1
|
Sgobbi RF, Incrocci RM, Paliarin F, Nobre MJ. The modulatory role of serotonin-1A receptors of the basolateral amygdala and dorsal periaqueductal gray on the impact of hormonal variation on the conditioned fear response. Neuroscience 2024; 554:118-127. [PMID: 39019393 DOI: 10.1016/j.neuroscience.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Despite significant advances in the study of fear and fear memory formation, little is known about fear learning and expression in females. This omission has been proven surprising, as normal and pathological behaviors are highly influenced by ovarian hormones, particularly estradiol and progesterone. In the current study, we investigated the joint influence of serotonin (5-HT) neurotransmission and estrous cycle phases (low or high levels of estradiol and progesterone) on the expression of conditioned fear in a group of female rats that were previously divided according to their response to stressful stimuli into low or high anxiety-like subjects. The baseline amplitude of the unconditioned acoustic startle responses was high in high-anxiety female rats, with no effect on the estrous cycle observed. Data collected during the proestrus-estrus phase revealed that low-anxiety rats had startle amplitudes similar to those of high-anxiety rats. It is supposed that high-anxiety female rats benefit from increased estradiol and progesterone levels to achieve comparable potentiated startle amplitudes. In contrast, female rats experienced a significant decrease in hormone levels during the Diestrus phase. This decrease is believed to play a role in preventing them from displaying a heightened startle response when faced with strongly aversive stimuli. Data collected after 5-HT and 8-OH-DPAT were administered into the basolateral nuclei and dorsal periaqueductal gray suggest that 5-HT neurotransmission works with progesterone and estrogen to reduce startle potentiation, most likely by activating the serotonin-1A receptor subtype.
Collapse
Affiliation(s)
- R F Sgobbi
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil
| | - R M Incrocci
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil
| | - F Paliarin
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil
| | - M J Nobre
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil; Departamento de Psicologia, Uni-FACEF, 14401-135, Franca, SP, Brasil.
| |
Collapse
|
2
|
Hong E, Min HK, Lim H, Gu SM, Jabborov A, Yayeh T, Kim M, Park WK, Jung JC, Yun J, Oh S. Derivatives of 3, 4, 5-Trimethoxycinnamic Acid Ameliorate Stress-Induced Anxiety in Mice and Rats. Mol Neurobiol 2023; 60:2737-2748. [PMID: 36715919 DOI: 10.1007/s12035-023-03240-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
Stress is an overwhelming problem associated with neuronal damage leading to anxiety and depression. The compound 3, 4, 5-trimethoxycinnamic acid (TMCA) has shown anti-stress effects; however, its derivatives remained unknown for their anxiolytic properties. Here, therefore, we investigated derivatives of TMCA (dTMCA) for their anxiolytic effects using immobilization and electric shock-induced stress in rats. Derivatives of TMCA ameliorated anxiety in mice and rats revealed by extended period of time spent in the open arms of elevated plus maze. Stress-mediated repression of tyrosine hydroxylase (TH) protein expression in the amygdala regions of rat brain and dopamine levels in the PC12 cells was restored by two selected derivatives (TMCA#5 and TMCA#9). Unlike TH expression, stress-induced protein expression of phospho-extracellular signal-regulated kinase (pERK) was unaffected by both derivatives in rats. Given the preferential inhibitory activity of dTMCA on dopamine and serotonin receptors, serotonergic road map of cellular signaling could be their target for anxiolytic effects. Thus, dTMCA would be promising agents to prevent neuronal damage associated with rampant stressful conditions.
Collapse
Affiliation(s)
- Eunchong Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si, Chungbuk, 28160, Korea
| | - Hyun Kyu Min
- College of Pharmacy, Chungbuk National University, Cheongju-si, Chungbuk, 28160, Korea
| | - Heena Lim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Sun Mi Gu
- College of Pharmacy, Chungbuk National University, Cheongju-si, Chungbuk, 28160, Korea
| | - Abdulaziz Jabborov
- College of Pharmacy, Chungbuk National University, Cheongju-si, Chungbuk, 28160, Korea
| | - Taddesse Yayeh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Mijin Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Woo-Kyu Park
- Medicinal Science Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Jae-Chul Jung
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, Cheongju-si, Chungbuk, 28160, Korea.
