1
|
Orhan E, Batuk İT, Batuk MO. Concurrent Cognitive Task Alters Postural Control Performance of Young Adults With Unilateral Cochlear Implants. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2025; 68:377-387. [PMID: 39626048 DOI: 10.1044/2024_jslhr-24-00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
PURPOSE The aim of this study was to investigate the balance performances of young adults with unilateral cochlear implants (CIs) in a dual-task condition. METHOD Fifteen young adults with unilateral CIs and 15 healthy individuals were included in the study. The balance task was applied using the Sensory Organization Test via Computerized Dynamic Posturography. The Backward Digit Recall task was applied as an additional concurrent cognitive task. In the balance task, participants completed four different conditions, which gradually became more difficult: Condition 1: fixed platform, eyes open; Condition 3: fixed platform, eyes open and visual environment sway; Condition 4: platform sway, eyes open; Condition 6: platform sway, eyes open and visual environment sway. To evaluate the dual-task condition performance, participants were given cognitive and motor tasks simultaneously. RESULTS Visual (p = .016), vestibular (p < .001), and composite balance scores (p < .001) of CI users were statistically significantly lower than the control group. Condition 3 (p = .003), Condition 4 (p = .007), and Condition 6 (p < .001) balance scores of CI users in the single-task condition were statistically significantly lower than controls. Condition 6 (p < .001) balance scores of CI users in the dual-task condition were statistically significantly lower than the control group. Condition 1 score (p = .002) of the CI users in the dual-task condition showed a statistically significant decrease compared to the balance score in the single-task condition, while the Condition 6 score (p = .011) in the dual-task condition was statistically significantly higher than the balance score in the single-task condition. CONCLUSIONS The balance performance of individuals with CIs in the dual-task condition was worse than typical healthy individuals. It can be suggested that dual-task performances should be included in the vestibular rehabilitation process in CI users in the implantation process in terms of balance abilities in multitasking conditions and risk of falling.
Collapse
Affiliation(s)
- Emre Orhan
- Department of Audiology, Gazi University, Ankara, Turkey
| | | | | |
Collapse
|
2
|
Nuoffer MG, Schindel A, Lefebvre S, Wüthrich F, Nadesalingam N, Kyrou A, Kerkeni H, Kalla R, Bernard J, Walther S. Psychomotor slowing in schizophrenia is associated with aberrant postural control. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:118. [PMID: 39702558 DOI: 10.1038/s41537-024-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Motor abnormalities, including psychomotor slowing, are prevalent in a large proportion of individuals with schizophrenia. While postural control deficits have been observed in this population, the impact of motor abnormalities on postural stability remains unclear. This study aimed to objectively evaluate postural stability in patients with and without psychomotor slowing and healthy controls. Seventy-three schizophrenia patients with psychomotor slowing (PS; Salpêtrière Retardation Rating Scale (SRRS) ≥ 15), 25 schizophrenia patients without psychomotor slowing (non-PS; SRRS < 15), and 27 healthy controls (HC) performed four conditions on the Kistler force plate: eyes open (EO), eyes closed (EC), head reclined with eyes open (EOHR), and head reclined with eyes closed (ECHR). Larger sway areas and higher Root Mean Square (RMS) values indicate lower postural stability, while a lower Complexity Index (CI) reflects reduced adaptability, flexibility, and dynamic functioning of postural control. PS exhibited larger sway areas and higher RMS compared to the other groups. Both PS and non-PS showed reduced complexity in postural control compared to healthy controls, without differences between the two patient groups. Reduced postural stability and complexity were associated with greater expert-rated motor abnormalities, as well as more severe negative symptoms. Additionally, lower complexity was linked to reduced physical activity levels. These findings suggest that psychomotor slowing is associated with lower postural stability, potentially reflecting impaired cerebellar function. Furthermore, the loss of complexity in postural control highlights reduced flexibility, adaptability, and efficiency in the postural control network of individuals with schizophrenia.
Collapse
Affiliation(s)
- Melanie G Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Anika Schindel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Hassen Kerkeni
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roger Kalla
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Jessica Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Luo Y, Ma X, Zhang L, He W. Association of handgrip strength weakness and asymmetry with low physical performance among Chinese older people. Aging Clin Exp Res 2024; 36:225. [PMID: 39585524 PMCID: PMC11588951 DOI: 10.1007/s40520-024-02886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Handgrip strength (HGS) weakness and asymmetry are both abnormal conditions of upper-limb muscle strength. The association between HGS weakness and physical performance is controversial, and the link between HGS asymmetry and physical performance remains unclear. AIMS This study aimed to investigate the associations of HGS weakness and asymmetry separately and concurrently with low physical performance among Chinese older people. METHODS The study used two waves of data from China Health and Retirement Longitudinal Study (CHARLS) in 2013 and 2015. HGS weakness and asymmetry were defined according to the maximal HGS and the HGS ratio, respectively. Participants were classified into 4 groups according to HGS status: normal, asymmetry only, weakness only, and concurrent weakness and asymmetry. The logistic regression model was used to investigate the cross-sectional association between low physical performance and each of maximal HGS, HGS ratio, and HGS status, as well as the prospective association between baseline HGS status and new-onset physical performance decline after two years. RESULTS Participants with HGS asymmetry only, weakness only, and two abnormalities showed a higher prevalence of low physical performance when asymmetry defined as an HGS ratio exceeding 1.20 and 1.30 (all, p < 0.001), with the greatest odds in those with two abnormalities (20% threshold: OR 3.83; 30% threshold: OR 5.41). The longitudinal analysis found that HGS weakness can predict the new-onset low physical performance over a two-year period, with concurrent HGS asymmetry further increased the future risk of physical performance decline. CONCLUSIONS Both HGS weakness and asymmetry were associated with a higher prevalence of low physical performance, in an additive way. This study will help screen older people with low physical performance more efficiently, and identify those at higher risk of developing new-onset physical performance decline within two years.
Collapse
Affiliation(s)
- Yu Luo
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510000, PR China
| | - Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510000, PR China
| | - Ling Zhang
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510000, PR China.
| | - Wen He
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510000, PR China.
| |
Collapse
|
4
|
Zhang T, Li L, Hondzinski JM, Mao M, Sun W, Song Q. Tai Chi counteracts age-related somatosensation and postural control declines among older adults. J Exerc Sci Fit 2024; 22:152-158. [PMID: 38444520 PMCID: PMC10912684 DOI: 10.1016/j.jesf.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Objective To investigate the effect of a 16-week Tai Chi practice on strength, tactile sensation, kinesthesia, and static postural control among older adults of different age groups. Methods This is a quasi-experimental study. Thirteen participants aged 60-69 years (60-69yr), 11 aged 70-79 years (70-79yr), and 13 aged 80-89 years (80-89yr) completed 16 weeks of 24-form Tai Chi practice. Their ankle and hip peak torque, tactile sensation, ankle and knee kinesthesia, and the root mean square of the center of pressure (Cop-RMS) were measured before (week 0) and after (week 17) practice. Results 80-89yr showed less ankle plantar/dorsiflexion and hip abduction peak torques (p = 0.003, p < 0.001, p = 0.001), and a greater ankle plantar/dorsiflexion kinesthesia (p < 0.001, p = 0.002) than 60-69yr and 70-79yr. Greater ankle plantar/dorsiflexion and hip abduction torques (p = 0.011, p < 0.001, p = 0.045), improved arch and heel tactile sensation (p = 0.040, p = 0.009), and lower knee flexion/extension kinesthesia (p < 0.001, p = 0.044) were observed at week 17. The significant group*practice interaction for the fifth metatarsal head tactile sensation (p = 0.027), ankle plantar/dorsiflexion kinesthesia (p < 0.001, p = 0.004), and the CoP-RMS in the mediolateral direction (p = 0.047) only in 80-89yr revealed greater improvement at week 17. Conclusion Tai Chi practice increased strength, tactile sensation, kinesthesia, and static postural control among older adults. Tai Chi practice improved tactile, kinesthesia sensations, and static postural control among older adults over 80, who presented with worse strength and kinesthesia than their younger counterparts. Tai Chi practice offers a safe exercise option for those aged over 80 to encourage improvements in sensorimotor control.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Graduate School, Harbin Sport University, Harbin, 150006, China
| | - Li Li
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Jan M. Hondzinski
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Min Mao
- School of Nursing and Rehabilitation, Shandong University, Jinan, 250012, China
| | - Wei Sun
- Department of Sports and Health Science, Shandong Sport University, Jinan, 250102, China
| | - Qipeng Song
- Department of Sports and Health Science, Shandong Sport University, Jinan, 250102, China
| |
Collapse
|
5
|
Corre J, Cugnot JF, Boutabla A, Cavuscens S, Ranieri M, van de Berg R, Peterka RJ, Guinand N, Fornos AP. Postural impairments in unilateral and bilateral vestibulopathy. Front Neurol 2024; 15:1324868. [PMID: 38450076 PMCID: PMC10915085 DOI: 10.3389/fneur.2024.1324868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Chronic imbalance is a major complaint of patients suffering from bilateral vestibulopathy (BV) and is often reported by patients with chronic unilateral vestibulopathy (UV), leading to increased risk of falling. We used the Central SensoriMotor Integration (CSMI) test, which evaluates sensory integration, time delay, and motor activation contributions to standing balance control, to determine whether CSMI measures could distinguish between healthy control (HC), UV, and BV subjects and to characterize vestibular, proprioceptive, and visual contributions expressed as sensory weights. We also hypothesized that sensory weight values would be associated with the results of vestibular assessments (vestibulo ocular reflex tests and Dizziness Handicap Inventory scores). Twenty HCs, 15 UVs and 17 BVs performed three CSMI conditions evoking sway in response to pseudorandom (1) surface tilts with eyes open or, (2) surface tilts with eyes closed, and (3) visual surround tilts. Proprioceptive weights were identified in surface tilt conditions and visual weights were identified in the visual tilt condition. BVs relied significantly more on proprioception. There was no overlap in proprioceptive weights between BV and HC subjects and minimal overlap between UV and BV subjects in the eyes-closed surface-tilt condition. Additionally, visual sensory weights were greater in BVs and were similarly able to distinguish BV from HC and UV subjects. We found no significant correlations between sensory weights and the results of vestibular assessments. Sensory weights from CSMI testing could provide a useful measure for diagnosing and for objectively evaluating the effectiveness of rehabilitation efforts and future treatments designed to restore vestibular function such as hair cell regeneration and vestibular implants.
Collapse
Affiliation(s)
- Julie Corre
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Jean-François Cugnot
- Division of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Anissa Boutabla
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Samuel Cavuscens
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Maurizio Ranieri
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Raymond van de Berg
- Division of Vestibular Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Robert J. Peterka
- National Center for Rehabilitative Auditory Research, Veterans Administration Portland Health Care System and Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Nils Guinand
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Angélica Pérez Fornos
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Dalin D, Wiesmeier IK, Heimbach B, Weiller C, Maurer C. Postural control deficits due to bilateral pyramidal tract lesions exemplified by hereditary spastic paraplegia (HSP) originate from increased feedback time delay and reduced long-term error corrections. Front Hum Neurosci 2023; 17:1229055. [PMID: 38116238 PMCID: PMC10728727 DOI: 10.3389/fnhum.2023.1229055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Pyramidal tract lesions determine the clinical syndrome of Hereditary Spastic Paraplegia (HSP). The clinical impairments of HSP are typically exemplified by their deficits in mobility, leading to falls and injuries. The first aim of this study was to identify the cause for postural abnormalities caused by pyramidal tract lesions in HSP. The second aim was to specify the effect of treadmill training for postural abnormalities. We examined nine HSP patients before and after treadmill training, as well as nine healthy control subjects during perturbed and unperturbed stance. We found that HSP was associated with larger sway amplitudes and velocities. Body excursions following platform tilts were larger, and upper body excursions showed a phase lead. Model-based analysis detected a greater time delay and a reduced long-term error correction of postural reactions in the center of mass. HSP patients performed significantly better in clinical assessments after treadmill training. In addition, treadmill training reduced sway amplitudes and body excursions, most likely by increasing positional and velocity error correction gain as a compensatory mechanism, while the time delay and long-term error correction gain remained largely unaffected. Moreover, the upper body's phase lead was reduced. We conclude that HSP leads to very specific postural impairments. While postural control generally benefits from treadmill training, the effect seems to mainly rely on compensatory mechanisms, whereas the original deficits are not affected significantly.
