1
|
Roth AM, Buggeln JH, Hoh JE, Wood JM, Sullivan SR, Ngo TT, Calalo JA, Lokesh R, Morton SM, Grill S, Jeka JJ, Carter MJ, Cashaback JGA. Roles and interplay of reinforcement-based and error-based processes during reaching and gait in neurotypical adults and individuals with Parkinson's disease. PLoS Comput Biol 2024; 20:e1012474. [PMID: 39401183 PMCID: PMC11472932 DOI: 10.1371/journal.pcbi.1012474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/11/2024] [Indexed: 10/17/2024] Open
Abstract
From a game of darts to neurorehabilitation, the ability to explore and fine tune our movements is critical for success. Past work has shown that exploratory motor behaviour in response to reinforcement (reward) feedback is closely linked with the basal ganglia, while movement corrections in response to error feedback is commonly attributed to the cerebellum. While our past work has shown these processes are dissociable during adaptation, it is unknown how they uniquely impact exploratory behaviour. Moreover, converging neuroanatomical evidence shows direct and indirect connections between the basal ganglia and cerebellum, suggesting that there is an interaction between reinforcement-based and error-based neural processes. Here we examine the unique roles and interaction between reinforcement-based and error-based processes on sensorimotor exploration in a neurotypical population. We also recruited individuals with Parkinson's disease to gain mechanistic insight into the role of the basal ganglia and associated reinforcement pathways in sensorimotor exploration. Across three reaching experiments, participants were given either reinforcement feedback, error feedback, or simultaneously both reinforcement & error feedback during a sensorimotor task that encouraged exploration. Our reaching results, a re-analysis of a previous gait experiment, and our model suggests that in isolation, reinforcement-based and error-based processes respectively boost and suppress exploration. When acting in concert, we found that reinforcement-based and error-based processes interact by mutually opposing one another. Finally, we found that those with Parkinson's disease had decreased exploration when receiving reinforcement feedback, supporting the notion that compromised reinforcement-based processes reduces the ability to explore new motor actions. Understanding the unique and interacting roles of reinforcement-based and error-based processes may help to inform neurorehabilitation paradigms where it is important to discover new and successful motor actions.
Collapse
Affiliation(s)
- Adam M. Roth
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - John H. Buggeln
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Joanna E. Hoh
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - Jonathan M. Wood
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| | - Seth R. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Truc T. Ngo
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Jan A. Calalo
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Rakshith Lokesh
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Susanne M. Morton
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| | - Stephen Grill
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Johns Hopkins Regional Physicians, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - John J. Jeka
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| | - Michael J. Carter
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua G. A. Cashaback
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, United States of America
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
2
|
Alward BA, Balthazart J, Ball GF. Androgen signaling in LMAN regulates song stereotypy in male canaries. Horm Behav 2024; 165:105611. [PMID: 39089160 PMCID: PMC11402583 DOI: 10.1016/j.yhbeh.2024.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
During breeding when testosterone concentrations are high, male songbirds that are open-ended vocal learners like canaries (Serinus canaria) tend to produce a stable, stereotyped song that facilitates mate attraction or territory defense. Outside breeding contexts, song becomes more variable. The neuroendocrine mechanisms controlling this vocal variability across seasons are not entirely clear. We tested whether androgen signaling within the lateral magnocellular nucleus of the anterior nidopallium (LMAN), a cortical-like brain region of the vocal control system known as a vocal variability generator, plays a role in seasonal vocal variability. We first characterized song in birds housed alone on a short day (SD) photoperiod, which simulates non-breeding conditions. Then, cannulae filled with the androgen receptor (AR) blocker flutamide or left empty as control were implanted bilaterally in LMAN. Birds were then transferred to long days (LD) to simulate the breeding season and song was analyzed again. Blocking AR in LMAN increased acoustic variability of song and the acoustic variability of syllables. However, blocking AR in LMAN did not impact the variability of syllable usage nor their sequencing in LD birds, song features that are controlled by androgen signaling in a somatosensory brain region of the vocal control system called HVC. These findings highlight the multifactorial, non-redundant actions of steroid hormones in controlling complex social behaviors such as birdsong. They also support the hypothesis that LMAN is a key brain area for the effects of testosterone on song plasticity both seasonally in adults and during the song crystallization process at sexual maturity.
Collapse
Affiliation(s)
- Beau A Alward
- Department of Psychology, T.I.M.E.S, University of Houston, Houston, TX 77204, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA; Department of Psychology, Neural and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | | | - Gregory F Ball
- Department of Psychology, Neural and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Mizuguchi D, Sánchez-Valpuesta M, Kim Y, Dos Santos EB, Kang H, Mori C, Wada K, Kojima S. Daily singing of adult songbirds functions to maintain song performance independently of auditory feedback and age. Commun Biol 2024; 7:598. [PMID: 38762691 PMCID: PMC11102546 DOI: 10.1038/s42003-024-06311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Many songbirds learn to produce songs through vocal practice in early life and continue to sing daily throughout their lifetime. While it is well-known that adult songbirds sing as part of their mating rituals, the functions of singing behavior outside of reproductive contexts remain unclear. Here, we investigated this issue in adult male zebra finches by suppressing their daily singing for two weeks and examining the effects on song performance. We found that singing suppression decreased the pitch, amplitude, and duration of songs, and that those song features substantially recovered through subsequent free singing. These reversible song changes were not dependent on auditory feedback or the age of the birds, contrasting with the adult song plasticity that has been reported previously. These results demonstrate that adult song structure is not stable without daily singing, and suggest that adult songbirds maintain song performance by preventing song changes through physical act of daily singing throughout their life. Such daily singing likely functions as vocal training to maintain the song production system in optimal conditions for song performance in reproductive contexts, similar to how human singers and athletes practice daily to maintain their performance.
Collapse
Affiliation(s)
- Daisuke Mizuguchi
- Sensory and Motor Systems Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Miguel Sánchez-Valpuesta
- Sensory and Motor Systems Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Yunbok Kim
- Sensory and Motor Systems Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Ednei B Dos Santos
- Sensory and Motor Systems Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - HiJee Kang
- Sensory and Motor Systems Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chihiro Mori
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-0041, Japan
- Faculty of Pharmaceutical Sciences, Department of Life and Health Sciences, Teikyo University, Tokyo, 173-8605, Japan
| | - Kazuhiro Wada
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Satoshi Kojima
- Sensory and Motor Systems Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
4
|
Casartelli L, Maronati C, Cavallo A. From neural noise to co-adaptability: Rethinking the multifaceted architecture of motor variability. Phys Life Rev 2023; 47:245-263. [PMID: 37976727 DOI: 10.1016/j.plrev.2023.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In the last decade, the source and the functional meaning of motor variability have attracted considerable attention in behavioral and brain sciences. This construct classically combined different levels of description, variable internal robustness or coherence, and multifaceted operational meanings. We provide here a comprehensive review of the literature with the primary aim of building a precise lexicon that goes beyond the generic and monolithic use of motor variability. In the pars destruens of the work, we model three domains of motor variability related to peculiar computational elements that influence fluctuations in motor outputs. Each domain is in turn characterized by multiple sub-domains. We begin with the domains of noise and differentiation. However, the main contribution of our model concerns the domain of adaptability, which refers to variation within the same exact motor representation. In particular, we use the terms learning and (social)fitting to specify the portions of motor variability that depend on our propensity to learn and on our largely constitutive propensity to be influenced by external factors. A particular focus is on motor variability in the context of the sub-domain named co-adaptability. Further groundbreaking challenges arise in the modeling of motor variability. Therefore, in a separate pars construens, we attempt to characterize these challenges, addressing both theoretical and experimental aspects as well as potential clinical implications for neurorehabilitation. All in all, our work suggests that motor variability is neither simply detrimental nor beneficial, and that studying its fluctuations can provide meaningful insights for future research.
Collapse
Affiliation(s)
- Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. MEDEA, Italy
| | - Camilla Maronati
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy
| | - Andrea Cavallo
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy; C'MoN Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
5
|
Roth AM, Calalo JA, Lokesh R, Sullivan SR, Grill S, Jeka JJ, van der Kooij K, Carter MJ, Cashaback JGA. Reinforcement-based processes actively regulate motor exploration along redundant solution manifolds. Proc Biol Sci 2023; 290:20231475. [PMID: 37848061 PMCID: PMC10581769 DOI: 10.1098/rspb.2023.1475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
From a baby's babbling to a songbird practising a new tune, exploration is critical to motor learning. A hallmark of exploration is the emergence of random walk behaviour along solution manifolds, where successive motor actions are not independent but rather become serially dependent. Such exploratory random walk behaviour is ubiquitous across species' neural firing, gait patterns and reaching behaviour. The past work has suggested that exploratory random walk behaviour arises from an accumulation of movement variability and a lack of error-based corrections. Here, we test a fundamentally different idea-that reinforcement-based processes regulate random walk behaviour to promote continual motor exploration to maximize success. Across three human reaching experiments, we manipulated the size of both the visually displayed target and an unseen reward zone, as well as the probability of reinforcement feedback. Our empirical and modelling results parsimoniously support the notion that exploratory random walk behaviour emerges by utilizing knowledge of movement variability to update intended reach aim towards recently reinforced motor actions. This mechanism leads to active and continuous exploration of the solution manifold, currently thought by prominent theories to arise passively. The ability to continually explore muscle, joint and task redundant solution manifolds is beneficial while acting in uncertain environments, during motor development or when recovering from a neurological disorder to discover and learn new motor actions.
