1
|
Regoni M, Zanetti L, Sevegnani M, Domenicale C, Magnabosco S, Patel JC, Fernandes MK, Feeley RM, Monzani E, Mini C, Comai S, Cherchi L, De Gregorio D, Soliman I, Ruto F, Croci L, Consalez G, Rodighiero S, Ciammola A, Valtorta F, Morari M, Piccoli G, Rice ME, Sassone J. Dopamine neuron dysfunction and loss in the PrknR275W mouse model of juvenile parkinsonism. Brain 2024; 147:4017-4025. [PMID: 39350737 DOI: 10.1093/brain/awae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 11/07/2024] Open
Abstract
Mutations in the PRKN gene encoding the protein parkin cause autosomal recessive juvenile parkinsonism (ARJP). Harnessing this mutation to create an early-onset Parkinson's disease mouse model would provide a unique opportunity to clarify the mechanisms involved in the neurodegenerative process and lay the groundwork for the development of neuroprotective strategies. To this end, we created a knock-in mouse carrying the homozygous PrknR275W mutation, which is the missense mutation with the highest allelic frequency in PRKN patients. We evaluated the anatomical and functional integrity of the nigrostriatal dopamine (DA) pathway, as well as motor behaviour in PrknR275W mice of both sexes. We report here that PrknR275W mice show early DA neuron dysfunction, age-dependent loss of DA neurons in the substantia nigra, decreased DA content and stimulus-evoked DA release in the striatum, and progressive motor impairment. Together, these data show that the PrknR275W mouse recapitulates key features of ARJP. Thus, these studies fill a critical need in the field by introducing a promising new Parkinson's disease model in which to study causative mechanisms of the disease and test therapeutic strategies.
Collapse
Affiliation(s)
- Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Letizia Zanetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Martina Sevegnani
- Dulbecco Telethon Institute, Laboratory of Biology of Synapse, Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Chiara Domenicale
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Magnabosco
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Jyoti C Patel
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Megan K Fernandes
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ryan M Feeley
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elena Monzani
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cecilia Mini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Statistics, Computer Science, Applications (DiSIA), University of Florence, 50134 Florence, Italy
| | - Stefano Comai
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy
| | - Laura Cherchi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Isabella Soliman
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Ruto
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Croci
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giacomo Consalez
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Andrea Ciammola
- IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience, 20149 Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Michele Morari
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Giovanni Piccoli
- Dulbecco Telethon Institute, Laboratory of Biology of Synapse, Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
2
|
Li Y, Fu J, Wang H. Advancements in Targeting Ion Channels for the Treatment of Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:1462. [PMID: 39598374 PMCID: PMC11597607 DOI: 10.3390/ph17111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Ion channels are integral membrane proteins embedded in biological membranes, and they comprise specific proteins that control the flow of ion transporters in and out of cells, playing crucial roles in the biological functions of different cells. They maintain the homeostasis of water and ion metabolism by facilitating ion transport and participate in the physiological processes of neurons and glial cells by regulating signaling pathways. Neurodegenerative diseases are a group of disorders characterized by the progressive loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS). Despite significant progress in understanding the pathophysiological processes of various neurological diseases in recent years, effective treatments for mitigating the damage caused by these diseases remain inadequate. Increasing evidence suggests that ion channels are closely associated with neuroinflammation; oxidative stress; and the characteristic proteins in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, studying the pathogenic mechanisms closely related to ion channels in neurodegenerative diseases can help identify more effective therapeutic targets for treating neurodegenerative diseases. Here, we discuss the progress of research on ion channels in different neurodegenerative diseases and emphasize the feasibility and potential of treating such diseases from the perspective of ion channels.
Collapse
Affiliation(s)
- Yuxuan Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
| |
Collapse
|
3
|
Kammarchedu V, Asgharian H, Zhou K, Soltan Khamsi P, Ebrahimi A. Recent advances in graphene-based electroanalytical devices for healthcare applications. NANOSCALE 2024; 16:12857-12882. [PMID: 38888429 PMCID: PMC11238565 DOI: 10.1039/d3nr06137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Graphene, with its outstanding mechanical, electrical, and biocompatible properties, stands out as an emerging nanomaterial for healthcare applications, especially in building electroanalytical biodevices. With the rising prevalence of chronic diseases and infectious diseases, such as the COVID-19 pandemic, the demand for point-of-care testing and remote patient monitoring has never been greater. Owing to their portability, ease of manufacturing, scalability, and rapid and sensitive response, electroanalytical devices excel in these settings for improved healthcare accessibility, especially in resource-limited settings. The development of different synthesis methods yielding large-scale graphene and its derivatives with controllable properties, compatible with device manufacturing - from lithography to various printing methods - and tunable electrical, chemical, and electrochemical properties make it an attractive candidate for electroanalytical devices. This review article sheds light on how graphene-based devices can be transformative in addressing pressing healthcare needs, ranging from the fundamental understanding of biology in in vivo and ex vivo studies to early disease detection and management using in vitro assays and wearable devices. In particular, the article provides a special focus on (i) synthesis and functionalization techniques, emphasizing their suitability for scalable integration into devices, (ii) various transduction methods to design diverse electroanalytical device architectures, (iii) a myriad of applications using devices based on graphene, its derivatives, and hybrids with other nanomaterials, and (iv) emerging technologies at the intersection of device engineering and advanced data analytics. Finally, some of the major hurdles that graphene biodevices face for translation into clinical applications are discussed.
Collapse
Affiliation(s)
- Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Heshmat Asgharian
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Pouya Soltan Khamsi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Khamis H, Cohen O. Coupled action potential and calcium dynamics underlie robust spontaneous firing in dopaminergic neurons. Phys Biol 2024; 21:026005. [PMID: 38382117 DOI: 10.1088/1478-3975/ad2bd4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Dopaminergic neurons are specialized cells in the substantia nigra, tasked with dopamine secretion. This secretion relies on intracellular calcium signaling coupled to neuronal electrical activity. These neurons are known to display spontaneous calcium oscillationsin-vitroandin-vivo, even in synaptic isolation, controlling the basal dopamine levels. Here we outline a kinetic model for the ion exchange across the neuronal plasma membrane. Crucially, we relax the assumption of constant, cytoplasmic sodium and potassium concentration. We show that sodium-potassium dynamics are strongly coupled to calcium dynamics and are essential for the robustness of spontaneous firing frequency. The model predicts several regimes of electrical activity, including tonic and 'burst' oscillations, and predicts the switch between those in response to perturbations. 'Bursting' correlates with increased calcium amplitudes, while maintaining constant average, allowing for a vast change in the calcium signal responsible for dopamine secretion. All the above traits provide the flexibility to create rich action potential dynamics that are crucial for cellular function.
Collapse
Affiliation(s)
- Hadeel Khamis
- Gateway Institute for Brain Research, Fort Lauderdale, FL 33314, United States of America
| | - Ohad Cohen
- Gateway Institute for Brain Research, Fort Lauderdale, FL 33314, United States of America
| |
Collapse
|
5
|
O’Day DH. The Complex Interplay between Toxic Hallmark Proteins, Calmodulin-Binding Proteins, Ion Channels, and Receptors Involved in Calcium Dyshomeostasis in Neurodegeneration. Biomolecules 2024; 14:173. [PMID: 38397410 PMCID: PMC10886625 DOI: 10.3390/biom14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Calcium dyshomeostasis is an early critical event in neurodegeneration as exemplified by Alzheimer's (AD), Huntington's (HD) and Parkinson's (PD) diseases. Neuronal calcium homeostasis is maintained by a diversity of ion channels, buffers, calcium-binding protein effectors, and intracellular storage in the endoplasmic reticulum, mitochondria, and lysosomes. The function of these components and compartments is impacted by the toxic hallmark proteins of AD (amyloid beta and Tau), HD (huntingtin) and PD (alpha-synuclein) as well as by interactions with downstream calcium-binding proteins, especially calmodulin. Each of the toxic hallmark proteins (amyloid beta, Tau, huntingtin, and alpha-synuclein) binds to calmodulin. Multiple channels and receptors involved in calcium homeostasis and dysregulation also bind to and are regulated by calmodulin. The primary goal of this review is to show the complexity of these interactions and how they can impact research and the search for therapies. A secondary goal is to suggest that therapeutic targets downstream from calcium dyshomeostasis may offer greater opportunities for success.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
6
|
Zald DH. The influence of dopamine autoreceptors on temperament and addiction risk. Neurosci Biobehav Rev 2023; 155:105456. [PMID: 37926241 PMCID: PMC11330662 DOI: 10.1016/j.neubiorev.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As a major regulator of dopamine (DA), DA autoreceptors (DAARs) exert substantial influence over DA-mediated behaviors. This paper reviews the physiological and behavioral impact of DAARs. Individual differences in DAAR functioning influences temperamental traits such as novelty responsivity and impulsivity, both of which are associated with vulnerability to addictive behavior in animal models and a broad array of externalizing behaviors in humans. DAARs additionally impact the response to psychostimulants and other drugs of abuse. Human PET studies of D2-like receptors in the midbrain provide evidence for parallels to the animal literature. These data lead to the proposal that weak DAAR regulation is a risk factor for addiction and externalizing problems. The review highlights the potential to build translational models of the functional role of DAARs in behavior. It also draws attention to key limitations in the current literature that would need to be addressed to further advance a weak DAAR regulation model of addiction and externalizing risk.
