1
|
Meleady L, Towriss M, Kim J, Bacarac V, Dang V, Rowland ME, Ciernia AV. Histone deacetylase 3 regulates microglial function through histone deacetylation. Epigenetics 2023; 18:2241008. [PMID: 37506371 PMCID: PMC10392760 DOI: 10.1080/15592294.2023.2241008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
As the primary innate immune cells of the brain, microglia respond to damage and disease through pro-inflammatory release of cytokines and neuroinflammatory molecules. Histone acetylation is an activating transcriptional mark that regulates inflammatory gene expression. Inhibition of histone deacetylase 3 (Hdac3) has been utilized in pre-clinical models of depression, stroke, and spinal cord injury to improve recovery following injury, but the molecular mechanisms underlying Hdac3's regulation of inflammatory gene expression in microglia is not well understood. To address this lack of knowledge, we examined how pharmacological inhibition of Hdac3 in an immortalized microglial cell line (BV2) impacted histone acetylation and gene expression of pro- and anti-inflammatory genes in response to immune challenge with lipopolysaccharide (LPS). Flow cytometry and cleavage under tags & release using nuclease (CUT & RUN) revealed that Hdac3 inhibition increases global and promoter-specific histone acetylation, resulting in the release of gene repression at baseline and enhanced responses to LPS. Hdac3 inhibition enhanced neuroprotective functions of microglia in response to LPS through reduced nitric oxide release and increased phagocytosis. The findings suggest Hdac3 serves as a regulator of microglial inflammation, and that inhibition of Hdac3 facilitates the microglial response to inflammation and its subsequent clearing of debris or damaged cells. Together, this work provides new mechanistic insights into therapeutic applications of Hdac3 inhibition which mediate reduced neuroinflammatory insults through microglial response.
Collapse
Affiliation(s)
- Laura Meleady
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Morgan Towriss
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Jennifer Kim
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Vince Bacarac
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Vivien Dang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Megan E. Rowland
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Churchward MA, Michaud ER, Mullish BH, Miguens Blanco J, Garcia Perez I, Marchesi JR, Xu H, Kao D, Todd KG. Short-chain fatty and carboxylic acid changes associated with fecal microbiota transplant communally influence microglial inflammation. Heliyon 2023; 9:e16908. [PMID: 37484415 PMCID: PMC10360965 DOI: 10.1016/j.heliyon.2023.e16908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
The intestinal microbiota has been proposed to influence human mental health and cognition through the gut-brain axis. Individuals experiencing recurrent Clostridioides difficile infection (rCDI) frequently report depressive symptoms, which are improved after fecal microbiota transplantation (FMT); however, mechanisms underlying this association are poorly understood. Short-chain fatty acids and carboxylic acids (SCCA) produced by the intestinal microbiota cross the blood brain barrier and have been proposed to contribute to gut-brain communication. We hypothesized that changes in serum SCCA measured before and after successful FMT for rCDI influences the inflammatory response of microglia, the resident immune cells of the central nervous system. Serum SCCA were quantified using gas chromatography-mass spectroscopy from 38 patients who participated in a randomized trial comparing oral capsule-vs colonoscopy-delivered FMT for rCDI, and quality of life was assessed by SF-36 at baseline, 4, and 12 weeks after FMT treatment. Successful FMT was associated with improvements in mental and physical health, as well as significant changes in a number of circulating SCCA, including increased butyrate, 2-methylbutyrate, valerate, and isovalerate, and decreased 2-hydroxybutyrate. Primary cultured microglia were treated with SCCA and the response to a pro-inflammatory stimulus was measured. Treatment with a combination of SCCA based on the post-FMT serum profile, but not single SCCA species, resulted in significantly reduced inflammatory response including reduced cytokine release, reduced nitric oxide release, and accumulation of intracellular lipid droplets. This suggests that both levels and diversity of SCCA may be an important contributor to gut-brain communication.
Collapse
Affiliation(s)
- Matthew A. Churchward
- Department of Biological and Environmental Sciences, Concordia University of Edmonton, AB, T5B 4E4, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Emily R. Michaud
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Jesús Miguens Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Isabel Garcia Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Huiping Xu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine Indianapolis, IN, USA, 46202
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Kathryn G. Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
3
|
Sharma A, Jaiswal V, Park M, Lee HJ. Biogenic silver NPs alleviate LPS-induced neuroinflammation in a human fetal brain-derived cell line: Molecular switch to the M2 phenotype, modulation of TLR4/MyD88 and Nrf2/HO-1 signaling pathways, and molecular docking analysis. BIOMATERIALS ADVANCES 2023; 148:213363. [PMID: 36881963 DOI: 10.1016/j.bioadv.2023.213363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Silver nanoparticles (AgNPs) have inconsistent findings against inflammation. Although a wealth of literature on the beneficial effects of green-synthesized AgNPs has been published, a detailed mechanistic study of green AgNPs on the protective effects against lipopolysaccharide (LPS)-induced neuroinflammation using human microglial cells (HMC3) has not yet been reported. For the first time, we studied the inhibitory effect of biogenic AgNPs on inflammation and oxidative stress induced by LPS in HMC3 cells. X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy were used to characterize AgNPs produced from honeyberry. Co-treatment with AgNPs significantly reduced mRNA expressions of inflammatory molecules such as interleukin (IL)-6 and tumor necrosis factor-α, while increasing the expressions of anti-inflammatory markers such as IL-10 and transforming growth factor (TGF)-β. HMC3 cells were also switched from M1 to M2, as shown by lower expression of M1 markers such as cluster of differentiation (CD)80, CD86, and CD68 and higher expression of M2 markers such as CD206, CD163, and triggering receptors expressed on myeloid cells (TREM2). Furthermore, AgNPs inhibited LPS-induced toll-like receptor (TLR)4 signaling, as evidenced by decreased expression of myeloid differentiation factor 88 (MyD88) and TLR4. In addition, AgNPs reduced the production of reactive oxygen species (ROS) and enhanced the expression of nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), while decreasing the expression of inducible nitric oxide synthase. The docking score of the honeyberry phytoconstituents ranged from -14.93 to - 4.28 KJ/mol. In conclusion, biogenic AgNPs protect against neuroinflammation and oxidative stress by targeting TLR4/MyD88 and Nrf2/HO-1 signaling pathways in a LPS-induced in vitro model. Biogenic AgNPs could be utilized as potential nanomedicine against LPS-induced inflammatory disorders.
Collapse
Affiliation(s)
- Anshul Sharma
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Varun Jaiswal
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Miey Park
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Hae-Jeung Lee
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
4
|
Shao L, Wu B, Liu C, Chong W. VALPROIC ACID INHIBITS CLASSICAL MONOCYTE-DERIVED TISSUE FACTOR AND ALLEVIATES HEMORRHAGIC SHOCK-INDUCED ACUTE LUNG INJURY IN RATS. Shock 2023; 59:449-459. [PMID: 36443067 PMCID: PMC9997640 DOI: 10.1097/shk.0000000000002064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
ABSTRACT Background: Monocytes and monocyte-derived tissue factor (TF) promote the development of sepsis-induced acute lung injury (ALI). Classical monocytes (C-Mcs) can be induced to express TF. Valproic acid (VPA) alleviates hemorrhagic shock (HS)-induced ALI (HS/ALI) and inhibits TF expression in monocytes. We hypothesized that C-Mcs and C-Mc-derived TF promoted HS/ALI and that VPA could inhibit C-Mc-derived TF expression and attenuate HS/ALI. Methods: Wistar rats and THP-1 cells were used to evaluate our hypothesis. Monocyte subtypes were analyzed by flow cytometry; mRNA expression was measured by fluorescence quantitative polymerase chain reaction; protein expression was measured by Western blotting, immunofluorescence, or immunohistology; inflammatory cytokines levels were measured by enzyme-linked immunosorbent assay; and ALI scores were used to determine the degree of ALI. Results: The blood %C-Mcs and C-Mcs/non-C-Mcs ratios, monocyte TF levels, serum and/or lung inflammatory cytokine levels, and ALI scores of HS rats were significantly increased ( P < 0.05). After monocyte depletion and thrombin inhibition, the inflammatory cytokine levels and ALI scores were significantly decreased ( P < 0.05). VPA reduced the %C-Mcs and C-Mc/non-C-Mc ratios, TF expression, inflammatory cytokine levels, and ALI scores during HS ( P < 0.05) and inhibited HS-induced monocyte Egr-1 and p-ERK1/2 expression ( P < 0.05). VPA inhibited hypoxia-induced TF expression in THP-1 cells by regulating the p-ERK1/2-Egr-1 axis. Conclusion: C-Mcs and C-Mc-derived TF accelerate the development of HS/ALI by increasing thrombin production. VPA inhibits HS-induced C-Mc production of TF by regulating the p-ERK1/2-Egr-1 axis and alleviates HS/ALI.