Collapse
Affiliation(s)
- Daniela Dalin
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Isabella Katharina Wiesmeier
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Bernhard Heimbach
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Cornelius Weiller
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christoph Maurer
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
7
|
Jafari H, Gustafsson T, Nyberg L, Röijezon U. Predicting balance impairments in older adults: a wavelet-based center of pressure classification approach. Biomed Eng Online 2023; 22:83. [PMID: 37608334 PMCID: PMC10463618 DOI: 10.1186/s12938-023-01146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Aging is associated with a decline in postural control and an increased risk of falls. The Center of Pressure (CoP) trajectory analysis is a commonly used method to assess balance. In this study, we proposed a new method to identify balance impairments in older adults by analyzing their CoP trajectory frequency components, sensory inputs, reaction time, motor functions, and Fall-related Concerns (FrC). METHODS The study includes 45 older adults aged [Formula: see text] years who were assessed for sensory and motor functions. FrC and postural control in a quiet stance with open and closed eyes on stable and unstable surfaces. A Discrete Wavelet Transform (DWT) was used to detect features in frequency scales, followed by the K-means algorithm to detect different clusters. The multinomial logistic model was used to identify and predict the association of each group with the sensorimotor tests and FrC. RESULTS The study results showed that by DWT, three distinct groups of subjects could be revealed. Group 2 exhibited the broadest use of frequency scales, less decline in sensorimotor functions, and lowest FrC. The study also found that a decline in sensorimotor functions and fall-related concern may cause individuals to rely on either very low-frequency scales (group 1) or higher-frequency scales (group 3) and that those who use lower-frequency scales (group 1) can manage their balance more successfully than group 3. CONCLUSIONS Our study provides a new, cost-effective method for detecting balance impairments in older adults. This method can be used to identify people at risk and develop interventions and rehabilitation strategies to prevent falls in this population.
Collapse
Affiliation(s)
- Hedyeh Jafari
- Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Thomas Gustafsson
- Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
| | - Lars Nyberg
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Ulrik Röijezon
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
8
|
Lai Z, Wang R, Zhou B, Chen J, Wang L. Difference in the recruitment of intrinsic foot muscles in the elderly under static and dynamic postural conditions. PeerJ 2023; 11:e15719. [PMID: 37483972 PMCID: PMC10362842 DOI: 10.7717/peerj.15719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Background The effect of foot, especially intrinsic muscles, on postural control and its related mechanisms remain unclear due to the complex structure. Therefore, this study aims to investigate the activation of intrinsic foot muscles in the elderly under static and dynamic postural tasks. Methods Twenty-one elderly participants were included to perform different postural tests (sensory organization test (SOT), motor control test (MCT), limit of stability test (LOS), and unilateral stance test) by a NeuroCom Balance Manager System. The participants were instructed to maintain postural stability under conditions with combined different sensory inputs (vision, vestibular, and proprioception) in SOT as well as conditions with translation disturbance in MCT, and to perform an active weight-shifting tasks in LOS. During these tasks, muscle activation were simultaneously acquired from intrinsic foot muscles (abductor halluces (AbH) and flexor digitorum brevis (FDB)) and ankle muscles (anterior tibialis, medial head of gastrocnemius, lateral head of gastrocnemius, and peroneus longus). The root-mean-square amplitude of these muscles in postural tasks was calculated and normalized with the EMG activity in unilateral stance task. Results The activation of intrinsic foot muscles significantly differed among different SOT tasks (p < 0.001). Post-hoc tests showed that compared with that under normal condition 1 without sensory interference, EMGs increased significantly under sensory disturbance (conditions 2-6). By contrast, compared with that under the single-sensory disturbed conditions (conditions 2-4; 2 for disturbed vision, 3 for disturbed vestibular sensation, 4 for disturbed proprioception), activation was significantly greater under the dual-sensory disturbed postural tasks (conditions 5 and 6; 5 for disturbed vision and proprioception, 6 for disturbed vestibular sensation and proprioception). In MCT, EMGs of foot muscles increased significantly under different translation speeds (p < 0.001). In LOS, moderate and significant correlations were found between muscle activations and postural stability parameters (AbH, r = 0. 355-0.636, p < 0.05; FDB, r = 0.336-0.622, p < 0.05). Conclusion Intrinsic foot muscles play a complementary role to regulate postural stability when disturbances occur. In addition, the recruitment magnitude of intrinsic foot muscles is positively correlated with the limit of stability, indicating their contribution to increasing the limits of stability in the elderly.
Collapse
Affiliation(s)
- Zhangqi Lai
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruiyan Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bangguo Zhou
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Shanghai, China
| | - Jing Chen
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Wang
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| |
Collapse
|
9
|
Watanabe H, Ito T, Aoki N, Bai J, Honda K, Kawashima Y, Fujikawa T, Ikeda T, Tsutsumi T. Quantitative analysis and correlative evaluation of video-oculography, micro-computed tomography, and histopathology in Pendrin-null mice. Neurobiol Dis 2023; 183:106194. [PMID: 37295562 DOI: 10.1016/j.nbd.2023.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Patients with SLC26A4 mutations exhibit highly variable hearing loss and vestibular dysfunction. Although Slc26a4 mutant mice similarly exhibit vestibular deficits, including circling behavior, head tilting, and torticollis, the underlying pathogenesis of the vestibular symptoms remains unclear, hindering its effective management for patients with SLC26A4 mutations. In this study, we evaluated the equilibrium function using the inspection equipment, which can record eye movements against rotational, gravitational, and thermal stimulations. Moreover, we correlated the degree of functional impairment with the morphological alterations observed in Slc26a4Δ/Δ mice. The rotational stimulus and ice water caloric tests revealed considerable impairment of the semicircular canal, while the tilted gravitational stimulus test showed a severe functional decline of the otolithic system in Slc26a4Δ/Δ mice. Generally, the degree of impairment was more severe in circling Slc26a4Δ/Δ mice than in non-circling Slc26a4Δ/Δ mice. In non-circling Slc26a4Δ/Δ mice, the semicircular canal function was normal. Micro-computed tomography results showed enlargement of the vestibular aqueduct and bony semicircular canals but no correlative relationship between the severity of the caloric response and the size of bony labyrinths. Giant otoconia and a significant decrease in total otolith volume in the saccule and utricle were observed in Slc26a4Δ/Δ mice. However, the giant otoconia were not overly dislocated in the bony otolithic system and ectopic otoconia were absent in the semicircular canal. The number and morphology of the utricular hair cells in Slc26a4Δ/Δ mice were not significantly reduced compared to those in Slc26a4Δ/+ mice. Collectively, we can conclude that vestibular impairments are mainly associated with otoconia formation and morphology rather than hair cell degeneration. In addition, severe disturbances of semicircular canals cause circling behavior in Slc26a4Δ/Δ mice. Our comprehensive morphological and functional assessments apply to mouse models of other genetic diseases with vestibular impairment.
Collapse
Affiliation(s)
- Hiroki Watanabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Department of Otorhinolaryngology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Taku Ito
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Natsuki Aoki
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Jing Bai
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yoshiyuki Kawashima
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Taro Fujikawa
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takuo Ikeda
- Department of Otorhinolaryngology, Tsudumigaura Medical Center for Children with disabilities, 752-4 Kume, Shunan-shi, Yamaguchi 745-0801, Japan
| | - Takeshi Tsutsumi
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
10
|
Assländer L, Albrecht M, Diehl M, Missen KJ, Carpenter MG, Streuber S. Estimation of the visual contribution to standing balance using virtual reality. Sci Rep 2023; 13:2594. [PMID: 36788259 PMCID: PMC9929338 DOI: 10.1038/s41598-023-29713-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Sensory perturbations are a valuable tool to assess sensory integration mechanisms underlying balance. Implemented as systems-identification approaches, they can be used to quantitatively assess balance deficits and separate underlying causes. However, the experiments require controlled perturbations and sophisticated modeling and optimization techniques. Here we propose and validate a virtual reality implementation of moving visual scene experiments together with model-based interpretations of the results. The approach simplifies the experimental implementation and offers a platform to implement standardized analysis routines. Sway of 14 healthy young subjects wearing a virtual reality head-mounted display was measured. Subjects viewed a virtual room or a screen inside the room, which were both moved during a series of sinusoidal or pseudo-random room or screen tilt sequences recorded on two days. In a between-subject comparison of 10 [Formula: see text] 6 min long pseudo-random sequences, each applied at 5 amplitudes, our results showed no difference to a real-world moving screen experiment from the literature. We used the independent-channel model to interpret our data, which provides a direct estimate of the visual contribution to balance, together with parameters characterizing the dynamics of the feedback system. Reliability estimates of single subject parameters from six repetitions of a 6 [Formula: see text] 20-s pseudo-random sequence showed poor test-retest agreement. Estimated parameters show excellent reliability when averaging across three repetitions within each day and comparing across days (Intra-class correlation; ICC 0.7-0.9 for visual weight, time delay and feedback gain). Sway responses strongly depended on the visual scene, where the high-contrast, abstract screen evoked larger sway as compared to the photo-realistic room. In conclusion, our proposed virtual reality approach allows researchers to reliably assess balance control dynamics including the visual contribution to balance with minimal implementation effort.
Collapse
Affiliation(s)
- Lorenz Assländer
- Human Performance Research Centre, University of Konstanz, 78464, Konstanz, Germany.