Collapse
Affiliation(s)
- Adam M. Roth
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jan A. Calalo
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Rakshith Lokesh
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Seth R. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Stephen Grill
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
| | - John J. Jeka
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE 19716, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Katinka van der Kooij
- Faculty of Behavioural and Movement Science, Vrije University Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Michael J. Carter
- Department of Kinesiology, McMaster University, Room 203, Ivor Wynne Centre, Hamilton, L8S 4L8, Ontario, Canada
| | - Joshua G. A. Cashaback
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE 19716, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
6
|
Verhein JR, Vyas S, Shenoy KV. Methylphenidate modulates motor cortical dynamics and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562405. [PMID: 37905157 PMCID: PMC10614820 DOI: 10.1101/2023.10.15.562405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Methylphenidate (MPH, brand: Ritalin) is a common stimulant used both medically and non-medically. Though typically prescribed for its cognitive effects, MPH also affects movement. While it is known that MPH noncompetitively blocks the reuptake of catecholamines through inhibition of dopamine and norepinephrine transporters, a critical step in exploring how it affects behavior is to understand how MPH directly affects neural activity. This would establish an electrophysiological mechanism of action for MPH. Since we now have biologically-grounded network-level hypotheses regarding how populations of motor cortical neurons plan and execute movements, there is a unique opportunity to make testable predictions regarding how systemic MPH administration - a pharmacological perturbation - might affect neural activity in motor cortex. To that end, we administered clinically-relevant doses of MPH to Rhesus monkeys as they performed an instructed-delay reaching task. Concomitantly, we measured neural activity from dorsal premotor and primary motor cortex. Consistent with our predictions, we found dose-dependent and significant effects on reaction time, trial-by-trial variability, and movement speed. We confirmed our hypotheses that changes in reaction time and variability were accompanied by previously established population-level changes in motor cortical preparatory activity and the condition-independent signal that precedes movements. We expected changes in speed to be a result of changes in the amplitude of motor cortical dynamics and/or a translation of those dynamics in activity space. Instead, our data are consistent with a mechanism whereby the neuromodulatory effect of MPH is to increase the gain and/or the signal-to-noise of motor cortical dynamics during reaching. Continued work in this domain to better understand the brain-wide electrophysiological mechanism of action of MPH and other psychoactive drugs could facilitate more targeted treatments for a host of cognitive-motor disorders.
Collapse
Affiliation(s)
- Jessica R Verhein
- Medical Scientist Training Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Neurosciences Graduate Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Current affiliations: Psychiatry Research Residency Training Program, University of California, San Francisco, San Francisco, CA
| | - Saurabh Vyas
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Krishna V Shenoy
- Neurosciences Graduate Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
- Department of Electrical Engineering, Stanford University, Stanford, CA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA
- Department of Neurobiology, Stanford University, Stanford, CA
- Bio-X Program, Stanford University, Stanford, CA
| |
Collapse
|
7
|
Srinivasan S, Daste S, Modi MN, Turner GC, Fleischmann A, Navlakha S. Effects of stochastic coding on olfactory discrimination in flies and mice. PLoS Biol 2023; 21:e3002206. [PMID: 37906721 PMCID: PMC10618007 DOI: 10.1371/journal.pbio.3002206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/21/2023] [Indexed: 11/02/2023] Open
Abstract
Sparse coding can improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's benefits: similar sensory stimuli have significant overlap and responses vary across trials. To elucidate the effects of these 2 factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination-the mushroom body (MB) and the piriform cortex (PCx). We found that neuronal responses fall along a continuum from extremely reliable across trials to extremely variable or stochastic. Computationally, we show that the observed variability arises from noise within central circuits rather than sensory noise. We propose this coding scheme to be advantageous for coarse- and fine-odor discrimination. More reliable cells enable quick discrimination between dissimilar odors. For similar odors, however, these cells overlap and do not provide distinguishing information. By contrast, more unreliable cells are decorrelated for similar odors, providing distinguishing information, though these benefits only accrue with extended training with more trials. Overall, we have uncovered a conserved, stochastic coding scheme in vertebrates and invertebrates, and we identify a candidate mechanism, based on variability in a winner-take-all (WTA) inhibitory circuit, that improves discrimination with training.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Kavli Institute for Brain and Mind, University of California, San Diego, California, United States of America
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Simon Daste
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| | - Mehrab N. Modi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Glenn C. Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| | - Saket Navlakha
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
8
|
Apolinário-Souza T, Lelis-Torres N, Czyż SH, Lage GM. The Effect of Different Combinations of Practice Schedules on Motor Response Stability during Practice. J Mot Behav 2023; 55:174-185. [PMID: 36436833 DOI: 10.1080/00222895.2022.2141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many results in motor learning have indicated that relative and absolute timing dimensions are modulated by factors that modify response stability among trials. One of these factors is the combination of constant and variable practices. Although many researchers have investigated the combination of practice schedules, these researchers have used measurements that do not assess performance and motor response separately. This study aimed to investigate the effect of different combinations of practice schedules on motor response stability during practice. Participants performed a sequential key-pressing task with two goals: (1) to learn the relative timing dimension and (2) the absolute timing dimension. Participants were assigned to one of two groups: constant-variable or variable-constant. Our findings indicate an influence of the increase in variability over the practice in the constant-variable group. Precisely, the increase in variability of total time in the second half (constant-variable group) of practice was followed by the maintenance of the same level of cross-correlate between absolute timing error and variability of total time. Finally, our findings support the hypothesis that practicing in a constant schedule favors the relative timing dimension of learning regardless of the order in which the constant practice is provided.
Collapse
Affiliation(s)
| | | | - Stanisław H Czyż
- Akademia Wychowania Fizycznego we Wrocławiu, Wrocław, Poland
- Faculty of Sport Studies, Masaryk University, Brno, Czechia
- Physical Activity, Sport and Recreation (PhASRec), North-West University (NWU), South Africa
| | | |
Collapse
|
9
|
Medina CA, Vargas E, Munger SJ, Miller JE. Vocal changes in a zebra finch model of Parkinson's disease characterized by alpha-synuclein overexpression in the song-dedicated anterior forebrain pathway. PLoS One 2022; 17:e0265604. [PMID: 35507553 PMCID: PMC9067653 DOI: 10.1371/journal.pone.0265604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Deterioration in the quality of a person's voice and speech is an early marker of Parkinson's disease (PD). In humans, the neural circuit that supports vocal motor control consists of a cortico-basal ganglia-thalamo-cortico loop. The basal ganglia regions, striatum and globus pallidus, in this loop play a role in modulating the acoustic features of vocal behavior such as loudness, pitch, and articulatory rate. In PD, this area is implicated in pathogenesis. In animal models of PD, the accumulation of toxic aggregates containing the neuronal protein alpha-synuclein (αsyn) in the midbrain and striatum result in limb and vocal motor impairments. It has been challenging to study vocal impairments given the lack of well-defined cortico-basal ganglia circuitry for vocalization in rodent models. Furthermore, whether deterioration of voice quality early in PD is a direct result of αsyn-induced neuropathology is not yet known. Here, we take advantage of the well-characterized vocal circuits of the adult male zebra finch songbird to experimentally target a song-dedicated pathway, the anterior forebrain pathway, using an adeno-associated virus expressing the human wild-type αsyn gene, SNCA. We found that overexpression of αsyn in this pathway coincides with higher levels of insoluble, monomeric αsyn compared to control finches. Impairments in song production were also detected along with shorter and poorer quality syllables, which are the most basic unit of song. These vocal changes are similar to the vocal abnormalities observed in individuals with PD.
Collapse
Affiliation(s)
- Cesar A. Medina
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, United State of America
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
| | - Eddie Vargas
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
| | - Stephanie J. Munger
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
| | - Julie E. Miller
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, United State of America
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
10
|
Duffy A, Latimer KW, Goldberg JH, Fairhall AL, Gadagkar V. Dopamine neurons evaluate natural fluctuations in performance quality. Cell Rep 2022; 38:110574. [PMID: 35354031 PMCID: PMC9013488 DOI: 10.1016/j.celrep.2022.110574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Many motor skills are learned by comparing ongoing behavior to internal performance benchmarks. Dopamine neurons encode performance error in behavioral paradigms where error is externally induced, but it remains unknown whether dopamine also signals the quality of natural performance fluctuations. Here, we record dopamine neurons in singing birds and examine how spontaneous dopamine spiking activity correlates with natural fluctuations in ongoing song. Antidromically identified basal ganglia-projecting dopamine neurons correlate with recent, and not future, song variations, consistent with a role in evaluation, not production. Furthermore, maximal dopamine spiking occurs at a single vocal target, consistent with either actively maintaining the existing song or shifting the song to a nearby form. These data show that spontaneous dopamine spiking can evaluate natural behavioral fluctuations unperturbed by experimental events such as cues or rewards. Learning and producing skilled behavior requires an internal measure of performance. Duffy et al. examine dopamine neurons’ relationship to natural song in singing birds. Spontaneous dopamine activity correlates with song fluctuations in a manner consistent with evaluation of natural behavioral variations, independent of external perturbations, cues, or rewards.