Collapse
Affiliation(s)
- Lina Shao
- Emergency Department, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Intensive Care Unit, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
- Intensive Care Unit, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, China
- Intensive Care Unit, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Bing Wu
- Emergency Department, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chang Liu
- Emergency Department, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Chong
- Emergency Department, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
5
|
Licochalcone A Inhibits Prostaglandin E 2 by Targeting the MAPK Pathway in LPS Activated Primary Microglia. Molecules 2023; 28:molecules28041927. [PMID: 36838914 PMCID: PMC9965579 DOI: 10.3390/molecules28041927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Neuroinflammation and oxidative stress are conditions leading to neurological and neuropsychiatric disorders. Natural compounds exerting anti-inflammatory and anti-oxidative effects, such as Licochalcone A, a bioactive flavonoid present in a traditional Chinese herb (licorice), might be beneficial for the treatment of those disorders. Therefore, this study aimed to investigate the anti-inflammatory and anti-oxidative effects of Licochalcone A in LPS-activated primary rat microglia. Licochalcone A dose-dependently prevented LPS-induced PGE2 release by inhibiting the arachidonic acid (AA)/cylcooxygenase (COX) pathway decreasing phospholipase A2, COX-1, and COX-2 protein levels. Furthermore, LPS-induced levels of the cytokines IL-6 and TNFα were reduced by Licochalcone A, which also inhibited the phosphorylation and, thus, activation of the mitogen-activated protein kinases (MAPK) p38 MAPK and Erk 1/2. With the reduction of 8-iso-PGF2α, a sensitive marker for oxidative stress, anti-oxidative effects of Licochalcone A were demonstrated. Our data demonstrate that Licochalcone A can affect microglial activation by interfering in important inflammatory pathways. These in vitro findings further demonstrate the potential value of Licochalcone A as a therapeutic option for the prevention of microglial dysfunction related to neuroinflammatory diseases. Future research should continue to investigate the effects of Licochalcone A in different disease models with a focus on its anti-oxidative and anti-neuroinflammatory properties.
Collapse
|
6
|
PGD2 displays distinct effects in diffuse large B-cell lymphoma depending on different concentrations. Cell Death Dis 2023; 9:39. [PMID: 36725845 PMCID: PMC9892043 DOI: 10.1038/s41420-023-01311-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
Prostaglandin D2 (PGD2), an arachidonic acid metabolite, has been implicated in allergic responses, parasitic infection and tumor development. The biological functions and molecular mechanisms of PGD2 in diffuse large B-cell lymphoma (DLBCL) are still undefined. In this study, we firstly found the high concentration of serum PGD2 and low expression of PGD2 receptor CRTH2 in DLBCL, which were associated with clinical features and prognosis of DLBCL patients. Interestingly, different concentration of PGD2 displayed divergent effects on DLBCL progression. Low-concentration PGD2 promoted cell growth through binding to CRTH2 while high-concentration PGD2 inhibited it via regulating cell proliferation, apoptosis, cell cycle, and invasion. Besides, high-concentration PGD2 could induce ROS-mediated DNA damage and enhance the cytotoxicity of adriamycin, bendamustine and venetoclax. Furthermore, HDAC inhibitors, vorinostat (SAHA) and panobinostat (LBH589) regulated CRTH2 expression and PGD2 production, and CRTH2 inhibitor AZD1981 and high-concentration PGD2 enhanced their anti-tumor effects in DLBCL. Altogether, our findings demonstrated PGD2 and CRTH2 as novel prognostic biomarkers and therapeutic targets in DLBCL, and highlighted the potency of high-concentration PGD2 as a promising therapeutic strategy for DLBCL patients.
Collapse
|
7
|
Luo N, Zhu W, Li X, Fu M, Peng X, Yang F, Zhang Y, Yin H, Yang C, Zhao J, Yuan X, Hu G. Impact of Gut Microbiota on Radiation-Associated Cognitive Dysfunction and Neuroinflammation in Mice. Radiat Res 2022; 197:350-364. [PMID: 34982167 DOI: 10.1667/rade-21-00006.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Abstract
Radiation-induced brain injury is a common complication of brain irradiation that eventually leads to irreversible cognitive impairment. Evidence has shown that the gut microbiome may play an important role in radiation-induced cognitive function. However, the effects of gut microbiota on radiation-induced brain injury (RIBI) remain poorly understood. Here we studied the link between intestinal microbes and radiation-induced brain injury to further investigate the effects of intestinal bacteria on neuroinflammation and cognitive function. We first verified the differences in gut microbes between male and female mice and administered antibiotics to C57BL/6 male mice to deplete the gut flora and then expose mice to radiation. We found that depletion of intestinal flora after irradiation may act as a protective modulator against radiation-induced brain injury. Moreover, we found that pretreatment with depleted gut microbes in RIBI mice suppressed brain pro-inflammatory factor production, and high-throughput sequencing analysis of mouse feces at 1-month postirradiation revealed microbial differences. Interestingly, a proportion of Verrucomicrobia Akkermansia showed partial recovery. Additionally, short-chain fatty acid treatments increased neuroinflammation in the radiation-induced brain injury model. Although a further increase in cognitive function was not observed, brain injury was aggravated in whole-brain irradiated mice to some extent. The protective effects of depleted intestinal flora and the utilization of the brain-gut axis open new avenues for development of innovative therapeutic strategies for radiation-induced brain injury.
Collapse
Affiliation(s)
- Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Han Yin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunlei Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
8
|
Chen H, Li G, Zhang J, Zheng T, Chen Q, Zhang Y, Yang F, Wang C, Nie H, Zheng B, Gong Q. Sodium butyrate ameliorates Schistosoma japonicum-induced liver fibrosis by inhibiting HMGB1 expression. Exp Parasitol 2021; 231:108171. [PMID: 34736899 DOI: 10.1016/j.exppara.2021.108171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/16/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022]
Abstract
Schistosomiasis is a prevalent zoonotic parasitic disease caused by schistosomes. Its main threat to human health is hepatic granuloma and fibrosis due to worm eggs. Praziquantel remains the first choice for the treatment of schistosomiasis but has limited benefit in treating liver fibrosis. Therefore, the need to develop effective drugs for treating schistosomiasis-induced hepatic fibrosis is urgent. High-mobility group box 1 protein (HMGB1) is a potential immune mediator that is highly associated with the development of some fibrotic diseases and may be involved in the liver pathology of schistosomiasis. We speculated that HMGB1 inhibitors could have an anti-fibrotic effect. Sodium butyrate (SB), a potent inhibitor of HMGB1, has shown anti-inflammatory activity in some animal disease models. In this study, we evaluated the effects of SB on a murine schistosomiasis model. Mice were percutaneously infected with 20 ± 2 cercariae of Schistosoma japonicum. SB (500 mg/kg/day) was administered every 3 days for the entire experiment period. The activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), liver histopathology, HMGB1 expression, and the levels of interferon gamma (IFN-γ), transforming growth factor-β1 (TGF-β1), and interleukin-6 (IL-6) in serum were analyzed. SB reduced hepatic granuloma and fibrosis of schistosomiasis, reflected by the decreased levels of ALT and AST in serum and the reduced expression of pro-inflammatory and fibrogenic cytokines (IFN-γ, TGF-β1, and IL-6). The protective effect could be attributable to the inhibition of the expression of HMGB1 and release by SB.
Collapse
Affiliation(s)
- Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Gang Li
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Department of Gastroenterology, Jingmen Second People's Hospital, Jingmen, Hubei Province, 448000, PR China
| | - Jianqiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Ting Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Qianglin Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Yanxiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Fei Yang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Chao Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China.