| | - Matthias Albrecht
- Human Performance Research Centre, University of Konstanz, 78464, Konstanz, Germany
- Department of Computer and Information Science, University of Konstanz, 78464, Konstanz, Germany
| | - Moritz Diehl
- Department of Mathematics, University of Freiburg, 79110, Freiburg, Germany
| | - Kyle J Missen
- School of Kinesiology, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Stephan Streuber
- Department of Electrical Engineering and Computer Science, Coburg University of Applied Sciences and Arts, 96450, Coburg, Germany
- Zukunftskolleg, University of Konstanz, 78464, Konstanz, Germany
| |
Collapse
|
11
|
Chen YC, Chang GC, Huang WM, Hwang IS. Quick balance skill improvement after short-term training with error amplification feedback for older adults. NPJ SCIENCE OF LEARNING 2023; 8:3. [PMID: 36635300 PMCID: PMC9837031 DOI: 10.1038/s41539-022-00151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
This study investigated behavioral and cortical mechanisms for short-term postural training with error amplification (EA) feedback in the elderly. Thirty-six elderly subjects (65.7 ± 2.2 years) were grouped (control and EA, n = 18) for training in stabilometer balance under visual guidance. During the training session (8 training rounds of 60 s in Day 2), the EA group received visual feedback that magnified errors to twice the real size, whereas the control group received visual feedback that displayed real errors. Scalp EEG and kinematic data of the stabilometer plate and ankle joint were recorded in the pre-test (Day 1) and post-test (Day 3). The EA group (-46.5 ± 4.7%) exhibited greater post-training error reduction than that of the control group (-27.1 ± 4.0%)(p = 0.020), together with a greater decline in kinematic coupling between the stabilometer plate and ankle joint (EA: -26.6 ± 4.8%, control: 2.3 ± 8.6%, p = 0.023). In contrast to the control group, the EA group manifested greater reductions in mean phase-lag index (PLI) connectivity in the theta (4-7 Hz)(p = 0.011) and alpha (8-12 Hz) (p = 0.027) bands. Only the EA group showed post-training declines in the mean PLI in the theta and alpha bands. Minimal spanning tree analysis revealed that EA-based training led to increases in the diameter (p = 0.002) and average eccentricity (p = 0.004) of the theta band for enhanced performance monitoring and reduction in the leaf fraction (p = 0.030) of the alpha band for postural response with enhanced automaticity. In conclusion, short-term EA training optimizes balance skill, favoring multi-segment coordination for the elderly, which is linked to more sophisticated error monitoring with less attentive control over the stabilometer stance.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Gwo-Ching Chang
- Department of Information Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Wei-Min Huang
- Department of Management Information System, National Chung Cheng University, Chiayi, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
12
|
Peterka RJ, Gruber-Fox A, Heeke PK. Asymmetry measures for quantification of mechanisms contributing to dynamic stability during stepping-in-place gait. Front Neurol 2023; 14:1145283. [PMID: 37153656 PMCID: PMC10157157 DOI: 10.3389/fneur.2023.1145283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023] Open
Abstract
The goal of this study is to introduce and to motivate the use of new quantitative methods to improve our understanding of mechanisms that contribute to the control of dynamic balance during gait. Dynamic balance refers to the ability to maintain a continuous, oscillating center-of-mass (CoM) motion of the body during gait even though the CoM frequently moves outside of the base of support. We focus on dynamic balance control in the frontal plane or medial-lateral (ML) direction because it is known that active, neurally-mediated control mechanisms are necessary to maintain ML stability. Mechanisms that regulate foot placement on each step and that generate corrective ankle torque during the stance phase of gait are both known to contribute to the generation of corrective actions that contribute to ML stability. Less appreciated is the potential role played by adjustments in step timing when the duration of the stance and/or swing phases of gait can be shortened or lengthened to allow torque due to gravity to act on the body CoM over a shorter or longer time to generate corrective actions. We introduce and define four asymmetry measures that provide normalized indications of the contribution of these different mechanisms to gait stability. These measures are 'step width asymmetry', 'ankle torque asymmetry', 'stance duration asymmetry', and 'swing duration asymmetry'. Asymmetry values are calculated by comparing corresponding biomechanical or temporal gait parameters from adjacent steps. A time of occurrence is assigned to each asymmetry value. An indication that a mechanism is contributing to ML control is obtained by comparing asymmetry values to the ML body motion (CoM angular position and velocity) at the time points associated with the asymmetry measures. Example results are demonstrated with measures obtained during a stepping-in-place (SiP) gait performed on a stance surface that either remained fixed and level or was pseudorandomly tilted to disturb balance in the ML direction. We also demonstrate that the variability of asymmetry measures obtained from 40 individuals during unperturbed, self-paced SiP were highly correlated with corresponding coefficient of variation measures that have previously been shown to be associated with poor balance and fall risk.
Collapse
Affiliation(s)
- Robert J. Peterka
- Department of Veterans Affairs, National Center for Rehabilitative Auditory Research, Portland, OR, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Robert J. Peterka,
| | - Apollonia Gruber-Fox
- Department of Veterans Affairs, National Center for Rehabilitative Auditory Research, Portland, OR, United States
| | - Paige K. Heeke
- Department of Veterans Affairs, National Center for Rehabilitative Auditory Research, Portland, OR, United States
| |
Collapse
|
13
|
Campbell KR, King LA, Parrington L, Fino PC, Antonellis P, Peterka RJ. Central sensorimotor integration assessment reveals deficits in standing balance control in people with chronic mild traumatic brain injury. Front Neurol 2022; 13:897454. [PMID: 36341095 PMCID: PMC9634071 DOI: 10.3389/fneur.2022.897454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Imbalance is common following mild Traumatic Brain Injury (mTBI) and can persist months after the initial injury. To determine if mTBI subjects with chronic imbalance differed from healthy age- and sex-matched controls (HCs) we used both the Central SensoriMotor Integration (CSMI) test, which evaluates sensory integration, time delay, and motor activation properties and the standard Sensory Organization Test (SOT). Four CSMI conditions evoked center-of-mass sway in response to: surface tilts with eyes closed (SS/EC), surface tilts with eyes open viewing a fixed visual surround (SS/EO), visual surround tilts with eyes open standing on a fixed surface (VS/EO), and combined surface and visual tilts with eyes open (SS+VS/EO). The mTBI participants relied significantly more on visual cues during the VS/EO condition compared to HCs but had similar reliance on combinations of vestibular, visual, and proprioceptive cues for balance during SS/EC, SS/EO, and SS+VS/EO conditions. The mTBI participants had significantly longer time delays across all conditions and significantly decreased motor activation relative to HCs across conditions that included surface-tilt stimuli with a sizeable subgroup having a prominent increase in time delay coupled with reduced motor activation while demonstrating no vestibular sensory weighting deficits. Decreased motor activation compensates for increased time delay to maintain stability of the balance system but has the adverse consequence that sensitivity to both internal (e.g., sensory noise) and external disturbances is increased. Consistent with this increased sensitivity, SOT results for mTBI subjects showed increased sway across all SOT conditions relative to HCs with about 45% of mTBI subjects classified as having an “Aphysiologic” pattern based on published criteria. Thus, CSMI results provided a plausible physiological explanation for the aphysiologic SOT pattern. Overall results suggest that rehabilitation that focuses solely on sensory systems may be incomplete and may benefit from therapy aimed at enhancing rapid and vigorous responses to balance perturbations.
Collapse
Affiliation(s)
- Kody R. Campbell
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, United States
- *Correspondence: Kody R. Campbell
| | - Laurie A. King
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, United States
| | - Lucy Parrington
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, United States
- Department of Dietetics, Human Nutrition and Sport, La Trobe University, Melbourne, VIC, Australia
| | - Peter C. Fino
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, United States
| | - Prokopios Antonellis
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Robert J. Peterka
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
14
|
The relationship between forward head posture, postural control and gait: A systematic review. Gait Posture 2022; 98:316-329. [PMID: 36274469 DOI: 10.1016/j.gaitpost.2022.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Forward head posture (FHP) is a common postural deviation. An increasing number of studies have reported that people with FHP present with impaired postural control and gait; however, there is conflicting evidence. A systematic review focusing on these relationships has been unavailable to date. RESEARCH QUESTION Is there a relationship between FHP, postural control and gait? METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement (PROSPERO ID: CRD42021231908). Web of Science, PubMed, Scopus, and CINAHL Plus (via EBSCO) were systematically searched, and a manual search was performed using the reference lists of included studies. Eligible studies included observational studies addressing the relationship between FHP, postural control and/or gait. Quality assessment was conducted using the Joanna Briggs Institute Critical Appraisal Checklist for Cross-Sectional Studies. RESULTS Nineteen studies were selected for this review. Consistent evidence supported that people with FHP had significant alterations in limits of stability (n = 3), performance-based balance (n = 3), and cervical proprioception (n = 4). Controversial evidence existed for a relationship of FHP with static balance (n = 4) and postural stability control (n = 4). Limited evidence existed to support an alteration in gait and vestibular function. Three studies on induced FHP consistently identified no reduced postural control. SIGNIFICANCE Current evidence supports an association between FHP and a detrimental alteration in limits of stability, performance-based balance, and cervical proprioception. Instead of simply indicating impaired overall balance, the findings of this review indicate that a reduction in specific aspects of the postural control requires to be clarified in clinical evaluation for individuals with FHP, which would facilitate the planning and application of appropriate interventions to prevent dysfunctions and disability.
Collapse
|
15
|
Parrington L, Brumbach BH, Peterka RJ, King LA. Do sensorimotor control properties mediate sway in people with chronic balance complaints following mTBI? Gait Posture 2022; 96:173-178. [PMID: 35667229 DOI: 10.1016/j.gaitpost.2022.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Up to 40% of mild traumatic brain injuries (mTBI) can result in chronic unresolved symptoms, such as balance impairment, that persist beyond three months. Sensorimotor control, the collective coordination and regulation of both sensory and motor components of the postural control system, may underlie balance deficits in chronic mTBI. The aim of this study was to determine if the relationship between severity of impairment in chronic (> 3 months) mTBI and poorer balance performance was mediated by sensorimotor integration measures. METHODS Data were collected from 61 healthy controls and 58 mTBI participants suffering persistent balance problems. Participants completed questionnaires (Dizziness Handicap Inventory (DHI), Neurobehavioral Symptom Inventory (NSI), and Sports Concussion Assessment Tool Symptom Questionnaire (SCAT2)) and performed instrumented postural sway assessments and a test of Central Sensory Motor Integration (CSMI). Exploratory Factor Analysis was used to reduce the variables used within the mediation models to constructs of impairment (Impairment Severity - based on questionnaires), balance (Sway Dispersion - based on instrumented postural sway measures), and sensorimotor control (Sensory Weighting, Motor Activation and Time Delay - based on parameters from CSMI tests). Mediation analyses used path analysis to estimate the direct effect (between impairment and balance) and indirect (mediating) effects (from sensorimotor control). RESULTS Two out of three sensorimotor integration factors (Motor Activation and Time Delay) mediated the relationship between Impairment Severity and Sway Dispersion, however, there was no mediating effect of Sensory Weighting. SIGNIFICANCE These findings have clinical implications since rehabilitation of balance commonly focuses on sensory cues. Our findings indicate the importance of Motor Activation and Time Delay, and thus a focus on strategies to improve factors related to these constructs throughout the rehabilitative process (i.e., level of muscular contractions to control joint torques; response time to stimuli/perturbations) may improve a patient's balance control.
Collapse
Affiliation(s)
- Lucy Parrington
- Department of Neurology, Balance Disorders Laboratory, Oregon Health & Science University, Portland, USA; National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, USA; Department of Dietetics, Human Nutrition and Sport, School of Sport and Exercise Science, La Trobe University, Melbourne, Australia
| | - Barbara H Brumbach
- Biostatistics & Design Program, Oregon Health & Science University, Portland, USA
| | - Robert J Peterka
- Department of Neurology, Balance Disorders Laboratory, Oregon Health & Science University, Portland, USA; National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, USA
| | - Laurie A King
- Department of Neurology, Balance Disorders Laboratory, Oregon Health & Science University, Portland, USA; National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, USA.
| |
Collapse
|
16
|
Pereira CB, Kanashiro AMK. Falls in older adults: a practical approach. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:313-323. [PMID: 35976297 PMCID: PMC9491436 DOI: 10.1590/0004-282x-anp-2022-s107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Falls are a major problem in public health since they are an important cause of morbidity and mortality. To evaluate the risk of fall and prescribe preventive interventions may be a challenging task. OBJECTIVES The objectives of this study are to summarize the most relevant information on the topic "falls in the elderly" and to give a critical view and practical clinical approach on this topic. METHODS In March 2022, a search of Pubmed database was performed, using the terms "fall elderly", fall prevention", "fall risk", with the following parameters: five years, review, systematic review, meta-analysis, practice guidelines. RESULTS There are several risk factors for falls that can be grouped in different areas (psychosocial, demographic, medical, medication, behavioral, environmental). The clinical evaluation of an older adult prone to falls must include identification of risk factors through history and examination and identification of risk of falls through an assessment tool such as gait velocity, functional reach test, timed up and go, Berg balance test, and miniBEST test. Fall prevention strategies can be single or multiple, and physical activity is the most cited. Technology can be used to detect and prevent falls. CONCLUSION A systematic approach to the older patient in risk of falls is feasible and may impact fall prevention.