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, 07804, Korea.
| |
Collapse
|
3
|
Vázquez-León P, Miranda-Páez A, Valencia-Flores K, Sánchez-Castillo H. Defensive and Emotional Behavior Modulation by Serotonin in the Periaqueductal Gray. Cell Mol Neurobiol 2022; 43:1453-1468. [PMID: 35902460 DOI: 10.1007/s10571-022-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Serotonin 5-hydroxytryptamine (5-HT) is a key neurotransmitter for the modulation and/or regulation of numerous physiological processes and psychiatric disorders (e.g., behaviors related to anxiety, pain, aggressiveness, etc.). The periaqueductal gray matter (PAG) is considered an integrating center for active and passive defensive behaviors, and electrical stimulation of this area has been shown to evoke behavioral responses of panic, fight-flight, freezing, among others. The serotonergic activity in PAG is influenced by the activation of other brain areas such as the medial hypothalamus, paraventricular nucleus of the hypothalamus, amygdala, dorsal raphe nucleus, and ventrolateral orbital cortex. In addition, activation of other receptors within PAG (i.e., CB1, Oxytocin, µ-opioid receptor (MOR), and γ-aminobutyric acid (GABAA)) promotes serotonin release. Therefore, this review aims to document evidence suggesting that the PAG-evoked behavioral responses of anxiety, panic, fear, analgesia, and aggression are influenced by the activation of 5-HT1A and 5-HT2A/C receptors and their participation in the treatment of various mental disorders.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Abraham Miranda-Páez
- Department of Physiology, National School of Biological Sciences, National Polytechnic Institute, Wilfrido Massieu esq. Manuel Stampa S/N Col. Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City, CP:07738, Mexico
| | - Kenji Valencia-Flores
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Hugo Sánchez-Castillo
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico.
- Research Unit of Psychobiology and Neurosciences (UIPyN), Psychology School, UNAM, CDMX Mexico, CP 04510, Mexico.
| |
Collapse
|
4
|
Saul’skaya NB, Marchuk OE, Puzanova MA, Trofimova NA. Activation of Serotonin System in the Medial Prefrontal Cortex by Sound Signals of Danger. NEUROCHEM J+ 2020. [DOI: 10.1134/s181971242004008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Zhao Y, Bijlsma EY, ter Heegde F, Verdouw MP, Garssen J, Newman-Tancredi A, Groenink L. Activation of somatodendritic 5-HT 1A autoreceptors reduces the acquisition and expression of cued fear in the rat fear-potentiated startle test. Psychopharmacology (Berl) 2019; 236:1171-1185. [PMID: 30539269 PMCID: PMC6591185 DOI: 10.1007/s00213-018-5124-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Fear conditioning is an important factor in the etiology of anxiety disorders. Previous studies have demonstrated a role for serotonin (5-HT)1A receptors in fear conditioning. However, the relative contribution of somatodendritic 5-HT1A autoreceptors and post-synaptic 5-HT1A heteroreceptors in fear conditioning is still unclear. OBJECTIVE To determine the role of pre- and post-synaptic 5-HT1A receptors in the acquisition and expression of cued and contextual conditioned fear. METHODS We studied the acute effects of four 5-HT1A receptor ligands in the fear-potentiated startle test. Male Wistar rats were injected with the 5-HT1A receptors biased agonists F13714 (0-0.16 mg/kg, IP), which preferentially activates somatodendritic 5-HT1A autoreceptors, or F15599 (0-0.16 mg/kg, IP), which preferentially activates cortical post-synaptic 5-HT1A heteroreceptors, with the prototypical 5-HT1A receptor agonist R(+)8-OH-DPAT (0-0.3 mg/kg, SC) or the 5-HT1A receptor antagonist WAY100,635 (0-1.0 mg/kg, SC). RESULTS F13714 (0.16 mg/kg) and R(+)-8-OH-DPAT (0.03 mg/kg) injected before training reduced cued fear acquisition. Pre-treatment with F15599 or WAY100,635 had no effect on fear learning. In the fear-potentiated startle test, F13714 (0.04-0.16 mg/kg) and R(+)-8-OH-DPAT (0.1-0.3 mg/kg) reduced the expression of cued and contextual fear, whereas F15599 had no effect. WAY100,635 (0.03-1.0 mg/kg) reduced the overall startle response. CONCLUSIONS The current findings indicate that activation of somatodendritic 5-HT1A autoreceptors reduces cued fear learning, whereas 5-HT1A receptors seem not involved in contextual fear learning. Moreover, activation of somatodendritic 5-HT1A autoreceptors may reduce cued and contextual fear expression, whereas we found no evidence for the involvement of cortical 5-HT1A heteroreceptors in the expression of conditioned fear.