Collapse
Affiliation(s)
- David H Zald
- Center for Advanced Human Brain Imaging and Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
7
|
Burkert N, Roy S, Häusler M, Wuttke D, Müller S, Wiemer J, Hollmann H, Oldrati M, Ramirez-Franco J, Benkert J, Fauler M, Duda J, Goaillard JM, Pötschke C, Münchmeyer M, Parlato R, Liss B. Deep learning-based image analysis identifies a DAT-negative subpopulation of dopaminergic neurons in the lateral Substantia nigra. Commun Biol 2023; 6:1146. [PMID: 37950046 PMCID: PMC10638391 DOI: 10.1038/s42003-023-05441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify cell numbers, and fluorescence signals within cellular compartments, derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour, and are differentially affected in Parkinson's and other diseases. DLAP allows the analysis of large cell numbers, and facilitates the identification of small cellular subpopulations. Using DLAP, we identified a small subpopulation of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter (DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehydrogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold higher likelihood of calbindin-d28k co-expression (~70%). These results have important implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for dopaminergic SN neurons.
Collapse
Affiliation(s)
- Nicole Burkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Shoumik Roy
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
| | - Max Häusler
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | | | - Sonja Müller
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Wiemer
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Helene Hollmann
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Marvin Oldrati
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jorge Ramirez-Franco
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Julia Benkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Duda
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jean-Marc Goaillard
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Christina Pötschke
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Moritz Münchmeyer
- Wolution GmbH & Co. KG, 82152, Munich, Germany
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Rosanna Parlato
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167, Mannheim, Germany
| | - Birgit Liss
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
- Linacre College & New College, Oxford University, OX1 2JD, Oxford, UK.
| |
Collapse
|
8
|
Saputra F, Lai YH, Roldan MJM, Alos HC, Aventurado CA, Vasquez RD, Hsiao CD. The Effect of the Pyrethroid Pesticide Fenpropathrin on the Cardiac Performance of Zebrafish and the Potential Mechanism of Toxicity. BIOLOGY 2023; 12:1214. [PMID: 37759613 PMCID: PMC10525504 DOI: 10.3390/biology12091214] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Fenpropathrin, a pyrethroid insecticide, has been widely used for many years in agricultural fields. It works by disturbing the voltage-gated sodium channel, leading to paralysis and the death of the target animal. While past studies have focused on neurodegeneration following fenpropathrin poisoning in humans, relatively few pieces of research have examined its effect on other peripheral organs. This study successfully investigated the potential toxicity of fenpropathrin on the cardiovascular system using zebrafish as an animal model. Zebrafish larvae exposed to varying doses of fenpropathrin underwent an evaluation of cardiac physiology by measuring the heart rate, stroke volume, cardiac output, and shortening fraction. The blood flow velocity and the dorsal aorta diameter were also measured to assess the impact of fenpropathrin exposure on the vascular system. Furthermore, molecular docking was performed to evaluate the pesticide binding affinity to various proteins associated with the cardiovascular system, revealing the potential mechanism of the fenpropathrin cardiotoxic effect. The findings demonstrated a significant dose-dependent increase in the heart rate stroke volume, cardiac output, shortening fraction, and ejection fraction of zebrafish larvae after 24 h of acute treatment with fenpropathrin. Additionally, zebrafish treated at a concentration of 1 ppm exhibited significantly larger blood vessels in diameter and an increased blood flow velocity compared to the control group. According to molecular docking, fenpropathrin showed a high affinity for various voltage-gated sodium channels like scn1lab, cacna1sb, and clcn3. Finally, from the results, we found that fenpropathrin caused cardiomegaly, which may have been induced by the voltage-gated sodium channel disruption. This study highlights the significant disruption of fenpropathrin in the cardiovascular system and emphasizes the need for further research on the health implications of this pesticide.
Collapse
Affiliation(s)
- Ferry Saputra
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Marri Jmelou M. Roldan
- The Graduate School, University of Santo Tomas, Manila 1008, Philippines; (M.J.M.R.); (H.C.A.); (C.A.A.)
| | - Honeymae C. Alos
- The Graduate School, University of Santo Tomas, Manila 1008, Philippines; (M.J.M.R.); (H.C.A.); (C.A.A.)
| | - Charlaine A. Aventurado
- The Graduate School, University of Santo Tomas, Manila 1008, Philippines; (M.J.M.R.); (H.C.A.); (C.A.A.)
| | - Ross D. Vasquez
- The Graduate School, University of Santo Tomas, Manila 1008, Philippines; (M.J.M.R.); (H.C.A.); (C.A.A.)
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| |
Collapse
|
9
|
Jampolska M, Andrzejewski K, Boguszewski PM, Kaczyńska K. L-DOPA Improves Ventilation but Not the Ventilatory Response to Hypercapnia in a Reserpine Model of Parkinson's Disease. Brain Sci 2023; 13:brainsci13050775. [PMID: 37239247 DOI: 10.3390/brainsci13050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by progressive degeneration of the substantia nigra that affects mainly movement control. However, pathological changes associated with the development of PD may also alter respiration and can lead to chronic episodes of hypoxia and hypercapnia. The mechanism behind impaired ventilation in PD is unclear. Therefore, in this study, we explore the hypercapnic ventilatory response in a reproducible reserpine-induced (RES) model of PD and parkinsonism. We also investigated how dopamine supplementation with L-DOPA, a classic drug used to treat PD, would affect the breathing and respiratory response to hypercapnia. Reserpine treatment resulted in decreased normocapnic ventilation and behavioral changes manifested as low physical activity and exploratory behavior. The respiratory rate and the minute ventilation response to hypercapnia were significantly higher in sham rats compared to the RES group, while the tidal volume response was lower. All of this appears to be due to reduced baseline ventilation values produced by reserpine. L-DOPA reversed reduced ventilation, indicating a stimulatory effect of DA on breathing, and showed the potency of DA supplementation in restoring normal respiratory activity.
Collapse
Affiliation(s)
- Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Ludwika Pasteura 3 St., 02-093 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:673-688. [PMID: 36961665 DOI: 10.1007/s10787-023-01192-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Parkinson's disease (PD) is an advanced neurodegenerative disease (NDD) caused by the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). As PD is an age-related disorder, the majority of PD patients are associated with musculoskeletal disorders with prolonged use of analgesic and anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (NSAIDs). Therefore, NSAIDs can affect PD neuropathology in different ways. Thus, the objective of the present narrative review was to clarify the potential role of NSAIDs in PD according to the assorted view of preponderance. Inhibition of neuroinflammation and modulation of immune response by NSAIDs could be an effective way in preventing the development of NDD. NSAIDs affect PD neuropathology in different manners could be beneficial or detrimental effects. Inhibition of cyclooxygenase 2 (COX2) by NSAIDs may prevent the development of PD. NSAIDs afforded a neuroprotective role against the development and progression of PD neuropathology through the modulation of neuroinflammation. Though, NSAIDs may lead to neutral or harmful effects by inhibiting neuroprotective prostacyclin (PGI2) and accentuation of pro-inflammatory leukotrienes (LTs). In conclusion, there is still a potential conflict regarding the effect of NSAIDs on PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
11
|
Role of voltage-sensitive Ca 2+ channels in the in vivo dopamine release induced by the organophosphorus pesticide glufosinate ammonium in rat striatum. Toxicol Lett 2022; 373:105-113. [PMID: 36427774 DOI: 10.1016/j.toxlet.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The possible role of voltage-sensitive calcium channels (VSCC) activation in the glufosinate ammonium (GLA)-induced dopamine release was investigated using selective VSCC blockers and the dopamine levels were measured by HPLC from samples obtained by in vivo cerebral microdialysis. While pretreatment with 10 μM flunarizine (T-type VSCC antagonist) or nicardipine (L-type VSCC antagonist) had no statistically significant effect on dopamine release induced by 10 mM GLA, pretreatment with 100 μM of both antagonists, or 20 μM ω-conotoxin MVIIC (non-selective P/Q-type VSCC antagonist) significantly decreased the GLA-induced dopamine release over 72.2%, 73%, and 70.2%, respectively. Administration of the specific antagonist of neuronal N-type VSCCs, the ω-conotoxin GVIA (20 μM), produced an almost complete blockade of in vivo dopamine release induced by GLA. These results show that GLA-induced dopamine release could be produced by the activation of a wide range of striatal VSCC located at the synaptic terminals and axons of striatal dopaminergic neurons, especially N-type VSCC.