Collapse
Affiliation(s)
- Cristiana Borges Pereira
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, São Paulo SP, Brazil
| | | |
Collapse
|
17
|
Vibratory cue training elicits anticipatory postural responses to an external perturbation. Exp Brain Res 2022; 240:1105-1116. [PMID: 35132466 DOI: 10.1007/s00221-022-06313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/23/2022] [Indexed: 11/04/2022]
Abstract
Anticipatory postural adjustments (APAs) represent the feedforward mechanism of neuromuscular control essential for maintaining balance under predictable perturbations. The importance of vision as a distal sensory modality in the generation of APAs is well established. However, the capabilities of external cues in generating APAs are less explored. In the present study, vibratory cue was investigated for its reliability among healthy individuals in generating anticipatory response under external perturbation in the absence of vision. Ten participants, in quiet stance, were provided with external perturbation in the form of pendulum impact in anterior-posterior (AP) direction under conditions of: both vision and vibratory cue absent; vision present but vibratory cue was absent; vision and vibratory cue both were present; only vibratory cue is present with vision being absent. EMG activities of the leg muscles and displacement of center of pressure (COP) in AP direction were recorded. The data were later analyzed and quantified in the time frame of anticipatory and compensatory phases. The results showed that with training, participants were able to generate significant APAs relying on the vibratory cue alone. Improvement in APAs was accompanied by minimizing the need for larger CPA and improved stability (COP displacement) under perturbation. The study outcome indicates the possibility of using vibratory cues for APA-based interventions.
Collapse
|
18
|
Cortical reorganization to improve dynamic balance control with error amplification feedback. J Neuroeng Rehabil 2022; 19:3. [PMID: 35034661 PMCID: PMC8762892 DOI: 10.1186/s12984-022-00980-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
Background Error amplification (EA), virtually magnify task errors in visual feedback, is a potential neurocognitive approach to facilitate motor performance. With regional activities and inter-regional connectivity of electroencephalography (EEG), this study investigated underlying cortical mechanisms associated with improvement of postural balance using EA. Methods Eighteen healthy young participants maintained postural stability on a stabilometer, guided by two visual feedbacks (error amplification (EA) vs. real error (RE)), while stabilometer plate movement and scalp EEG were recorded. Plate dynamics, including root mean square (RMS), sample entropy (SampEn), and mean frequency (MF) were used to characterize behavioral strategies. Regional cortical activity and inter-regional connectivity of EEG sub-bands were characterized to infer neural control with relative power and phase-lag index (PLI), respectively. Results In contrast to RE, EA magnified the errors in the visual feedback to twice its size during stabilometer stance. The results showed that EA led to smaller RMS of postural fluctuations with greater SampEn and MF than RE did. Compared with RE, EA altered cortical organizations with greater regional powers in the mid-frontal cluster (theta, 4–7 Hz), occipital cluster (alpha, 8–12 Hz), and left temporal cluster (beta, 13–35 Hz). In terms of the phase-lag index of EEG between electrode pairs, EA significantly reduced long-range prefrontal-parietal and prefrontal-occipital connectivity of the alpha/beta bands, and the right tempo-parietal connectivity of the theta/alpha bands. Alternatively, EA augmented the fronto-centro-parietal connectivity of the theta/alpha bands, along with the right temporo-frontal and temporo-parietal connectivity of the beta band. Conclusion EA alters postural strategies to improve stance stability on a stabilometer with visual feedback, attributable to enhanced error processing and attentional release for target localization. This study provides supporting neural correlates for the use of virtual reality with EA during balance training.
Collapse
|
19
|
Goodworth AD, Jennings TJ. Can the Clinical Test of Sensory Integration and Balance Predict Performance in Perturbed Walking. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5737-5741. [PMID: 34892423 DOI: 10.1109/embc46164.2021.9629475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human balance control is a critical prerequisite to nearly all activities, and human falls are a major health concern. The most robust way to assess reactive balance is to apply external perturbations. Perturbations are typically delivered with destabilizing motorized surfaces, external forces, visual motion, or neural stimulation. However, most devices that perturb walking in research settings are not likely to see wide clinical use due to cost, space, and time constraints. In contrast, there are low-cost destabilizing clinical tests that might require similar neural control mechanisms as walking. The present study examines and compares frontal plane balance responses with a research-based surface perturbation walking device to balance responses in a clinical standing balance assessment. We found that correlations between these walking and standing tests varied widely depending on the conditions compared. Correlations between standing and walking balance were highest when 1) a perturbation was present in walking tests, 2) subjects walked slowly, and 3) the standing tests were on foam as opposed to firm surface.Clinical Relevance- This study helps to clarify the relationship between standing and walking balance. We use the clinical test of sensory integration in standing balance and a perturbation treadmill device to measure walking balance.
Collapse
|
20
|
Van Wouwe T, Afschrift M, Dalle S, Van Roie E, Koppo K, De Groote F. Adaptations in Reactive Balance Strategies in Healthy Older Adults After a 3-Week Perturbation Training Program and After a 12-Week Resistance Training Program. Front Sports Act Living 2021; 3:714555. [PMID: 34746773 PMCID: PMC8564369 DOI: 10.3389/fspor.2021.714555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023] Open
Abstract
Both resistance training (RT) and perturbation-based training (PBT) have been proposed and applied as interventions to improve reactive balance performance in older adults. PBT is a promising approach but the adaptations in underlying balance-correcting mechanisms through which PBT improves reactive balance performance are not well-understood. Besides it is unclear whether PBT induces adaptations that generalize to movement tasks that were not part of the training and whether those potential improvements would be larger than improvements induced by RT. We performed two training interventions with two groups of healthy older adults: a traditional 12-week RT program and a 3-week PBT program consisting of support-surface perturbations of standing balance. Reactive balance performance during standing and walking as well as a set of neuro-muscular properties to quantify muscle strength, sensory and motor acuity, were assessed pre- and post-intervention. We found that both PBT and RT induced training specific improvements, i.e., standing PBT improved reactive balance during perturbed standing and RT increased strength, but neither intervention affected reactive balance performance during perturbed treadmill walking. Analysis of the reliance on different balance-correcting strategies indicated that specific improvements in the PBT group during reactive standing balance were due to adaptations in the stepping threshold. Our findings indicate that the strong specificity of PBT can present a challenge to transfer improvements to fall prevention and should be considered in the design of an intervention. Next, we found that lack of improvement in muscle strength did not limit improving reactive balance in healthy older adults. For improving our understanding of generalizability of specific PBT in future research, we suggest performing an analysis of the reliance on the different balance-correcting strategies during both the training and assessment tasks.
Collapse
Affiliation(s)
- Tom Van Wouwe
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Maarten Afschrift
- Department of Mechanical Engineering, Robotics Core Lab of Flanders Make, KU Leuven, Leuven, Belgium
- Department of Human Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Evelien Van Roie
- Physical Activity, Sport & Health Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Friedl De Groote
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Effects of Caffeine Ingestion on Human Standing Balance: A Systematic Review of Placebo-Controlled Trials. Nutrients 2021; 13:nu13103527. [PMID: 34684527 PMCID: PMC8538128 DOI: 10.3390/nu13103527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
Caffeine ingestion may influence balance control via numerous mechanisms. Although previously investigated using various study designs and methods, here we aimed to create the first evidence-based consensus regarding the effects of caffeine on the control of upright stance via systematic review (PROSPERO registration CRD42021226939). Embase, PubMed/MEDLINE, SPORTDiscus and Web of Science databases were searched on 27 January 2021 to identify placebo-controlled trials investigating caffeine-induced changes in human standing balance. Reference lists of eligible studies were also searched. Overall, nine studies involving a total of 290 participants were included. All studies were moderate to strong in quality according to the QualSyst tool. Balance-related outcome measures were collected across a range of different participant ages, stances and sensory conditions. The results show that younger participants’ balance was generally unaffected by caffeine ingestion. However, a significant balance impairment was observed following caffeine ingestion in all studies involving older participants (average age >65 years). Our results therefore suggest an age-dependent effect of caffeine ingestion on human standing. Further research into this effect is warranted as only one study has directly compared younger and older adults. Nonetheless, an important implication of our findings is that caffeine ingestion may increase fall risk in older adults. Furthermore, based on our findings, caffeine ingestion should be considered as a potential confounding factor when assessing human standing balance, particularly in older adults.
Collapse
|
22
|
Caccese JB, Santos FV, Yamaguchi FK, Buckley TA, Jeka JJ. Persistent Visual and Vestibular Impairments for Postural Control Following Concussion: A Cross-Sectional Study in University Students. Sports Med 2021; 51:2209-2220. [PMID: 33881749 DOI: 10.1007/s40279-021-01472-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To examine how concussion may impair sensory processing for control of upright stance. METHODS Participants were recruited from a single university into 3 groups: 13 participants (8 women, 21 ± 3 years) between 2 weeks and 6 months post-injury who initiated a return-to-play progression (under physician management) by the time of testing (recent concussion group), 12 participants (7 women, 21 ± 1 years) with a history of concussion (concussion history group, > 1 year post-injury), and 26 participants (8 women, 22 ± 3 years) with no concussion history (control group). We assessed sensory reweighting by simultaneously perturbing participants' visual, vestibular, and proprioceptive systems and computed center of mass gain relative to each modality. The visual stimulus was a sinusoidal translation of the visual scene at 0.2 Hz, the vestibular stimulus was ± 1 mA binaural monopolar galvanic vestibular stimulation (GVS) at 0.36 Hz, the proprioceptive stimulus was Achilles' tendon vibration at 0.28 Hz. RESULTS The recent concussion (95% confidence interval 0.078-0.115, p = 0.001) and the concussion history (95% confidence interval 0.056-0.094, p = 0.038) groups had higher gains to the vestibular stimulus than the control group (95% confidence interval 0.040-0.066). The recent concussion (95% confidence interval 0.795-1.159, p = 0.002) and the concussion history (95% confidence interval 0.633-1.012, p = 0.018) groups had higher gains to the visual stimulus than the control group (95% confidence interval 0.494-0.752). There were no group differences in gains to the proprioceptive stimulus or in sensory reweighting. CONCLUSION Following concussion, participants responded more strongly to visual and vestibular stimuli during upright stance, suggesting they may have abnormal dependence on visual and vestibular feedback. These findings may indicate an area for targeted rehabilitation interventions.
Collapse
Affiliation(s)
- Jaclyn B Caccese
- School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, 453 W. 10th Avenue, Columbus, OH, 43210, USA.
| | | | - Felipe K Yamaguchi
- Department of Kinesiology & Applied Physiology and Interdisciplinary Biomechanics and Movement Science Program, University of Delaware, Newark, DE, 19713, USA
| | - Thomas A Buckley
- Department of Kinesiology & Applied Physiology and Interdisciplinary Biomechanics and Movement Science Program, University of Delaware, Newark, DE, 19713, USA
| | - John J Jeka
- Department of Kinesiology & Applied Physiology and Interdisciplinary Biomechanics and Movement Science Program, University of Delaware, Newark, DE, 19713, USA
| |
Collapse
|
23
|
Goodworth A, Saavedra S. Postural mechanisms in moderate-to-severe cerebral palsy. J Neurophysiol 2021; 125:1698-1719. [PMID: 33788612 DOI: 10.1152/jn.00549.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
People with moderate-to-severe cerebral palsy (CP) have the greatest need for postural control research yet are usually excluded from research due to deficits in sitting ability. We use a support system that allows us to quantify and model postural mechanisms in nonambulatory children with CP. A continuous external bench tilt stimulus was used to evoke trunk postural responses in seven sitting children with CP (ages 2.5 to 13 yr) in several test sessions. Eight healthy adults were also included. Postural sway was analyzed with root mean square (RMS) sway and RMS sway velocity, along with frequency response functions (FRF, gain and phase) and coherence functions across two different stimulus amplitudes. A feedback model (including sensorimotor noise, passive, reflexive, and sensory integration mechanisms) was developed to hypothesize how postural control mechanisms are organized and function. Experimental results showed large RMS sway, FRF gains, and variability compared with adults. Modeling suggested that many subjects with CP adopted "simple" control with major contributions from a passive and reflexive mechanism and only a small contribution from active sensory integration. In contrast, mature trunk postural control includes major contributions from sensory integration and sensory reweighting. Relative to their body size, subjects with CP showed significantly lower damping, three to five times larger corrective torque, and much higher sensorimotor noise compared with the healthy mature system. Results are the first characterization of trunk postural responses and the first attempt at system identification in moderate-to-severe CP, an important step toward developing and evaluating more targeted interventions.NEW & NOTEWORTHY Cerebral palsy (CP) is the most common cause of motor disability in children. People with moderate-to-severe CP are typically nonambulatory and have major impairments in trunk postural control. We present the first systems identification study to investigate postural responses to external stimulus in this population and hypothesize at how the atypical postural control system functions with use of a feedback model. People with moderate-to-severe CP may use a simple control system with significant sensorimotor noise.