Collapse
Affiliation(s)
- Alison Duffy
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Computational Neuroscience Center, University of Washington, Seattle, WA 98195, USA
| | - Kenneth W Latimer
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Computational Neuroscience Center, University of Washington, Seattle, WA 98195, USA.
| | - Vikram Gadagkar
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
11
|
Aronowitz JV, Perez A, O’Brien C, Aziz S, Rodriguez E, Wasner K, Ribeiro S, Green D, Faruk F, Pytte CL. Unilateral vocal nerve resection alters neurogenesis in the avian song system in a region-specific manner. PLoS One 2021; 16:e0256709. [PMID: 34464400 PMCID: PMC8407570 DOI: 10.1371/journal.pone.0256709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
New neurons born in the adult brain undergo a critical period soon after migration to their site of incorporation. During this time, the behavior of the animal may influence the survival or culling of these cells. In the songbird song system, earlier work suggested that adult-born neurons may be retained in the song motor pathway nucleus HVC with respect to motor progression toward a target song during juvenile song learning, seasonal song restructuring, and experimentally manipulated song variability. However, it is not known whether the quality of song per se, without progressive improvement, may also influence new neuron survival. To test this idea, we experimentally altered song acoustic structure by unilateral denervation of the syrinx, causing a poor quality song. We found no effect of aberrant song on numbers of new neurons in HVC, suggesting that song quality does not influence new neuron culling in this region. However, aberrant song resulted in the loss of left-side dominance in new neurons in the auditory region caudomedial nidopallium (NCM), and a bilateral decrease in new neurons in the basal ganglia nucleus Area X. Thus new neuron culling may be influenced by behavioral feedback in accordance with the function of new neurons within that region. We propose that studying the effects of singing behaviors on new neurons across multiple brain regions that differentially subserve singing may give rise to general rules underlying the regulation of new neuron survival across taxa and brain regions more broadly.
Collapse
Affiliation(s)
- Jake V. Aronowitz
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Alice Perez
- Psychology Department, The Graduate Center, City University of New York, New York, NY, United States of America
| | - Christopher O’Brien
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Siaresh Aziz
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Erica Rodriguez
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Kobi Wasner
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Sissi Ribeiro
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Dovounnae Green
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Farhana Faruk
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Carolyn L. Pytte
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
- Psychology Department, The Graduate Center, City University of New York, New York, NY, United States of America
- Biology Department, The Graduate Center, City University of New York, New York, NY, United States of America
| |
Collapse
|
12
|
Coleman MJ, White SA. Basal ganglia: Bursting with song. Curr Biol 2021; 31:R791-R793. [PMID: 34157263 DOI: 10.1016/j.cub.2021.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The songs of mature zebra finches are notoriously repetitious, or 'crystallized'. Despite this stability, new work reveals that chronic pharmacologically driven bursting of cortical inputs to the basal ganglia can drive cumulative and lasting changes to multiple vocal features, including phenomena reminiscent of human stuttering.
Collapse
Affiliation(s)
- Melissa J Coleman
- W.M. Keck Science Department, Claremont, McKenna, Scripps and Pitzer Colleges, Claremont, CA 91711, USA.
| | - Stephanie A White
- Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Hauber ME, Louder MI, Griffith SC. Neurogenomic insights into the behavioral and vocal development of the zebra finch. eLife 2021; 10:61849. [PMID: 34106827 PMCID: PMC8238503 DOI: 10.7554/elife.61849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The zebra finch (Taeniopygia guttata) is a socially monogamous and colonial opportunistic breeder with pronounced sexual differences in singing and plumage coloration. Its natural history has led to it becoming a model species for research into sex differences in vocal communication, as well as behavioral, neural and genomic studies of imitative auditory learning. As scientists tap into the genetic and behavioral diversity of both wild and captive lineages, the zebra finch will continue to inform research into culture, learning, and social bonding, as well as adaptability to a changing climate.
Collapse
Affiliation(s)
- Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, United States
| | - Matthew Im Louder
- International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan.,Department of Biology, Texas A&M University, College Station, United States
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
14
|
Paul A, McLendon H, Rally V, Sakata JT, Woolley SC. Behavioral discrimination and time-series phenotyping of birdsong performance. PLoS Comput Biol 2021; 17:e1008820. [PMID: 33830995 PMCID: PMC8049717 DOI: 10.1371/journal.pcbi.1008820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Variation in the acoustic structure of vocal signals is important to communicate social information. However, relatively little is known about the features that receivers extract to decipher relevant social information. Here, we took an expansive, bottom-up approach to delineate the feature space that could be important for processing social information in zebra finch song. Using operant techniques, we discovered that female zebra finches can consistently discriminate brief song phrases ("motifs") from different social contexts. We then applied machine learning algorithms to classify motifs based on thousands of time-series features and to uncover acoustic features for motif discrimination. In addition to highlighting classic acoustic features, the resulting algorithm revealed novel features for song discrimination, for example, measures of time irreversibility (i.e., the degree to which the statistical properties of the actual and time-reversed signal differ). Moreover, the algorithm accurately predicted female performance on individual motif exemplars. These data underscore and expand the promise of broad time-series phenotyping to acoustic analyses and social decision-making.
Collapse
Affiliation(s)
- Avishek Paul
- Dept. Electrical & Computer Engineering, McGill University, Montreal, Canada
- Dept. Biology, McGill University, Montreal, Canada
| | - Helen McLendon
- Keck Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, California, United States of America
| | | | - Jon T. Sakata
- Dept. Biology, McGill University, Montreal, Canada
- Centre for Research on Brain, Language, and Music, McGill University, Montreal, Canada
- * E-mail: (JTS); (SCW)
| | - Sarah C. Woolley
- Dept. Biology, McGill University, Montreal, Canada
- Centre for Research on Brain, Language, and Music, McGill University, Montreal, Canada
- * E-mail: (JTS); (SCW)
| |
Collapse
|
15
|
So LY, Miller JE. Social context-dependent singing alters molecular markers of synaptic plasticity signaling in finch basal ganglia Area X. Behav Brain Res 2020; 398:112955. [PMID: 33031871 DOI: 10.1016/j.bbr.2020.112955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/14/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022]
Abstract
Vocal communication is a crucial skill required throughout life. However, there is a critical gap in our understanding of the underlying molecular brain mechanisms, thereby motivating our use of the zebra finch songbird model. Adult male zebra finches show differences in neural activity patterns in song-dedicated brain nuclei when they sing in two distinct social contexts: a male singing by himself (undirected, UD) and a male singing to a female (female-directed, FD). In our prior work, we showed that in song-dedicated basal ganglia Area X, protein levels of a N-methyl-D-aspartate receptor subtype 2B (NMDAR2B) increased with more UD song and decreased with more FD song. We hypothesized that molecules downstream of this receptor would show differential protein expression levels in Area X between UD and FD song. Specifically, we investigated calcium/calmodulin dependent protein kinase II beta (CaMKIIB), homer scaffold protein 1 (HOMER1), serine/threonine protein kinase (Akt), and mechanistic target of rapamycin kinase (mTOR) following singing and non-singing states in Area X. We show relationships between social context and protein levels. HOMER1 protein levels decreased with time spent singing FD song, and mTOR protein levels decreased with the amount of and time spent singing FD song. For both HOMER1 and mTOR, there were no differences with the amount of UD song. With time spent singing UD, CaMKIIB protein levels trended in a U-shaped curve whereas Akt protein levels trended down. Both molecules showed no change with FD song. Our results support differential involvement of molecules in synaptic plasticity pathways between UD and FD song behaviors.
Collapse
Affiliation(s)
- Lisa Y So
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Gould-Simpson Building, Tucson, AZ, 85721, United States; Department of Neuroscience, University of Arizona, Gould-Simpson Building, Tucson, AZ, 85721, United States
| | - Julie E Miller
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Gould-Simpson Building, Tucson, AZ, 85721, United States; Department of Neuroscience, University of Arizona, Gould-Simpson Building, Tucson, AZ, 85721, United States; Department of Speech, Language, and Hearing Sciences, University of Arizona, Speech, Language, and Hearing Sciences Building, Tucson, AZ, 85721, United States.
| |
Collapse
|
16
|
Yamahachi H, Zai AT, Tachibana RO, Stepien AE, Rodrigues DI, Cavé-Lopez S, Lorenz C, Arneodo EM, Giret N, Hahnloser RHR. Undirected singing rate as a non-invasive tool for welfare monitoring in isolated male zebra finches. PLoS One 2020; 15:e0236333. [PMID: 32776943 PMCID: PMC7416931 DOI: 10.1371/journal.pone.0236333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/04/2020] [Indexed: 11/20/2022] Open
Abstract
Research on the songbird zebra finch (Taeniopygia guttata) has advanced our behavioral, hormonal, neuronal, and genetic understanding of vocal learning. However, little is known about the impact of typical experimental manipulations on the welfare of these birds. Here we explore whether the undirected singing rate can be used as an indicator of welfare. We tested this idea by performing a post hoc analysis of singing behavior in isolated male zebra finches subjected to interactive white noise, to surgery, or to tethering. We find that the latter two experimental manipulations transiently but reliably decreased singing rates. By contraposition, we infer that a high-sustained singing rate is suggestive of successful coping or improved welfare in these experiments. Our analysis across more than 300 days of song data suggests that a singing rate above a threshold of several hundred song motifs per day implies an absence of an acute stressor or a successful coping with stress. Because singing rate can be measured in a completely automatic fashion, its observation can help to reduce experimenter bias in welfare monitoring. Because singing rate measurements are non-invasive, we expect this study to contribute to the refinement of the current welfare monitoring tools in zebra finches.