Collapse
|
12
|
Siller A, Hofer NT, Tomagra G, Burkert N, Hess S, Benkert J, Gaifullina A, Spaich D, Duda J, Poetschke C, Vilusic K, Fritz EM, Schneider T, Kloppenburg P, Liss B, Carabelli V, Carbone E, Ortner NJ, Striessnig J. β2-subunit alternative splicing stabilizes Cav2.3 Ca 2+ channel activity during continuous midbrain dopamine neuron-like activity. eLife 2022; 11:e67464. [PMID: 35792082 PMCID: PMC9307272 DOI: 10.7554/elife.67464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
In dopaminergic (DA) Substantia nigra (SN) neurons Cav2.3 R-type Ca2+-currents contribute to somatodendritic Ca2+-oscillations. This activity may contribute to the selective degeneration of these neurons in Parkinson's disease (PD) since Cav2.3-knockout is neuroprotective in a PD mouse model. Here, we show that in tsA-201-cells the membrane-anchored β2-splice variants β2a and β2e are required to stabilize Cav2.3 gating properties allowing sustained Cav2.3 availability during simulated pacemaking and enhanced Ca2+-currents during bursts. We confirmed the expression of β2a- and β2e-subunit transcripts in the mouse SN and in identified SN DA neurons. Patch-clamp recordings of mouse DA midbrain neurons in culture and SN DA neurons in brain slices revealed SNX-482-sensitive R-type Ca2+-currents with voltage-dependent gating properties that suggest modulation by β2a- and/or β2e-subunits. Thus, β-subunit alternative splicing may prevent a fraction of Cav2.3 channels from inactivation in continuously active, highly vulnerable SN DA neurons, thereby also supporting Ca2+ signals contributing to the (patho)physiological role of Cav2.3 channels in PD.
Collapse
Affiliation(s)
- Anita Siller
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Nadja T Hofer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Giulia Tomagra
- Department of Drug Science, NIS Centre, University of TorinoTorinoItaly
| | - Nicole Burkert
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Simon Hess
- Institute for Zoology, Biocenter, University of CologneCologneGermany
| | - Julia Benkert
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Aisylu Gaifullina
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Desiree Spaich
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Johanna Duda
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | | | - Kristina Vilusic
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Toni Schneider
- Institute of Neurophysiology, University of CologneCologneGermany
| | - Peter Kloppenburg
- Institute for Zoology, Biocenter, University of CologneCologneGermany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
- Linacre College & New College, University of OxfordOxfordUnited Kingdom
| | | | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of TorinoTorinoItaly
| | - Nadine Jasmin Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| |
Collapse
|
13
|
Choudhury SP, Bano S, Sen S, Suchal K, Kumar S, Nikolajeff F, Dey SK, Sharma V. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:66. [PMID: 35650269 PMCID: PMC9160246 DOI: 10.1038/s41531-022-00324-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurological disorder that affects the movement of the human body. It is primarily characterized by reduced dopamine levels in the brain. The causative agent of PD is still unclear but it is generally accepted that α-synuclein has a central role to play. It is also known that gap-junctions and associated connexins are complicated structures that play critical roles in nervous system signaling and associated misfunctioning. Thus, our current article emphasizes how, alongside α-synuclein, ion-channels, gap-junctions, and related connexins, all play vital roles in influencing multiple metabolic activities of the brain during PD. It also highlights that ion-channel and gap-junction disruptions, which are primarily mediated by their structural-functional changes and alterations, have a role in PD. Furthermore, we discussed available drugs and advanced therapeutic interventions that target Parkinson's pathogenesis. In conclusion, it warrants creating better treatments for PD patients. Although, dopaminergic replenishment therapy is useful in treating neurological problems, such therapies are, however, unable to control the degeneration that underpins the disease, thereby declining their overall efficacy. This creates an additional challenge and an untapped scope for neurologists to adopt treatments for PD by targeting the ion-channels and gap-junctions, which is well-reviewed in the present article.
Collapse
Affiliation(s)
- Saptamita Paul Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sarika Bano
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Srijon Sen
- Indian Institute of Technology-Kharagpur, Kharagpur, 721302, India
| | - Kapil Suchal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| | - Saroj Kumar
- Deparment of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| |
Collapse
|
14
|
Liu M, Liu C, Xiao X, Han S, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Role of upregulation of the K ATP channel subunit SUR1 in dopaminergic neuron degeneration in Parkinson's disease. Aging Cell 2022; 21:e13618. [PMID: 35441806 PMCID: PMC9124303 DOI: 10.1111/acel.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence suggests that ATP‐sensitive potassium (KATP) channels play an important role in the selective degeneration of dopaminergic neurons in the substantia nigra (SN). Furthermore, the expression of the KATP channel subunit sulfonylurea receptor 1 (SUR1) is upregulated in the remaining nigral dopaminergic neurons in Parkinson's disease (PD). However, the mechanism underlying this selective upregulation of the SUR1 subunit and its subsequent roles in PD progression are largely unknown. In 3‐, 6‐, and 9‐month‐old A53T α‐synuclein transgenic (α‐SynA53T+/+) mice, only the SUR1 subunit and not SUR2B or Kir6.2 was upregulated, accompanied by neuronal damage. Moreover, the occurrence of burst firing in dopaminergic neurons was increased with the upregulation of the SUR1 subunit, whereas no changes in the firing rate were observed except in 9‐month‐old α‐SynA53T+/+ mice. After interference with SUR1 expression by injection of lentivirus into the SN, the progression of dopaminergic neuron degeneration was delayed. Further studies showed that elevated expression of the transcription factors FOXA1 and FOXA2 could cause the upregulation of the SUR1 subunit in α‐SynA53T+/+ mice. Our findings revealed the regulatory mechanism of the SUR1 subunit and the role of KATP channels in the progression of dopaminergic neuron degeneration, providing a new target for PD drug therapy.
Collapse
Affiliation(s)
- Min Liu
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Cui Liu
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Xue Xiao
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Shuai‐Shuai Han
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Ming‐Xia Bi
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Qian Jiao
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Xi Chen
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Chun‐Ling Yan
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Xi‐Xun Du
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| | - Hong Jiang
- Department of Physiology Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology School of Basic Medicine Qingdao University Qingdao China
| |
Collapse
|
15
|
Age-dependent alterations in key components of the nigrostriatal dopaminergic system and distinct motor phenotypes. Acta Pharmacol Sin 2022; 43:862-875. [PMID: 34244603 PMCID: PMC8975991 DOI: 10.1038/s41401-021-00713-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023] Open
Abstract
The nigrostriatal dopaminergic (DA) system, which includes DA neurons in the ventral and dorsal tiers of the substantia nigra pars compacta (vSNc, dSNc) and DA terminals in the dorsal striatum, is critically implicated in motor control. Accumulating studies demonstrate that both the nigrostriatal DA system and motor function are impaired in aged subjects. However, it is unknown whether dSNc and vSNc DA neurons and striatal DA terminals age in similar patterns, and whether these changes parallel motor deficits. To address this, we performed ex vivo patch-clamp recordings in dSNc and vSNc DA neurons, measured striatal dopamine release, and analyzed motor behaviors in rodents. Spontaneous firing in dSNc and vSNc DA neurons and depolarization-evoked firing in dSNc DA neurons showed inverse V-shaped changes with age. But depolarization-evoked firing in vSNc DA neurons increased with age. In the dorsal striatum, dopamine release declined with age. In locomotor tests, 12-month-old rodents showed hyperactive exploration, relative to 6- and 24-month-old rodents. Additionally, aged rodents showed significant deficits in coordination. Elevating dopamine levels with a dopamine transporter inhibitor improved both locomotion and coordination. Therefore, key components in the nigrostriatal DA system exhibit distinct aging patterns and may contribute to age-related alterations in locomotion and coordination.
Collapse
|
16
|
Zheng G, Zhao L, Yuan D, Li J, Yang G, Song D, Miao H, Shu L, Mo X, Xu X, Li L, Song X, Zhao Y. A genetically encoded fluorescent biosensor for monitoring ATP in living cells with heterobifunctional aptamers. Biosens Bioelectron 2022; 198:113827. [PMID: 34861524 DOI: 10.1016/j.bios.2021.113827] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Visualizing the dynamics of ATP in living cells is key to understanding cellular energy metabolism and related diseases. However, the live-cell applications of current methods are still limited due to challenges in biological compatibility and sensitivity to pH. Herein, a novel label-free fluorescent " turn-on " biosensor for monitoring ATP in living bacterias and mammalian cells was developed. This biosensor (Broc-ATP) employed heterobifunctional aptamers to detect ATP with high sensitivity in vitro. In our system, a very useful tandem method was established by combining four Broc-ATPs with 3 × F30 three-way junction scaffold to construct an intracellular biosensor that achieves sufficient fluorescence to respond to intracellular ATP. This intracellular biosensor can be used for sensitive and specific dynamic imaging of ATP in mammalian cells. Hence, this genetically encoded biosensor provides a robust and efficient tool for the detection of intracellular ATP dynamics and 3 × F30 tandem method expands the application of heterobifunctional aptamers in mammalian cells.