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, PR China.
| |
Collapse
|
9
|
Zhang S, Zhan L, Li X, Yang Z, Luo Y, Zhao H. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells. Int J Biol Sci 2021; 17:3381-3400. [PMID: 34512154 PMCID: PMC8416716 DOI: 10.7150/ijbs.62001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic changes are difficult to reverse; thus, epigenetic aberrations, including changes in DNA methylation, histone modifications, and noncoding RNAs, with potential reversibility, have attracted attention as pharmaceutical targets. The current paradigm is that histone deacetylases (HDACs) regulate gene expression via deacetylation of histone and nonhistone proteins or by forming corepressor complexes with transcription factors. The emergence of epigenetic tools related to HDACs can be used as diagnostic and therapeutic markers. HDAC inhibitors that block specific or a series of HDACs have proven to be a powerful therapeutic treatment for immune-related diseases. Here, we summarize the various roles of HDACs and HDAC inhibitors in the development and function of innate and adaptive immune cells and their implications for various diseases and therapies.
Collapse
Affiliation(s)
- Sijia Zhang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingjun Zhan
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
10
|
Histone Deacetylase Inhibitors Increase the Embryogenic Potential and Alter the Expression of Embryogenesis-Related and HDAC-Encoding Genes in Grapevine ( Vitis vinifera L., cv. Mencía). PLANTS 2021; 10:plants10061164. [PMID: 34201224 PMCID: PMC8228518 DOI: 10.3390/plants10061164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/08/2023]
Abstract
The low induction rates of somatic embryogenesis are one of the main limitations in its routine application in the grapevine (Vitis vinifera L.). The use of an induction medium containing histone deacetylase inhibitors (trichostatin A and, mainly, sodium butyrate) resulted in an improvement of the embryogenic responses in grapevine (cv. Mencía) cotyledonary and recently germinated somatic embryos. The relative expression of several grapevine genes related to embryogenic competence or encoding histone deacetylase enzymes was studied in cotyledonary somatic embryos that were cultured in the presence of 0.5 mM sodium butyrate. The results showed a significant overexpression of the BBM and VvSERK2 genes after 24 h of culture, whereas the VvWOX2 gene was underexpressed less in treated versus untreated explants. The results suggest that the inhibitor may trigger a molecular response related to an increase in embryogenic competence and changes in the expression of associated genes. The treatment with sodium butyrate also produced significant variations in the expression of several histone deacetylase enzyme-encoding genes. These results may enhance the possibility of obtaining somatic embryos, reducing the seasonal constraints associated with the use of floral explants in grapevines.
Collapse
|
11
|
Impact of Stress on Epilepsy: Focus on Neuroinflammation-A Mini Review. Int J Mol Sci 2021; 22:ijms22084061. [PMID: 33920037 PMCID: PMC8071059 DOI: 10.3390/ijms22084061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
Epilepsy, one of the most common neurological disorders worldwide, is characterized by recurrent seizures and subsequent brain damage. Despite strong evidence supporting a deleterious impact on seizure occurrence and outcome severity, stress is an overlooked component in people with epilepsy. With regard to stressor duration and timing, acute stress can be protective in epileptogenesis, while chronic stress often promotes seizure occurrence in epilepsy patients. Preclinical research suggests that chronic stress promotes neuroinflammation and leads to a depressive state. Depression is the most common psychiatric comorbidity in people with epilepsy, resulting in a poor quality of life. Here, we summarize studies investigating acute and chronic stress as a seizure trigger and an important factor that worsens epilepsy outcomes and psychiatric comorbidities. Mechanistic insight into the impact of stress on epilepsy may create a window of opportunity for future interventions targeting neuroinflammation-related disorders.
Collapse
|
12
|
González-Mercado VJ, Lim J, Yu G, Penedo F, Pedro E, Bernabe R, Tirado-Gómez M, Aouizerat B. Co-Occurrence of Symptoms and Gut Microbiota Composition Before Neoadjuvant Chemotherapy and Radiation Therapy for Rectal Cancer: A Proof of Concept. Biol Res Nurs 2021; 23:513-523. [PMID: 33541122 DOI: 10.1177/1099800421991656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To examine a) whether there are significant differences in gut microbial diversity and in the abundance of gut microbial taxa; and b) differences in predicted functional pathways of the gut microbiome between those participants with high co-occurring symptoms and those with low co-occurring symptoms, prior to neoadjuvant chemotherapy and radiation therapy (CRT) for rectal cancer. METHODS Rectal cancer patients (n = 41) provided stool samples for 16 S rRNA gene sequencing and symptom ratings for fatigue, sleep disturbance, and depressive symptoms prior to CRT. Descriptive statistics were computed for symptoms. Gut microbiome data were analyzed using QIIME2, LEfSe, and the R statistical package. RESULTS Participants with high co-occurring symptoms (n = 19) had significantly higher bacterial abundances of Ezakiella, Clostridium sensu stricto, Porphyromonas, Barnesiella, Coriobacteriales Incertae Sedis, Synergistiaceae, Echerichia-Shigella, and Turicibacter compared to those with low co-occurring symptoms before CRT (n = 22). Biosynthesis pathways for lipopolysaccharide, L-tryptophan, and colanic acid building blocks were enriched in participants with high co-occurring symptoms. Participants with low co-occurring symptoms showed enriched abundances of Enterococcus and Lachnospiraceae, as well as pathways for β-D-glucoronosides, hexuronide/hexuronate, and nicotinate degradation, methanogenesis, and L-lysine biosynthesis. CONCLUSION A number of bacterial taxa and predicted functional pathways were differentially abundant in patients with high co-occurring symptoms compared to those with low co-occurring symptoms before CRT for rectal cancer. Detailed examination of bacterial taxa and pathways mediating co-occurring symptoms is warranted.
Collapse
Affiliation(s)
| | - Jean Lim
- 96722Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL, USA
| | - Gary Yu
- 5984NYU Rory Meyers College of Nursing, New York, NY, USA
| | - Frank Penedo
- Sylvester Comprehensive Cancer Center, University of Miami, FL, USA.,College of Arts & Sciences and Miller School of Medicine, University of Miami, FL, USA
| | - Elsa Pedro
- 63601School of Pharmacy, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Raul Bernabe
- 19878University of Puerto Rico, Rio Piedras, PR, USA
| | - Maribel Tirado-Gómez
- Department of Hematology and Oncology, 12320Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Bradley Aouizerat
- 5984NYU Rory Meyers College of Nursing, New York, NY, USA.,Bluestone Center for Clinical Research, 5894NYU College of Dentistry, New York, NY, USA
| |
Collapse
|
13
|
Maleszewska M, Steranka A, Smiech M, Kaza B, Pilanc P, Dabrowski M, Kaminska B. Sequential changes in histone modifications shape transcriptional responses underlying microglia polarization by glioma. Glia 2020; 69:109-123. [PMID: 32710676 DOI: 10.1002/glia.23887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Microglia, resident myeloid cells of the central nervous system (CNS), act as immune sentinels that contribute to maintenance of physiological homeostasis and respond to any perturbation in CNS. Microglia could be polarized by various stimuli to perform dedicated functions and instigate inflammatory or pro-regenerative responses. Microglia and peripheral macrophages accumulate in glioblastomas (GBMs), malignant brain tumors, but instead of initiating antitumor responses, these cells are polarized to the pro-invasive and immunosuppressive phenotype which persists for a long time and contributes to a "cold" immune microenvironment of GBMs. Molecular mechanisms underlying this long-lasting "microglia memory" are unknown. We hypothesized that this state may rely on epigenetic silencing of inflammation-related genes. In this study, we show that cultured microglia pre-exposed to glioma-conditioned medium (GCM) acquire a "transcriptional memory" and display reduced expression of inflammatory genes after re-stimulation with lipopolysaccharide. Unstimulated microglia have unmethylated DNA and active histone marks at selected gene promoters indicating chromatin accessibility. Adding GCM increases expression and enzymatic activity of histone deacetylases (Hdac), leading to erasure of histone acetylation at tested genes. Later inflammatory genes acquire repressive histone marks (H3K27 trimethylation), which correlates with silencing of their expression. GCM induced genes acquire active histone marks. Hdac inhibitors block GCM-induced changes of histone modifications and restore microglia ability to initiate effective inflammatory responses. Altogether, we show a scenario of distinct histone modifications underlying polarization of microglia by glioma. We demonstrate contribution of epigenetic mechanisms to glioma-induced "transcriptional memory" in microglia resulting in the tumor-supportive phenotype.
