1
|
Cheron G, Simar C, Cebolla AM. The oscillatory nature of the motor and perceptive kinematics invariants: Comment on "Motor invariants in action execution and perception" by Francesco Torricelli et al. Phys Life Rev 2023; 46:80-84. [PMID: 37327669 DOI: 10.1016/j.plrev.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Electrophysiology, Université de Mons-Hainaut, Mons, Belgium.
| | - Cédric Simar
- Machine Learning Group, Computer Science Department, Faculty of Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Cheron G, Ris L, Cebolla AM. Nucleus incertus provides eye velocity and position signals to the vestibulo-ocular cerebellum: a new perspective of the brainstem-cerebellum-hippocampus network. Front Syst Neurosci 2023; 17:1180627. [PMID: 37304152 PMCID: PMC10248067 DOI: 10.3389/fnsys.2023.1180627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
The network formed by the brainstem, cerebellum, and hippocampus occupies a central position to achieve navigation. Multiple physiological functions are implicated in this complex behavior. Among these, control of the eye-head and body movements is crucial. The gaze-holding system realized by the brainstem oculomotor neural integrator (ONI) situated in the nucleus prepositus hypoglossi and fine-tuned by the contribution of different regions of the cerebellum assumes the stability of the image on the fovea. This function helps in the recognition of environmental targets and defining appropriate navigational pathways further elaborated by the entorhinal cortex and hippocampus. In this context, an enigmatic brainstem area situated in front of the ONI, the nucleus incertus (NIC), is implicated in the dynamics of brainstem-hippocampus theta oscillation and contains a group of neurons projecting to the cerebellum. These neurons are characterized by burst tonic behavior similar to the burst tonic neurons in the ONI that convey eye velocity-position signals to the cerebellar flocculus. Faced with these forgotten cerebellar projections of the NIC, the present perspective discusses the possibility that, in addition to the already described pathways linking the cerebellum and the hippocampus via the medial septum, these NIC signals related to the vestibulo-ocular reflex and gaze holding could participate in the hippocampal control of navigation.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Neuroscience, Université de Mons, Mons, Belgium
- UMONS Research Institute for Health and Technology, Université de Mons, Mons, Belgium
| | - Laurence Ris
- Laboratory of Neuroscience, Université de Mons, Mons, Belgium
- UMONS Research Institute for Health and Technology, Université de Mons, Mons, Belgium
| | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022; 110:2545-2570. [PMID: 35643077 PMCID: PMC9391310 DOI: 10.1016/j.neuron.2022.04.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Animal behavior is shaped by a variety of "internal states"-partially hidden variables that profoundly shape perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains unclear how internal states and their properties are generated by nervous systems. Here, we review recent progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural population recordings. We synthesize research implicating defined subsets of state-inducing cell types, widespread changes in neural activity, and neuromodulation in the formation and updating of internal states. In addition to highlighting the significance of these findings, our review advocates for new approaches to clarify the underpinnings of internal brain states across the animal kingdom.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | - Matthew Lovett-Barron
- Division of Biological Sciences-Neurobiology Section, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Pinto L, Tank DW, Brody CD. Multiple timescales of sensory-evidence accumulation across the dorsal cortex. eLife 2022; 11:e70263. [PMID: 35708483 PMCID: PMC9203055 DOI: 10.7554/elife.70263] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical areas seem to form a hierarchy of intrinsic timescales, but the relevance of this organization for cognitive behavior remains unknown. In particular, decisions requiring the gradual accrual of sensory evidence over time recruit widespread areas across this hierarchy. Here, we tested the hypothesis that this recruitment is related to the intrinsic integration timescales of these widespread areas. We trained mice to accumulate evidence over seconds while navigating in virtual reality and optogenetically silenced the activity of many cortical areas during different brief trial epochs. We found that the inactivation of all tested areas affected the evidence-accumulation computation. Specifically, we observed distinct changes in the weighting of sensory evidence occurring during and before silencing, such that frontal inactivations led to stronger deficits on long timescales than posterior cortical ones. Inactivation of a subset of frontal areas also led to moderate effects on behavioral processes beyond evidence accumulation. Moreover, large-scale cortical Ca2+ activity during task performance displayed different temporal integration windows. Our findings suggest that the intrinsic timescale hierarchy of distributed cortical areas is an important component of evidence-accumulation mechanisms.