Collapse
Affiliation(s)
- Guoliang Zheng
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Liang Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Deyu Yuan
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jia Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Gang Yang
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Danxia Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Hui Miao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Linjuan Shu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
17
|
Zhu J, Huang X, Song W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS NANO 2021; 15:18708-18741. [PMID: 34881870 DOI: 10.1021/acsnano.1c05806] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Laser-induced graphene (LIG) is produced rapidly by directly irradiating carbonaceous precursors, and it naturally exhibits as a three-dimensional porous structure. Due to advantages such as simple preparation, time-saving, environmental friendliness, low cost, and expanding categories of raw materials, LIG and its derivatives have achieved broad applications in sensors. This has been witnessed in various fields such as wearable devices, disease diagnosis, intelligent robots, and pollution detection. However, despite LIG sensors having demonstrated an excellent capability to monitor physical and chemical parameters, the systematic review of synthesis, sensing mechanisms, and applications of them combined with comparison against other preparation approaches of graphene is still lacking. Here, graphene-based sensors for physical, biological, and chemical detection are reviewed first, followed by the introduction of general preparation methods for the laser-induced method to yield graphene. The preparation and advantages of LIG, sensing mechanisms, and the properties of different types of emerging LIG-based sensors are comprehensively reviewed. Finally, possible solutions to the problems and challenges of preparing LIG and LIG-based sensors are proposed. This review may serve as a detailed reference to guide the development of LIG-based sensors that possess properties for future smart sensors in health care, environmental protection, and industrial production.
Collapse
Affiliation(s)
- Junbo Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Weixing Song
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| |
Collapse
|
18
|
Song N, Fang Y, Zhu H, Liu J, Jiang S, Sun S, Xu R, Ding J, Hu G, Lu M. Kir6.2 is essential to maintain neurite features by modulating PM20D1-reduced mitochondrial ATP generation. Redox Biol 2021; 47:102168. [PMID: 34673451 PMCID: PMC8577462 DOI: 10.1016/j.redox.2021.102168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
Kir6.2, a pore-forming subunit of the ATP-sensitive potassium (KATP) channels, regulates the functions of metabolically active tissues and acts as an ideal therapeutic target for multiple diseases. Previous studies have been conducted on peripheral kir6.2, but its precise physiological roles in the central nervous system (CNS) have rarely been revealed. In the current study, we evaluated the neurophenotypes and neuroethology of kir6.2 knockout (kir6.2-/-) mice. We demonstrated the beneficial effects of kir6.2 on maintaining the morphology of mesencephalic neurons and controlling the motor coordination of mice. The mechanisms underlying the abnormal neurological features of kir6.2 deficiency were analyzed by RNA sequencing (RNA-seq). Pm20d1, a gene encoding PM20D1 secretase that promotes the generation of endogenous mitochondria uncouplers in vivo, was dramatically upregulated in the midbrain of kir6.2-/- mice. Further investigations verified that PM20D1-induced increase of N-acyl amino acids (N-AAAs) from circulating fatty acids and amino acids promoted mitochondrial impairments and cut down the ATP generation, which mediated the morphological defects of the mesencephalic neurons and thus led to the behavioral impairments of kir6.2 knockout mice. This study is the first evidence to demonstrate the roles of kir6.2 in the morphological maintenance of neurite and motor coordination control of mice, which extends our understanding of kir6.2/KATP channels in regulating the neurophysiological function.
Collapse
Affiliation(s)
- Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Siyuan Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Sifan Sun
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rong Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China; Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China; Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
19
|
Sakamaki G, Johnson K, Mensinger M, Hmu E, Klein AH. Loss of SUR1 subtype K ATP channels alters antinociception and locomotor activity after opioid administration. Behav Brain Res 2021; 414:113467. [PMID: 34274374 PMCID: PMC11019344 DOI: 10.1016/j.bbr.2021.113467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Opioid signaling can occur through several downstream mediators and influence analgesia as well as reward mechanisms in the nervous system. KATP channels are downstream targets of the μ opioid receptor and contribute to morphine-induced antinociception. The aim of the present work was to assess the role of SUR1-subtype KATP channels in antinociception and hyperlocomotion of synthetic and semi-synthetic opioids. Adult male and female mice wild-type (WT) and SUR1 deficient (KO) mice were assessed for mechanical and thermal antinociception after administration of either buprenorphine, fentanyl, or DAMGO. Potassium flux was assessed in the dorsal root ganglia and superficial dorsal horn cells in WT and KO mice. Hyperlocomotion was also assessed in WT and KO animals after buprenorphine, fentanyl, or DAMGO administration. SUR1 KO mice had attenuated mechanical antinociception after systemic administration of buprenorphine, fentanyl, and DAMGO. Potassium flux was also attenuated in the dorsal root ganglia and spinal cord dorsal horn cells after acute administration of buprenorphine and fentanyl. Hyperlocomotion after administration of morphine and buprenorphine was potentiated in SUR1 KO mice, but was not seen after administration of fentanyl or DAMGO. These results suggest SUR1-subtype KATP channels mediate the antinociceptive response of several classes of opioids (alkaloid and synthetic/semi-synthetic), but may not contribute to the "drug-seeking" behaviors of all classes of opioids.
Collapse
Affiliation(s)
- Gerald Sakamaki
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Kayla Johnson
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Megan Mensinger
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Eindray Hmu
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States.
| |
Collapse
|
20
|
Brazdis RM, Alecu JE, Marsch D, Dahms A, Simmnacher K, Lörentz S, Brendler A, Schneider Y, Marxreiter F, Roybon L, Winner B, Xiang W, Prots I. Demonstration of brain region-specific neuronal vulnerability in human iPSC-based model of familial Parkinson's disease. Hum Mol Genet 2021; 29:1180-1191. [PMID: 32160287 PMCID: PMC7206857 DOI: 10.1093/hmg/ddaa039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by protein inclusions mostly composed of aggregated forms of α-synuclein (α-Syn) and by the progressive degeneration of midbrain dopaminergic neurons (mDANs), resulting in motor symptoms. While other brain regions also undergo pathologic changes in PD, the relevance of α-Syn aggregation for the preferential loss of mDANs in PD pathology is not completely understood yet. To elucidate the mechanisms of the brain region-specific neuronal vulnerability in PD, we modeled human PD using human-induced pluripotent stem cells (iPSCs) from familial PD cases with a duplication (Dupl) of the α-Syn gene (SNCA) locus. Human iPSCs from PD Dupl patients and a control individual were differentiated into mDANs and cortical projection neurons (CPNs). SNCA dosage increase did not influence the differentiation efficiency of mDANs and CPNs. However, elevated α-Syn pathology, as revealed by enhanced α-Syn insolubility and phosphorylation, was determined in PD-derived mDANs compared with PD CPNs. PD-derived mDANs exhibited higher levels of reactive oxygen species and protein nitration levels compared with CPNs, which might underlie elevated α-Syn pathology observed in mDANs. Finally, increased neuronal death was observed in PD-derived mDANs compared to PD CPNs and to control mDANs and CPNs. Our results reveal, for the first time, a higher α-Syn pathology, oxidative stress level, and neuronal death rate in human PD mDANs compared with PD CPNs from the same patient. The finding implies the contribution of pathogenic α-Syn, probably induced by oxidative stress, to selective vulnerability of substantia nigra dopaminergic neurons in human PD.