Collapse
Affiliation(s)
- Yulong Zhao
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth Y. Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Freija ter Heegde
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Monika P. Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - J. Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands. .,Brain Center Rudolf Magnus (BCRM), UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Yamashita PS, Rosa DS, Lowry CA, Zangrossi H. Serotonin actions within the prelimbic cortex induce anxiolysis mediated by serotonin 1a receptors. J Psychopharmacol 2018; 33:269881118817384. [PMID: 30565963 DOI: 10.1177/0269881118817384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Serotonin plays an important role in the regulation of anxiety, acting through complex modulatory mechanisms within distinct brain structures. Serotonin can act through complex negative feedback mechanisms controlling the neuronal activity of serotonergic circuits and downstream physiologic and behavioral responses. Administration of serotonin or the serotonin 1A receptor agonist, (±)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), into the prefrontal cortex, inhibits anxiety-like responses. The prelimbic area of the prefrontal cortex regulates serotonergic neurons within the dorsal raphe nucleus and is involved in modulating anxiety-like behavioral responses. AIMS: This study aimed to investigate the serotonergic role within the prelimbic area on anxiety- and panic-related defensive behavioral responses. METHODS: We investigated the effects of serotonin within the prelimbic area on inhibitory avoidance and escape behaviors in the elevated T-maze. We also extended the investigation to serotonin 1A, 2A, and 2C receptors. RESULTS: Intra-prelimbic area injection of serotonin or 8-OH-DPAT induced anxiolytic effects without affecting escape behaviors. Previous administration of the serotonin 1A receptor antagonist, WAY-100635, into the prelimbic area counteracted the anxiolytic effects of serotonin. Neither the serotonin 2A nor the serotonin 2C receptor preferential agonists, (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) and 6-chloro-2-(1-piperazinyl) pyrazine (MK-212), respectively, affected behavioral responses in the elevated T-maze. CONCLUSION: Facilitation of serotonergic signaling within the prelimbic area of rats induced an anxiolytic effect in the elevated T-maze test, which was mediated by local serotonin 1A receptors. This inhibition of anxiety-like defensive behavioral responses may be mediated by prelimbic area projections to neural systems controlling anxiety, such as the dorsal raphe nucleus or basolateral amygdala.
Collapse
Affiliation(s)
- Paula Sm Yamashita
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- 2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Daiane S Rosa
- 3 Department of Neuroscience and Behavioral Science, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Christopher A Lowry
- 2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Helio Zangrossi
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- 3 Department of Neuroscience and Behavioral Science, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
7
|
Avesar D, Stephens EK, Gulledge AT. Serotonergic Regulation of Corticoamygdalar Neurons in the Mouse Prelimbic Cortex. Front Neural Circuits 2018; 12:63. [PMID: 30131678 PMCID: PMC6090182 DOI: 10.3389/fncir.2018.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Neuromodulatory transmitters, such as serotonin (5-HT), selectively regulate the excitability of subpopulations of cortical projection neurons to gate cortical output to specific target regions. For instance, in the mouse prelimbic cortex, 5-HT selectively excites commissurally projecting (COM) intratelencephalic neurons via activation of 5-HT2A (2A) receptors, while simultaneously inhibiting, via 5-HT1A (1A) receptors, corticofugally projecting pyramidal neurons targeting the pons. Here we characterize the physiology, morphology, and serotonergic regulation of corticoamygdalar (CAm) projection neurons in the mouse prelimbic cortex. Layer 5 CAm neurons shared a number of physiological and morphological characteristics with COM neurons, including higher input resistances, smaller HCN-channel mediated responses, and sparser dendritic arbors than corticopontine neurons. Across cortical lamina, CAm neurons also resembled COM neurons in their serotonergic modulation; focally applied 5-HT (100 μM; 1 s) generated 2A-receptor-mediated excitation, or 1A- and 2A-dependent biphasic responses, in ipsilaterally and contralaterally projecting CAm neurons. Serotonergic excitation depended on extrinsic excitatory drive, as 5-HT failed to depolarize CAm neurons from rest, but could enhance the number of action potentials generated by simulated barrages of synaptic input. Finally, using dual tracer injections, we identified double-labeled CAm/COM neurons that displayed primarily excitatory or biphasic responses to 5-HT. Overall, our findings reveal that prelimbic CAm neurons in layer 5 overlap, at least partially, with COM neurons, and that neurons projecting to either, or both targets, exhibit 2A-dependent serotonergic excitation. These results suggest that 5-HT, acting at 2A receptors, may promote cortical output to the amygdala.