Collapse
Affiliation(s)
- Lucas Pinto
- Department of Neuroscience, Northwestern UniversityChicagoUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - David W Tank
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
5
|
Ramirez AD, Aksay ERF. Ramp-to-threshold dynamics in a hindbrain population controls the timing of spontaneous saccades. Nat Commun 2021; 12:4145. [PMID: 34230474 PMCID: PMC8260785 DOI: 10.1038/s41467-021-24336-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Organisms have the capacity to make decisions based solely on internal drives. However, it is unclear how neural circuits form decisions in the absence of sensory stimuli. Here we provide a comprehensive map of the activity patterns underlying the generation of saccades made in the absence of visual stimuli. We perform calcium imaging in the larval zebrafish to discover a range of responses surrounding spontaneous saccades, from cells that display tonic discharge only during fixations to neurons whose activity rises in advance of saccades by multiple seconds. When we lesion cells in these populations we find that ablation of neurons with pre-saccadic rise delays saccade initiation. We analyze spontaneous saccade initiation using a ramp-to-threshold model and are able to predict the times of upcoming saccades using pre-saccadic activity. These findings suggest that ramping of neuronal activity to a bound is a critical component of self-initiated saccadic movements.
Collapse
Affiliation(s)
- Alexandro D Ramirez
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Emre R F Aksay
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Passive Motor Learning: Oculomotor Adaptation in the Absence of Behavioral Errors. eNeuro 2021; 8:ENEURO.0232-20.2020. [PMID: 33593731 PMCID: PMC8009667 DOI: 10.1523/eneuro.0232-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Motor adaptation is commonly thought to be a trial-and-error process in which the accuracy of movement improves with repetition of behavior. We challenged this view by testing whether erroneous movements are necessary for motor adaptation. In the eye movement system, the association between movements and errors can be disentangled, since errors in the predicted stimulus trajectory can be perceived even without movements. We modified a smooth pursuit eye movement adaptation paradigm in which monkeys learn to make an eye movement that predicts an upcoming change in target direction. We trained the monkeys to fixate on a target while covertly, an additional target initially moved in one direction and then changed direction after 250 ms. The monkeys showed a learned response to infrequent probe trials in which they were instructed to follow the moving target. Additional experiments confirmed that probing learning or residual eye movements during fixation did not drive learning. These results show that motor adaptation can be elicited in the absence of movement and provide an animal model for studying the implementation of passive motor learning. Current models assume that the interaction between movement and error signals underlies adaptive motor learning. Our results point to other mechanisms that may drive learning in the absence of movement.
Collapse
|
7
|
Reward-Based Improvements in Motor Control Are Driven by Multiple Error-Reducing Mechanisms. J Neurosci 2020; 40:3604-3620. [PMID: 32234779 DOI: 10.1523/jneurosci.2646-19.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/21/2022] Open
Abstract
Reward has a remarkable ability to invigorate motor behavior, enabling individuals to select and execute actions with greater precision and speed. However, if reward is to be exploited in applied settings, such as rehabilitation, a thorough understanding of its underlying mechanisms is required. In a series of experiments, we first demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Specifically, reward promoted the selection of the correct action in the presence of distractors, while also improving execution through increased speed and maintenance of accuracy. These results led to a shift in the speed-accuracy functions for both selection and execution. In addition, punishment had a similar impact on action selection and execution, although it enhanced execution performance across all trials within a block, that is, its impact was noncontingent to trial value. Although the reward-driven enhancement of movement execution has been proposed to occur through enhanced feedback control, an untested possibility is that it is also driven by increased arm stiffness, an energy-consuming process that enhances limb stability. Computational analysis revealed that reward led to both an increase in feedback correction in the middle of the movement and a reduction in motor noise near the target. In line with our hypothesis, we provide novel evidence that this noise reduction is driven by a reward-dependent increase in arm stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate motor performance without compromising accuracy.SIGNIFICANCE STATEMENT While reward is well-known for enhancing motor performance, how the nervous system generates these improvements is unclear. Despite recent work indicating that reward leads to enhanced feedback control, an untested possibility is that it also increases arm stiffness. We demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Furthermore, we show that punishment has a similar positive impact on performance. Importantly, by combining computational and biomechanical approaches, we show that reward leads to both improved feedback correction and an increase in stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate performance without compromising accuracy. This work suggests that stiffness control plays a vital, and underappreciated, role in the reward-based imporvemenets in motor control.
