was micro-infused into CeLC, spinal cord or PAG, respectively, to evaluate its effect on behavioral hyperalgesia and p-CaMKIIα expression in CeLC, PAG, RVM and spinal cord. Then the underlying synaptic mechanism was explored by recording miniature excitatory postsynaptic currents (mEPSCs) on PAG slices using whole-cell voltage-clamp methods. Results showed that inhibition of CeLC, PAG or spinal CaMKIIα activity respectively by KN93, reversed both mechanical and thermal hyperalgesia. Microinjection of KN93 into CeLC decreased p-CaMKIIα expression in CeLC, PAG, RVM and spinal cord; while intrathecal KN93 can only block spinal but not CeLC CaMKIIα activity. KN93 injected into PAG just decreased p-CaMKIIα expression in PAG, RVM and spinal cord, but not in the CeLC. Similarly, whole-cell voltage-clamp recording found the frequency and amplitude of mEPSCs in PAG cells were decreased by KN93 added in PAG slice or micro-infused into CeLC in vivo. These results together with previous findings suggest that CaMKIIα may modulate OIH via a CeLC-PAG-RVM-spinal cord descending facilitative pain pathway.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingping Yin
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Chen
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Shenglan Jin
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieqiong Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Neelakantan H, Ward SJ, Walker EA. Effects of paclitaxel on mechanical sensitivity and morphine reward in male and female C57Bl6 mice. Exp Clin Psychopharmacol 2016; 24:485-495. [PMID: 27929349 PMCID: PMC5157702 DOI: 10.1037/pha0000097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study evaluated the hypothesis that a paclitaxel treatment regimen sufficient to produce mechanical allodynia would alter sensitivities of male and female mice to the conditioned rewarding and reinforcing effects of morphine. Saline or paclitaxel were administered on Days 1, 3, 5, and 7 in male and female C57Bl/6 mice to induce morphine-reversible mechanical allodynia as measured by the Von Frey filament test. Paclitaxel treatment did not change sensitivity to morphine conditioned place preference (CPP) relative to saline treatment in either male or female mice. Morphine produced peak self-administration under a fixed ratio-1 (FR1) schedule of reinforcement for 0.03 mg/kg morphine per infusion in female mice and 0.1 mg/kg morphine per infusion in male mice. During the progressive ratio experiments, saline treatment in male mice decreased the number of morphine infusions for 12 days whereas the paclitaxel-treated male mice maintained responding for morphine similar to baseline levels during the same time period. However, paclitaxel did not have an overall effect on the reinforcing efficacy of morphine assessed over a limited dose range during the course of the repeated self-administration. These results suggest that the reward-related behavioral effects of morphine are overall not robustly altered by the presence of paclitaxel treatment under the current dosing regimen, with the exception of maintaining a small yet significant higher baseline than saline treatment during the development of allodynia in male mice. (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | - Ellen Ann Walker
- Department of Pharmaceutical Sciences & Center for Substance Abuse Research, Temple University
| |
Collapse
|
18
|
Activation of the Extracellular Signal-Regulated Kinase in the Amygdale Modulates Fentanyl-Induced Hypersensitivity in Rats. THE JOURNAL OF PAIN 2016; 18:188-199. [PMID: 27838497 DOI: 10.1016/j.jpain.2016.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 10/08/2016] [Accepted: 10/24/2016] [Indexed: 11/23/2022]
Abstract
Opioid-induced hyperalgesia (OIH) is one of the major problems associated with use of opioids in perioperative and chronic pain management. The mechanism underlying this paradoxical phenomenon needs to be fully elucidated. Laterocapsular division of the central nucleus of amygdale (CeLC) has emerged as an important brain center for pain modulation, so we hypothesize that the activation of extracellular signal-regulated kinase (ERK) in CeLC may modulate OIH through strengthening synaptic transmission between neurons in the CeLC. Phospho-ERK in CeLC was first found to be increased significantly in OIH rats induced by repeated subcutaneous injection of fentanyl. Blockade of this fentanyl-induced ERK activation by microinjection of U0126, an ERK inhibitor, into the CeLC reversed the behavioral hypersensitivity in a dose-dependent manner. In vitro whole-cell recordings evaluating the change in synaptic transmission found that the frequency as well as amplitude of miniature excitatory postsynaptic currents recorded on CeLC neurons from OIH rats were fundamentally increased and were completely reversed by acutely applied U0126 (10 μM in the recording well). In vivo microinjection of U0126 into the CeLC reversed the spinal long-term potentiation in OIH rats. These results showed that fentanyl-induced hypersensitivity may occur partly through the mechanism of ERK activation and followed by the strengthening of synaptic transmission in CeLC neurons. PERSPECTIVE This study provides evidence that ERK in the laterocapsular division of the CeLC is a key contributor to the development of fentanyl-induced hypersensitivity. Targeting the superspinal central CeLC can inhibit spinal long-term potentiation and alleviate behavioral hyperreflexia induced by fentanyl.