Collapse
Affiliation(s)
- Razvan-Marius Brazdis
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Julian E Alecu
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Daniel Marsch
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Annika Dahms
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Sandra Lörentz
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Anna Brendler
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Yanni Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, Lund 22184, Sweden
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
21
|
Singh S, Agarwal P, Ravichandiran V. Two-Pore Domain Potassium Channel in Neurological Disorders. J Membr Biol 2021; 254:367-380. [PMID: 34169340 DOI: 10.1007/s00232-021-00189-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
K2P channel is the leaky potassium channel that is critical to keep up the negative resting membrane potential for legitimate electrical conductivity of the excitable tissues. Recently, many substances and medication elements are discovered that could either straightforwardly or in a roundabout way influence the 15 distinctive K+ ion channels including TWIK, TREK, TASK, TALK, THIK, and TRESK. Opening and shutting of these channels or any adjustment in their conduct is thought to alter the pathophysiological condition of CNS. There is no document available till now to explain in detail about the molecular mechanism of agents acting on K2P channel. Accordingly, in this review we cover the current research and mechanism of action of these channels, we have also tried to mention the detailed effect of drugs and how the channel behavior changes by focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India.
| | - Punita Agarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, District, Vaishali, 844102, Bihar, India
| |
Collapse
|
22
|
Lin M, Mackie PM, Shaerzadeh F, Gamble-George J, Miller DR, Martyniuk CJ, Khoshbouei H. In Parkinson's patient-derived dopamine neurons, the triplication of α-synuclein locus induces distinctive firing pattern by impeding D2 receptor autoinhibition. Acta Neuropathol Commun 2021; 9:107. [PMID: 34099060 PMCID: PMC8185945 DOI: 10.1186/s40478-021-01203-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pathophysiological changes in dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease (PD). Intracellular pathological inclusions of the protein α-synuclein within dopaminergic neurons are a cardinal feature of PD, but the mechanisms by which α-synuclein contributes to dopaminergic neuron vulnerability remain unknown. The inaccessibility to diseased tissue has been a limitation in studying progression of pathophysiology prior to degeneration of dopamine neurons. To address these issues, we differentiated induced pluripotent stem cells (iPSCs) from a PD patient carrying the α-synuclein triplication mutation (AST) and an unaffected first-degree relative (NAS) into dopaminergic neurons. In human-like dopamine neurons α-synuclein overexpression reduced the functional availability of D2 receptors, resulting in a stark dysregulation in firing activity, dopamine release, and neuronal morphology. We back-translated these findings into primary mouse neurons overexpressing α-synuclein and found a similar phenotype, supporting the causal role for α-synuclein. Importantly, application of D2 receptor agonist, quinpirole, restored the altered firing activity of AST-derived dopaminergic neurons to normal levels. These results provide novel insights into the pre-degenerative pathophysiological neuro-phenotype induced by α-synuclein overexpression and introduce a potential mechanism for the long-established clinical efficacy of D2 receptor agonists in the treatment of PD.
Collapse
Affiliation(s)
- Min Lin
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Phillip M Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Fatima Shaerzadeh
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | | | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Chris J Martyniuk
- Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
23
|
Cell-Based Reporter Release Assay to Determine the Activity of Calcium-Dependent Neurotoxins and Neuroactive Pharmaceuticals. Toxins (Basel) 2021; 13:toxins13040247. [PMID: 33808507 PMCID: PMC8066854 DOI: 10.3390/toxins13040247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
The suitability of a newly developed cell-based functional assay was tested for the detection of the activity of a range of neurotoxins and neuroactive pharmaceuticals which act by stimulation or inhibition of calcium-dependent neurotransmitter release. In this functional assay, a reporter enzyme is released concomitantly with the neurotransmitter from neurosecretory vesicles. The current study showed that the release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) can be stimulated by a carbachol-mediated activation of the Gq-coupled muscarinic-acetylcholine receptor and by the Ca2+-channel forming spider toxin α-latrotoxin. Carbachol-stimulated luciferase release was completely inhibited by the muscarinic acetylcholine receptor antagonist atropine and α-latrotoxin-mediated release by the Ca2+-chelator EGTA, demonstrating the specificity of luciferase-release stimulation. SIMA-hPOMC1-26-GLuc cells express mainly L- and N-type and to a lesser extent T-type VGCC on the mRNA and protein level. In accordance with the expression profile a depolarization-stimulated luciferase release by a high K+-buffer was effectively and dose-dependently inhibited by L-type VGCC inhibitors and to a lesser extent by N-type and T-type inhibitors. P/Q- and R-type inhibitors did not affect the K+-stimulated luciferase release. In summary, the newly established cell-based assay may represent a versatile tool to analyze the biological efficiency of a range of neurotoxins and neuroactive pharmaceuticals which mediate their activity by the modulation of calcium-dependent neurotransmitter release.
Collapse
|
24
|
Etchepare L, Gréa H, Durand P, Bouchet D, Groc L. NMDA receptor membrane dynamics tunes the firing pattern of midbrain dopaminergic neurons. J Physiol 2021; 599:2933-2951. [PMID: 33651437 DOI: 10.1113/jp281104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/22/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS NMDA receptors (NMDARs) expressed by dopamine neurons of the ventral tegmental area (VTA) play a central role in glutamate synapse plasticity, neuronal firing and adaptative behaviours. The NMDAR surface dynamics shapes synaptic adaptation in hippocampal networks, as well as associative memory. We investigated the basic properties and role of the NMDAR surface dynamics on cultured mesencephalic and VTA dopamine neurons in rodents. Using a combination of single molecule imaging and electrophysiological recordings, we demonstrate that NMDARs are highly diffusive at the surface of mesencephalic dopamine neurons. Unexpectedly, the NMDAR membrane dynamics per se regulates the firing pattern of VTA dopaminergic neurons, probably through a functional interplay between NMDARs receptors and small-conductance calcium-dependent potassium (SK) channels. ABSTRACT Midbrain dopaminergic (DA) neurons play a central role in major physiological brain functions, and their dysfunctions have been associated with neuropsychiatric diseases. The activity of midbrain DA neurons is controlled by ion channels and neurotransmitter receptors, such as the glutamate NMDA receptor (NMDAR) and small-conductance calcium-dependent potassium (SK) channels. However, the cellular mechanisms through which these channels tune the firing pattern of midbrain DA neurons remain unclear. Here, we investigated whether the surface dynamics and distribution of NMDARs tunes the firing pattern of midbrain DA neurons. Using a combination of single molecule imaging and electrophysiological recordings, we report that NMDARs are highly diffusive at the surface of cultured midbrain DA neurons from rodents and humans. Reducing acutely the NMDAR membrane dynamics, which leaves the ionotropic function of the receptor intact, robustly altered the firing pattern of midbrain DA neurons without altering synaptic glutamatergic transmission. The reduction of NMDAR surface dynamics reduced apamin (SK channel blocker)-induced firing change and the distribution of SK3 channels in DA neurons. Together, these data show that the surface dynamics of NMDAR, and not solely its ionotropic function, tune the firing pattern of midbrain DA neurons partly through a functional interplay with SK channel function.
Collapse
Affiliation(s)
- Laetitia Etchepare
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Hélène Gréa
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Pauline Durand
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Delphine Bouchet
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| |
Collapse
|
25
|
Mannal N, Kleiner K, Fauler M, Dougalis A, Poetschke C, Liss B. Multi-Electrode Array Analysis Identifies Complex Dopamine Responses and Glucose Sensing Properties of Substantia Nigra Neurons in Mouse Brain Slices. Front Synaptic Neurosci 2021; 13:635050. [PMID: 33716704 PMCID: PMC7952765 DOI: 10.3389/fnsyn.2021.635050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Dopaminergic (DA) midbrain neurons within the substantia nigra (SN) display an autonomous pacemaker activity that is crucial for dopamine release and voluntary movement control. Their progressive degeneration is a hallmark of Parkinson's disease. Their metabolically demanding activity-mode affects Ca2+ homeostasis, elevates metabolic stress, and renders SN DA neurons particularly vulnerable to degenerative stressors. Accordingly, their activity is regulated by complex mechanisms, notably by dopamine itself, via inhibitory D2-autoreceptors and the neuroprotective neuronal Ca2+ sensor NCS-1. Analyzing regulation of SN DA neuron activity-pattern is complicated by their high vulnerability. We studied this activity and its control by dopamine, NCS-1, and glucose with extracellular multi-electrode array (MEA) recordings from midbrain slices of juvenile and adult mice. Our tailored MEA- and spike sorting-protocols allowed high throughput and long recording times. According to individual dopamine-responses, we identified two distinct SN cell-types, in similar frequency: dopamine-inhibited and dopamine-excited neurons. Dopamine-excited neurons were either silent in the absence of dopamine, or they displayed pacemaker-activities, similar to that of dopamine-inhibited neurons. Inhibition of pacemaker-activity by dopamine is typical for SN DA neurons, and it can undergo prominent desensitization. We show for adult mice, that the number of SN DA neurons with desensitized dopamine-inhibition was increased (~60–100%) by a knockout of NCS-1, or by prevention of NCS-1 binding to D2-autoreceptors, while time-course and degrees of desensitization were not altered. The number of neurons with desensitized D2-responses was also higher (~65%) at high glucose-levels (25 mM), compared to lower glucose (2.5 mM), while again desensitization-kinetics were unaltered. However, spontaneous firing-rates were significantly higher at high glucose-levels (~20%). Moreover, transient glucose-deprivation (1 mM) induced a fast and fully-reversible pacemaker frequency reduction. To directly address and quantify glucose-sensing properties of SN DA neurons, we continuously monitored their electrical activity, while altering extracellular glucose concentrations stepwise from 0.5 mM up to 25 mM. SN DA neurons were excited by glucose, with EC50 values ranging from 0.35 to 2.3 mM. In conclusion, we identified a novel, common subtype of dopamine-excited SN neurons, and a complex, joint regulation of dopamine-inhibited neurons by dopamine and glucose, within the range of physiological brain glucose-levels.