Collapse
|
8
|
Different Activation Mechanisms of Excitatory Networks in the Rat Oculomotor Integrators for Vertical and Horizontal Gaze Holding. eNeuro 2020; 7:ENEURO.0364-19.2019. [PMID: 31852758 PMCID: PMC6975485 DOI: 10.1523/eneuro.0364-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
Gaze holding in the horizontal and vertical directions is separately controlled via the oculomotor neural integrators, the prepositus hypoglossi nucleus (PHN) and the interstitial nucleus of Cajal (INC), respectively. Our previous in vitro studies demonstrated that transient, high-frequency local stimulation of the PHN and the INC increased the frequency of spontaneous EPSCs that lasted for several seconds. The sustained EPSC response of PHN neurons was attributed to the activation of local excitatory networks primarily mediated via Ca2+-permeable AMPA (CP-AMPA) receptors and Ca2+-activated nonselective cation (CAN) channels. However, the contribution of CP-AMPA receptors to the activation of INC excitatory networks appeared to be small. In this study, we clarified the mechanisms of excitatory network activation in the PHN and INC using whole-cell recordings in rat brainstem slices. Although physiological and histological analyses showed that neurons that expressed CP-AMPA receptors existed not only in the PHN but also in the INC, the effect of a CP-AMPA receptor antagonist on the sustained EPSC response was significantly weaker in INC neurons than in PHN neurons. Meanwhile, the effect of an NMDA receptor antagonist on the sustained EPSC response was significantly stronger in INC neurons than in PHN neurons. Furthermore, the current and the charge transfer mediated via NMDA receptors were significantly larger in INC neurons than in PHN neurons. These results strongly suggest that these excitatory networks are activated via different synaptic mechanisms: a CP-AMPA receptor and CAN channel-dependent mechanism and an NMDA receptor-dependent mechanism in horizontal and vertical integrators, respectively.
Collapse
|
9
|
Brysch C, Leyden C, Arrenberg AB. Functional architecture underlying binocular coordination of eye position and velocity in the larval zebrafish hindbrain. BMC Biol 2019; 17:110. [PMID: 31884959 PMCID: PMC6936144 DOI: 10.1186/s12915-019-0720-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The oculomotor integrator (OI) in the vertebrate hindbrain transforms eye velocity input into persistent position coding output, which plays a crucial role in retinal image stability. For a mechanistic understanding of the integrator function and eye position control, knowledge about the tuning of the OI and other oculomotor nuclei is needed. Zebrafish are increasingly used to study integrator function and sensorimotor circuits, yet the precise neuronal tuning to motor variables remains uncharacterized. RESULTS Here, we recorded cellular calcium signals while evoking monocular and binocular optokinetic eye movements at different slow-phase eye velocities. Our analysis reveals the anatomical distributions of motoneurons and internuclear neurons in the nucleus abducens as well as those of oculomotor neurons in caudally adjacent hindbrain volumes. Each neuron is tuned to eye position and/or velocity to variable extents and is only activated after surpassing particular eye position and velocity thresholds. While the abducens (rhombomeres 5/6) mainly codes for eye position, in rhombomeres 7/8, a velocity-to-position coding gradient exists along the rostro-caudal axis, which likely corresponds to the oculomotor structures storing velocity and position, and is in agreement with a feedforward mechanism of persistent activity generation. Position encoding neurons are recruited at eye position thresholds distributed across the behaviourally relevant dynamic range, while velocity-encoding neurons have more centred firing thresholds for velocity. In the abducens, neurons coding exclusively for one eye intermingle with neurons coding for both eyes. Many of these binocular neurons are preferentially active during conjugate eye movements and less active during monocular eye movements. This differential recruitment during monocular versus conjugate tasks represents a functional diversification in the final common motor pathway. CONCLUSIONS We localized and functionally characterized the repertoire of oculomotor neurons in the zebrafish hindbrain. Our findings provide evidence for a mixed but task-specific binocular code and suggest that generation of persistent activity is organized along the rostro-caudal axis in the hindbrain.