Collapse
Affiliation(s)
- Homare Yamahachi
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anja T. Zai
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ryosuke O. Tachibana
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anna E. Stepien
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Diana I. Rodrigues
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sophie Cavé-Lopez
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Corinna Lorenz
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institut des Neurosciences Paris Saclay, UMR 9197 CNRS, Université Paris Saclay, Orsay, France
| | - Ezequiel M. Arneodo
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Nicolas Giret
- Institut des Neurosciences Paris Saclay, UMR 9197 CNRS, Université Paris Saclay, Orsay, France
| | - Richard H. R. Hahnloser
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Cell-Type-Specific Outcome Representation in the Primary Motor Cortex. Neuron 2020; 107:954-971.e9. [PMID: 32589878 DOI: 10.1016/j.neuron.2020.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Adaptive movements are critical for animal survival. To guide future actions, the brain monitors various outcomes, including achievement of movement and appetitive goals. The nature of these outcome signals and their neuronal and network realization in the motor cortex (M1), which directs skilled movements, is largely unknown. Using a dexterity task, calcium imaging, optogenetic perturbations, and behavioral manipulations, we studied outcome signals in the murine forelimb M1. We found two populations of layer 2-3 neurons, termed success- and failure-related neurons, that develop with training, and report end results of trials. In these neurons, prolonged responses were recorded after success or failure trials independent of reward and kinematics. In addition, the initial state of layer 5 pyramidal tract neurons contained a memory trace of the previous trial's outcome. Intertrial cortical activity was needed to learn new task requirements. These M1 layer-specific performance outcome signals may support reinforcement motor learning of skilled behavior.
Collapse
|
18
|
Jordan J, Petrovici MA, Breitwieser O, Schemmel J, Meier K, Diesmann M, Tetzlaff T. Deterministic networks for probabilistic computing. Sci Rep 2019; 9:18303. [PMID: 31797943 PMCID: PMC6893033 DOI: 10.1038/s41598-019-54137-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/06/2019] [Indexed: 01/13/2023] Open
Abstract
Neuronal network models of high-level brain functions such as memory recall and reasoning often rely on the presence of some form of noise. The majority of these models assumes that each neuron in the functional network is equipped with its own private source of randomness, often in the form of uncorrelated external noise. In vivo, synaptic background input has been suggested to serve as the main source of noise in biological neuronal networks. However, the finiteness of the number of such noise sources constitutes a challenge to this idea. Here, we show that shared-noise correlations resulting from a finite number of independent noise sources can substantially impair the performance of stochastic network models. We demonstrate that this problem is naturally overcome by replacing the ensemble of independent noise sources by a deterministic recurrent neuronal network. By virtue of inhibitory feedback, such networks can generate small residual spatial correlations in their activity which, counter to intuition, suppress the detrimental effect of shared input. We exploit this mechanism to show that a single recurrent network of a few hundred neurons can serve as a natural noise source for a large ensemble of functional networks performing probabilistic computations, each comprising thousands of units.
Collapse
Affiliation(s)
- Jakob Jordan
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain-Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany.
- Department of Physiology, University of Bern, Bern, Switzerland.
| | - Mihai A Petrovici
- Department of Physiology, University of Bern, Bern, Switzerland
- Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Oliver Breitwieser
- Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Johannes Schemmel
- Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karlheinz Meier
- Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain-Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
| | - Tom Tetzlaff
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain-Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
19
|
James LS, Fan R, Sakata JT. Behavioural responses to video and live presentations of females reveal a dissociation between performance and motivational aspects of birdsong. ACTA ACUST UNITED AC 2019; 222:jeb.206318. [PMID: 31331939 DOI: 10.1242/jeb.206318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Understanding the regulation of social behavioural expression requires insight into motivational and performance aspects. While a number of studies have independently assessed these aspects of social behaviours, few have examined how they relate to each other. By comparing behavioural variation in response to live or video presentations of conspecific females, we analysed how variation in the motivation to produce courtship song covaries with variation in performance aspects of courtship song in male zebra finches (Taeniopygia guttata). In agreement with previous reports, we observed that male zebra finches were less motivated to produce courtship songs to videos of females than to live presentations of females. However, we found that acoustic features that reflect song performance were not significantly different between songs produced in response to videos of females, and those produced in response to live females. For example, songs directed at video presentations of females were just as fast and stereotyped as songs directed at live females. These experimental manipulations and correlational analyses reveal a dissociation between motivational and performance aspects of birdsong and suggest a refinement of neural models of song production and control. In addition, they support the efficacy of videos to study both motivational and performance aspects of social behaviours.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Raina Fan
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
20
|
James LS, Sakata JT. Developmental modulation and predictability of age-dependent vocal plasticity in adult zebra finches. Brain Res 2019; 1721:146336. [PMID: 31310739 DOI: 10.1016/j.brainres.2019.146336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Predicting the nature of behavioral plasticity can provide insight into mechanisms of behavioral expression and control. Songbirds like the zebra finch rely on vocal signals for communication, and the performance of these signals demonstrate considerable plasticity over development. Traditionally, these signals were thought to be fixed in adulthood, but recent studies have revealed significant age-dependent changes to spectral and temporal features of song in adult songbirds. A number of age-dependent changes to song resemble acute changes to adult song performance across social contexts (e.g., when an adult male sings to a female relative to when he sings in isolation). The ability of variation in social context-dependent changes to predict variation in age-dependent plasticity would suggest shared mechanisms, but little is known about this predictability. In addition, although developmental experiences can shape adult plasticity, little is known about the extent to which social interactions during development affect age-dependent change to adult song. To this end, we systematically analyzed age- and context-dependent changes to adult zebra finch song, and then examined the degree to which age-dependent changes varied across birds that were social or non-socially tutored birds and to which social context-dependent changes predicted age-dependent changes. Non-socially tutored birds showed more dramatic changes to the broad structure of their motif over time than socially tutored birds, but non-socially and socially tutored birds did not differ in the extent of changes to various spectral and temporal features of song. Overall, we found that adult zebra finches produced longer and more spectrally stereotyped songs when they were older than when they were younger. Moreover, regardless of developmental tutoring, individual variation in age-dependent changes to song bout duration and syllable repetition were predicted by variation in social context-dependent changes to these features. These data indicate that social experiences during development can shape some aspects of adult plasticity and that acute context-dependent and long-term age-dependent changes to some song features could be mediated by modifications within similar neural substrates.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
21
|
Kumar S, Mohapatra AN, Sharma HP, Singh UA, Kambi NA, Velpandian T, Rajan R, Iyengar S. Altering Opioid Neuromodulation in the Songbird Basal Ganglia Modulates Vocalizations. Front Neurosci 2019; 13:671. [PMID: 31333400 PMCID: PMC6618663 DOI: 10.3389/fnins.2019.00671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/11/2019] [Indexed: 11/16/2022] Open
Abstract
Although the interplay between endogenous opioids and dopamine (DA) in the basal ganglia (BG) is known to underlie diverse motor functions, few studies exist on their role in modulating speech and vocalization. Vocal impairment is a common symptom of Parkinson’s disease (PD), wherein DA depletion affects striosomes rich in μ-opioid receptors (μ-ORs). Symptoms of opioid addiction also include deficiencies in verbal functions and speech. To understand the interplay between the opioid system and BG in vocalization, we used adult male songbirds wherein high levels of μ-ORs are expressed in Area X, a BG region which is part of a circuit similar to the mammalian thalamocortical-basal ganglia loop. Changes in DA, glutamate and GABA levels were analyzed during the infusion of different doses of the μ-OR antagonist naloxone (50 and 100 ng/ml) specifically in Area X. Blocking μ-ORs in Area X with 100 ng/ml naloxone led to increased levels of DA in this region without altering the number of songs directed toward females (FD). Interestingly, this manipulation also led to changes in the spectro-temporal properties of FD songs, suggesting that altered opioid modulation in the thalamocortical-basal ganglia circuit can affect vocalization. Our study suggests that songbirds are excellent model systems to explore how the interplay between μ-ORs and DA modulation in the BG affects speech/vocalization.
Collapse
Affiliation(s)
| | | | - Hanuman Prasad Sharma
- Department of Ocular Pharmacology and Pharmacy, Dr. R. P. Centre, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy, Dr. R. P. Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Raghav Rajan
- Indian Institute of Science Education and Research, Pune, Pune, India
| | | |
Collapse
|
22
|
Beyond Critical Period Learning: Striatal FoxP2 Affects the Active Maintenance of Learned Vocalizations in Adulthood. eNeuro 2019; 6:eN-CFN-0071-19. [PMID: 31001575 PMCID: PMC6469881 DOI: 10.1523/eneuro.0071-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
In humans, mutations in the transcription factor forkhead box P2 (FOXP2) result in language disorders associated with altered striatal structure. Like speech, birdsong is learned through social interactions during maturational critical periods, and it relies on auditory feedback during initial learning and on-going maintenance. Hearing loss causes learned vocalizations to deteriorate in adult humans and songbirds. In the adult songbird brain, most FoxP2-enriched regions (e.g., cortex, thalamus) show a static expression level, but in the striatal song control nucleus, area X, FoxP2 is regulated by singing and social context: when juveniles and adults sing alone, its levels drop, and songs are more variable. When males sing to females, FoxP2 levels remain high, and songs are relatively stable: this “on-line” regulation implicates FoxP2 in ongoing vocal processes, but its role in the auditory-based maintenance of learned vocalization has not been examined. To test this, we overexpressed FoxP2 in both hearing and deafened adult zebra finches and assessed effects on song sung alone versus songs directed to females. In intact birds singing alone, no changes were detected between songs of males expressing FoxP2 or a GFP construct in area X, consistent with the marked stability of mature song in this species. In contrast, songs of males overexpressing FoxP2 became more variable and were less preferable to females, unlike responses to songs of GFP-expressing control males. In deafened birds, song deteriorated more rapidly following FoxP2 overexpression relative to GFP controls. Together, these experiments suggest that behavior-driven FoxP2 expression and auditory feedback interact to precisely maintain learned vocalizations.