Collapse
Affiliation(s)
- Marta Maleszewska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Steranka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Smiech
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Kaza
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paulina Pilanc
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Neurobiology Center, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
He XT, Hu XF, Zhu C, Zhou KX, Zhao WJ, Zhang C, Han X, Wu CL, Wei YY, Wang W, Deng JP, Chen FM, Gu ZX, Dong YL. Suppression of histone deacetylases by SAHA relieves bone cancer pain in rats via inhibiting activation of glial cells in spinal dorsal horn and dorsal root ganglia. J Neuroinflammation 2020; 17:125. [PMID: 32321538 PMCID: PMC7175547 DOI: 10.1186/s12974-020-01740-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Robust activation of glial cells has been reported to occur particularly during the pathogenesis of bone cancer pain (BCP). Researchers from our group and others have shown that histone deacetylases (HDACs) play a significant role in modulating glia-mediated immune responses; however, it still remains unclear whether HDACs are involved in the activation of glial cells during the development of BCP. METHODS BCP model was established by intra-tibia tumor cell inoculation (TCI). The expression levels and distribution sites of histone deacetylases (HDACs) in the spinal dorsal horn and dorsal root ganglia were evaluated by Western blot and immunofluorescent staining, respectively. Suberoylanilide hydroxamic acid (SAHA), a clinically used HDAC inhibitor, was then intraperitoneally and intrathecally injected to rescue the increased expression levels of HDAC1 and HDAC2. The analgesic effects of SAHA administration on BCP were then evaluated by measuring the paw withdrawal thresholds (PWTs). The effects of SAHA on activation of glial cells and expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in the spinal dorsal horn and dorsal root ganglia of TCI rats were further evaluated by immunofluorescent staining and Western blot analysis. Subsequently, the effects of SAHA administration on tumor growth and cancer cell-induced bone destruction were analyzed by hematoxylin and eosin (HE) staining and micro-CT scanning. RESULTS TCI caused rapid and long-lasting increased expression of HDAC1/HDAC2 in glial cells of the spinal dorsal horn and dorsal root ganglia. Inhibiting HDACs by SAHA not only reversed TCI-induced upregulation of HDACs but also inhibited the activation of glial cells in the spinal dorsal horn and dorsal root ganglia, and relieved TCI-induced mechanical allodynia. Further, we found that SAHA administration could not prevent cancer infiltration or bone destruction in the tibia, which indicated that the analgesic effects of SAHA were not due to its anti-tumor effects. Moreover, we found that SAHA administration could inhibit GSK3β activity in the spinal dorsal horn and dorsal root ganglia, which might contributed to the relief of BCP. CONCLUSION Our findings suggest that HDAC1 and HDAC2 are involved in the glia-mediated neuroinflammation in the spinal dorsal horn and dorsal root ganglia underlying the pathogenesis of BCP, which indicated that inhibiting HDACs by SAHA might be a potential strategy for pain relief of BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao-Fan Hu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chao Zhu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao Han
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chang-Le Wu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan-Yan Wei
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
15
|
Steardo L, de Filippis R, Carbone EA, Segura-Garcia C, Verkhratsky A, De Fazio P. Sleep Disturbance in Bipolar Disorder: Neuroglia and Circadian Rhythms. Front Psychiatry 2019; 10:501. [PMID: 31379620 PMCID: PMC6656854 DOI: 10.3389/fpsyt.2019.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
The worldwide prevalence of sleep disorders is approximately 50%, with an even higher occurrence in a psychiatric population. Bipolar disorder (BD) is a severe mental illness characterized by shifts in mood and activity. The BD syndrome also involves heterogeneous symptomatology, including cognitive dysfunctions and impairments of the autonomic nervous system. Sleep abnormalities are frequently associated with BD and are often a good predictor of a mood swing. Preservation of stable sleep-wake cycles is therefore a key to the maintenance of stability in BD, indicating the crucial role of circadian rhythms in this syndrome. The symptom most widespread in BD is insomnia, followed by excessive daytime sleepiness, nightmares, difficulty falling asleep or maintaining sleep, poor sleep quality, sleep talking, sleep walking, and obstructive sleep apnea. Alterations in the structure or duration of sleep are reported in all phases of BD. Understanding the role of neuroglia in BD and in various aspects of sleep is in nascent state. Contributions of the different types of glial cells to BD and sleep abnormalities are discussed in this paper.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Renato de Filippis
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elvira Anna Carbone
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Pasquale De Fazio
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
16
|
Hai-Lan C, Hong-Lian T, Jian Y, Manling S, Heyu F, Na K, Wenyue H, Si-Yu C, Ying-Yi W, Ting-Jun H. Inhibitory effect of polysaccharide of Sargassum weizhouense on PCV2 induced inflammation in mice by suppressing histone acetylation. Biomed Pharmacother 2019; 112:108741. [PMID: 30970528 DOI: 10.1016/j.biopha.2019.108741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Seaweeds are excellent source of bioactive compounds and seaweed-derived polysaccharides have demonstrated an array of biological effects. Here, we investigated the effect of polysaccharide of Sargassum weizhouense (PSW) on the inflammatory response in porcine circovirus type 2 (PCV2) infected mice and the underlying mechanism was studied according to the histone acetylation. After PCV2 infection, the levels of TNF-α, IL-1β, IL-6, IL-8, IL-10, MCP-1, COX-1, COX-2 and HAT in both serum and spleen were significantly increased (P <0.05). The mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65 were elevated in PCV2 infected mice (P <0.05). The HDAC content in both serum and spleen as well the mRNA expression of HDAC1 were greatly decreased (P <0.05). PSW treatment dramatically inhibited the secretions of inflammatory cytokines and HATs, reduced mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65, but promoted HDAC secretion and mRNA expression of HDAC1 in PCV2-infected mice. The acetylation of both H3 and H4 was significantly up-regulated in PCV2-infected mice, and strongly inhibited by PSW treatment (P <0.01). These results suggested that PCV2 mediate the equilibrium between HATs and HDACs, alternate the histone acetylation and thus DNA packaging, and then activate the transcription of inflammatory cytokines. PSW could inhibit the histone acetylation and the production of inflammatory cytokines, showing excellent potentials in improving the resistance of host against PCV2 infection.
Collapse
Affiliation(s)
- Chen Hai-Lan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Tan Hong-Lian
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China; Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China
| | - Yang Jian
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Song Manling
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Feng Heyu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Kuang Na
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Hu Wenyue
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chen Si-Yu
- Laboratory of Land Ecology, Field Science Center, Graduate School of Agricultural Science, Tohoku University, Miyagi 9896711, Japan
| | - Wei Ying-Yi
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Hu Ting-Jun
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
17
|
Kumar A, Henry RJ, Stoica BA, Loane DJ, Abulwerdi G, Bhat SA, Faden AI. Neutral Sphingomyelinase Inhibition Alleviates LPS-Induced Microglia Activation and Neuroinflammation after Experimental Traumatic Brain Injury. J Pharmacol Exp Ther 2019; 368:338-352. [PMID: 30563941 PMCID: PMC6367691 DOI: 10.1124/jpet.118.253955] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation is one of the key secondary injury mechanisms triggered by traumatic brain injury (TBI). Microglial activation, a hallmark of brain neuroinflammation, plays a critical role in regulating immune responses after TBI and contributes to progressive neurodegeneration and neurologic deficits following brain trauma. Here we evaluated the role of neutral sphingomyelinase (nSMase) in microglial activation by examining the effects of the nSMase inhibitors altenusin and GW4869 in vitro (using BV2 microglia cells and primary microglia), as well as in a controlled cortical injury (CCI) model in adult male C57BL/6 mice. Pretreatment of altenusin or GW4869 prior to lipopolysaccharide (LPS) stimulation for 4 or 24 hours, significantly downregulated gene expression of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, iNOS, and CCL2 in microglia and reduced the release of nitric oxide and TNF-α These nSMase inhibitors also attenuated the release of microparticles and phosphorylation of p38 MAPK and ERK1/2. In addition, altenusin pretreatment also reduced the gene expression of multiple inflammatory markers associated with microglial activation after experimental TBI, including TNF-α, IL-1β, IL-6, iNOS, CCL2, CD68, NOX2, and p22phox Overall, our data demonstrate that nSMase inhibitors attenuate multiple inflammatory pathways associated with microglial activation in vitro and after experimental TBI. Thus, nSMase inhibitors may represent promising therapeutics agents targeting neuroinflammation.