Collapse
Affiliation(s)
- Adam Goodworth
- Department of Kinesiology, Westmont University, Santa Barbara, California.,Department of Rehabilitation Sciences, University of Hartford, West Hartford, Connecticut
| | - Sandra Saavedra
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, Connecticut
| |
Collapse
|
24
|
Zhou Z, Wu C, Hu Z, Chai Y, Chen K, Asakawa T. Effects of white Gaussian noise on dynamic balance in healthy young adults. Sci Rep 2021; 11:5455. [PMID: 33750856 PMCID: PMC7943824 DOI: 10.1038/s41598-021-84706-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
It has been known that short-time auditory stimulation can contribute to the improvement of the balancing ability of the human body. The present study aims to explore the effects of white Gaussian noise (WGN) of different intensities and frequencies on dynamic balance performance in healthy young adults. A total of 20 healthy young participants were asked to stand at a dynamic balance force platform, which swung along the x-axis with an amplitude of ± 4° and frequency of 1 Hz. Their center of pressure (COP) trajectories were recorded when they were stimulated by WGN of different intensities (block 1) and different frequencies (block 2). A traditional method and detrended fluctuation analysis (DFA) were used for data preprocessing. The authors found that only with 75–85 dB WGN, the COP parameters improved. WGN frequency did not affect the dynamic balance performance of all the participants. The DFA results indicated stimulation with 75 dB WGN enhanced the short-term index and reduced the crossover point. Stimulation with 500 Hz and 2500 Hz WGN significantly enhanced the short-term index. These results suggest that 75 dB WGN and 500 Hz and 2500 Hz WGN improved the participants’ dynamic balance performance. The results of this study indicate that a certain intensity of WGN is indispensable to achieve a remarkable improvement in dynamic balance. The DFA results suggest that WGN only affected the short-term persistence, indicating the potential of WGN being considered as an adjuvant therapy in low-speed rehabilitation training.
Collapse
Affiliation(s)
- Ziyou Zhou
- Department of Mechanical Engineering, School of Mechanical Engineering, Hangzhou Dianzi University, No.1158, Xiasha 2nd Street, Jianggan District, Hangzhou, 310018, Zhejiang, China
| | - Can Wu
- Department of Mechanical Engineering, School of Mechanical Engineering, Hangzhou Dianzi University, No.1158, Xiasha 2nd Street, Jianggan District, Hangzhou, 310018, Zhejiang, China
| | - Zhen Hu
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Yujuan Chai
- Health Science Center, School of Medical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kai Chen
- Department of Mechanical Engineering, School of Mechanical Engineering, Hangzhou Dianzi University, No.1158, Xiasha 2nd Street, Jianggan District, Hangzhou, 310018, Zhejiang, China.
| | - Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, 1-20-1, Higashi-ku, Hamamatsu-City, Shizuoka, 431-3192, Japan. .,Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
25
|
Amiri P, Kearney RE. Identification of Central and Stretch Reflex Contributions to Human Postural Control. IEEE Trans Neural Syst Rehabil Eng 2021; 29:497-507. [PMID: 33556012 DOI: 10.1109/tnsre.2021.3057785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human postural control requires continuous modulation of ankle torque to stabilize the upright stance. The torque is generated by two components: active contributions, due to central control and stretch reflex, and passive mechanisms, due to joint intrinsic stiffness. Identifying the contribution of each component is difficult, since their effects appear together, and standing is controlled in closed-loop. This article presents a novel multiple-input, single-output method to identify central and stretch reflex contributions to human postural control. The model uses ankle muscle EMGs as inputs and requires no kinematic data. Application of the method to data from nine subjects during standing while subjected to perturbations of ankle position demonstrated that active torque accounted for 84.0± 5.5% of the ankle torque. The ankle plantar-flexors collectively produced the largest portion of the active torque through central control, with large inter-subject variability in the relative contributions of the individual muscles. In addition, reflex contribution of the plantar-flexors was substantial in half of the subjects, showing its potentially important functional role; finally, intrinsic contributions, estimated as the residual of the model, contributed to 15% of the torque. This study introduces a new method to quantify the contributions of the central and stretch reflex pathways to postural control; the method also provides an estimate of noisy intrinsic torque with significantly increased signal to noise ratio, suitable for identification of intrinsic stiffness in standing. The method can be used in different experimental conditions and requires minimal a-priori assumption regarding the role of different pathways in postural control.
Collapse
|
26
|
Pauelsen M, Jafari H, Strandkvist V, Nyberg L, Gustafsson T, Vikman I, Röijezon U. Frequency domain shows: Fall-related concerns and sensorimotor decline explain inability to adjust postural control strategy in older adults. PLoS One 2020; 15:e0242608. [PMID: 33216812 PMCID: PMC7678972 DOI: 10.1371/journal.pone.0242608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
Human postural control is a complex system and changes as we age. Frequency based analyses have been argued to be useful to identify altered postural control strategies in balance tasks. The aim of this study was to explore the frequency domain of the quiet stance centre of pressure of older adults with various degrees of fall-related concerns and sensorimotor functioning. We included 45 community dwelling older adults and used a force plate to register 30 seconds of quiet stance with eyes open and closed respectively. We also measured sensory and motor functions, as well as fall-related concerns and morale. We analysed the centre of pressure power spectrum density and extracted the frequency of 4 of its features for each participant. Orthogonal projection of latent structures-discriminant analysis revealed two groups for each quiet stance trial. Group 1 of each trial showed less sensory and motor decline, low/no fall-related concerns and higher frequencies. Group 2 showed more decline, higher fall-related concerns and lower frequencies. During the closed eyes trial, group 1 and group 2 shifted their features to higher frequencies, but only group 1 did so in any significant way. Higher fall-related concerns, sensory and motor decline, and explorative balancing strategies are highly correlated. The control system of individuals experiencing this seems to be highly dependent on vision. Higher fall-related concerns, and sensory and motor decline are also correlated with the inability to adjust to faster, more reactive balancing strategies, when vision is not available.
Collapse
Affiliation(s)
- Mascha Pauelsen
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
- * E-mail:
| | - Hedyeh Jafari
- Department of Computer Science, Electrical and Space Engineering Luleå University of Technology, Luleå, Sweden
| | - Viktor Strandkvist
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| | - Lars Nyberg
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| | - Thomas Gustafsson
- Department of Computer Science, Electrical and Space Engineering Luleå University of Technology, Luleå, Sweden
| | - Irene Vikman
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| | - Ulrik Röijezon
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
27
|
Cancela Carral JM, Ayán C, Sturzinger L, Gonzalez G. Relationships Between Body Mass Index and Static and Dynamic Balance in Active and Inactive Older Adults. J Geriatr Phys Ther 2020; 42:E85-E90. [PMID: 31592998 DOI: 10.1519/jpt.0000000000000195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Although the association between higher body mass index and poorer balance has been observed in older adults, the role of physical activity in this relationship is not well established. This study aimed to provide scientific evidence about the relationship between body mass index and balance, taking into account the amount of physical activity performed as a confounding variable. METHODS We collated cross-sectional data from 160 community-dwelling older adults whom we divided into 3 body mass index categories: normal weight (≥18.50-24.99 kg/m), overweight (25.00-29.99 kg/m), and obese (≥30.00-34.99 kg/m). We classified the participants as inactive or active by means of the Yale Physical Activity Questionnaire. We carried out static and dynamic balance measurements by means of a force platform and through the performance of the Timed Up and Go test, respectively. RESULTS We found statistically significant correlations between static balance, dynamic balance, and body mass index in inactive normal (r = 0.280; P = .035; r = 0.300; P = .031) and inactive overweight (r = 0.395; P = .025; r = 0.339; P = .023) people. We observed moderately strong and fair significant correlations between static/dynamic balance and BMI in inactive (r = .603; P = .028; and r = 0.720; P = .020) and active (r = 0.406; P = .037; and r = 0.378; P = .037) obese people, respectively. CONCLUSION We conclude that the amount of physical activity performed is a potential contributing factor affecting the association between body mass index and balance in older persons. These findings could be of importance when identifying the main factors that influence postural control among older adults with obesity.
Collapse
Affiliation(s)
- José M Cancela Carral
- Faculty of Education and Sport Sciences, Department Specials Didactics, University of Vigo, Pontevedra, Spain
| | | | | | | |
Collapse
|
28
|
Oku K, Kawahara I, Sugioka T, Tanaka Y, Hoshiba T, Hirose N, Kumai T. Immediate effects of plantar vibration stimuli during static upright posture following total hip arthroplasty in females. Somatosens Mot Res 2020; 37:238-244. [PMID: 32597287 DOI: 10.1080/08990220.2020.1784129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Proprioceptive function of the lower limbs deteriorates in patients following total hip arthroplasty. Patients show poor balance and rely more on visual information than proprioceptive information. Plantar vibration stimuli can mechanically enhance somatosensory input from the plantar cutaneous mechanoreceptors, thereby improving static balance. Plantar vibration stimuli may improve static balance in patients after total hip arthroplasty. This is the first study to investigate whether plantar vibration stimuli affects static balance during the early phase following total hip arthroplasty. MATERIALS AND METHODS In this cross-over design study, 16 female patients (aged 65.1 ± 11.0 years) received plantar vibration stimuli for 2 minutes or the sham interventions after total hip arthroplasty in a randomized order on different days. The foot centre of pressure was measured for the total path length, mediolateral path length, and anteroposterior path length directions before and immediately after the interventions in the static standing position both with eyes open and closed. Patients were instructed to minimize body sway when standing. RESULTS A significant increase was observed in the centre of pressure parameters in the eyes closed condition than in the eyes open condition. The centre of pressure parameters for the eyes closed condition was significantly decreased after vibration interventions than that before intervention. CONCLUSIONS This study supports the view that plantar vibration stimuli can change static balance in patients in the early phase after total hip arthroplasty temporarily by up-weighting sensory information. These stimuli may serve as a treatment option for influencing balance following total hip arthroplasty.