Collapse
Affiliation(s)
- Nadja Mannal
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | - Michael Fauler
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | | | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,Linacre and New College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Song N, Zhu H, Xu R, Liu J, Fang Y, Zhang J, Ding J, Hu G, Lu M. Induced Expression of kir6.2 in A1 Astrocytes Propagates Inflammatory Neurodegeneration via Drp1-dependent Mitochondrial Fission. Front Pharmacol 2021; 11:618992. [PMID: 33584303 PMCID: PMC7876245 DOI: 10.3389/fphar.2020.618992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
Glia-mediated inflammatory processes are crucial in the pathogenesis of Parkinson’s disease (PD). As the most abundant cells of the brain and active participants in neuroinflammatory responses, astrocytes largely propagate inflammatory signals and amplify neuronal loss. Hence, intensive control of astrocytic activation is necessary to prevent neurodegeneration. In this study, we report that the astrocytic kir6.2, as a abnormal response after inflammatory stimuli, promotes the reactivity of A1 neurotoxic astrocytes. Using kir6.2 knockout (KO) mice, we find reversal effects of kir6.2 deficiency on A1-like astrocyte activation and death of dopaminergic neurons in lipopolysaccharide (LPS)-induced mouse models for PD. Further in vitro experiments show that aberrant kir6.2 expression induced by inflammatory irritants in astrocytes mediates the dynamin-related protein 1 (Drp1)-dependent excessive mitochondrial fragmentation and results in mitochondrial malfunctions. By deleting kir6.2, astrocytic activation is reduced and astrocytes-derived neuronal injury is prevented. We therefore conclude that astrocytic kir6.2 can potentially elucidate the pathology of PD and promote the development of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Hong Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Rong Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Maqoud F, Scala R, Hoxha M, Zappacosta B, Tricarico D. ATP-sensitive potassium channel subunits in the neuroinflammation: novel drug targets in neurodegenerative disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:130-149. [PMID: 33463481 DOI: 10.2174/1871527320666210119095626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Arachidonic acids and its metabolites modulate plenty of ligand-gated, voltage-dependent ion channels, and metabolically regulated potassium channels including ATP-sensitive potassium channels (KATP). KATP channels are hetero-multimeric complexes of sulfonylureas receptors (SUR1, SUR2A or SUR2B) and the pore-forming subunits (Kir6.1 and Kir6.2) likewise expressed in the pre-post synapsis of neurons and inflammatory cells, thereby affecting their proliferation and activity. KATP channels are involved in amyloid-β (Aβ)-induced pathology, therefore emerging as therapeutic targets against Alzheimer's and related diseases. The modulation of these channels can represent an innovative strategy for the treatment of neurodegenerative disorders; nevertheless, the currently available drugs are not selective for brain KATP channels and show contrasting effects. This phenomenon can be a consequence of the multiple physiological roles of the different varieties of KATP channels. Openings of cardiac and muscular KATP channel subunits, is protective against caspase-dependent atrophy in these tissues and some neurodegenerative disorders, whereas in some neuroinflammatory diseases benefits can be obtained through the inhibition of neuronal KATP channel subunits. For example, glibenclamide exerts an anti-inflammatory effect in respiratory, digestive, urological, and central nervous system (CNS) diseases, as well as in ischemia-reperfusion injury associated with abnormal SUR1-Trpm4/TNF-α or SUR1-Trpm4/ Nos2/ROS signaling. Despite this strategy is promising, glibenclamide may have limited clinical efficacy due to its unselective blocking action of SUR2A/B subunits also expressed in cardiovascular apparatus with pro-arrhythmic effects and SUR1 expressed in pancreatic beta cells with hypoglycemic risk. Alternatively, neuronal selective dual modulators showing agonist/antagonist actions on KATP channels can be an option.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Rosa Scala
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| |
Collapse
|
28
|
Muddapu VR, Chakravarthy VS. Influence of energy deficiency on the subcellular processes of Substantia Nigra Pars Compacta cell for understanding Parkinsonian neurodegeneration. Sci Rep 2021; 11:1754. [PMID: 33462293 PMCID: PMC7814067 DOI: 10.1038/s41598-021-81185-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 01/29/2023] Open
Abstract
Parkinson's disease (PD) is the second most prominent neurodegenerative disease around the world. Although it is known that PD is caused by the loss of dopaminergic cells in substantia nigra pars compacta (SNc), the decisive cause of this inexorable cell loss is not clearly elucidated. We hypothesize that "Energy deficiency at a sub-cellular/cellular/systems level can be a common underlying cause for SNc cell loss in PD." Here, we propose a comprehensive computational model of SNc cell, which helps us to understand the pathophysiology of neurodegeneration at the subcellular level in PD. The aim of the study is to see how deficits in the supply of energy substrates (glucose and oxygen) lead to a deficit in adenosine triphosphate (ATP). The study also aims to show that deficits in ATP are the common factor underlying the molecular-level pathological changes, including alpha-synuclein aggregation, reactive oxygen species formation, calcium elevation, and dopamine dysfunction. The model suggests that hypoglycemia plays a more crucial role in leading to ATP deficits than hypoxia. We believe that the proposed model provides an integrated modeling framework to understand the neurodegenerative processes underlying PD.
Collapse
Affiliation(s)
- Vignayanandam Ravindernath Muddapu
- grid.417969.40000 0001 2315 1926Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Sardar Patel Road, Chennai, 600036 Tamil Nadu India
| | - V. Srinivasa Chakravarthy
- grid.417969.40000 0001 2315 1926Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Sardar Patel Road, Chennai, 600036 Tamil Nadu India
| |
Collapse
|
29
|
Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8865611. [PMID: 33224433 PMCID: PMC7671810 DOI: 10.1155/2020/8865611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated primarily from endogenous biochemical reactions in mitochondria, endoplasmic reticulum (ER), and peroxisomes. Typically, ROS/RNS correlate with oxidative damage and cell death; however, free radicals are also crucial for normal cellular functions, including supporting neuronal homeostasis. ROS/RNS levels influence and are influenced by antioxidant systems, including the catabolic autophagy pathways. Autophagy is an intracellular lysosomal degradation process by which invasive, damaged, or redundant cytoplasmic components, including microorganisms and defunct organelles, are removed to maintain cellular homeostasis. This process is particularly important in neurons that are required to cope with prolonged and sustained operational stress. Consequently, autophagy is a primary line of protection against neurodegenerative diseases. Parkinson's is caused by the loss of midbrain dopaminergic neurons (mDANs), resulting in progressive disruption of the nigrostriatal pathway, leading to motor, behavioural, and cognitive impairments. Mitochondrial dysfunction, with associated increases in oxidative stress, and declining proteostasis control, are key contributors during mDAN demise in Parkinson's. In this review, we analyse the crosstalk between autophagy and redoxtasis, including the molecular mechanisms involved and the detrimental effect of an imbalance in the pathogenesis of Parkinson's.
Collapse
|
30
|
Sun Y, He Y, Yang L, Liang D, Shi W, Zhu X, Jiang Y, Ou C. Manganese induced nervous injury by α-synuclein accumulation via ATP-sensitive K(+) channels and GABA receptors. Toxicol Lett 2020; 332:164-170. [PMID: 32659473 DOI: 10.1016/j.toxlet.2020.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Manganese (Mn) is an environmental pollutant having a toxic effect on Parkinson's disease, with significant damage seen in the neurons of basal ganglia. Hence, Mn pollution is a public health concern. A Sprague-Dawley rat model was used to determine the damage to basal nuclei, and the effect of Mn intake was detected using the Morris water maze test and transmission electron microscopy. The SH-SY5Y cell line was exposed to Mn, and downstream signaling was assessed to determine the mechanism of toxicity. Mn exposure injured neurons, repressing GABAAR receptors and inducing GABABR receptors. The synergistic effect of the GABABR receptor and Kir6.1-SUR1 or Kir6.2-SUR1 was found to be one of the potential factors for the secretion of α-synuclein. The accumulation of α-synuclein regulated downstream factors calmodulin (CAM) cAMP response element-binding protein (CREB), thereby impairing learning and memory. Other genes downstream of CREB, rather than the feedback regulation of CREB, and brain-derived neurotrophic factor might also be involved.
Collapse
Affiliation(s)
- Yi Sun
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Yonghua He
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Lin Yang
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Dan Liang
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Wenxiang Shi
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Xiaonian Zhu
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Naning 530021, China
| | - Chaoyan Ou
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
31
|
The role of KATP channel blockade and activation in the protection against neurodegeneration in the rotenone model of Parkinson's disease. Life Sci 2020; 257:118070. [DOI: 10.1016/j.lfs.2020.118070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
|
32
|
Schrank S, Barrington N, Stutzmann GE. Calcium-Handling Defects and Neurodegenerative Disease. Cold Spring Harb Perspect Biol 2020; 12:a035212. [PMID: 31427373 PMCID: PMC7328457 DOI: 10.1101/cshperspect.a035212] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcium signaling is critical to neuronal function and regulates highly diverse processes such as gene transcription, energy production, protein handling, and synaptic structure and function. Because there are many common underlying calcium-mediated pathological features observed across several neurological conditions, it has been proposed that neurodegenerative diseases have an upstream underlying calcium basis in their pathogenesis. With certain diseases such as Alzheimer's, Parkinson's, and Huntington's, specific sources of calcium dysregulation originating from distinct neuronal compartments or channels have been shown to have defined roles in initiating or sustaining disease mechanisms. Herein, we will review the major hallmarks of these diseases, and how they relate to calcium dysregulation. We will then discuss neuronal calcium handling throughout the neuron, with special emphasis on channels involved in neurodegeneration.