Collapse
|
19
|
Li Z, Li C, Yin P, Wang ZJ, Luo F. Inhibition of CaMKIIα in the Central Nucleus of Amygdala Attenuates Fentanyl-Induced Hyperalgesia in Rats. J Pharmacol Exp Ther 2016; 359:82-9. [PMID: 27451410 DOI: 10.1124/jpet.116.233817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Opioid-induced hyperalgesia (OIH) is a less-studied phenomenon that has been reported in both preclinical and clinical studies. Although the underlying cause is not entirely understood, OIH is a real-life problem that affects millions of patients on a daily basis. Research has implicated the important contribution of Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) to OIH at the level of spinal nociceptors. To expand our understanding of the entire brain circuitry driving OIH, in this study we investigated the role of CaMKIIα in the laterocapcular division of the central amygdala (CeLC), the conjunctive point between the spinal cord and rostro-ventral medulla. OIH was produced by repeated fentanyl administration in the rat. Correlating with the development of mechanical allodynia and thermal hyperalgesia, CaMKIIα activity was significantly elevated in the CeLC in OIH. In addition, the frequency and amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in CeLC neurons were significantly increased in OIH. 2-[N-(2-hidroxyethyl)-N-(4-methoxy-benzenesulfonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, a CaMKIIα inhibitor, dose dependently reversed sensory hypersensitivity, activation of CeLC CaMKIIα, and mEPSCs in OIH. Taken together, our data for the first time implicate a critical role of CeLC CaMKIIα in OIH.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Chenhong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Pingping Yin
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Zaijie Jim Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| |
Collapse
|
20
|
Differential effects of naloxone on rewarding electrical stimulation of the central nucleus of the amygdala and parabrachial complex in a place preference study. Brain Res Bull 2016; 124:182-9. [PMID: 27173444 DOI: 10.1016/j.brainresbull.2016.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 12/29/2022]
Abstract
The central nucleus of the amygdala (CeA) is considered to be involved in different affective, sensory, regulatory, and acquisition processes. This study analyzed whether electrical stimulation of the PB-CeA system induces preferences in a concurrent place preference (cPP) task, as observed after stimulation of the parabrachial-insular cortex (PB-IC) axis. It also examined whether the rewarding effects are naloxone-dependent. The results show that electrical stimulation of the CeA and external lateral parabrachial subnucleus (LPBe) induces consistent preference behaviors in a cPP task. However, subcutaneous administration of an opiate antagonist (naloxone; 4mg/ml/kg) blocked the rewarding effect of the parabrachial stimulation but not that of the amygdala stimulation. These results are interpreted in the context of multiple brain reward systems that appear to differ both anatomically and neurochemically, notably with respect to the opiate system.
Collapse
|
21
|
Zhang WK, Tao SS, Li TT, Li YS, Li XJ, Tang HB, Cong RH, Ma FL, Wan CJ. Nutmeg oil alleviates chronic inflammatory pain through inhibition of COX-2 expression and substance P release in vivo. Food Nutr Res 2016; 60:30849. [PMID: 27121041 PMCID: PMC4848392 DOI: 10.3402/fnr.v60.30849] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/22/2016] [Accepted: 02/27/2016] [Indexed: 11/14/2022] Open
Abstract
Background Chronic pain, or sometimes referred to as persistent pain, reduces the life quality of patients who are suffering from chronic diseases such as inflammatory diseases, cancer and diabetes. Hence, herbal medicines draw many attentions and have been shown effective in the treatment or relief of pain. Methods and Results Here in this study, we used the CFA-injected rats as a sustainable pain model to test the anti-inflammatory and analgesic effect of nutmeg oil, a spice flavor additive to beverages and baked goods produced from the seed of Myristica fragrans tree. Conclusions We have demonstrated that nutmeg oil could potentially alleviate the CFA-injection induced joint swelling, mechanical allodynia and heat hyperanalgesia of rats through inhibition of COX-2 expression and blood substance P level, which made it possible for nutmeg oil to be a potential chronic pain reliever.