Collapse
Affiliation(s)
- Asit Kumar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shahnawaz A Bhat
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Chen HL, Tan HL, Yang J, Wei YY, Hu TJ. Sargassum polysaccharide inhibits inflammatory response in PCV2 infected-RAW264.7 cells by regulating histone acetylation. Carbohydr Polym 2018; 200:633-640. [PMID: 30177210 DOI: 10.1016/j.carbpol.2018.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
Toxic inflammatory response is frequently introduced upon virus infection. In this study, RAW264.7 cells were infected with porcine circovirus type 2 (PCV2) and treated with Sargassum polysaccharide SP. It was found that PCV2 infection induced increased significant inflammation response represented with increased secretion of inflammatory cytokines, corresponding with promoted HAT activity, inhibited HDAC activity, elevated HDAC1 mRNA levels, and up-regulated acetylation levels of H3 and H4 in RAW264.7 cells. SP treatment significantly inhibited the increase of inflammatory cytokines, HAT activity and the acetylation of histones, but dramatically increased the HDAC activity and the expression of HDAC1. From these results, SP might be able to protect immune cells from virus induced damages through inhibiting the inflammatory responds by maintaining an equilibrium between the activity of HATs and HDACs which contributes to an appropriate level of histone acetylation.
Collapse
Affiliation(s)
- Hai-Lan Chen
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Hong-Lian Tan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Jian Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Ying-Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
19
|
Jiao FZ, Wang Y, Zhang HY, Zhang WB, Wang LW, Gong ZJ. Histone Deacetylase 2 Inhibitor CAY10683 Alleviates Lipopolysaccharide Induced Neuroinflammation Through Attenuating TLR4/NF-κB Signaling Pathway. Neurochem Res 2018; 43:1161-1170. [PMID: 29675728 DOI: 10.1007/s11064-018-2532-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
Abstract
Neuroinflammation involves in the progression of many central nervous system diseases. Several studies have shown that histone deacetylase (HDAC) inhibitors modulated inflammatory responses in lipopolysaccharide (LPS) stimulated microglia. While, the mechanism is still unclear. The aim of present study was to investigate the effect of HDAC2 inhibitor CAY10683 on inflammatory responses and TLR4/NF-κB signaling pathways in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. The effect of CAY10683 on cell viability of BV2 microglial cells was detected by CCK-8 assay. The expressions of inflammatory cytokines were analyzed by western blotting and RT-PCR respectively. The TLR4 protein expression was measured by western blotting, immunofluorescence, immunohistochemistry respectively. The protein expressions of MYD88, phospho-NF-κB p65, NF-κB-p65, acetyl-H3 (AH3), H3, and HDAC2 were analyzed by western blotting. We found that CAY10683 could inhibit expression levels of inflammatory cytokine TNF-α and IL-1β in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. It could induce TLR4, MYD88, phospho-NF-κB p65, and HDAC2 expressions. Moreover, CAY10683 increased the acetylation of histones H3 in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. Taken together, our findings suggested that HDAC2 inhibitor CAY10683 could suppress neuroinflammatory responses and TLR4/NF-κB signaling pathways by acetylation after LPS stimulation.
Collapse
Affiliation(s)
- Fang-Zhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hai-Yue Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Bin Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
20
|
Han Z, Zhao H, Tao Z, Wang R, Fan Z, Luo Y, Luo Y, Ji X. TOPK Promotes Microglia/Macrophage Polarization towards M2 Phenotype via Inhibition of HDAC1 and HDAC2 Activity after Transient Cerebral Ischemia. Aging Dis 2018; 9:235-248. [PMID: 29896413 PMCID: PMC5963345 DOI: 10.14336/ad.2017.0328] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/28/2017] [Indexed: 11/11/2022] Open
Abstract
T-LAK-cell-originated protein kinase (TOPK) is a newly identified member of the mitogen-activated protein kinase family. Our previous study has showed that TOPK has neuroprotective effects against cerebral ischemia-reperfusion injury. Here, we investigated the involvement of TOPK in microglia/ macrophage M1/M2 polarization and the underlying epigenetic mechanism. The expression profiles, co-localization and in vivo interaction of TOPK, M1/M2 surface markers, and HDAC1/HDAC2 were detected after middle cerebral artery occlusion models (MCAO). We demonstrated that TOPK, the M2 surface markers CD206 and Arg1, p-HDAC1, and p-HDAC2 showed a similar pattern of in vivo expression over time after MCAO. TOPK co-localized with CD206, p-HDAC1, and p-HDAC2 positive cells, and was shown to bind to HDAC1 and HDAC2. In vitro study showed that TOPK overexpression in BV2 cells up-regulated CD206 and Arg1, and promoted the phosphorylation of HDAC1 and HDAC2. In addition, TOPK overexpression also prevented LPS plus IFN-γ-induced M1 transformation through reducing release of inflammatory factor of M1 phenotype TNF-α, IL-6 and IL-1β, and increasing TGF-β release and the mRNA levels of TGF-β and SOCS3, cytokine of M2 phenotype and its regulator. Moreover, the increased TNF-α induced by TOPK siRNA could be reversed by HDAC1/HDAC2 inhibitor, FK228. TOPK overexpression increased M2 marker expression in vivo concomitant with the amelioration of cerebral injury, neurological functions deficits, whereas TOPK silencing had the opposite effects, which were completely reversed by the FK228 and partially by the SAHA. These findings suggest that TOPK positively regulates microglia/macrophage M2 polarization by inhibiting HDAC1/HDAC2 activity, which may contribute to its neuroprotective effects against cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ziping Han
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haiping Zhao
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhen Tao
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Rongliang Wang
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhibin Fan
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yinghao Luo
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,3Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Xunming Ji
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Geriatric Medical Research Center, Beijing 100053, China
| |
Collapse
|
21
|
Li N, Liu XX, Hong M, Huang XZ, Chen H, Xu JH, Wang C, Zhang YX, Zhong JX, Nie H, Gong Q. Sodium butyrate alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release. Int Immunopharmacol 2018; 56:242-248. [PMID: 29414658 DOI: 10.1016/j.intimp.2018.01.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 11/18/2022]
Abstract
Sodium butyrate (SB) is a short chain 4-carbon fatty acid salt naturally exists in animal fats. Previous studies have proven that sodium butyrate has many beneficial functions such as anti-tumor and anti-inflammatory actions. In the current study we investigated the effect and possible mechanism of sodium butyrate in LPS-induced acute lung injury (ALI). ALI was induced by intratracheal administration of LPS (10 mg/kg) in male BALB/c mice. Sodium butyrate (500 mg/kg) was administered intraperitoneally 30 min prior to LPS exposure. We found that sodium butyrate significantly protected animals from LPS-induced ALI as evidenced by decreased the lung wet to dry weight ratio, total cells, neutrophils, macrophages, myeloperoxidase (MPO) activity, and lung histological damage compared to vehicle control. Sodium butyrate pretreatment markedly inhibited the production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Furthermore, sodium butyrate pretreatment dramatically suppressed HMGB1 release and NF-κ B activation. Together, these results suggest that sodium butyrate pretreatment protects mice from LPS-induced acute lung injury, possibly through the modulation of HMGB1 and inflammatory responses.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Xin-Xin Liu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Mei Hong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Xin-Zhou Huang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Jia-Huan Xu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Chao Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Yan-Xiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Ji-Xin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China.