Collapse
Affiliation(s)
- Kosuke Oku
- Nara Medical University Graduate School, Kashihara, Nara, Japan.,Faculty of Rehabilitation, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Isao Kawahara
- Division of Rehabilitation, Hanna Central Hospital, Ikoma, Nara, Japan.,Department of Molecular Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Tatsuya Sugioka
- Division of Rehabilitation, Hanna Central Hospital, Ikoma, Nara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Takuma Hoshiba
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Norikazu Hirose
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Tsukasa Kumai
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.,Department of Sports Medicine, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
29
|
Lemus D, Berry A, Jabeen S, Jayaraman C, Hohl K, van der Helm FCT, Jayaraman A, Vallery H. Controller synthesis and clinical exploration of wearable gyroscopic actuators to support human balance. Sci Rep 2020; 10:10412. [PMID: 32591577 PMCID: PMC7320159 DOI: 10.1038/s41598-020-66760-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 05/11/2020] [Indexed: 12/02/2022] Open
Abstract
Gyroscopic actuators are appealing for wearable applications due to their ability to provide overground balance support without obstructing the legs. Multiple wearable robots using this actuation principle have been proposed, but none has yet been evaluated with humans. Here we use the GyBAR, a backpack-like prototype portable robot, to investigate the hypothesis that the balance of both healthy and chronic stroke subjects can be augmented through moments applied to the upper body. We quantified balance performance in terms of each participant's ability to walk or remain standing on a narrow support surface oriented to challenge stability in either the frontal or the sagittal plane. By comparing candidate balance controllers, it was found that effective assistance did not require regulation to a reference posture. A rotational viscous field increased the distance healthy participants could walk along a 30mm-wide beam by a factor of 2.0, compared to when the GyBAR was worn but inactive. The same controller enabled individuals with chronic stroke to remain standing for a factor of 2.5 longer on a narrow block. Due to its wearability and versatility of control, the GyBAR could enable new therapy interventions for training and rehabilitation.
Collapse
Affiliation(s)
- Daniel Lemus
- Department of Biomechanical Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Andrew Berry
- Department of Biomechanical Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Saher Jabeen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Chandrasekaran Jayaraman
- Max Näder Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA
| | - Kristen Hohl
- Max Näder Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA
| | - Frans C T van der Helm
- Department of Biomechanical Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Arun Jayaraman
- Max Näder Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA
| | - Heike Vallery
- Department of Biomechanical Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands.
| |
Collapse
|
30
|
Wang DX, Yao J, Zirek Y, Reijnierse EM, Maier AB. Muscle mass, strength, and physical performance predicting activities of daily living: a meta-analysis. J Cachexia Sarcopenia Muscle 2020; 11:3-25. [PMID: 31788969 PMCID: PMC7015244 DOI: 10.1002/jcsm.12502] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background Activities of daily living (ADLs) and instrumental activities of daily living (IADLs) are essential for independent living and are predictors of morbidity and mortality in older populations. Older adults who are dependent in ADLs and IADLs are also more likely to have poor muscle measures defined as low muscle mass, muscle strength, and physical performance, which further limit their ability to perform activities. The aim of this systematic review and meta-analysis was to determine if muscle measures are predictive of ADL and IADL in older populations. Methods A systematic search was conducted using four databases (MEDLINE, EMBASE, Cochrane, and CINAHL) from date of inception to 7 June 2018. Longitudinal cohorts were included that reported baseline muscle measures defined by muscle mass, muscle strength, and physical performance in conjunction with prospective ADL or IADL in participants aged 65 years and older at follow-up. Meta-analyses were conducted using a random effect model. Results Of the 7760 articles screened, 83 articles were included for the systematic review and involved a total of 108 428 (54.8% female) participants with a follow-up duration ranging from 11 days to 25 years. Low muscle mass was positively associated with ADL dependency in 5/9 articles and 5/5 for IADL dependency. Low muscle strength was associated with ADL dependency in 22/34 articles and IADL dependency in 8/9 articles. Low physical performance was associated with ADL dependency in 37/49 articles and with IADL dependency in 9/11 articles. Forty-five articles were pooled into the meta-analyses, 36 reported ADL, 11 reported IADL, and 2 reported ADL and IADL as a composite outcome. Low muscle mass was associated with worsening ADL (pooled odds ratio (95% confidence interval) 3.19 (1.29-7.92)) and worsening IADL (1.28 (1.02-1.61)). Low handgrip strength was associated with both worsening ADL and IADL (1.51 (1.34-1.70); 1.59 (1.04-2.31) respectively). Low scores on the short physical performance battery and gait speed were associated with worsening ADL (3.49 (2.47-4.92); 2.33 (1.58-3.44) respectively) and IADL (3.09 (1.06-8.98); 1.93 (1.69-2.21) respectively). Low one leg balance (2.74 (1.31-5.72)), timed up and go (3.41 (1.86-6.28)), and chair stand test time (1.90 (1.63-2.21)) were associated with worsening ADL. Conclusions Muscle measures at baseline are predictors of future ADL and IADL dependence in the older adult population.
Collapse
Affiliation(s)
- Daniel X.M. Wang
- Department of Medicine and Aged Care, @AgeMelbourneThe University of Melbourne, The Royal Melbourne HospitalParkvilleVICAustralia
| | - Jessica Yao
- Department of Medicine and Aged Care, @AgeMelbourneThe University of Melbourne, The Royal Melbourne HospitalParkvilleVICAustralia
| | - Yasar Zirek
- Department of Medicine and Aged Care, @AgeMelbourneThe University of Melbourne, The Royal Melbourne HospitalParkvilleVICAustralia
| | - Esmee M. Reijnierse
- Department of Medicine and Aged Care, @AgeMelbourneThe University of Melbourne, The Royal Melbourne HospitalParkvilleVICAustralia
| | - Andrea B. Maier
- Department of Medicine and Aged Care, @AgeMelbourneThe University of Melbourne, The Royal Melbourne HospitalParkvilleVICAustralia
- Department of Human Movement Sciences, @AgeAmsterdamVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| |
Collapse
|
31
|
Amiri P, Kearney RE. A Closed-Loop Method to Identify EMG-Torque Dynamics in Human Balance Control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5059-5062. [PMID: 31946996 DOI: 10.1109/embc.2019.8856339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human balance control requires continuous modulation of ankle torque by central and spinal activation of the ankle muscles combined with the intrinsic mechanical stiffness of the joint. These components appear together and cannot be measured separately. This work presents a novel multiple-input, single-output, closed-loop identification method that decomposes the ankle torque in human balance control into its central, stretch reflex, and intrinsic components. The method models separate transfer functions for each EMG-torque relation for central and stretch reflex mechanisms and estimates the ankle intrinsic torque from the residuals. The method uses only EMG measurements, requires no kinematic data, and has few parameters, resulting in robust performance. Application of the method to perturbed standing data from two healthy subjects demonstrated that the central and stretch reflex torques accounted for 80-93% of the ankle torque variation, while the intrinsic stiffness was responsible for most of the remaining torque.
Collapse
|
32
|
Quigley A, MacKay-Lyons M. Physical deficits among people living with HIV: a review of the literature and implications for rehabilitation. PHYSICAL THERAPY REVIEWS 2019. [DOI: 10.1080/10833196.2019.1701763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Adria Quigley
- Department of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marilyn MacKay-Lyons
- Department of Physiotherapy, Dalhousie University, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| |
Collapse
|
33
|
Krieg I, Dalin D, Heimbach B, Wiesmeier IK, Maurer C. Abnormal trunk control determines postural abnormalities in Amyotrophic Lateral Sclerosis. NeuroRehabilitation 2019; 44:599-608. [PMID: 31256087 PMCID: PMC6700719 DOI: 10.3233/nre-192698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND: Postural instability in Amyotrophic Lateral Sclerosis (ALS) occurs at an early stage of the disease and often results in falls. As ALS is considered a multisystem neurodegenerative disorder, postural instability may result from motor, sensory and central processing deficits. OBJECTIVE AND METHODS: We analysed postural control of 12 ALS patients and 12 healthy age-matched control subjects. Postural control was characterised by spontaneous sway measures and measures of postural reactions to pseudorandom anterior-posterior platform tilts, which were then correlated with clinical test scores. RESULTS: Spontaneous sway amplitudes and velocities were significantly larger and sway frequencies higher in ALS patients than in control subjects. ALS patients’ body excursions following platform tilts were smaller, with relatively higher upper body excursions. We found high correlations between abnormal postural reactions and clinical tests representing motor or balance deficits. CONCLUSIONS: We conclude that ALS patients’ postural abnormalities are mainly determined by an abnormal axial control and abnormally small body excursions as a function of support surface tilts, seemingly indicating better postural stabilization than control subjects. The latter contradicts the hypothesis that muscle weakness is the main source for this deficit. Instead, we suggest an altered central control strategy.
Collapse
Affiliation(s)
- Iris Krieg
- Department of Neurology and Neurophysiology, University Medical Center, Medical Faculty, Freiburg, Germany
| | - Daniela Dalin
- Department of Neurology and Neurophysiology, University Medical Center, Medical Faculty, Freiburg, Germany
| | - Bernhard Heimbach
- Department of Neurology and Neurophysiology, University Medical Center, Medical Faculty, Freiburg, Germany
| | | | - Christoph Maurer
- Department of Neurology and Neurophysiology, University Medical Center, Medical Faculty, Freiburg, Germany
| |
Collapse
|
34
|
Rahmati Z, Schouten AC, Behzadipour S, Taghizadeh G, Firoozbakhsh K. Disentangling stability and flexibility degrees in Parkinson's disease using a computational postural control model. J Neuroeng Rehabil 2019; 16:104. [PMID: 31412926 PMCID: PMC6694532 DOI: 10.1186/s12984-019-0574-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/07/2019] [Indexed: 01/11/2023] Open
Abstract
Background Impaired postural control in Parkinson’s disease (PD) seriously compromises life quality. Although balance training improves mobility and postural stability, lack of quantitative studies on the neurophysiological mechanisms of balance training in PD impedes the development of patient-specific therapies. We evaluated the effects of a balance-training program using functional balance and mobility tests, posturography, and a postural control model. Methods Center-of-pressure (COP) data of 40 PD patients before and after a 12-session balance-training program, and 20 healthy control subjects were recorded in four conditions with two tasks on a rigid surface (R-tasks) and two on foam. A postural control model was fitted to describe the posturography data. The model comprises a neuromuscular controller, a time delay, and a gain scaling the internal disturbance torque. Results Patients’ axial rigidity before training resulted in slower COP velocity in R-tasks; which was reflected as lower internal torque gain. Furthermore, patients exhibited poor stability on foam, remarked by abnormal higher sway amplitude. Lower control parameters as well as higher time delay were responsible for patients’ abnormal high sway amplitude. Balance training improved all clinical scores on functional balance and mobility. Consistently, improved ‘flexibility’ appeared as enhanced sway velocity (increased internal torque gain). Balance training also helped patients to develop the ‘stability degree’ (increase control parameters), and to respond more quickly in unstable condition of stance on foam. Conclusions Projection of the common posturography measures on a postural control model provided a quantitative framework for unraveling the neurophysiological factors and different recovery mechanisms in impaired postural control in PD. Electronic supplementary material The online version of this article (10.1186/s12984-019-0574-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zahra Rahmati
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran.,Djawad Movafaghian Research Center in Rehab Technologies, Sharif University of Technology, Tehran, Iran
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Saeed Behzadipour
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran. .,Djawad Movafaghian Research Center in Rehab Technologies, Sharif University of Technology, Tehran, Iran.
| | - Ghorban Taghizadeh
- School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
35
|
van Lith BJH, de Niet M, van de Warrenburg BPC, Geurts AC, Weerdesteyn V. Excessive short-latency stretch reflexes in the calf muscles do not cause postural instability in patients with hereditary spastic paraplegia. Clin Neurophysiol 2019; 130:1188-1195. [PMID: 31163363 DOI: 10.1016/j.clinph.2019.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/20/2018] [Accepted: 05/02/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify the role of hyperexcitable short-latency stretch reflexes (SLRs) on balance control in people with hereditary spastic paraplegia (PwHSP). METHODS Sixteen PwHSP with triceps surae spasticity and 9 healthy control subjects were subjected to toes-up support-surface perturbations. EMG data were recorded from gastrocnemius, soleus and tibialis anterior. Furthermore, center-of-mass trajectories were recorded. RESULTS PwHSP were less able to withstand the perturbations. Triceps surae SLRs (40-80 ms post perturbation) in PwHSP were increased compared to healthy subjects. Furthermore, a sustained triceps surae EMG activity at 220-320 ms post perturbation was observed in PwHSP, whereas control subjects demonstrated suppression of triceps surae activity. Center of mass trajectories started to diverge between PwHSP and controls only after ∼500 ms, with greater excursions being observed in the PwHSP. CONCLUSIONS The present results confirm that balance control is impaired in PwHSP. However, the late instant of center of mass divergence argues against a direct, causative role of hyperexcitable SLRs in the triceps surae. SIGNIFICANCE We postulate that enhanced short-latency stretch reflexes of the triceps surae do not underlie poor balance control in PwHSP. Instead, we suggest the lack of suppression of later triceps surae activity to be the main cause.