Collapse
Affiliation(s)
- Christian Brysch
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
10
|
Evidence accumulation during a sensorimotor decision task revealed by whole-brain imaging. Nat Neurosci 2019; 23:85-93. [PMID: 31792463 DOI: 10.1038/s41593-019-0535-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022]
Abstract
Although animals can accumulate sensory evidence over considerable time scales to appropriately select behavior, little is known about how the vertebrate brain as a whole accomplishes this. In this study, we developed a new sensorimotor decision-making assay in larval zebrafish based on whole-field visual motion. Fish responded by swimming in the direction of perceived motion, such that the latency to initiate swimming and the fraction of correct turns were modulated by motion strength. Using whole-brain functional imaging, we identified neural activity relevant to different stages of the decision-making process, including the momentary evaluation and accumulation of sensory evidence. This activity is distributed in functional clusters across different brain regions and is characterized by a wide range of time constants. In addition, we found that the caudal interpeduncular nucleus (IPN), a circular structure located ventrally on the midline of the brain, reliably encodes the left and right turning rates.
Collapse
|
11
|
Abstract
Visual stimuli can evoke complex behavioral responses, but the underlying streams of neural activity in mammalian brains are difficult to follow because of their size. Here, I review the visual system of zebrafish larvae, highlighting where recent experimental evidence has localized the functional steps of visuomotor transformations to specific brain areas. The retina of a larva encodes behaviorally relevant visual information in neural activity distributed across feature-selective ganglion cells such that signals representing distinct stimulus properties arrive in different areas or layers of the brain. Motor centers in the hindbrain encode motor variables that are precisely tuned to behavioral needs within a given stimulus setting. Owing to rapid technological progress, larval zebrafish provide unique opportunities for obtaining a comprehensive understanding of the intermediate processing steps occurring between visual and motor centers, revealing how visuomotor transformations are implemented in a vertebrate brain.
Collapse
Affiliation(s)
- Johann H. Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Larrivee D, Farisco M. Realigning the Neural Paradigm for Death. JOURNAL OF BIOETHICAL INQUIRY 2019; 16:259-277. [PMID: 31161308 DOI: 10.1007/s11673-019-09915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Whole brain failure constitutes the diagnostic criterion for death determination in most clinical settings across the globe. Yet the conceptual foundation for its adoption was slow to emerge, has evoked extensive scientific debate since inception, underwent policy revision, and remains contentious in praxis even today. Complications result from the need to relate a unitary construal of the death event with an adequate account of organismal integration and that of the human organism in particular. Advances in the neuroscience of higher human faculties, such as the self, personal identity, and consciousness, and dynamical philosophy of science accounts, however, are yielding a portrait of higher order global integration shared between body and brain. Such conceptual models of integration challenge a praxis relying exclusively on a neurological criterion for death.
Collapse
Affiliation(s)
- Denis Larrivee
- Loyola University Chicago, 1320 West Sheridan Rd, Chicago, IL, USA.
- Mind and Brain Institute, University of Navarra, Pamplona, Spain.