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China; Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou 434023, People's Republic of China.
| |
Collapse
|
22
|
Pinto JV, Passos IC, Librenza-Garcia D, Marcon G, Schneider MA, Conte JH, Abreu da Silva JP, Lima LP, Quincozes-Santos A, Kauer-Sant’Anna M, Kapczinski F. Neuron-glia Interaction as a Possible Pathophysiological Mechanism of Bipolar Disorder. Curr Neuropharmacol 2018; 16:519-532. [PMID: 28847296 PMCID: PMC5997869 DOI: 10.2174/1570159x15666170828170921] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/26/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has shown the importance of glial cells in the neurobiology of bipolar disorder. Activated microglia and inflammatory cytokines have been pointed out as potential biomarkers of bipolar disorder. Indeed, recent studies have shown that bipolar disorder involves microglial activation in the hippocampus and alterations in peripheral cytokines, suggesting a potential link between neuroinflammation and peripheral toxicity. These abnormalities may also be the biological underpinnings of outcomes related to neuroprogression, such as cognitive impairment and brain changes. Additionally, astrocytes may have a role in the progression of bipolar disorder, as these cells amplify inflammatory response and maintain glutamate homeostasis, preventing excitotoxicity. The present review aims to discuss neuron-glia interactions and their role in the pathophysiology and treatment of bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Flávio Kapczinski
- Address correspondence to this author at the Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton-ON, Canada; Tel: +55 512 101 8845; E-mails: ,
| |
Collapse
|
23
|
Haley MJ, Brough D, Quintin J, Allan SM. Microglial Priming as Trained Immunity in the Brain. Neuroscience 2017; 405:47-54. [PMID: 29292078 DOI: 10.1016/j.neuroscience.2017.12.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/09/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
In this review we discuss the possibility that the phenomenon of microglial priming can be explained by the mechanisms that underlie trained immunity. The latter involves the enhancement of inflammatory responses by epigenetic mechanisms that are mobilized after first exposure to an inflammatory stimulus. These mechanisms include long-lasting histone modifications, including H3K4me1 deposition at latent enhancer regions. Although such changes may be beneficial in peripheral infectious disease, in the context of microglial priming they may drive increased microglia reactivity that is damaging in diseases of brain aging.
Collapse
Affiliation(s)
- Michael J Haley
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Jessica Quintin
- Immunology of Fungal Infections Group, Department of Mycology, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
24
|
Sophora subprosrate polysaccharide inhibited cytokine/chemokine secretion via suppression of histone acetylation modification and NF-κb activation in PCV2 infected swine alveolar macrophage. Int J Biol Macromol 2017; 104:900-908. [DOI: 10.1016/j.ijbiomac.2017.06.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/17/2017] [Accepted: 06/25/2017] [Indexed: 11/18/2022]
|
25
|
Abstract
Bioactive lipids regulate most physiological processes, from digestion to blood flow and from hemostasis to labor. Lipid mediators are also involved in multiple pathologies including cancer, autoimmunity or asthma. The pathological roles of lipid mediators are based on their intricate involvement in the immune system, which comprises source and target cells of these mediators. Based on their biosynthetic origin, bioactive lipids can be grouped into different classes [e.g. sphingolipids, formed from sphingosine or eicosanoids, formed from arachidonic acid (AA)]. Owing to the complexity of different mediator classes and the prominent immunological roles of eicosanoids, this review will focus solely on the immune-regulation of eicosanoids. Eicosanoids do not only control key immune responses (e.g. chemotaxis, antigen presentation, phagocytosis), but they are also subject to reciprocal control by the immune system. Particularly, key immunoregulatory cytokines such as IL-4 and IFN-γ shape the cellular eicosanoid profile, thus providing efficient feedback regulation between cytokine and eicosanoid networks. For the purpose of this review, I will first provide a short overview of the most important immunological functions of eicosanoids with a focus on prostaglandins (PGs) and leukotrienes (LTs). Second, I will summarize the current knowledge on immunological factors that regulate eicosanoid production during infection and inflammation.
Collapse
|
26
|
Chen JH, Zheng YL, Xu CQ, Gu LZ, Ding ZL, Qin L, Wang Y, Fu R, Wan YF, Hu CP. Valproic acid (VPA) enhances cisplatin sensitivity of non-small cell lung cancer cells via HDAC2 mediated down regulation of ABCA1. Biol Chem 2017; 398:785-792. [PMID: 28002023 DOI: 10.1515/hsz-2016-0307] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
Valproic acid (VPA) has been suggested to be a histone deacetylase inhibitor (HDACI). Our present study revealed that VPA at 1 mm, which had no effect on cell proliferation, can significantly increase the sensitivity of non-small cell lung cancer (NSCLC) cells to cisplatin (DDP). VPA treatment markedly decreased the mRNA and protein levels of ABCA1, while had no significant effect on ABCA3, ABCA7 or ABCB10. Luciferase reporter assays showed that VPA can decrease the ABCA1 promoter activity in both A549 and H358 cells. VPA treatment also decreased the phosphorylation of SP1, which can bind to -100 and -166 bp in the promoter of ABCA1. While the phosphorylation of c-Fos and c-Jun were not changed in VPA treated NSCLC cells. Over expression of HDAC2 attenuated VPA induced down regulation of ABCA1 mRNA expression and promoter activities. Over expression of HDAC2 also attenuated VPA induced DDP sensitivity of NSCLC cells. These data revealed that VPA can increase the DDP sensitivity of NSCLC cells via down regulation of ABCA1 through HDAC2/SP1 signals. It suggested that combination of VPA and anticancer drugs such as DDP might be great helpful for treatment of NSCLC patients.
Collapse
|
27
|
Bhatia HS, Roelofs N, Muñoz E, Fiebich BL. Alleviation of Microglial Activation Induced by p38 MAPK/MK2/PGE 2 Axis by Capsaicin: Potential Involvement of other than TRPV1 Mechanism/s. Sci Rep 2017; 7:116. [PMID: 28273917 PMCID: PMC5428011 DOI: 10.1038/s41598-017-00225-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/14/2017] [Indexed: 12/13/2022] Open
Abstract
Exaggerated inflammatory responses in microglia represent one of the major risk factors for various central nervous system’s (CNS) associated pathologies. Release of excessive inflammatory mediators such as prostaglandins and cytokines are the hallmark of hyper-activated microglia. Here we have investigated the hitherto unknown effects of capsaicin (cap) - a transient receptor potential vanilloid 1 (TRPV1) agonist- in murine primary microglia, organotypic hippocampal slice cultures (OHSCs) and human primary monocytes. Results demonstrate that cap (0.1–25 µM) significantly (p < 0.05) inhibited the release of prostaglandin E2 (PGE2), 8-iso-PGF2α, and differentially regulated the levels of cytokines (TNF-α, IL-6 & IL-1β). Pharmacological blockade (via capsazepine & SB366791) and genetic deficiency of TRPV1 (TRPV1−/−) did not prevent cap-mediated suppression of PGE2 in activated microglia and OHSCs. Inhibition of PGE2 was partially dependent on the reduced levels of PGE2 synthesising enzymes, COX-2 and mPGES-1. To evaluate potential molecular targets, we discovered that cap significantly suppressed the activation of p38 MAPK and MAPKAPK2 (MK2). Altogether, we demonstrate that cap alleviates excessive inflammatory events by targeting the PGE2 pathway in in vitro and ex vivo immune cell models. These findings have broad relevance in understanding and paving new avenues for ongoing TRPV1 based drug therapies in neuroinflammatory-associated diseases.