Collapse
|
23
|
James LS, Dai JB, Sakata JT. Ability to modulate birdsong across social contexts develops without imitative social learning. Biol Lett 2019. [PMID: 29540565 DOI: 10.1098/rsbl.2017.0777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many important behaviours are socially learned. For example, the acoustic structure of courtship songs in songbirds is learned by listening to and interacting with conspecifics during a sensitive period in development. Signallers modify the spectral and temporal structures of their vocalizations depending on the social context, but the degree to which this modulation requires imitative social learning remains unknown. We found that male zebra finches (Taeniopygia guttata) that were not exposed to context-dependent song modulations throughout development significantly modulated their song in ways that were typical of socially reared birds. Furthermore, the extent of these modulations was not significantly different between finches that could or could not observe these modulations during tutoring. These data suggest that this form of vocal flexibility develops without imitative social learning in male zebra finches.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Jennifer B Dai
- Neuroscience Program, McGill University, Montreal, Quebec, Canada H3A 3R1
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1.,Center for Studies in Behavioral Neurobiology, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
24
|
So LY, Munger SJ, Miller JE. Social context-dependent singing alters molecular markers of dopaminergic and glutamatergic signaling in finch basal ganglia Area X. Behav Brain Res 2019; 360:103-112. [DOI: 10.1016/j.bbr.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 11/25/2022]
|
25
|
Shaughnessy DW, Hyson RL, Bertram R, Wu W, Johnson F. Female zebra finches do not sing yet share neural pathways necessary for singing in males. J Comp Neurol 2018; 527:843-855. [PMID: 30370534 DOI: 10.1002/cne.24569] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/28/2022]
Abstract
Adult female zebra finches (Taeniopygia guttata), which do not produce learned songs, have long been thought to possess only vestiges of the forebrain network that supports learned song in males. This view ostensibly explains why females do not sing-many of the neural populations and pathways that make up the male song control network appear rudimentary or even missing in females. For example, classic studies of vocal-premotor cortex (HVC, acronym is name) in male zebra finches identified prominent efferent pathways from HVC to vocal-motor cortex (RA, robust nucleus of the arcopallium) and from HVC to the avian basal ganglia (Area X). In females, by comparison, the efferent targets of HVC were thought to be only partially innervated by HVC axons (RA) or absent (Area X). Here, using a novel visually guided surgical approach to target tracer injections with precision, we mapped the extrinsic connectivity of the adult female HVC. We find that female HVC shows a mostly male-typical pattern of afferent and efferent connectivity, including robust HVC innervation of RA and Area X. As noted by earlier investigators, we find large sex differences in the volume of many regions that control male singing (male > female). However, sex differences in volume were diminished in regions that convey ascending afferent input to HVC. Our findings do not support a vestigial interpretation of the song control network in females. Instead, our findings support the emerging view that the song control network may have an altogether different function in nonsinging females.
Collapse
Affiliation(s)
- Derrick W Shaughnessy
- Program in Neuroscience and Department of Psychology, Florida State University, Tallahassee, Florida
| | - Richard L Hyson
- Program in Neuroscience and Department of Psychology, Florida State University, Tallahassee, Florida
| | - Richard Bertram
- Program in Neuroscience and Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Wei Wu
- Program in Neuroscience and Department of Statistics, Florida State University, Tallahassee, Florida
| | - Frank Johnson
- Program in Neuroscience and Department of Psychology, Florida State University, Tallahassee, Florida
| |
Collapse
|
26
|
Jones CA, Meisner EL, Broadfoot CK, Rosen SP, Samuelsen CR, McCulloch TM. Methods for measuring swallowing pressure variability using high-resolution manometry. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2018; 4:23. [PMID: 30687729 PMCID: PMC6345545 DOI: 10.3389/fams.2018.00023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Any movement performed repeatedly will be executed with inter-trial variability. Oropharyngeal swallowing is a complex sensorimotor action, and swallow-to-swallow variability can have consequences that impact swallowing safety. Our aim was to determine an appropriate method to measure swallowing pressure waveform variability. An ideal variability metric must be sensitive to known deviations in waveform amplitude, duration, and overall shape, without being biased by waveforms that have both positive and sub-atmospheric pressure profiles. Through systematic analysis of model waveforms, we found a coefficient of variability (CV) parameter on waveforms adjusted such that the overall mean was 0 to be best suited for swallowing pressure variability analysis. We then investigated pharyngeal swallowing pressure variability using high-resolution manometry data from healthy individuals to assess impacts of waveform alignment, pharyngeal region, and number of swallows investigated. The alignment that resulted in the lowest overall swallowing pressure variability was when the superior-most sensor in the upper esophageal sphincter reached half its maximum pressure. Pressures in the tongue base region of the pharynx were least variable and pressures in the hypopharynx region were most variable. Sets of 3 - 10 consecutive swallows had no overall difference in variability, but sets of 2 swallows resulted in significantly less variability than the other dataset sizes. This study identified variability in swallowing pressure waveform shape throughout the pharynx in healthy adults; we discuss implications for swallowing motor control.
Collapse
Affiliation(s)
- Corinne A. Jones
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences & Disorders; University of Wisconsin – Madison, Madison, WI, USA D
- Neuroscience Training Program; University of Wisconsin – Madison; Madison, WI, USA
| | - Ellen L. Meisner
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Physical Therapy, Mayo Clinic School of Health Sciences, Rochester, MN, USA
| | - Courtney K. Broadfoot
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences & Disorders; University of Wisconsin – Madison, Madison, WI, USA D
| | - Sarah P. Rosen
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
| | - Christine R. Samuelsen
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
| | - Timothy M. McCulloch
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences & Disorders; University of Wisconsin – Madison, Madison, WI, USA D
| |
Collapse
|
27
|
Nicholson DA, Roberts TF, Sober SJ. Thalamostriatal and cerebellothalamic pathways in a songbird, the Bengalese finch. J Comp Neurol 2018; 526:1550-1570. [PMID: 29520771 PMCID: PMC5899675 DOI: 10.1002/cne.24428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
The thalamostriatal system is a major network in the mammalian brain, originating principally from the intralaminar nuclei of thalamus. Its functions remain unclear, but a subset of these projections provides a pathway through which the cerebellum communicates with the basal ganglia. Both the cerebellum and basal ganglia play crucial roles in motor control. Although songbirds have yielded key insights into the neural basis of vocal learning, it is unknown whether a thalamostriatal system exists in the songbird brain. Thalamic nucleus DLM is an important part of the song system, the network of nuclei required for learning and producing song. DLM receives output from song system basal ganglia nucleus Area X and sits within dorsal thalamus, the proposed avian homolog of the mammalian intralaminar nuclei that also receives projections from the cerebellar nuclei. Using a viral vector that specifically labels presynaptic axon segments, we show in Bengalese finches that dorsal thalamus projects to Area X, the basal ganglia nucleus of the song system, and to surrounding medial striatum. To identify the sources of thalamic input to Area X, we map DLM and cerebellar-recipient dorsal thalamus (DTCbN ). Surprisingly, we find both DLM and dorsal anterior DTCbN adjacent to DLM project to Area X. In contrast, the ventral medial subregion of DTCbN projects to medial striatum outside Area X. Our results suggest the basal ganglia in the song system, like the mammalian basal ganglia, integrate feedback from the thalamic region to which they project as well as thalamic regions that receive cerebellar output.
Collapse
Affiliation(s)
- David A Nicholson
- Graduate Program in Neuroscience, Emory University, Atlanta, 30322, Georgia
- Department of Biology, Emory University, Atlanta, 30322, Georgia
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, 75390-9111
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, 30322, Georgia
| |
Collapse
|
28
|
Heston JB, Simon J, Day NF, Coleman MJ, White SA. Bidirectional scaling of vocal variability by an avian cortico-basal ganglia circuit. Physiol Rep 2018; 6:e13638. [PMID: 29687960 PMCID: PMC5913712 DOI: 10.14814/phy2.13638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022] Open
Abstract
Behavioral variability is thought to be critical for trial and error learning, but where such motor exploration is generated in the central nervous system is unclear. The zebra finch songbird species offers a highly appropriate model in which to address this question. The male song is amenable to detailed measurements of variability, while the brain contains an identified cortico-basal ganglia loop that underlies this behavior. We used pharmacogenetic interventions to separately interrogate cortical and basal ganglia nodes of zebra finch song control circuitry. We show that bidirectional manipulations of each node produce near mirror image changes in vocal control: Cortical activity promotes song variability, whereas basal ganglia activity promotes song stability. Furthermore, female conspecifics can detect these pharmacogenetically elicited changes in song quality. Our results indicate that cortex and striatopallidum can jointly and reciprocally affect behaviorally relevant levels of vocal variability, and point to endogenous mechanisms for its control.