Collapse
Affiliation(s)
- Wei Kevin Zhang
- Department of Pharmacology, College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - Shan-Shan Tao
- Department of Pharmacology, College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - Ting-Ting Li
- Department of Pharmacology, College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - Yu-Sang Li
- Department of Pharmacology, College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - Xiao-Jun Li
- Department of Pharmacology, College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - He-Bin Tang
- Department of Pharmacology, College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China;
| | - Ren-Huai Cong
- Functional Oil Laboratory Associated by Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinitus (China) Company Ltd., Guangzhou, PR China
| | - Fang-Li Ma
- Functional Oil Laboratory Associated by Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinitus (China) Company Ltd., Guangzhou, PR China;
| | - Chu-Jun Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, PR China
| |
Collapse
|
22
|
Bagdas D, Muldoon PP, AlSharari S, Carroll FI, Negus SS, Damaj MI. Expression and pharmacological modulation of visceral pain-induced conditioned place aversion in mice. Neuropharmacology 2016; 102:236-43. [PMID: 26639043 PMCID: PMC5574195 DOI: 10.1016/j.neuropharm.2015.11.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 02/01/2023]
Abstract
Pain encompasses both a sensory as well as an affective dimension and these are differentially processed in the brain and periphery. It is therefore important to develop animal models to reflect the non-reflexive assays in pain. In this study, we compared effects of the mu opioid receptor agonist morphine, the nonsteroidal anti-inflammatory drug ketoprofen and the kappa receptor opioid agonist U50,488H and antagonist JDTic on acetic acid-induced stretching and acetic acid-induced aversion in the condition place aversion (CPA) test in male ICR mice. Intraperitoneal administration of acetic acid (0.32-1%) was equipotent in stimulating stretching and CPA. Ketoprofen, morphine and U50,488H all inhibited the acid-induced stretching. Ketoprofen and morphine also blocked the acid-induced CPA but U50,488H failed to do so. The reversal ability of ketoprofen and morphine on acid-induced CPA is unique to pain-stimulated place aversion since these drugs failed to reduce non-noxious LiCl-induced CPA. Overall, this study characterized and validated a preclinical mouse model of pain-related aversive behavior that can be used to assess genetic and biological mechanisms of pain as well as improving the predictive validity of preclinical studies on candidate analgesics.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Behavior, Animal/drug effects
- Ketoprofen/pharmacology
- Male
- Mice
- Mice, Inbred ICR
- Morphine/pharmacology
- Piperidines/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Tetrahydroisoquinolines/pharmacology
- Visceral Pain/physiopathology
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa 16059, Turkey.
| | - Pretal P Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Shakir AlSharari
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - F Ivy Carroll
- Center for Drug Discovery, Research Triangle Institute, PO Box 12194, Research Triangle Park, NC 27709-2194, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
23
|
Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:181-9. [PMID: 25988529 DOI: 10.1016/j.pnpbp.2015.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 01/18/2023]
Abstract
Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.
Collapse
|
24
|
Distinct interactions of cannabidiol and morphine in three nociceptive behavioral models in mice. Behav Pharmacol 2015; 26:304-14. [DOI: 10.1097/fbp.0000000000000119] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Abstract
A limbic brain area, the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety, and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the "nociceptive amygdala") accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6592, USA,
| |
Collapse
|
26
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
27
|
Grégoire S, Wattiez AS, Etienne M, Marchand F, Ardid D. Monoarthritis-induced emotional and cognitive impairments in rats are sensitive to low systemic doses or intra-amygdala injections of morphine. Eur J Pharmacol 2014; 735:1-9. [PMID: 24747193 DOI: 10.1016/j.ejphar.2014.03.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/21/2014] [Accepted: 03/26/2014] [Indexed: 11/27/2022]
Abstract
Chronic pain is a multidimensional experience that not only includes changes in nociception but also impairments in emotional and cognitive functions, not often taken into account in preclinical research. The present study investigated emotional and cognitive impairments in an animal model of persistent inflammatory pain as well as the involvement of the basolateral complex (BLC) of the amygdala in these components. Monoarthritis was induced by intra-articular injection of complete Freund׳s adjuvant. Mechanical hypersensitivity, anxiety and depressive-like behaviours as well as cognitive capacities were assessed using several tests, such as von Frey, social interaction, open field, saccharin preference, spatial and social recognition memory tests. The effects of morphine administered systemically or into the BLC of the amygdala were also studied. Monoarthritic rats exhibited mechanical hypersensitivity, anxiety and depressive-like behaviours as well as cognitive impairments. Whereas low systemic doses and intra-BLC infusion of morphine failed to reduce mechanical hypersensitivity, they reversed monoarthritis-induced anxiety-like behaviours and cognitive impairments. Our findings further support a crucial role of amygdala in the effect of morphine on emotional/cognitive components of pain and not on mechanical hypersensitivity. Finally, our study highlights the interest of a multi-behavioural approach in the assessment of pain and the analgesic effect of drugs.
Collapse
Affiliation(s)
- Stéphanie Grégoire
- Clermont Université, Université d׳Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; Clermont-Ferrand Inserm, U1107, F-63001 Clermont-Ferrand BP 10448, F-63000 Clermont-Ferrand, France.
| | - Anne-Sophie Wattiez
- Clermont Université, Université d׳Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; Clermont-Ferrand Inserm, U1107, F-63001 Clermont-Ferrand BP 10448, F-63000 Clermont-Ferrand, France.
| | - Monique Etienne
- Clermont Université, Université d׳Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; Clermont-Ferrand Inserm, U1107, F-63001 Clermont-Ferrand BP 10448, F-63000 Clermont-Ferrand, France.
| | - Fabien Marchand
- Clermont Université, Université d׳Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; Clermont-Ferrand Inserm, U1107, F-63001 Clermont-Ferrand BP 10448, F-63000 Clermont-Ferrand, France.
| | - Denis Ardid
- Clermont Université, Université d׳Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; Clermont-Ferrand Inserm, U1107, F-63001 Clermont-Ferrand BP 10448, F-63000 Clermont-Ferrand, France.
| |
Collapse
|