Collapse
Affiliation(s)
- Sean Schrank
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, Illinois 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Nikki Barrington
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, Illinois 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, Illinois 60064
- Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, Illinois 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, Illinois 60064
- Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois 60064
| |
Collapse
|
33
|
The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection. Mol Neurobiol 2020; 57:3646-3657. [PMID: 32564285 PMCID: PMC7398899 DOI: 10.1007/s12035-020-01947-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/13/2020] [Indexed: 01/27/2023]
Abstract
Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the substantia nigra pars compacta. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.
Collapse
|
34
|
Chang X, Ma Z, Shi L, Xie J. Effects of ghrelin on the electrical activities of substantia nigra dopaminergic neurons treated with MPP .. Neurochem Int 2020; 138:104780. [PMID: 32569790 DOI: 10.1016/j.neuint.2020.104780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022]
Abstract
Ghrelin, a 28 amino acid brain-gut peptide, has attracted increasing attention for its neuroprotective effect in Parkinson's disease (PD). In view of the pivotal role of excitability of dopaminergic neurons in substantia nigra pars compacta (SNc) in the function of nigrostriatal system, it is of great significance to elucidate the regulation of electrical activity of dopaminergic neurons by ghrelin, especially in PD pathogenesis. In this study, we tackled this issue by probing the effects of ghrelin on the electrophysiological properties of dopaminergic neurons in acute application of Methyl-4-phenylpyridinium (MPP+), a potent parkinsonizing agent in primates and rodents, with whole cell patch clamp technique. We first observed that MPP+ (10, 20 and 50 μM) inhibited the spontaneous firing activity of dopaminergic neurons with dose-dependent and time-dependent properties. MPP+ also hyperpolarized the membrane potential, inhibited the evoked firing activity and reduced the amplitude of the inward rectification characteristic (Sag) in dopaminergic neurons. Importantly, ghrelin (100 nM) could improve the above effects of MPP+ on the electrical activities of dopaminergic neurons. The potential mechanism of this phenomenon may be that ghrelin upregulated hyperpolarization-activated cyclic nucleotide-gated channel current (Ih) to antagonize the inhibition of MPP+ on Ih, thereby improving the electrical activities of dopaminergic neurons.
Collapse
Affiliation(s)
- Xiaoli Chang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Medical College of Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China; Institute of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zegang Ma
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Medical College of Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Medical College of Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Medical College of Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
35
|
The environmental toxicant ziram enhances neurotransmitter release and increases neuronal excitability via the EAG family of potassium channels. Neurobiol Dis 2020; 143:104977. [PMID: 32553709 DOI: 10.1016/j.nbd.2020.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/21/2022] Open
Abstract
Environmental toxicants have the potential to contribute to the pathophysiology of multiple complex diseases, but the underlying mechanisms remain obscure. One such toxicant is the widely used fungicide ziram, a dithiocarbamate known to have neurotoxic effects and to increase the risk of Parkinson's disease. We have used Drosophila melanogaster as an unbiased discovery tool to identify novel molecular pathways by which ziram may disrupt neuronal function. Consistent with previous results in mammalian cells, we find that ziram increases the probability of synaptic vesicle release by dysregulation of the ubiquitin signaling system. In addition, we find that ziram increases neuronal excitability. Using a combination of live imaging and electrophysiology, we find that ziram increases excitability in both aminergic and glutamatergic neurons. This increased excitability is phenocopied and occluded by null mutant animals of the ether a-go-go (eag) potassium channel. A pharmacological inhibitor of the temperature sensitive hERG (human ether-a-go-go related gene) phenocopies the excitability effects of ziram but only at elevated temperatures. seizure (sei), a fly ortholog of hERG, is thus another candidate target of ziram. Taken together, the eag family of potassium channels emerges as a candidate for mediating some of the toxic effects of ziram. We propose that ziram may contribute to the risk of complex human diseases by blockade of human eag and sei orthologs, such as hERG.
Collapse
|
36
|
Ghrelin Reduces A-Type Potassium Currents in Dopaminergic Nigral Neurons via the PLC/PKCδ Pathway. Neurosci Bull 2020; 36:947-950. [PMID: 32388709 DOI: 10.1007/s12264-020-00508-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/29/2020] [Indexed: 01/03/2023] Open
|
37
|
Zhang L, Zheng Y, Xie J, Shi L. Potassium channels and their emerging role in parkinson's disease. Brain Res Bull 2020; 160:1-7. [PMID: 32305406 DOI: 10.1016/j.brainresbull.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/21/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is associated with a selective loss of dopaminergic neurons in the substantia nigra (SN) and a reduction of dopamine in the striatum. Recently, ion channel dysfunction has been considered a reason for the pathogenesis of PD. Potassium (K+) channels are widespread in the central nervous system, and play key roles in modulating cellular excitability, synaptic transmission, and neurotransmitter release. Based on recent studies and data, we propose that K+ channels may be new therapeutic targets for PD that slow the progressive loss of dopaminergic neurons and attenuate motor and non-motor symptoms. In this review, we mainly focus on: delayed rectifier, inwardly rectifying, and double-pore K+ channels. We summarize the expression and function of these channels in PD-related brain regions. We also discuss the effects of pharmacological blockade or activation of K+ channels in the progression and treatment of PD.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Yanan Zheng
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
38
|
Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathol 2020; 139:319-345. [PMID: 31768670 DOI: 10.1007/s00401-019-02099-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the gradual appearance of α-synuclein (α-syn)-containing neuronal protein aggregates. Although the exact mechanism of α-syn-mediated cell death remains elusive, recent research suggests that α-syn-induced alterations in neuronal excitability contribute to cell death in PD. Because the fragile X mental retardation protein (FMRP) controls the expression and function of numerous neuronal genes related to neuronal excitability and synaptic function, we here investigated the role of FMRP in α-syn-associated pathological changes in cell culture and mouse models of PD as well as in post-mortem human brain tissue from PD patients. We found FMRP to be decreased in cultured DA neurons and in the mouse brain in response to α-syn overexpression. FMRP was, furthermore, lost in the SNc of PD patients and in patients with early stages of incidental Lewy body disease (iLBD). Unlike fragile X syndrome (FXS), FMR1 expression in response to α-syn was regulated by a mechanism involving Protein Kinase C (PKC) and cAMP response element-binding protein (CREB). Reminiscent of FXS neurons, α-syn-overexpressing cells exhibited an increase in membrane N-type calcium channels, increased phosphorylation of ERK1/2, eIF4E and S6, increased overall protein synthesis, and increased expression of Matrix Metalloproteinase 9 (MMP9). FMRP affected neuronal function in a PD animal model, because FMRP-KO mice were resistant to the effect of α-syn on striatal dopamine release. In summary, our results thus reveal a new role of FMRP in PD and support the examination of FMRP-regulated genes in PD disease progression.
Collapse
|
39
|
Li R, Wang X, Lin F, Song T, Zhu X, Lei H. Mapping accumulative whole-brain activities during environmental enrichment with manganese-enhanced magnetic resonance imaging. Neuroimage 2020; 210:116588. [PMID: 32004718 DOI: 10.1016/j.neuroimage.2020.116588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
An enriched environment (EE) provides multi-dimensional stimuli to the brain. EE exposure for days to months induces functional and structural neuroplasticity. In this study, manganese-enhanced magnetic resonance imaging (MEMRI) was used to map the accumulative whole-brain activities associated with a 7-day EE exposure in freely-moving adult male mice, followed by c-Fos immunochemical assessments. Relative to the mice residing in a standard environment (SE), the mice subjected to EE treatment had significantly enhanced regional MEMRI signal intensities in the prefrontal cortex, somatosensory cortices, basal ganglia, amygdala, motor thalamus, lateral hypothalamus, ventral hippocampus and midbrain dopaminergic areas at the end of the 7-day exposure, likely attributing to enhanced Mn2+ uptake/transport associated with brain activities at both the regional and macroscale network levels. Some of, but not all, the brain regions in the EE-treated mice showing enhanced MEMRI signal intensity had accompanying increases in c-Fos expression. The EE-treated mice were also found to have significantly increased overall amount of food consumption, decreased body weight gain and upregulated tyrosine hydroxylase (TH) expression in the midbrain dopaminergic areas. Taken together, these results demonstrated that the 7-day EE exposure was associated with elevated cumulative activities in the nigrostriatal, mesolimbic and corticostriatal circuits underpinning reward, motivation, cognition, motor control and appetite regulation. Such accumulative activities might have served as the substrate of EE-related neuroplasticity and the beneficial effects of EE treatment on neurological/psychiatric conditions including drug addiction, Parkinson's disease and eating disorder.