Collapse
Affiliation(s)
- Harsharan S Bhatia
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104, Freiburg, Germany. .,VivaCell Biotechnology GmbH, Ferdinand-Porsche-Strasse 5, D-79211, Denzlingen, Germany.
| | - Nora Roelofs
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104, Freiburg, Germany
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba, Reina Sofía University Hospital, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Avda Menéndez Pidal s/n., 14004, Córdoba, Spain.,VivaCell Biotechnology España, Parque Científico Tecnológico Rabanales 21, 14014, Córdoba, Spain
| | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104, Freiburg, Germany.,VivaCell Biotechnology GmbH, Ferdinand-Porsche-Strasse 5, D-79211, Denzlingen, Germany
| |
Collapse
|
28
|
Li Z, Wu F, Zhang X, Chai Y, Chen D, Yang Y, Xu K, Yin J, Li R, Shi H, Wang Z, Li X, Xiao J, Zhang H. Valproate Attenuates Endoplasmic Reticulum Stress-Induced Apoptosis in SH-SY5Y Cells via the AKT/GSK3β Signaling Pathway. Int J Mol Sci 2017; 18:ijms18020315. [PMID: 28208696 PMCID: PMC5343851 DOI: 10.3390/ijms18020315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/12/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis plays an important role in a range of neurological disorders, such as neurodegenerative diseases, spinal cord injury, and diabetic neuropathy. Valproate (VPA), a typical antiepileptic drug, is commonly used in the treatment of bipolar disorder and epilepsy. Recently, VPA has been reported to exert neurotrophic effects and promote neurite outgrowth, but its molecular mechanism is still unclear. In the present study, we investigated whether VPA inhibited ER stress and promoted neuroprotection and neuronal restoration in SH-SY5Y cells and in primary rat cortical neurons, respectively, upon exposure to thapsigargin (TG). In SH-SY5Y cells, cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and the expression of ER stress-related apoptotic proteins such as glucose‑regulated protein (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase-12/-3 were analyzed with Western blot analyses and immunofluorescence assays. To explore the pathway involved in VPA-induced cell proliferation, we also examined p-AKT, GSK3β, p-JNK and MMP-9. Moreover, to detect the effect of VPA in primary cortical neurons, immunofluorescence staining of β-III tubulin and Anti-NeuN was analyzed in primary cultured neurons exposed to TG. Our results demonstrated that VPA administration improved cell viability in cells exposed to TG. In addition, VPA increased the levels of GRP78 and p-AKT and decreased the levels of ATF6, XBP-1, GSK3β, p-JNK and MMP-9. Furthermore, the levels of the ER stress-induced apoptosis response proteins CHOP, cleaved caspase-12 and cleaved caspase-3 were inhibited by VPA treatment. Meanwhile, VPA administration also increased the ratio of Bcl-2/Bax. Moreover, VPA can maintain neurite outgrowth of primary cortical neurons. Collectively, the neurotrophic effect of VPA is related to the inhibition of ER stress-induced apoptosis in SH-SY5Y cells and the maintenance of neuronal growth. Collectively, our results suggested a new approach for the therapeutic function of VPA in neurological disorders and neuroprotection.
Collapse
Affiliation(s)
- Zhengmao Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Fenzan Wu
- Science and Education division, Cixi People's Hospital, Wenzhou Medical University, Ningbo 315300, China.
| | - Xie Zhang
- Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo 315000, China.
| | - Yi Chai
- Department of neurosurgery, The second Affiliated Hospital, Nanchang University, Nanchang 330006, China.
| | - Daqing Chen
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yuetao Yang
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kebin Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jiayu Yin
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Rui Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongxue Shi
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhouguang Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
29
|
Bhatia HS, Baron J, Hagl S, Eckert GP, Fiebich BL. Rice bran derivatives alleviate microglia activation: possible involvement of MAPK pathway. J Neuroinflammation 2016; 13:148. [PMID: 27301644 PMCID: PMC4908728 DOI: 10.1186/s12974-016-0615-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hyperactivation of microglia is considered to be a key hallmark of brain inflammation and plays a critical role in regulating neuroinflammatory events. Neuroinflammatory responses in microglia represent one of the major risk factors for various neurodegenerative diseases. One of the strategies to protect the brain and slow down the progression of these neurodegenerative diseases is by consuming diet enriched in anti-oxidants and polyphenols. Therefore, the present study aimed to evaluate the anti-inflammatory effects of rice bran extract (RBE), one of the rich sources of vitamin E forms (tocopherols and tocotrienols) and gamma-oryzanols, in primary rat microglia. METHODS The vitamin E profile of the RBE was quantified by high-performance liquid chromatography (HPLC). Microglia were stimulated with lipopolysaccharide (LPS) in the presence or absence of RBE. Release of prostaglandins (prostaglandin (PG) E2, 8-iso-prostaglandin F2α (8-iso-PGF2α)) were determined with enzyme immunoassay (EIA). Protein levels and genes related to PGE2 synthesis (Cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1)) and various pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10), were assessed by western blot, ELISA, and quantitative real-time PCR. Furthermore, to elucidate the molecular targets of RBE, the phosphorylated state of various mitogen-activated protein kinase (MAPK) signaling molecules (p38 MAPK, ERK 1/2, and JNK) and activation of NF-kB pathway was studied. RESULTS RBE significantly inhibited the release of PGE2 and free radical formation (8-iso-PGF2α) in LPS-activated primary microglia. Inhibition of PGE2 by RBE was dependent on reduced COX-2 and mPGES-1 immunoreactivity in microglia. Interestingly, treatment of activated microglia with RBE further enhanced the gene expression of the microglial M2 marker IL-10 and reduced the expression of pro-inflammatory M1 markers (TNF-α, IL-1β). Further mechanistic studies showed that RBE inhibits microglial activation by interfering with important steps of MAPK signaling pathway. Additionally, microglia activation with LPS leads to IkB-α degradation which was not affected by the pre-treatment of RBE. CONCLUSIONS Taken together, our data demonstrate that RBE is able to affect microglial activation by interfering in important inflammatory pathway. These in vitro findings further demonstrate the potential value of RBE as a nutraceutical for the prevention of microglial dysfunction related to neuroinflammatory diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Harsharan S. Bhatia
- />Department of Psychiatry, University of Freiburg Medical School, Hauptstr. 5, Freiburg, 79104 Germany
- />VivaCell Biotechnology GmbH, Ferdinand-Porsche-Str. 5, Denzlingen, 79211 Germany
| | - Julian Baron
- />Department of Psychiatry, University of Freiburg Medical School, Hauptstr. 5, Freiburg, 79104 Germany
| | - Stephanie Hagl
- />Department of Pharmacology, Goethe University, Biozentrum Niederursel, Max-von-Laue-Str. 9, Frankfurt, 60438 Germany
| | - Gunter P. Eckert
- />Department of Pharmacology, Goethe University, Biozentrum Niederursel, Max-von-Laue-Str. 9, Frankfurt, 60438 Germany
- />Institute of Nutritional Sciences, University of Giessen, Wilhelmstrasse 20, Giessen, 35392 Germany
| | - Bernd L. Fiebich
- />Department of Psychiatry, University of Freiburg Medical School, Hauptstr. 5, Freiburg, 79104 Germany
- />VivaCell Biotechnology GmbH, Ferdinand-Porsche-Str. 5, Denzlingen, 79211 Germany
| |
Collapse
|
30
|
Liu H, Duan SR. Prostaglandin E2-mediated upregulation of neuroexcitation and persistent tetrodotoxin-resistant Na(+) currents in Ah-type trigeminal ganglion neurons isolated from adult female rats. Neuroscience 2016; 320:194-204. [PMID: 26868972 DOI: 10.1016/j.neuroscience.2016.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 11/16/2022]
Abstract
Prostaglandin-E2 (PGE2) is a very important inflammatory mediator and PGE2-mediated neuroexcitation in sex-specific distribution of Ah-type trigeminal ganglion neurons (TGNs) isolated from adult female rats is not fully addressed. The whole-cell patch-clamp experiment was performed to verify the effects of PGE2, forskolin, and GPR30-selective agonist (G-1) on action potential (AP) and tetrodotoxin-resistant (TTX-R) Na(+) currents in identified Ah-type TGNs. The results showed that the firing frequency was increased in Ah- and C-types by PGE2, which was simulated by forskolin and inhibited by Rp-cyclic adenosine monophosphate (cAMP), while G-1 mimicked this effect only in Ah-types, which was abolished by GPR30-selective antagonist (G-15). Although the amplitude of AP was increased in Ah- and C-types, increased maximal upstroke velocity was confirmed only in Ah-types, suggesting distinct alternations in current density and/or voltage-dependent property of Na(+) channels. With 1.0 μM PGE2, TTX-R Na(+) currents were upregulated without changing the current-voltage relationship and voltage-dependent activation in C-types, however, the TTX-R Na(+) current was augmented in Ah-types, peaked voltage and the voltage-dependent activation were both shifted toward hyperpolarized direction with faster slope. Intriguingly, the low-threshold persistent TTX-R component was activated from -60 mV and increased almost double at -30 mV compared with ∼30-40% increment of TTX-R component being activated at ∼-10 mV. Additionally, the change in TTX-R component of Ah-types was equivalent well with that in C-type TGNs. Taken these data together, we conclude that PGE2 modulates the neuroexcitation via cAMP-mediated upregulation of TTX-R Na(+) currents in both cell-types with hormone-dependent feature, especially persistent TTX-R Na(+) currents in sex-specific distribution of myelinated Ah-type TGNs.