Collapse
Affiliation(s)
- Jonathan B. Heston
- Interdepartmental Program in NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
| | - Joseph Simon
- Undergraduate Interdepartmental Program for NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
| | - Nancy F. Day
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCalifornia
| | - Melissa J. Coleman
- W. M. Keck Science Department of Claremont McKenna CollegePitzer College, and Scripps CollegeClaremontCalifornia
| | - Stephanie A. White
- Interdepartmental Program in NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
- Undergraduate Interdepartmental Program for NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCalifornia
| |
Collapse
|
29
|
Merullo DP, Asogwa CN, Sanchez-Valpuesta M, Hayase S, Pattnaik BR, Wada K, Riters LV. Neurotensin and neurotensin receptor 1 mRNA expression in song-control regions changes during development in male zebra finches. Dev Neurobiol 2018; 78:671-686. [PMID: 29569407 DOI: 10.1002/dneu.22589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine-related measures change throughout development in song-control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development. Nts and Ntsr1 mRNA expression was analyzed in song-control regions of male zebra finches in four stages of the song learning process: pre-subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph). Nts expression in LMAN during the subsong stage was lower compared to other time points. Ntsr1 expression was highest in HVC, Area X, and RA during the pre-subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receive Nts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggest Nts may be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671-686, 2018.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Chinweike N Asogwa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | | | - Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
30
|
Chen Y, Clark O, Woolley SC. Courtship song preferences in female zebra finches are shaped by developmental auditory experience. Proc Biol Sci 2018; 284:rspb.2017.0054. [PMID: 28539523 DOI: 10.1098/rspb.2017.0054] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023] Open
Abstract
The performance of courtship signals provides information about the behavioural state and quality of the signaller, and females can use such information for social decision-making (e.g. mate choice). However, relatively little is known about the degree to which the perception of and preference for differences in motor performance are shaped by developmental experiences. Furthermore, the neural substrates that development could act upon to influence the processing of performance features remains largely unknown. In songbirds, females use song to identify males and select mates. Moreover, female songbirds are often sensitive to variation in male song performance. Consequently, we investigated how developmental exposure to adult male song affected behavioural and neural responses to song in a small, gregarious songbird, the zebra finch. Zebra finch males modulate their song performance when courting females, and previous work has shown that females prefer the high-performance, female-directed courtship song. However, unlike females allowed to hear and interact with an adult male during development, females reared without developmental song exposure did not demonstrate behavioural preferences for high-performance courtship songs. Additionally, auditory responses to courtship and non-courtship song were altered in adult females raised without developmental song exposure. These data highlight the critical role of developmental auditory experience in shaping the perception and processing of song performance.
Collapse
Affiliation(s)
- Yining Chen
- Integrated program in Neuroscience, Montreal, Quebec, Canada
| | - Oliver Clark
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Sarah C Woolley
- Integrated program in Neuroscience, Montreal, Quebec, Canada .,Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Farias-Virgens M, White SA. A Sing-Song Way of Vocalizing: Generalization and Specificity in Language and Birdsong. Neuron 2017; 96:958-960. [DOI: 10.1016/j.neuron.2017.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Individual Movement Variability Magnitudes Are Explained by Cortical Neural Variability. J Neurosci 2017; 37:9076-9085. [PMID: 28821678 DOI: 10.1523/jneurosci.1650-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/19/2017] [Accepted: 08/05/2017] [Indexed: 01/31/2023] Open
Abstract
Humans exhibit considerable motor variability even across trivial reaching movements. This variability can be separated into specific kinematic components such as extent and direction that are thought to be governed by distinct neural processes. Here, we report that individual subjects (males and females) exhibit different magnitudes of kinematic variability, which are consistent (within individual) across movements to different targets and regardless of which arm (right or left) was used to perform the movements. Simultaneous fMRI recordings revealed that the same subjects also exhibited different magnitudes of fMRI variability across movements in a variety of motor system areas. These fMRI variability magnitudes were also consistent across movements to different targets when performed with either arm. Cortical fMRI variability in the posterior-parietal cortex of individual subjects explained their movement-extent variability. This relationship was apparent only in posterior-parietal cortex and not in other motor system areas, thereby suggesting that individuals with more variable movement preparation exhibit larger kinematic variability. We therefore propose that neural and kinematic variability are reliable and interrelated individual characteristics that may predispose individual subjects to exhibit distinct motor capabilities.SIGNIFICANCE STATEMENT Neural activity and movement kinematics are remarkably variable. Although intertrial variability is rarely studied, here, we demonstrate that individual human subjects exhibit distinct magnitudes of neural and kinematic variability that are reproducible across movements to different targets and when performing these movements with either arm. Furthermore, when examining the relationship between cortical variability and movement variability, we find that cortical fMRI variability in parietal cortex of individual subjects explained their movement extent variability. This enabled us to explain why some subjects performed more variable movements than others based on their cortical variability magnitudes.
Collapse
|
33
|
Chakraborty M, Chen LF, Fridel EE, Klein ME, Senft RA, Sarkar A, Jarvis ED. Overexpression of human NR2B receptor subunit in LMAN causes stuttering and song sequence changes in adult zebra finches. Sci Rep 2017; 7:942. [PMID: 28432288 PMCID: PMC5430713 DOI: 10.1038/s41598-017-00519-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Zebra finches (Taeniopygia guttata) learn to produce songs in a manner reminiscent of spoken language development in humans. One candidate gene implicated in influencing learning is the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B). Consistent with this idea, NR2B levels are high in the song learning nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) during juvenile vocal learning, and decreases to low levels in adults after learning is complete and the song becomes more stereotyped. To test for the role of NR2B in generating song plasticity, we manipulated NR2B expression in LMAN of adult male zebra finches by increasing its protein levels to those found in juvenile birds, using a lentivirus containing the full-length coding sequence of the human NR2B subunit. We found that increased NR2B expression in adult LMAN induced increases in song sequence diversity and slower song tempo more similar to juvenile songs, but also increased syllable repetitions similar to stuttering. We did not observe these effects in control birds with overexpression of NR2B outside of LMAN or with the green fluorescent protein (GFP) in LMAN. Our results suggest that low NR2B subunit expression in adult LMAN is important in conserving features of stereotyped adult courtship song.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Liang-Fu Chen
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Emma E Fridel
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Marguerita E Klein
- Neurotransgenic Laboratory, Department of Neurobiology, Duke University, Durham, NC, 27710, USA
| | - Rebecca A Senft
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Neurobiology, Harvard University, Cambridge, MA, 02138, USA
| | - Abhra Sarkar
- Department of Statistical Science, Duke University, Durham, NC, 27710, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Murphy K, James LS, Sakata JT, Prather JF. Advantages of comparative studies in songbirds to understand the neural basis of sensorimotor integration. J Neurophysiol 2017; 118:800-816. [PMID: 28331007 DOI: 10.1152/jn.00623.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor integration is the process through which the nervous system creates a link between motor commands and associated sensory feedback. This process allows for the acquisition and refinement of many behaviors, including learned communication behaviors such as speech and birdsong. Consequently, it is important to understand fundamental mechanisms of sensorimotor integration, and comparative analyses of this process can provide vital insight. Songbirds offer a powerful comparative model system to study how the nervous system links motor and sensory information for learning and control. This is because the acquisition, maintenance, and control of birdsong critically depend on sensory feedback. Furthermore, there is an incredible diversity of song organizations across songbird species, ranging from songs with simple, stereotyped sequences to songs with complex sequencing of vocal gestures, as well as a wide diversity of song repertoire sizes. Despite this diversity, the neural circuitry for song learning, control, and maintenance remains highly similar across species. Here, we highlight the utility of songbirds for the analysis of sensorimotor integration and the insights about mechanisms of sensorimotor integration gained by comparing different songbird species. Key conclusions from this comparative analysis are that variation in song sequence complexity seems to covary with the strength of feedback signals in sensorimotor circuits and that sensorimotor circuits contain distinct representations of elements in the vocal repertoire, possibly enabling evolutionary variation in repertoire sizes. We conclude our review by highlighting important areas of research that could benefit from increased comparative focus, with particular emphasis on the integration of new technologies.
Collapse
Affiliation(s)
- Karagh Murphy
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| | - Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jonathan F Prather
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| |
Collapse
|
35
|
Zengin-Toktas Y, Woolley SC. Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry. PLoS One 2017; 12:e0172944. [PMID: 28235074 PMCID: PMC5325550 DOI: 10.1371/journal.pone.0172944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/13/2017] [Indexed: 11/19/2022] Open
Abstract
Across species, the performance of vocal signals can be modulated by the social environment. Zebra finches, for example, adjust their song performance when singing to females ('female-directed' or FD song) compared to when singing in isolation ('undirected' or UD song). These changes are salient, as females prefer the FD song over the UD song. Despite the importance of these performance changes, the neural mechanisms underlying this social modulation remain poorly understood. Previous work in finches has established that expression of the immediate early gene EGR1 is increased during singing and modulated by social context within the vocal control circuitry. Here, we examined whether particular neural subpopulations within those vocal control regions exhibit similar modulations of EGR1 expression. We compared EGR1 expression in neurons expressing parvalbumin (PV), a calcium buffer that modulates network plasticity and homeostasis, among males that performed FD song, males that produced UD song, or males that did not sing. We found that, overall, singing but not social context significantly affected EGR1 expression in PV neurons throughout the vocal control nuclei. We observed differences in EGR1 expression between two classes of PV interneurons in the basal ganglia nucleus Area X. Additionally, we found that singing altered the amount of PV expression in neurons in HVC and Area X and that distinct PV interneuron types in Area X exhibited different patterns of modulation by singing. These data indicate that throughout the vocal control circuitry the singing-related regulation of EGR1 expression in PV neurons may be less influenced by social context than in other neuron types and raise the possibility of cell-type specific differences in plasticity and calcium buffering.