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
- Science and Society Unit, Biology and Molecular Genetics Institute, Ariano Irpino, AV, Italy
| |
Collapse
|
13
|
Helmbrecht TO, dal Maschio M, Donovan JC, Koutsouli S, Baier H. Topography of a Visuomotor Transformation. Neuron 2018; 100:1429-1445.e4. [DOI: 10.1016/j.neuron.2018.10.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
|
14
|
Botschko Y, Yarkoni M, Joshua M. Smooth Pursuit Eye Movement of Monkeys Naive to Laboratory Setups With Pictures and Artificial Stimuli. Front Syst Neurosci 2018; 12:15. [PMID: 29719503 PMCID: PMC5913553 DOI: 10.3389/fnsys.2018.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/28/2018] [Indexed: 12/03/2022] Open
Abstract
When animal behavior is studied in a laboratory environment, the animals are often extensively trained to shape their behavior. A crucial question is whether the behavior observed after training is part of the natural repertoire of the animal or represents an outlier in the animal’s natural capabilities. This can be investigated by assessing the extent to which the target behavior is manifested during the initial stages of training and the time course of learning. We explored this issue by examining smooth pursuit eye movements in monkeys naïve to smooth pursuit tasks. We recorded the eye movements of monkeys from the 1st days of training on a step-ramp paradigm. We used bright spots, monkey pictures and scrambled versions of the pictures as moving targets. We found that during the initial stages of training, the pursuit initiation was largest for the monkey pictures and in some direction conditions close to target velocity. When the pursuit initiation was large, the monkeys mostly continued to track the target with smooth pursuit movements while correcting for displacement errors with small saccades. Two weeks of training increased the pursuit eye velocity in all stimulus conditions, whereas further extensive training enhanced pursuit slightly more. The training decreased the coefficient of variation of the eye velocity. Anisotropies that grade pursuit across directions were observed from the 1st day of training and mostly persisted across training. Thus, smooth pursuit in the step-ramp paradigm appears to be part of the natural repertoire of monkeys’ behavior and training adjusts monkeys’ natural predisposed behavior.
Collapse
Affiliation(s)
- Yehudit Botschko
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Yarkoni
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mati Joshua
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Sensorimotor computation underlying phototaxis in zebrafish. Nat Commun 2017; 8:651. [PMID: 28935857 PMCID: PMC5608914 DOI: 10.1038/s41467-017-00310-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 06/20/2017] [Indexed: 11/09/2022] Open
Abstract
Animals continuously gather sensory cues to move towards favourable environments. Efficient goal-directed navigation requires sensory perception and motor commands to be intertwined in a feedback loop, yet the neural substrate underlying this sensorimotor task in the vertebrate brain remains elusive. Here, we combine virtual-reality behavioural assays, volumetric calcium imaging, optogenetic stimulation and circuit modelling to reveal the neural mechanisms through which a zebrafish performs phototaxis, i.e. actively orients towards a light source. Key to this process is a self-oscillating hindbrain population (HBO) that acts as a pacemaker for ocular saccades and controls the orientation of successive swim-bouts. It further integrates visual stimuli in a state-dependent manner, i.e. its response to visual inputs varies with the motor context, a mechanism that manifests itself in the phase-locked entrainment of the HBO by periodic stimuli. A rate model is developed that reproduces our observations and demonstrates how this sensorimotor processing eventually biases the animal trajectory towards bright regions. Active locomotion requires closed-loop sensorimotor co ordination between perception and action. Here the authors show using behavioural, imaging and modelling approaches that gaze orientation during phototaxis behaviour in larval zebrafish is related to oscillatory dynamics of a neuronal population in the hindbrain.
Collapse
|
16
|
Zylberberg J, Strowbridge BW. Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory. Annu Rev Neurosci 2017; 40:603-627. [PMID: 28772102 PMCID: PMC5995341 DOI: 10.1146/annurev-neuro-070815-014006] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.