Collapse
Affiliation(s)
- B J H van Lith
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| | - M de Niet
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - B P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| | - A C Geurts
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| | - V Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
36
|
Yeung SSY, Reijnierse EM, Pham VK, Trappenburg MC, Lim WK, Meskers CGM, Maier AB. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2019; 10:485-500. [PMID: 30993881 PMCID: PMC6596401 DOI: 10.1002/jcsm.12411] [Citation(s) in RCA: 555] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/27/2019] [Indexed: 12/23/2022] Open
Abstract
Sarcopenia is a potentially modifiable risk factor for falls and fractures in older adults, but the strength of the association between sarcopenia, falls, and fractures is unclear. This study aims to systematically assess the literature and perform a meta-analysis of the association between sarcopenia with falls and fractures among older adults. A literature search was performed using MEDLINE, EMBASE, Cochrane, and CINAHL from inception to May 2018. Inclusion criteria were the following: published in English, mean/median age ≥ 65 years, sarcopenia diagnosis (based on definitions used by the original studies' authors), falls and/or fractures outcomes, and any study population. Pooled analyses were conducted of the associations of sarcopenia with falls and fractures, expressed in odds ratios (OR) and 95% confidence intervals (CIs). Subgroup analyses were performed by study design, population, sex, sarcopenia definition, continent, and study quality. Heterogeneity was assessed using the I2 statistics. The search identified 2771 studies. Thirty-six studies (52 838 individuals, 48.8% females, and mean age of the study populations ranging from 65.0 to 86.7 years) were included in the systematic review. Four studies reported on both falls and fractures. Ten out of 22 studies reported a significantly higher risk of falls in sarcopenic compared with non-sarcopenic individuals; 11 out of 19 studies showed a significant positive association with fractures. Thirty-three studies (45 926 individuals) were included in the meta-analysis. Sarcopenic individuals had a significant higher risk of falls (cross-sectional studies: OR 1.60; 95% CI 1.37-1.86, P < 0.001, I2 = 34%; prospective studies: OR 1.89; 95% CI 1.33-2.68, P < 0.001, I2 = 37%) and fractures (cross-sectional studies: OR 1.84; 95% CI 1.30-2.62, P = 0.001, I2 = 91%; prospective studies: OR 1.71; 95% CI 1.44-2.03, P = 0.011, I2 = 0%) compared with non-sarcopenic individuals. This was independent of study design, population, sex, sarcopenia definition, continent, and study quality. The positive association between sarcopenia with falls and fractures in older adults strengthens the need to invest in sarcopenia prevention and interventions to evaluate its effect on falls and fractures.
Collapse
Affiliation(s)
- Suey S Y Yeung
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Esmee M Reijnierse
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vivien K Pham
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marijke C Trappenburg
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Internal Medicine, Amstelland Hospital, Amstelveen, The Netherlands
| | - Wen Kwang Lim
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Cofré Lizama LE, Arvin M, Verschueren SM, van Dieën JH. Assessing age-related balance deterioration: Visual or mechanical tasks? Clin Biomech (Bristol, Avon) 2019; 65:116-122. [PMID: 31031227 DOI: 10.1016/j.clinbiomech.2019.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mediolateral balance assessment (MELBA) comprises tracking of predictable and unpredictable targets moving at increasing frequencies, using centre-of-mass feedback. The mediolateral-balance-assessment was shown to be sensitive to subtle age-related balance deterioration. However, it has been suggested that performance during ground-level tasks can be more sensitive to balance deterioration. METHODS we developed a modified mediolateral-balance-assessment using tracking of surface translations with comparable waveforms (mechanical mediolateral-balance-assessment) to compare age sensitivity of the visual and mechanical mediolateral-balance-assessment, 15 older adults (68 SD 5 yr) and 12 young adults (30 SD 4 yr) performed both tasks. Phase-shift and gain between the CoM and either the visual target or the surface displacement for the visual and the mechanical mediolateral-balance-assessment, respectively, were calculated. To identify differences in tracking strategies between the visual and mechanical mediolateral-balance-assessment, phase-shift between trunk and leg angles was calculated. FINDINGS Overall, older adults performed worse than young across the predictable and unpredictable tracking and visual and mechanical tasks. Of all mediolateral-balance-assessment performance descriptors, a significant interaction between age and task (visual or mechanical) was only found for the mean phase-shift. Post-hoc comparisons revealed significant age differences in the visual but not in the mechanical mediolateral-balance-assessment. Significant differences in tracking strategies were found between visual and mechanical mediolateral-balance-assessment with a greater decoupling of trunk and legs during the mechanical than the visual mediolateral-balance-assessment. INTERPRETATION the visual mediolateral-balance-assessment was more sensitive to age-related balance deterioration than the mechanical mediolateral-balance-assessment, possibly because visual tracking elicits motor strategies that are more affected by ageing.
Collapse
Affiliation(s)
- L Eduardo Cofré Lizama
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Australia; Australian Rehabilitation Research Centre (ARRC), Royal Melbourne Hospital, Melbourne, Australia.
| | - Mina Arvin
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands; Radboud University Medical Center, Radboud Institute for Health Sciences, Scientific Center for Quality of Healthcare, Nijmegen, The Netherlands
| | - Sabine M Verschueren
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Abstract
The upright stance position is inherently unstable since the smallest deviation from a perfect upright orientation produces forces due to gravity that accelerate the body toward the ground. Stability is achieved by generating appropriate joint torques that correct for deviations from a desired orientation with orientation changes detected by sensory systems (primarily somatosensory/proprioceptive, visual, and vestibular systems). Functionally, balance control can be viewed as a closed-loop feedback control system with the integration of different sources of sensory orientation information being one component of the overall system, but with the system's feedback nature placing constraints on the sensory integration process. Analysis of body sway evoked by balance perturbations allows for the measurement of "sensory weights" that represent the relative contributions of different sensory systems to an internal estimate of orientation that, in turn, is used to generate corrective actions. Experiments reveal that sensory weights are not fixed quantities, but vary as a function of environmental and experimental conditions as well as neurologic disorders that affect the quality of sensory information available from different sensory systems. Because environmental conditions can change rapidly, sensory reweighting must also occur rapidly enough to prevent instability due to an under- or overproduction of corrective action.
Collapse
|
39
|
Hamacher D, Liebl D, Hödl C, Heßler V, Kniewasser CK, Thönnessen T, Zech A. Gait Stability and Its Influencing Factors in Older Adults. Front Physiol 2019; 9:1955. [PMID: 30733686 PMCID: PMC6354563 DOI: 10.3389/fphys.2018.01955] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/22/2018] [Indexed: 11/29/2022] Open
Abstract
A stable gait pattern is a prerequisite to successfully master various activities of daily living. Furthermore, reduced gait stability is associated with a higher risk of falling. To provide specific intervention strategies to improve gait stability, gaining detailed knowledge of the underlying mechanism and influencing factors is of utmost importance. The effects of relevant influencing factors on gait stability are poorly examined, yet. Therefore, the aim of the current study was to quantify the effects of various influencing factors on gait stability. In a cross-sectional study, we assessed dynamic gait stability and relevant influencing factors in 102 older adults (age >65 years). In addition to dynamic gait stability (largest Lyapunov exponent [LLE] and gait variability measures) during normal over-ground (single-task: ST) and dual-task (DT) walking, we registered the following influencing factors: health status (SF12), pain status (painDETECT, SES), fear of falling (falls efficacy scale), depression (CES-D), cognition performance (Stroop test), physical activity (Freiburger Fragebogen zur körperlichen Aktivität), proprioception (joint position sense), peripheral sensation (mechanical and vibration detection threshold), balance performance (static balance on force plate) and muscular fitness (instrumented sit-to-stand test). We used a principal components regression to link the identified principal components with the gait stability and gait variability responses. The four principal components “strength and gender” (e.g., p = 0.001 for LLE during ST), “physical activity” (e.g., p = 0.006 for LLE during ST), “pain” (e.g., p = 0.030 for LLE during DT) and “peripheral sensation” (e.g., p = 0.002 for LLE during ST) were each significantly associated with at least two of the analyzed gait stability/variability measures. The dimension “balance” was a significant predictor in only one gait measure. While “proprioception” tends to correlate with a gait variability measure, we did not find a dependency of mental health on any gait measure. In conclusion, the participants' ability to recover from small perturbations (as measured with the largest Lyapunov exponent) seems to be related to gender and strength, the amount of physical activity the participants spent every week, peripheral sensation and pain status. Since the explained variance is still rather low, there could be more relevant factors that were not addressed, yet.
Collapse
Affiliation(s)
- Daniel Hamacher
- Institute of Sport Science, Friedrich Schiller University of Jena, Jena, Germany
| | - Dominik Liebl
- Department of Statistics, University of Bonn, Bonn, Germany
| | - Claudia Hödl
- Institute of Sport Science, Friedrich Schiller University of Jena, Jena, Germany
| | - Veronika Heßler
- Institute of Sport Science, Friedrich Schiller University of Jena, Jena, Germany
| | | | - Thomas Thönnessen
- Institute of Sport Science, Friedrich Schiller University of Jena, Jena, Germany
| | - Astrid Zech
- Institute of Sport Science, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
40
|
Peterka RJ, Murchison CF, Parrington L, Fino PC, King LA. Implementation of a Central Sensorimotor Integration Test for Characterization of Human Balance Control During Stance. Front Neurol 2018; 9:1045. [PMID: 30619027 PMCID: PMC6300494 DOI: 10.3389/fneur.2018.01045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/19/2018] [Indexed: 11/23/2022] Open
Abstract
Balance during stance is regulated by active control mechanisms that continuously estimate body motion, via a "sensory integration" mechanism, and generate corrective actions, via a "sensory-to-motor transformation" mechanism. The balance control system can be modeled as a closed-loop feedback control system for which appropriate system identification methods are available to separately quantify the sensory integration and sensory-to-motor components of the system. A detailed, functionally meaningful characterization of balance control mechanisms has potential to improve clinical assessment and to provide useful tools for answering clinical research questions. However, many researchers and clinicians do not have the background to develop systems and methods appropriate for performing identification of balance control mechanisms. The purpose of this report is to provide detailed information on how to perform what we refer to as "central sensorimotor integration" (CSMI) tests on a commercially available balance test device (SMART EquiTest CRS, Natus Medical Inc, Seattle WA) and then to appropriately analyze and interpret results obtained from these tests. We describe methods to (1) generate pseudorandom stimuli that apply cyclically-repeated rotations of the stance surface and/or visual surround (2) measure and calibrate center-of-mass (CoM) body sway, (3) calculate frequency response functions (FRFs) that quantify the dynamic characteristics of stimulus-evoked CoM sway, (4) estimate balance control parameters that quantify sensory integration by measuring the relative contribution of different sensory systems to balance control (i.e., sensory weights), and (5) estimate balance control parameters that quantify sensory-to-motor transformation properties (i.e., feedback time delay and neural controller stiffness and damping parameters). Additionally, we present CSMI test results from 40 subjects (age range 21-59 years) with normal sensory function, 2 subjects with results illustrating deviations from normal balance function, and we summarize results from previous studies in subjects with vestibular deficits. A bootstrap analysis was used to characterize confidence limits on parameters from CSMI tests and to determine how test duration affected the confidence with which parameters can be measured. Finally, example results are presented that illustrate how various sensory and central balance deficits are revealed by CSMI testing.