Collapse
|
36
|
Tachibana RO, Takahasi M, Hessler NA, Okanoya K. Maturation-dependent control of vocal temporal plasticity in a songbird. Dev Neurobiol 2017; 77:995-1006. [PMID: 28188699 DOI: 10.1002/dneu.22487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022]
Abstract
Birdsong is a unique model to address learning mechanisms of the timing control of sequential behaviors, with characteristic temporal structures consisting of serial sequences of brief vocal elements (syllables) and silent intervals (gaps). Understanding the neural mechanisms for plasticity of such sequential behavior should be aided by characterization of its developmental changes. Here, we assessed the level of acute vocal plasticity between young and adult Bengalese finches, and also quantified developmental change in variability of temporal structure. Acute plasticity was tested by delivering aversive noise bursts contingent on duration of a target gap, such that birds could avoid the noise by modifying their song. We found that temporal variability of song features decreased with birds' maturation. Noise-avoidance experiments demonstrated that maximal changes of gap durations were larger in young that in adult birds. After these young birds matured, the maximal change decreased to a similar level as adults. The variability of these target gaps also decreased as the birds matured. Such parallel changes suggest that the level of acute temporal plasticity could be predicted from ongoing temporal variability. Further, we found that young birds gradually began to stop their song at the target gap and restart from the introductory part of song, whereas adults did not. According to a synaptic chain model for timing sequence generation in premotor nuclei, adult learning would be interpreted as adaptive changes in conduction delays between chain-to-chain connections, whereas the learning of young birds could mainly depend on changes of the connections. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 995-1006, 2017.
Collapse
Affiliation(s)
- Ryosuke O Tachibana
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Miki Takahasi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Neal A Hessler
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Cognition and Behavior Joint Laboratory, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
37
|
Woolley SC. Social context differentially modulates activity of two interneuron populations in an avian basal ganglia nucleus. J Neurophysiol 2016; 116:2831-2840. [PMID: 27628208 DOI: 10.1152/jn.00622.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/08/2016] [Indexed: 11/22/2022] Open
Abstract
Basal ganglia circuits are critical for the modulation of motor performance across behavioral states. In zebra finches, a cortical-basal ganglia circuit dedicated to singing is necessary for males to adjust their song performance and transition between spontaneous singing, when they are alone ("undirected" song), and a performance state, when they sing to a female ("female-directed" song). However, we know little about the role of different basal ganglia cell types in this behavioral transition or the degree to which behavioral context modulates the activity of different neuron classes. To investigate whether interneurons in the songbird basal ganglia encode information about behavioral state, I recorded from two interneuron types, fast-spiking interneurons (FSI) and external pallidal (GPe) neurons, in the songbird basal ganglia nucleus area X during both female-directed and undirected singing. Both cell types exhibited higher firing rates, more frequent bursting, and greater trial-by-trial variability in firing when male zebra finches produced undirected songs compared with when they produced female-directed songs. However, the magnitude and direction of changes to the firing rate, bursting, and variability of spiking between when birds sat silently and when they sang undirected and female-directed song varied between FSI and GPe neurons. These data indicate that social modulation of activity important for eliciting changes in behavioral state is present in multiple cell types within area X and suggests that social interactions may adjust circuit dynamics during singing at multiple points within the circuit.
Collapse
Affiliation(s)
- Sarah C Woolley
- Department of Biology and Center for Brain, Language, and Music, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome. PLoS One 2016; 11:e0161798. [PMID: 27575532 PMCID: PMC5004920 DOI: 10.1371/journal.pone.0161798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022] Open
Abstract
Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers) and untrained individuals (novices) in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.
Collapse
|
39
|
Toccalino DC, Sun H, Sakata JT. Social Memory Formation Rapidly and Differentially Affects the Motivation and Performance of Vocal Communication Signals in the Bengalese Finch (Lonchura striata var. domestica). Front Behav Neurosci 2016; 10:113. [PMID: 27378868 PMCID: PMC4906024 DOI: 10.3389/fnbeh.2016.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/24/2016] [Indexed: 01/24/2023] Open
Abstract
Cognitive processes like the formation of social memories can shape the nature of social interactions between conspecifics. Male songbirds use vocal signals during courtship interactions with females, but the degree to which social memory and familiarity influences the likelihood and structure of male courtship song remains largely unknown. Using a habituation-dishabituation paradigm, we found that a single, brief (<30 s) exposure to a female led to the formation of a short-term memory for that female: adult male Bengalese finches were significantly less likely to produce courtship song to an individual female when re-exposed to her 5 min later (i.e., habituation). Familiarity also rapidly decreased the duration of courtship songs but did not affect other measures of song performance (e.g., song tempo and the stereotypy of syllable structure and sequencing). Consistent with a contribution of social memory to the decrease in courtship song with repeated exposures to the same female, the likelihood that male Bengalese finches produced courtship song increased when they were exposed to a different female (i.e., dishabituation). Three consecutive exposures to individual females also led to the formation of a longer-term memory that persisted over days. Specifically, when courtship song production was assessed 2 days after initial exposures to females, males produced fewer and shorter courtship songs to familiar females than to unfamiliar females. Measures of song performance, however, were not different between courtship songs produced to familiar and unfamiliar females. The formation of a longer-term memory for individual females seemed to require at least three exposures because males did not differentially produce courtship song to unfamiliar females and females that they had been exposed to only once or twice. Taken together, these data indicate that brief exposures to individual females led to the rapid formation and persistence of social memories and support the existence of distinct mechanisms underlying the motivation to produce and the performance of courtship song.
Collapse
Affiliation(s)
| | - Herie Sun
- Department of Biology, McGill University Montreal, QC, Canada
| | - Jon T Sakata
- Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada; Department of Biology, McGill UniversityMontreal, QC, Canada; Center for Research in Behavioral NeurobiologyMontreal, QC, Canada
| |
Collapse
|
40
|
Colomb J, Brembs B. PKC in motorneurons underlies self-learning, a form of motor learning in Drosophila. PeerJ 2016; 4:e1971. [PMID: 27168980 PMCID: PMC4860329 DOI: 10.7717/peerj.1971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022] Open
Abstract
Tethering a fly for stationary flight allows for exquisite control of its sensory input, such as visual or olfactory stimuli or a punishing infrared laser beam. A torque meter measures the turning attempts of the tethered fly around its vertical body axis. By punishing, say, left turning attempts (in a homogeneous environment), one can train a fly to restrict its behaviour to right turning attempts. It was recently discovered that this form of operant conditioning (called operant self-learning), may constitute a form of motor learning in Drosophila. Previous work had shown that Protein Kinase C (PKC) and the transcription factor dFoxP were specifically involved in self-learning, but not in other forms of learning. These molecules are specifically involved in various forms of motor learning in other animals, such as compulsive biting in Aplysia, song-learning in birds, procedural learning in mice or language acquisition in humans. Here we describe our efforts to decipher which PKC gene is involved in self-learning in Drosophila. We also provide evidence that motorneurons may be one part of the neuronal network modified during self-learning experiments. The collected evidence is reminiscent of one of the simplest, clinically relevant forms of motor learning in humans, operant reflex conditioning, which also relies on motorneuron plasticity.
Collapse
Affiliation(s)
- Julien Colomb
- Biologie, Chemie, Pharmazie, Institut für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany; Institute of Zoology-Neurogenetics, Universität Regensburg, Regensburg, Germany
| | - Björn Brembs
- Biologie, Chemie, Pharmazie, Institut für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany; Institute of Zoology-Neurogenetics, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Simmonds AJ. A hypothesis on improving foreign accents by optimizing variability in vocal learning brain circuits. Front Hum Neurosci 2015; 9:606. [PMID: 26582984 PMCID: PMC4631821 DOI: 10.3389/fnhum.2015.00606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/20/2015] [Indexed: 11/13/2022] Open
Abstract
Rapid vocal motor learning is observed when acquiring a language in early childhood, or learning to speak another language later in life. Accurate pronunciation is one of the hardest things for late learners to master and they are almost always left with a non-native accent. Here, I propose a novel hypothesis that this accent could be improved by optimizing variability in vocal learning brain circuits during learning. Much of the neurobiology of human vocal motor learning has been inferred from studies on songbirds. Jarvis (2004) proposed the hypothesis that as in songbirds there are two pathways in humans: one for learning speech (the striatal vocal learning pathway), and one for production of previously learnt speech (the motor pathway). Learning new motor sequences necessary for accurate non-native pronunciation is challenging and I argue that in late learners of a foreign language the vocal learning pathway becomes inactive prematurely. The motor pathway is engaged once again and learners maintain their original native motor patterns for producing speech, resulting in speaking with a foreign accent. Further, I argue that variability in neural activity within vocal motor circuitry generates vocal variability that supports accurate non-native pronunciation. Recent theoretical and experimental work on motor learning suggests that variability in the motor movement is necessary for the development of expertise. I propose that there is little trial-by-trial variability when using the motor pathway. When using the vocal learning pathway variability gradually increases, reflecting an exploratory phase in which learners try out different ways of pronouncing words, before decreasing and stabilizing once the “best” performance has been identified. The hypothesis proposed here could be tested using behavioral interventions that optimize variability and engage the vocal learning pathway for longer, with the prediction that this would allow learners to develop new motor patterns that result in more native-like pronunciation.