Collapse
Affiliation(s)
- Joel Zylberberg
- Department of Physiology and Biophysics, Center for Neuroscience, and Computational Bioscience Program, University of Colorado School of Medicine, Aurora, Colorado 80045
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Ben W Strowbridge
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106;
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
17
|
Vishwanathan A, Daie K, Ramirez AD, Lichtman JW, Aksay ERF, Seung HS. Electron Microscopic Reconstruction of Functionally Identified Cells in a Neural Integrator. Curr Biol 2017; 27:2137-2147.e3. [PMID: 28712570 PMCID: PMC5569574 DOI: 10.1016/j.cub.2017.06.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 06/09/2017] [Indexed: 11/27/2022]
Abstract
Neural integrators are involved in a variety of sensorimotor and cognitive behaviors. The oculomotor system contains a simple example, a hindbrain neural circuit that takes velocity signals as inputs and temporally integrates them to control eye position. Here we investigated the structural underpinnings of temporal integration in the larval zebrafish by first identifying integrator neurons using two-photon calcium imaging and then reconstructing the same neurons through serial electron microscopic analysis. Integrator neurons were identified as those neurons with activities highly correlated with eye position during spontaneous eye movements. Three morphological classes of neurons were observed: ipsilaterally projecting neurons located medially, contralaterally projecting neurons located more laterally, and a population at the extreme lateral edge of the hindbrain for which we were not able to identify axons. Based on their somatic locations, we inferred that neurons with only ipsilaterally projecting axons are glutamatergic, whereas neurons with only contralaterally projecting axons are largely GABAergic. Dendritic and synaptic organization of the ipsilaterally projecting neurons suggests a broad sampling from inputs on the ipsilateral side. We also observed the first conclusive evidence of synapses between integrator neurons, which have long been hypothesized by recurrent network models of integration via positive feedback.
Collapse
Affiliation(s)
| | - Kayvon Daie
- Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
| | - Alexandro D Ramirez
- Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Emre R F Aksay
- Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA
| | - H Sebastian Seung
- Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Chen CC, Bockisch CJ, Straumann D, Huang MYY. Saccadic and Postsaccadic Disconjugacy in Zebrafish Larvae Suggests Independent Eye Movement Control. Front Syst Neurosci 2016; 10:80. [PMID: 27761109 PMCID: PMC5050213 DOI: 10.3389/fnsys.2016.00080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/20/2016] [Indexed: 12/02/2022] Open
Abstract
Spontaneous eye movements of zebrafish larvae in the dark consist of centrifugal saccades that move the eyes from a central to an eccentric position and postsaccadic centripetal drifts. In a previous study, we showed that the fitted single-exponential time constants of the postsaccadic drifts are longer in the temporal-to-nasal (T->N) direction than in the nasal-to-temporal (N->T) direction. In the present study, we further report that saccadic peak velocities are higher and saccadic amplitudes are larger in the N->T direction than in the T->N direction. We investigated the underlying mechanism of this ocular disconjugacy in the dark with a top-down approach. A mathematic ocular motor model, including an eye plant, a set of burst neurons and a velocity-to-position neural integrator (VPNI), was built to simulate the typical larval eye movements in the dark. The modeling parameters, such as VPNI time constants, neural impulse signals generated by the burst neurons and time constants of the eye plant, were iteratively adjusted to fit the average saccadic eye movement. These simulations suggest that four pools of burst neurons and four pools of VPNIs are needed to explain the disconjugate eye movements in our results. A premotor mechanism controls the synchronous timing of binocular saccades, but the pools of burst and integrator neurons in zebrafish larvae seem to be different (and maybe separate) for both eyes and horizontal directions, which leads to the observed ocular disconjugacies during saccades and postsaccadic drifts in the dark.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Department of Neurology, University Hospital Zurich, University of ZurichZurich, Switzerland; PhD Program in Integrative Molecular Medicine, Life Science Graduate School, University of ZurichZurich, Switzerland
| | - Christopher J Bockisch
- Department of Neurology, University Hospital Zurich, University of ZurichZurich, Switzerland; Department of Ophthalmology, University Hospital Zurich, University of ZurichZurich, Switzerland; Department of Otorhinolaryngology, University Hospital Zurich, University of ZurichZurich, Switzerland
| | - Dominik Straumann
- Department of Neurology, University Hospital Zurich, University of ZurichZurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of ZurichZurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurich, Switzerland
| | - Melody Ying-Yu Huang
- Department of Neurology, University Hospital Zurich, University of ZurichZurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of ZurichZurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurich, Switzerland
| |
Collapse
|
19
|
|
20
|
Abstract
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections.