Collapse
Affiliation(s)
- H Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - S-R Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:339-51. [DOI: 10.1016/j.bbadis.2015.10.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
|
32
|
Poly(I:C) increases the expression of mPGES-1 and COX-2 in rat primary microglia. J Neuroinflammation 2016; 13:11. [PMID: 26780827 PMCID: PMC4717620 DOI: 10.1186/s12974-015-0473-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/28/2015] [Indexed: 12/11/2022] Open
Abstract
Background Microglia recognize pathogen-associated molecular patterns such as double-stranded RNA (dsRNA) present in some viruses. Polyinosinic-polycytidylic acid [poly(I:C)] is a synthetic analog of dsRNA that activates different molecules, such as retinoic acid-inducible gene I, melanoma differentiation-associated gene 5, and toll-like receptor-3 (TLR3). Poly(I:C) increases the expression of different cytokines in various cell types. However, its role in the regulation of the production of inflammatory mediators of the arachidonic acid pathway by microglia is poorly understood. Methods In the present study, we evaluated the effect of poly(I:C) on the production of prostaglandin E2 (PGE2) and the inducible enzymes cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) in primary rat microglia. Microglia were stimulated with different concentrations of poly(I:C) (0.1–10 μg/ml), and the protein levels of COX-2 and mPGES-1, as well as the release of PGE2, were determined by western blot and enzyme immunoassay (EIA), respectively. Values were compared using one-way ANOVA with post hoc Student-Newman-Keuls test. Results Poly(I:C) increased the production of PGE2, as well as mPGES-1 and COX-2 synthesis. To investigate the mechanisms involved in poly(I:C)-induced COX-2 and mPGES-1, we studied the effects of various signal transduction pathway inhibitors. Protein levels of COX-2 and mPGES-1 were reduced by SB203580, SP600125, and SC514 (p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and IκB kinase (IKK) inhibitors, respectively), as well as by PD98059 and PD0325901 (mitogen-activated protein kinase kinase (MEK) inhibitors). Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, enhanced the synthesis of COX-2. Inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 or dual inhibition of PI3K/mTOR (with NVP-BEZ235) enhanced COX-2 and reduced mPGES-1 immunoreactivity. To confirm the data obtained with the inhibitors, we studied the phosphorylation of the blocked kinases by western blot. Poly(I:C) increased the phosphorylation of p38 MAPK, extracellular signal-regulated kinase (ERK), JNK, protein kinase B (Akt), and IκB. Conclusions Taken together, our data demonstrate that poly(I:C) increases the synthesis of enzymes involved in PGE2 synthesis via activation of different signaling pathways in microglia. Importantly, poly(I:C) activates similar pathways also involved in TLR4 signaling that are important for COX-2 and mPGES-1 synthesis. Thus, these two enzymes and their products might contribute to the neuropathological effects induced in response to dsRNA, whereby the engagement of TLR3 might be involved.
Collapse
|
33
|
Liu J, Wang F, Luo H, Liu A, Li K, Li C, Jiang Y. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms. Int Immunopharmacol 2016; 30:179-187. [DOI: 10.1016/j.intimp.2015.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022]
|
34
|
Chiariotti L, Coretti L, Pero R, Lembo F. Epigenetic Alterations Induced by Bacterial Lipopolysaccharides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:91-105. [PMID: 26659265 DOI: 10.1007/978-3-319-24738-0_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipopolysaccharide (LPS) is one of the principal bacterial products known to elicit inflammation. Cells of myeloid lineage such as monocytes and macrophages, but also epithelial cells give rise to an inflammatory response upon LPS stimulation. This phenomenon implies reprogramming of cell specific gene expression that can occur through different mechanisms including epigenetic modifications. Given their intrinsic nature, epigenetic modifications may be involved both in the acute response to LPS and in the establishment of a preconditioned genomic state (epigenomic memory) that may potentially influence the host response to further contacts with microorganisms. Information has accumulated during the last years aimed at elucidating the epigenetic mechanisms which underlie the cellular LPS response. These findings, summarized in this chapter, will hopefully be a good basis for a definition of the complete cascade of LPS-induced epigenetic events and their biological significance in different cell types.
Collapse
Affiliation(s)
- Lorenzo Chiariotti
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy. .,Istituto di Endocrinologia ed Oncologia Sperimentale IEOS, C.N.R., EPIGEN Laboratories, Naples, Italy.
| | - Lorena Coretti
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale IEOS, C.N.R., EPIGEN Laboratories, Naples, Italy
| | - Raffaela Pero
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy
| | - Francesca Lembo
- Istituto di Endocrinologia ed Oncologia Sperimentale IEOS, C.N.R., EPIGEN Laboratories, Naples, Italy. .,Department of Pharmacy, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
35
|
van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P, Nijboer CH. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol 2015; 136:28-49. [PMID: 26655283 DOI: 10.1016/j.pneurobio.2015.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.
Collapse
Affiliation(s)
- Erik van Tilborg
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobbi Fleiss
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Balasubramanian D, Deng AX, Doudney K, Hampton MB, Kennedy MA. Valproic acid exposure leads to upregulation and increased promoter histone acetylation of sepiapterin reductase in a serotonergic cell line. Neuropharmacology 2015; 99:79-88. [DOI: 10.1016/j.neuropharm.2015.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 05/22/2015] [Accepted: 06/26/2015] [Indexed: 01/10/2023]
|
37
|
Kumar A, Bhatia HS, de Oliveira ACP, Fiebich BL. microRNA-26a modulates inflammatory response induced by toll-like receptor 4 stimulation in microglia. J Neurochem 2015; 135:1189-202. [DOI: 10.1111/jnc.13364] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Asit Kumar
- Department of Psychiatry; Neurochemistry Lab; University of Freiburg Medical School; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
| | - Harsharan Singh Bhatia
- Department of Psychiatry; Neurochemistry Lab; University of Freiburg Medical School; Freiburg Germany
| | | | - Bernd L. Fiebich
- Department of Psychiatry; Neurochemistry Lab; University of Freiburg Medical School; Freiburg Germany
- VivaCell Biotechnology GmbH; Denzlingen Germany
| |
Collapse
|
38
|
Olde Loohuis NFM, Kole K, Glennon JC, Karel P, Van der Borg G, Van Gemert Y, Van den Bosch D, Meinhardt J, Kos A, Shahabipour F, Tiesinga P, van Bokhoven H, Martens GJM, Kaplan BB, Homberg JR, Aschrafi A. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol Dis 2015; 80:42-53. [PMID: 25986729 DOI: 10.1016/j.nbd.2015.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/14/2015] [Accepted: 05/10/2015] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorders are severe neurodevelopmental disorders, marked by impairments in reciprocal social interaction, delays in early language and communication, and the presence of restrictive, repetitive and stereotyped behaviors. Accumulating evidence suggests that dysfunction of the amygdala may be partially responsible for the impairment of social behavior that is a hallmark feature of ASD. Our studies suggest that a valproic acid (VPA) rat model of ASD exhibits an enlargement of the amygdala as compared to controls rats, similar to that observed in adolescent ASD individuals. Since recent research suggests that altered neuronal development and morphology, as seen in ASD, may result from a common post-transcriptional process that is under tight regulation by microRNAs (miRs), we examined genome-wide transcriptomics expression in the amygdala of rats prenatally exposed to VPA, and detected elevated miR-181c and miR-30d expression levels as well as dysregulated expression of their cognate mRNA targets encoding proteins involved in neuronal system development. Furthermore, selective suppression of miR-181c function attenuates neurite outgrowth and branching, and results in reduced synaptic density in primary amygdalar neurons in vitro. Collectively, these results implicate the small non-coding miR-181c in neuronal morphology, and provide a framework of understanding how dysregulation of a neurodevelopmentally relevant miR in the amygdala may contribute to the pathophysiology of ASD.
Collapse
Affiliation(s)
- N F M Olde Loohuis
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - K Kole
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - J C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - P Karel
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - G Van der Borg
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Y Van Gemert
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - D Van den Bosch
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - J Meinhardt
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - A Kos
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - F Shahabipour
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - P Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - H van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - G J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B B Kaplan
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - J R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A Aschrafi
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|