Collapse
Affiliation(s)
- Anna J Simmonds
- Division of Brain Sciences, Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL), Imperial College London London, UK
| |
Collapse
|
42
|
Tachibana RO, Koumura T, Okanoya K. Variability in the temporal parameters in the song of the Bengalese finch (Lonchura striata var. domestica). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1157-68. [PMID: 26512015 DOI: 10.1007/s00359-015-1046-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022]
Abstract
Birdsong provides a unique model for studying the control mechanisms of complex sequential behaviors. The present study aimed to demonstrate that multiple factors affect temporal control in the song production. We analyzed the song of Bengalese finches in various time ranges to address factors that affected the duration of acoustic elements (notes) and silent intervals (gaps). The gaps showed more jitter across song renditions than did notes. Gaps had longer duration in branching points of song sequence than in stereotypic transitions, and the duration of a gap was correlated with the duration of the note that preceded the gap. When looking at the variation among song renditions, we found notable factors in three time ranges: within-day drift, within-bout changes, and local jitter. Note durations shortened over time from morning to evening. Within each song bout note durations lengthened as singing progressed, while gap durations lengthened only during the late part of song bout. Further analysis after removing these drift factors confirmed that the jitter remained in local song sequences. These results suggest distinct sources of temporal variability exist at multiple levels on the basis of this note-gap relationship, and that song comprised a mixture of these sources.
Collapse
Affiliation(s)
- Ryosuke O Tachibana
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takuya Koumura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan. .,Cognition and Behavior Joint Laboratory, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
43
|
Tang YP, Wade J. Sex and age differences in brain-derived neurotrophic factor and vimentin in the zebra finch song system: Relationships to newly generated cells. J Comp Neurol 2015; 524:1081-96. [PMID: 26355496 DOI: 10.1002/cne.23893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022]
Abstract
The neural song circuit is enhanced in male compared with female zebra finches due to differential rates of incorporation and survival of cells between the sexes. Two double-label immunohistochemical experiments were conducted to increase the understanding of relationships between newly generated cells (marked with bromodeoxyuridine [BrdU]) and those expressing brain-derived neurotrophic factor (BDNF) and vimentin, a marker for radial glia. The song systems of males and females were investigated at posthatching day 25 during a heightened period of sexual differentiation (following BrdU injections on days 6-10) and in adulthood (following a parallel injection paradigm). In both HVC (proper name) and the robust nucleus of the arcopallium (RA), about half of the BrdU-positive cells expressed BDNF across sexes and ages. Less than 10% of the BDNF-positive cells expressed BrdU, but this percentage was greater in juveniles than adults. Across both brain regions, more BDNF-positive cells were detected in males compared with females. In RA, the number of these cells was also greater in juveniles than adults. In HVC, the average cross-sectional area covered by the vimentin labeling was greater in males than females and in juveniles compared with adults. In RA, more vimentin was detected in juveniles than adults, and within adults it was greater in females. In juveniles only, BrdU-positive cells appeared in contact with vimentin-labeled fibers in HVC, RA, and Area X. Collectively, the results are consistent with roles of BDNF- and vimentin-labeled cells influencing sexually differentiated plasticity of the song circuit.
Collapse
Affiliation(s)
- Yu Ping Tang
- Department of Psychology, Michigan State University, East Lansing, Michigan, 48824
| | - Juli Wade
- Neuroscience Program, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
44
|
Tan AYY. Spatial diversity of spontaneous activity in the cortex. Front Neural Circuits 2015; 9:48. [PMID: 26441547 PMCID: PMC4585302 DOI: 10.3389/fncir.2015.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/24/2015] [Indexed: 12/05/2022] Open
Abstract
The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.
Collapse
Affiliation(s)
- Andrew Y Y Tan
- Center for Perceptual Systems and Department of Neuroscience, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
45
|
James LS, Sakata JT. Predicting plasticity: acute context-dependent changes to vocal performance predict long-term age-dependent changes. J Neurophysiol 2015; 114:2328-39. [PMID: 26311186 DOI: 10.1152/jn.00688.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the factors that predict and guide variation in behavioral change can lend insight into mechanisms of motor plasticity and individual differences in behavior. The performance of adult birdsong changes with age in a manner that is similar to rapid context-dependent changes to song. To reveal mechanisms of vocal plasticity, we analyzed the degree to which variation in the direction and magnitude of age-dependent changes to Bengalese finch song could be predicted by variation in context-dependent changes. Using a repeated-measures design, we found that variation in age-dependent changes to the timing, sequencing, and structure of vocal elements ("syllables") was significantly predicted by variation in context-dependent changes. In particular, the degree to which the duration of intersyllable gaps, syllable sequencing at branch points, and fundamental frequency of syllables within spontaneous [undirected (UD)] songs changed over time was correlated with the degree to which these features changed from UD song to female-directed (FD) song in young-adult finches (FDyoung). As such, the structure of some temporal features of UD songs converged over time onto the structure of FDyoung songs. This convergence suggested that the FDyoung song could serve as a stable target for vocal motor plasticity. Consequently, we analyzed the stability of FD song and found that the temporal structure of FD song changed significantly over time in a manner similar to UD song. Because FD song is considered a state of heightened performance, these data suggest that age-dependent changes could reflect practice-related improvements in vocal motor performance.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Matheson LE, Sun H, Sakata JT. Forebrain circuits underlying the social modulation of vocal communication signals. Dev Neurobiol 2015; 76:47-63. [PMID: 25959605 DOI: 10.1002/dneu.22298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 12/27/2022]
Abstract
Across vertebrate species, signalers alter the structure of their communication signals based on the social context. For example, male Bengalese finches produce faster and more stereotyped songs when directing song to females (female-directed [FD] song) than when singing in isolation (undirected [UD] song), and such changes have been found to increase the attractiveness of a male's song. Despite the importance of such social influences, little is known about the mechanisms underlying the social modulation of communication signals. To this end, we analyzed differences in immediate early gene (EGR-1) expression when Bengalese finches produced FD or UD song. Relative to silent birds, EGR-1 expression was elevated in birds producing either FD or UD song throughout vocal control circuitry, including the interface nucleus of the nidopallium (NIf), HVC, the robust nucleus of the arcopallium (RA), Area X, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Moreover, EGR-1 expression was higher in HVC, RA, Area X, and LMAN in males producing UD song than in males producing FD song, indicating that social context modulated EGR-1 expression in these areas. However, EGR-1 expression was not significantly different between males producing FD or UD song in NIf, the primary vocal motor input into HVC, suggesting that context-dependent changes could arise de novo in HVC. The pattern of context-dependent differences in EGR-1 expression in the Bengalese finch was highly similar to that in the zebra finch and suggests that social context affects song structure by modulating activity throughout vocal control nuclei.
Collapse
Affiliation(s)
| | - Herie Sun
- Department of Biology, McGill University
| | | |
Collapse
|
47
|
Phylogenetic and individual variation in gastropod central pattern generators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:829-39. [PMID: 25837447 DOI: 10.1007/s00359-015-1007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/28/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
Gastropod molluscs provide a unique opportunity to explore the neural basis of rhythmic behaviors because of the accessibility of their nervous systems and the number of species that have been examined. Detailed comparisons of the central pattern generators (CPGs) underlying rhythmic feeding and swimming behaviors highlight the presence and effects of variation in neural circuits both across and within species. The feeding motor pattern of the snail, Lymnaea, is stereotyped, whereas the feeding motor pattern in the sea hare, Aplysia, is variable. However, the Aplysia motor pattern is regularized with operant conditioning or by mimicking learning using the dynamic clamp to change properties of CPG neurons. Swimming evolved repeatedly in marine gastropods. Distinct neural mechanisms underlie dissimilar forms of swimming, with homologous neurons playing different roles. However, even similar swimming behaviors in different species can be produced by distinct neural mechanisms, resulting from different synaptic connectivity of homologous neurons. Within a species, there can be variation in the strength and even valence of synapses, which does not have functional relevance under normal conditions, but can cause some individuals to be more susceptible to lesion of the circuit. This inter- and intra-species variation provides novel insights into CPG function and plasticity.
Collapse
|
48
|
Variations on a theme: Songbirds, variability, and sensorimotor error correction. Neuroscience 2014; 296:48-54. [PMID: 25305664 DOI: 10.1016/j.neuroscience.2014.09.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 11/20/2022]
Abstract
Songbirds provide a powerful animal model for investigating how the brain uses sensory feedback to correct behavioral errors. Here, we review a recent study in which we used online manipulations of auditory feedback to quantify the relationship between sensory error size, motor variability, and vocal plasticity. We found that although inducing small auditory errors evoked relatively large compensatory changes in behavior, as error size increased the magnitude of error correction declined. Furthermore, when we induced large errors such that auditory signals no longer overlapped with the baseline distribution of feedback, the magnitude of error correction approached zero. This pattern suggests a simple and robust strategy for the brain to maintain the accuracy of learned behaviors by evaluating sensory signals relative to the previously experienced distribution of feedback. Drawing from recent studies of auditory neurophysiology and song discrimination, we then speculate as to the mechanistic underpinnings of the results obtained in our behavioral experiments. Finally, we review how our own and other studies exploit the strengths of the songbird system, both in the specific context of vocal systems and more generally as a model of the neural control of complex behavior.
Collapse
|