Collapse
Affiliation(s)
- John Lisman
- Biology Department and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
21
|
Abstract
Encoding horizontal eye position in the oculomotor system occurs through temporal integration of eye velocity inputs to produce tonic outputs. The nucleus prepositus is commonly believed to be the "neural integrator" that accomplishes this function through the activity of its ensemble of predominantly burst-tonic neurons. Single-unit characterizations and labeling studies of these neurons have suggested that their collective output is achieved through local feedback loops produced by direct connections between them. If this is the case, then the ensemble of burst-tonic neurons should exhibit correlated activity. To obtain electrophysiological evidence of local interactions between neurons, we simultaneously recorded pairs (n = 29) of burst-tonic neurons in the nucleus prepositus of rhesus macaque monkeys using eight-channel linear microelectrode arrays. We computed the magnitude of synchrony between their spike trains as a function of eye position during ocular fixations and as a function of distance between neurons. Importantly, we found that neurons exhibit unexpected levels of positive synchrony, which is maximal during contralateral fixations and weakest when neurons are located far apart from one another (>300 μm). Together, our results support a role for shared inputs to ipsilateral pairs of burst-tonic neurons in the encoding of eye position in the primate nucleus prepositus.
Collapse
|
22
|
Hopkins AM, DeSimone E, Chwalek K, Kaplan DL. 3D in vitro modeling of the central nervous system. Prog Neurobiol 2015; 125:1-25. [PMID: 25461688 PMCID: PMC4324093 DOI: 10.1016/j.pneurobio.2014.11.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/12/2014] [Accepted: 11/15/2014] [Indexed: 12/15/2022]
Abstract
There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here.
Collapse
Affiliation(s)
- Amy M Hopkins
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - Elise DeSimone
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - Karolina Chwalek
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
23
|
Lairmore MD, Ilkiw J. Animals Used in Research and Education, 1966-2016: Evolving Attitudes, Policies, and Relationships. JOURNAL OF VETERINARY MEDICAL EDUCATION 2015; 42:425-440. [PMID: 26673210 DOI: 10.3138/jvme.0615-087r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Since the inception of the Association of American Veterinary Medical Colleges (AAVMC), the use of animals in research and education has been a central element of the programs of member institutions. As veterinary education and research programs have evolved over the past 50 years, so too have societal views and regulatory policies. AAVMC member institutions have continually responded to these events by exchanging best practices in training their students in the framework of comparative medicine and the needs of society. Animals provide students and faculty with the tools to learn the fundamental knowledge and skills of veterinary medicine and scientific discovery. The study of animal models has contributed extensively to medicine, veterinary medicine, and basic sciences as these disciplines seek to understand life processes. Changing societal views over the past 50 years have provided active examination and continued refinement of the use of animals in veterinary medical education and research. The future use of animals to educate and train veterinarians will likely continue to evolve as technological advances are applied to experimental design and educational systems. Natural animal models of both human and animal health will undoubtedly continue to serve a significant role in the education of veterinarians and in the development of new treatments of animal and human disease. As it looks to the future, the AAVMC as an organization will need to continue to support and promote best practices in the humane care and appropriate use of animals in both education and research.
Collapse
MESH Headings
- Animal Experimentation/history
- Animal Experimentation/legislation & jurisprudence
- Animal Use Alternatives/history
- Animal Use Alternatives/legislation & jurisprudence
- Animal Use Alternatives/trends
- Animal Welfare/history
- Animal Welfare/legislation & jurisprudence
- Animals
- Animals, Laboratory
- Education, Veterinary/history
- Education, Veterinary/methods
- Education, Veterinary/trends
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- Human-Animal Bond
- Humans
- Models, Animal
- United States
Collapse
|