Collapse
Affiliation(s)
- Robert J. Peterka
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| | - Charles F. Murchison
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Lucy Parrington
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Peter C. Fino
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Laurie A. King
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
41
|
Imbalanced: The Confusing Circular Nature of Falls Research…and a Possible Antidote. Am J Phys Med Rehabil 2018; 96:55-59. [PMID: 27984251 DOI: 10.1097/phm.0000000000000591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
van Kordelaar J, Pasma JH, Cenciarini M, Schouten AC, van der Kooij H, Maurer C. The Reliance on Vestibular Information During Standing Balance Control Decreases With Severity of Vestibular Dysfunction. Front Neurol 2018; 9:371. [PMID: 29915556 PMCID: PMC5994722 DOI: 10.3389/fneur.2018.00371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/07/2018] [Indexed: 11/29/2022] Open
Abstract
The vestibular system is involved in gaze stabilization and standing balance control. However, it is unclear whether vestibular dysfunction affects both processes to a similar extent. Therefore, the objective of this study was to determine how the reliance on vestibular information during standing balance control is related to gaze stabilization deficits in patients with vestibular dysfunction. Eleven patients with vestibular dysfunction and twelve healthy subjects were included. Gaze stabilization deficits were established by spontaneous nystagmus examination, caloric test, rotational chair test, and head impulse test. Standing balance control was assessed by measuring the body sway (BS) responses to continuous support surface rotations of 0.5° and 1.0° peak-to-peak while subjects had their eyes closed. A balance control model was fitted on the measured BS responses to estimate balance control parameters, including the vestibular weight, which represents the reliance on vestibular information. Using multivariate analysis of variance, balance parameters were compared between patients with vestibular dysfunction and healthy subjects. Robust regression was used to investigate correlations between gaze stabilization and the vestibular weight. Our results showed that the vestibular weight was smaller in patients with vestibular dysfunction than in healthy subjects (F = 7.67, p = 0.011). The vestibular weight during 0.5° peak-to-peak support surface rotations decreased with increasing spontaneous nystagmus eye velocity (ρ = −0.82, p < 0.001). In addition, the vestibular weight during 0.5° and 1.0° peak-to-peak support surface rotations decreased with increasing ocular response bias during rotational chair testing (ρ = −0.72, p = 0.02 and ρ = −0.67, p = 0.04, respectively). These findings suggest that the reliance on vestibular information during standing balance control decreases with the severity of vestibular dysfunction. We conclude that particular gaze stabilization tests may be used to predict the effect of vestibular dysfunction on standing balance control.
Collapse
Affiliation(s)
- Joost van Kordelaar
- Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, Netherlands.,Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Jantsje H Pasma
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Massimo Cenciarini
- Department of Neurology, University Medical Center Freiburg, Freiburg, Germany
| | - Alfred C Schouten
- Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, Netherlands.,Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, Netherlands.,Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Christoph Maurer
- Department of Neurology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
|
44
|
Timmermans ST, Reijnierse EM, Pasma JH, Trappenburg MC, Blauw GJ, Maier AB, Meskers CGM. Blood pressure change does not associate with Center of Pressure movement after postural transition in geriatric outpatients. BMC Geriatr 2018; 18:10. [PMID: 29334945 PMCID: PMC5769426 DOI: 10.1186/s12877-017-0702-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Orthostatic hypotension (OH), a blood pressure drop after postural change, is associated with impaired standing balance and falls in older adults. This study aimed to assess the association between blood pressure (BP) and a measure of quality of standing balance, i.e. Center of Pressure (CoP) movement, after postural change from supine to standing position in geriatric outpatients, and to compare CoP movement between patients with and without OH. METHODS In a random subgroup of 75 consecutive patients who were referred to a geriatric outpatient clinic, intermittent BP measurements were obtained simultaneously with CoP measurements in mediolateral and anterior-posterior direction directly after postural change during 3 min of quiet stance with eyes open on a force plate. Additional measurements of continuous BP were available in n = 38 patients. Associations between BP change during postural change and CoP movement were analyzed using Spearman correlation. Mann-Whitney-U tests were used to compare CoP movement between patients with OH and without OH, in which OH was defined as a BP drop exceeding 20 mmHg of systolic BP (SBP) and/or 10 mmHg of diastolic BP (DBP) within 3 min after postural change. RESULTS OH measured intermittently was found in 8 out of 75 (11%) and OH measured continuously in 22 out of 38 patients (57.9%). BP change did not associate with CoP movement. CoP movement did not differ significantly between patients with and without OH. CONCLUSIONS Results do not underpin the added value of CoP movement measurements in diagnosing OH in a clinical setting. Neither could we identify the role of CoP measurements in the understanding of the relation between OH and impaired standing balance.
Collapse
Affiliation(s)
- Sjoerd T Timmermans
- Department of Rehabilitation Medicine, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Esmee M Reijnierse
- Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Jantsje H Pasma
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Marijke C Trappenburg
- Department of Internal Medicine, Section of Gerontology and Geriatrics, VU University Medical Center, Amsterdam, The Netherlands.,Department of Internal Medicine, Amstelland Hospital, Amstelveen, The Netherlands
| | - Gerard J Blauw
- Department of Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Internal Medicine, Haaglanden Medical Center Bronovo, The Hague, The Netherlands
| | - Andrea B Maier
- Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia.,Department of Human Movement Sciences, Amsterdam Movement Sciences, Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands. .,Department of Human Movement Sciences, Amsterdam Movement Sciences, Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Kumar D, González A, Das A, Dutta A, Fraisse P, Hayashibe M, Lahiri U. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System. Front Bioeng Biotechnol 2018; 5:85. [PMID: 29359128 PMCID: PMC5765271 DOI: 10.3389/fbioe.2017.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023] Open
Abstract
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels.
Collapse
Affiliation(s)
- Deepesh Kumar
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Alejandro González
- INRIA Camin team and LIRMM, University of Montpellier, Montpellier, France.,Conacyt-Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
| | - Abhijit Das
- AMRI Institute of Neuroscience, Kolkata, India
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Philippe Fraisse
- INRIA Camin team and LIRMM, University of Montpellier, Montpellier, France
| | - Mitsuhiro Hayashibe
- INRIA Camin team and LIRMM, University of Montpellier, Montpellier, France.,Department of Robotics, Tohoku University, Sendai, Japan
| | - Uttama Lahiri
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
46
|
An Overview of the Physiology and Pathophysiology of Postural Control. BIOSYSTEMS & BIOROBOTICS 2018. [DOI: 10.1007/978-3-319-72736-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Abstract
Impairments of balance and gait leading to loss of mobility, falls, and disability are common occurrences in many neurologic conditions and with older age. Much of our current understanding about posture and balance control and its impairments has come from investigations of how healthy individuals and those with neurologic disorders respond to situations that perturb standing balance during instructed voluntary tasks or in reaction to externally imposed challenges to stability. Knowledge obtained from these investigations has come from documenting the physical and physiologic characteristics of the perturbations together with the body's electrophysiologic, structural, kinetic, kinematic, and behavioral responses. From these findings, basic mechanisms, diagnostic and pathologic criteria, and targets for clinical care have been identified while continued gaps in understanding have been exposed. In this chapter, we synthesize and discuss current concepts and understanding concerning the sensorimotor control of posture and balance while standing. We draw insights gained from perturbation studies investigating these functions in healthy adults, and those with neurologic pathologies.
Collapse
Affiliation(s)
- Mark W Rogers
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Marie-Laure Mille
- Faculty of Sciences and Techniques of Physical Activities and Sport, Université de Toulon, La Garde, France; Institute of Movement Sciences ISM UMR7287, Aix-Marseille Université & CNRS, Marseille, France; Department of Physical Therapy and Human Movement Sciences, Northwestern University Medical School, Chicago IL, United States
| |
Collapse
|
48
|
|
49
|
Buettner D, Dalin D, Wiesmeier IK, Maurer C. Virtual Balancing for Studying and Training Postural Control. Front Neurosci 2017; 11:531. [PMID: 29018320 PMCID: PMC5623041 DOI: 10.3389/fnins.2017.00531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022] Open
Abstract
Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training.
Collapse
Affiliation(s)
- Daniela Buettner
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Medical Faculty, Freiburg, Germany
| | - Daniela Dalin
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Medical Faculty, Freiburg, Germany
| | - Isabella K Wiesmeier
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Medical Faculty, Freiburg, Germany
| | - Christoph Maurer
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Medical Faculty, Freiburg, Germany
| |
Collapse
|
50
|
Pasma JH, van Kordelaar J, de Kam D, Weerdesteyn V, Schouten AC, van der Kooij H. Assessment of the underlying systems involved in standing balance: the additional value of electromyography in system identification and parameter estimation. J Neuroeng Rehabil 2017; 14:97. [PMID: 28915821 PMCID: PMC5603100 DOI: 10.1186/s12984-017-0299-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/30/2017] [Indexed: 11/29/2022] Open
Abstract
Background Closed loop system identification (CLSIT) is a method to disentangle the contribution of underlying systems in standing balance. We investigated whether taking into account lower leg muscle activation in CLSIT could improve the reliability and accuracy of estimated parameters identifying the underlying systems. Methods Standing balance behaviour of 20 healthy young participants was measured using continuous rotations of the support surface (SS). The dynamic balance behaviour obtained with CLSIT was expressed by sensitivity functions of the ankle torque, body sway and muscle activation of the lower legs to the SS rotation. Balance control models, 1) without activation dynamics, 2) with activation dynamics and 3) with activation dynamics and acceleration feedback, were fitted on the data of all possible combinations of the 3 sensitivity functions. The reliability of the estimated model parameters was represented by the mean relative standard errors of the mean (mSEM) of the estimated parameters, expressed for the basic parameters, the activation dynamics parameters and the acceleration feedback parameter. To investigate the accuracy, a model validation study was performed using simulated data obtained with a comprehensive balance control model. The accuracy of the estimated model parameters was described by the mean relative difference (mDIFF) between the estimated parameters and original parameters. Results The experimental data showed a low mSEM of the basic parameters, activation dynamics parameters and acceleration feedback parameter by adding muscle activation in combination with activation dynamics and acceleration feedback to the fitted model. From the simulated data, the mDIFF of the basic parameters varied from 22.2–22.4% when estimated using the torque and body sway sensitivity functions. Adding the activation dynamics, acceleration feedback and muscle activation improved mDIFF to 13.1–15.1%. Conclusions Adding the muscle activation in combination with the activation dynamics and acceleration feedback to CLSIT improves the accuracy and reliability of the estimated parameters and gives the possibility to separate the neural time delay, electromechanical delay and the intrinsic and reflexive dynamics. To diagnose impaired balance more specifically, it is recommended to add electromyography (EMG) to body sway (with or without torque) measurements in the assessment of the underlying systems. Electronic supplementary material The online version of this article (10.1186/s12984-017-0299-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J H Pasma
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - J van Kordelaar
- Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| | - D de Kam
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - V Weerdesteyn
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Sint Maartenskliniek Research, Nijmegen, The Netherlands
| | - A C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.,Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| | - H van der Kooij
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.,Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| |
Collapse
|