Collapse
Affiliation(s)
| | | | - Allan T. Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
8
|
Turner CA, Flagel SB, Blandino P, Watson SJ, Akil H. Utilizing a unique animal model to better understand human temperament. Curr Opin Behav Sci 2017; 14:108-114. [PMID: 28966969 DOI: 10.1016/j.cobeha.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Individual differences in temperament are associated with psychopathology in humans. Moreover, the relationship between temperament and anxiety-, depression-, PTSD- and addiction-related behaviors can be modeled in animals. This review will highlight these relationships with a focus on individual differences in the response to stressors, fear conditioning and drugs of abuse using animals that differ in their response to a novel environment. We will discuss behavioral and neurobiological commonalities amongst these behaviors with a focus on the hippocampus and, in particular, growth factors as promising novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Cortney A Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI. 48109
| | - Shelly B Flagel
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI. 48109
- Department of Psychiatry, University of Michigan, Ann Arbor, MI. 48109
| | - Peter Blandino
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI. 48109
| | - Stanley J Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI. 48109
- Department of Psychiatry, University of Michigan, Ann Arbor, MI. 48109
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI. 48109
- Department of Psychiatry, University of Michigan, Ann Arbor, MI. 48109
| |
Collapse
|
9
|
Ferreira R, Brandão ML, Nobre MJ. 5-HT1A receptors of the prelimbic cortex mediate the hormonal impact on learned fear expression in high-anxious female rats. Horm Behav 2016; 84:84-96. [PMID: 27328163 DOI: 10.1016/j.yhbeh.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
Abstract
Hormones highly influence female behaviors. However, research on this topic has not usually considered the variable hormonal status. The prelimbic cortex (PrL) is commonly engaged in fear learning. Connections from and to this region are known to be critical in regulating anxiety, in which serotonin (5-HT) plays a fundamental role, particularly through changes in 5-HT1A receptors functioning. Also, hormone fluctuations can greatly influence anxiety in humans and anxiety-related behavior in rodents, and this influence involves the functioning of 5-HT brain systems. The present investigation sought to determine whether fluctuations in ovarian hormones relative to the estrous cycle would influence the expression of learned fear in female rats previously selected as low- (LA) or high-anxious (HA). Furthermore, we investigate the role of the 5-HT system of the PrL, particularly the 5-HT1A receptors, as a possible modulator of estrous cycle influence on the expression of learned fear through intra-PrL microinjections of 5-HT itself or the full 5-HT1A agonist 8-OH-DPAT (8-hydroxy-2-(di-n-propylamine)tetralin). Behavioral changes were assessed using the fear-potentiated startle (FPS) procedure. The results showed that fear intensity is associated with hormonal decay, being more accentuated during the estrus phase. This increase in fear levels was found to be negatively correlated with the expression of potentiated startle. In rats prone to anxiety and tested during the proestrus and estrus phases, 5-HT mechanisms of the PrL seem to play a regulatory role in the expression of learned fear. These results were not replicated in the LA rats. Similar but less intense results were found regarding the early and late diestrus. Our data indicate that future studies on this subject need to take into account the dissociation between low- and high-responsive females to understand how hormones affect emotional behavior.
Collapse
Affiliation(s)
- Renata Ferreira
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Marcus Lira Brandão
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Manoel Jorge Nobre
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil; Departamento de Psicologia, Uni-FACEF, 14401-135 Franca, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Stiedl O, Pappa E, Konradsson-Geuken Å, Ögren SO. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol 2015; 6:162. [PMID: 26300776 PMCID: PMC4528280 DOI: 10.3389/fphar.2015.00162] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.
Collapse
Affiliation(s)
- Oliver Stiedl
- Department of Functional Genomics, Behavioral Neuroscience Group, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam - VU University Amsterdam Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Behavioral Neuroscience Group, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam -VU University Amsterdam Amsterdam, Netherlands
| | - Elpiniki Pappa
- Department of Functional Genomics, Behavioral Neuroscience Group, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam - VU University Amsterdam Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Behavioral Neuroscience Group, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam -VU University Amsterdam Amsterdam, Netherlands
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
11
|
Xue YX, Zhu ZZ, Han HB, Liu JF, Meng SQ, Chen C, Yang JL, Wu P, Lu L. Overexpression of Protein Kinase Mζ in the Prelimbic Cortex Enhances the Formation of Long-Term Fear Memory. Neuropsychopharmacology 2015; 40:2146-56. [PMID: 25722116 PMCID: PMC4613603 DOI: 10.1038/npp.2015.56] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/29/2015] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Abstract
Neuroplasticity in the prefrontal cortex (PFC) after fear conditioning has been suggested to regulate the formation and expression of fear memory. Protein kinase Mζ (PKMζ), an isoform of protein kinase C with persistent activity, is involved in the formation and maintenance of memory. However, less is known about the role of PKMζ in the PFC in the formation of fear memory. We investigated whether the overexpression of PKMζ enhances the formation of auditory fear memory in rats. We found that microinfusion of lentiviral vector-expressing PKMζ into the prelimbic cortex (PrL) selectively enhanced the expression of PKMζ without influencing the expression of other isoforms of PKC. The overexpression of PKMζ in the PrL enhanced the formation of long-term fear memory without affecting short-term fear memory, whereas the overexpression of PKMζ in the infralimbic cortex had no effect on either short-term or long-term fear memory. The overexpression of PKMζ in the PrL had no effect on anxiety-like behavior or locomotor activity. We also found that PKMζ overexpression potentiated the fear conditioning-induced increase in the membrane levels of glutamate subunit 2 of AMPA receptors in the PrL. These results demonstrate that the overexpression of PKMζ in the PrL but not infralimbic cortex selectively enhanced the formation of long-term fear memory, and PKMζ in the PrL may be involved in the formation of fear memory.
Collapse
Affiliation(s)
- Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zhen-Zhen Zhu
- Tianjin Medical University, Tianjin, China
- Center of Tianjin Mental Health Center, Tianjin, China
| | - Hai-Bin Han
- Tianjin Medical University, Tianjin, China
- Center of Tianjin Mental Health Center, Tianjin, China
| | - Jian-Feng Liu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Shi-Qiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Chen Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jian-Li Yang
- Tianjin Medical University, Tianjin, China
- Center of Tianjin Mental Health Center, Tianjin, China
| | - Ping Wu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
12
|
Liu Y, Kelly MA, Sexton TJ, Neumaier JF. 5-HT1B autoreceptors differentially modulate the expression of conditioned fear in a circuit-specific manner. Neuroscience 2015; 298:436-47. [PMID: 25907441 DOI: 10.1016/j.neuroscience.2015.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
Located in the nerve terminals of serotonergic neurons, 5-HT1B autoreceptors are poised to modulate synaptic 5-HT levels with precise temporal and spatial control, and play an important role in various emotional behaviors. This study characterized two novel, complementary viral vector strategies to investigate the contribution of 5-HT1B autoreceptors to fear expression, displayed as freezing, during contextual fear conditioning. Increased expression of 5-HT1B autoreceptors throughout the brain significantly decreased fear expression in both wild-type (WT) and 5-HT1B knockout (1BKO) mice when receptor levels were increased with a cell-type-specific herpes simplex virus (HSV) vector injected into the dorsal raphe nucleus (DRN). Additional studies used an intersectional viral vector strategy, in which an adeno-associated virus containing a double-floxed inverted sequence for the 5-HT1B receptor (AAV-DIO-1B) was combined with the retrogradely transported canine adenovirus-2 expressing Cre (CAV-Cre) in order to increase 5-HT1B autoreceptor expression only in neurons projecting from the DRN to the amygdala. Surprisingly, selective expression of 5-HT1B autoreceptors in just this circuit led to an increase in fear expression in WT, but not 1BKO, mice. These results suggest that activation of 5-HT1B autoreceptors throughout the brain may have an overall effect of attenuating fear expression, but activation of subsets of 5-HT1B autoreceptors in particular brain regions, reflecting distinct projections of serotonergic neurons from the DRN, may have disparate contributions to the ultimate response.
Collapse
Affiliation(s)
- Y Liu
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - M A Kelly
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - T J Sexton
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - J F Neumaier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Serotonin in fear conditioning processes. Behav Brain Res 2015; 277:68-77. [DOI: 10.1016/j.bbr.2014.07.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
|
14
|
Galatzer-Levy IR, Moscarello J, Blessing EM, Klein J, Cain CK, LeDoux JE. Heterogeneity in signaled active avoidance learning: substantive and methodological relevance of diversity in instrumental defensive responses to threat cues. Front Syst Neurosci 2014; 8:179. [PMID: 25309354 PMCID: PMC4173321 DOI: 10.3389/fnsys.2014.00179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
Individuals exposed to traumatic stressors follow divergent patterns including resilience and chronic stress. However, researchers utilizing animal models that examine learned or instrumental threat responses thought to have translational relevance for Posttraumatic Stress Disorder (PTSD) and resilience typically use central tendency statistics that assume population homogeneity. This approach potentially overlooks fundamental differences that can explain human diversity in response to traumatic stressors. The current study tests this assumption by identifying and replicating common heterogeneous patterns of response to signaled active avoidance (AA) training. In this paradigm, rats are trained to prevent an aversive outcome (shock) by performing a learned instrumental behavior (shuttling between chambers) during the presentation of a conditioned threat cue (tone). We test the hypothesis that heterogeneous trajectories of threat avoidance provide more accurate model fit compared to a single mean trajectory in two separate studies. Study 1 conducted 3 days of signaled AA training (n = 81 animals) and study 2 conducted 5 days of training (n = 186 animals). We found that four trajectories in both samples provided the strongest model fit. Identified populations included animals that acquired and retained avoidance behavior on the first day (Rapid Avoiders: 22 and 25%); those who never successfully acquired avoidance (Non-Avoiders; 20 and 16%); a modal class who acquired avoidance over 3 days (Modal Avoiders; 37 and 50%); and a population who demonstrated a slow pattern of avoidance, failed to fully acquire avoidance in study 1 and did acquire avoidance on days 4 and 5 in study 2 (Slow Avoiders; 22.0 and 9%). With the exception of the Slow Avoiders in Study 1, populations that acquired demonstrated rapid step-like increases leading to asymptotic levels of avoidance. These findings indicate that avoidance responses are heterogeneous in a way that may be informative for understanding both resilience and PTSD as well as the nature of instrumental behavior acquisition. Characterizing heterogeneous populations based on their response to threat cues would increase the accuracy and translatability of such models and potentially lead to new discoveries that explain diversity in instrumental defensive responses.
Collapse
Affiliation(s)
| | - Justin Moscarello
- Department of Arts and Sciences, Center for Neural Science, New York University New York, NY, USA
| | - Esther M Blessing
- Department of Psychiatry, New York University School of Medicine New York, NY, USA
| | - JoAnna Klein
- Department of Arts and Sciences, Center for Neural Science, New York University New York, NY, USA
| | - Christopher K Cain
- Department of Psychiatry, New York University School of Medicine New York, NY, USA ; Department of Arts and Sciences, Center for Neural Science, New York University New York, NY, USA ; Nathan Klein Institute Orangeburg, SC, USA
| | - Joseph E LeDoux
- Department of Arts and Sciences, Center for Neural Science, New York University New York, NY, USA ; Nathan Klein Institute Orangeburg, SC, USA
| |
Collapse
|