Collapse
Affiliation(s)
- Ronghui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xuxia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Tao Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xutao Zhu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
40
|
The Interplay between Ca 2+ Signaling Pathways and Neurodegeneration. Int J Mol Sci 2019; 20:ijms20236004. [PMID: 31795242 PMCID: PMC6928941 DOI: 10.3390/ijms20236004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) homeostasis is essential for cell maintenance since this ion participates in many physiological processes. For example, the spatial and temporal organization of Ca2+ signaling in the central nervous system is fundamental for neurotransmission, where local changes in cytosolic Ca2+ concentration are needed to transmit information from neuron to neuron, between neurons and glia, and even regulating local blood flow according to the required activity. However, under pathological conditions, Ca2+ homeostasis is altered, with increased cytoplasmic Ca2+ concentrations leading to the activation of proteases, lipases, and nucleases. This review aimed to highlight the role of Ca2+ signaling in neurodegenerative disease-related apoptosis, where the regulation of intracellular Ca2+ homeostasis depends on coordinated interactions between the endoplasmic reticulum, mitochondria, and lysosomes, as well as specific transport mechanisms. In neurodegenerative diseases, alterations-increased oxidative stress, energy metabolism alterations, and protein aggregation have been identified. The aggregation of α-synuclein, β-amyloid peptide (Aβ), and huntingtin all adversely affect Ca2+ homeostasis. Due to the mounting evidence for the relevance of Ca2+ signaling in neuroprotection, we would focus on the expression and function of Ca2+ signaling-related proteins, in terms of the effects on autophagy regulation and the onset and progression of neurodegenerative diseases.
Collapse
|
41
|
Simons C, Benkert J, Deuter N, Poetschke C, Pongs O, Schneider T, Duda J, Liss B. NCS-1 Deficiency Affects mRNA Levels of Genes Involved in Regulation of ATP Synthesis and Mitochondrial Stress in Highly Vulnerable Substantia nigra Dopaminergic Neurons. Front Mol Neurosci 2019; 12:252. [PMID: 31827421 PMCID: PMC6890851 DOI: 10.3389/fnmol.2019.00252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Neuronal Ca2+ sensor proteins (NCS) transduce changes in Ca2+ homeostasis into altered signaling and neuronal function. NCS-1 activity has emerged as important for neuronal viability and pathophysiology. The progressive degeneration of dopaminergic (DA) neurons, particularly within the Substantia nigra (SN), is the hallmark of Parkinson's disease (PD), causing its motor symptoms. The activity-related Ca2+ homeostasis of SN DA neurons, mitochondrial dysfunction, and metabolic stress promote neurodegeneration and PD. In contrast, NCS-1 in general has neuroprotective effects. The underlying mechanisms are unclear. We analyzed transcriptional changes in SN DA neurons upon NCS-1 loss by combining UV-laser microdissection and RT-qPCR-approaches to compare expression levels of a panel of PD and/or Ca2+-stress related genes from wildtype and NCS-1 KO mice. In NCS-1 KO, we detected significantly lower mRNA levels of mitochondrially coded ND1, a subunit of the respiratory chain, and of the neuron-specific enolase ENO2, a glycolytic enzyme. We also detected lower levels of the mitochondrial uncoupling proteins UCP4 and UCP5, the PARK7 gene product DJ-1, and the voltage-gated Ca2+ channel Cav2.3 in SN DA neurons from NCS-1 KO. Transcripts of other analyzed uncoupling proteins (UCPs), mitochondrial Ca2+ transporters, PARK genes, and ion channels were not altered. As Cav channels are linked to regulation of gene expression, metabolic stress and degeneration of SN DA neurons in PD, we analyzed Cav2.3 KO mice, to address if the transcriptional changes in NCS-1 KO were also present in Cav.2.3 KO, and thus probably correlated with lower Cav2.3 transcripts. However, in SN DA neurons from Cav2.3 KO mice, ND1 mRNA as well as genomic DNA levels were elevated, while ENO2, UCP4, UCP5, and DJ-1 transcript levels were not altered. In conclusion, our data indicate a possible novel function of NCS-1 in regulating gene transcription or stabilization of mRNAs in SN DA neurons. Although we do not provide functional data, our findings at the transcript level could point to impaired ATP production (lower ND1 and ENO2) and elevated metabolic stress (lower UCP4, UCP5, and DJ-1 levels) in SN DA neurons from NCS-1 KO mice. We speculate that NCS-1 is involved in stimulating ATP synthesis, while at the same time controlling mitochondrial metabolic stress, and in this way could protect SN DA neurons from degeneration.
Collapse
Affiliation(s)
- Carsten Simons
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Julia Benkert
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Nora Deuter
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | - Olaf Pongs
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, University of the Saarland, Homburg, Germany
| | - Toni Schneider
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Johanna Duda
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,New College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Suk HJ, Boyden ES, van Welie I. Advances in the automation of whole-cell patch clamp technology. J Neurosci Methods 2019; 326:108357. [PMID: 31336060 DOI: 10.1016/j.jneumeth.2019.108357] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
Electrophysiology is the study of neural activity in the form of local field potentials, current flow through ion channels, calcium spikes, back propagating action potentials and somatic action potentials, all measurable on a millisecond timescale. Despite great progress in imaging technologies and sensor proteins, none of the currently available tools allow imaging of neural activity on a millisecond timescale and beyond the first few hundreds of microns inside the brain. The patch clamp technique has been an invaluable tool since its inception several decades ago and has generated a wealth of knowledge about the nature of voltage- and ligand-gated ion channels, sub-threshold and supra-threshold activity, and characteristics of action potentials related to higher order functions. Many techniques that evolve to be standardized tools in the biological sciences go through a period of transformation in which they become, at least to some degree, automated, in order to improve reproducibility, throughput and standardization. The patch clamp technique is currently undergoing this transition, and in this review, we will discuss various aspects of this transition, covering advances in automated patch clamp technology both in vitro and in vivo.
Collapse
Affiliation(s)
- Ho-Jun Suk
- Health Sciences and Technology, MIT, Cambridge, MA 02139, USA; Media Lab, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA
| | - Edward S Boyden
- Media Lab, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | | |
Collapse
|
43
|
Trpc5 deficiency causes hypoprolactinemia and altered function of oscillatory dopamine neurons in the arcuate nucleus. Proc Natl Acad Sci U S A 2019; 116:15236-15243. [PMID: 31285329 DOI: 10.1073/pnas.1905705116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dopamine neurons of the hypothalamic arcuate nucleus (ARC) tonically inhibit the release of the protein hormone prolactin from lactotropic cells in the anterior pituitary gland and thus play a central role in prolactin homeostasis of the body. Prolactin, in turn, orchestrates numerous important biological functions such as maternal behavior, reproduction, and sexual arousal. Here, we identify the canonical transient receptor potential channel Trpc5 as an essential requirement for normal function of dopamine ARC neurons and prolactin homeostasis. By analyzing female mice carrying targeted mutations in the Trpc5 gene including a conditional Trpc5 deletion, we show that Trpc5 is required for maintaining highly stereotyped infraslow membrane potential oscillations of dopamine ARC neurons. Trpc5 is also required for eliciting prolactin-evoked tonic plateau potentials in these neurons that are part of a regulatory feedback circuit. Trpc5 mutant females show severe prolactin deficiency or hypoprolactinemia that is associated with irregular reproductive cyclicity, gonadotropin imbalance, and impaired reproductive capabilities. These results reveal a previously unknown role for the cation channel Trpc5 in prolactin homeostasis of female mice and provide strategies to explore the genetic basis of reproductive disorders and other malfunctions associated with defective prolactin regulation in humans.
Collapse
|
44
|
Masi A, Narducci R, Mannaioni G. Harnessing ionic mechanisms to achieve disease modification in neurodegenerative disorders. Pharmacol Res 2019; 147:104343. [PMID: 31279830 DOI: 10.1016/j.phrs.2019.104343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Progressive neuronal death is the key pathogenic event leading to clinical symptoms in neurodegenerative disorders (NDDs). Neuroprotective treatments are virtually unavailable, partly because of the marked internal heterogeneity of the mechanisms underlying pathology. Targeted neuroprotection would require deep mechanistic knowledge across the entire aetiological spectrum of each NDD and the development of tailored treatments. Although ideal, this strategy appears challenging, as it would require a degree of characterization of both the disease and the patient that is currently unavailable. The alternate strategy is to search for commonalities across molecularly distinct NDD forms and exploit these for the development of drugs with broad-spectrum efficacy. In this view, mounting evidence points to ionic mechanisms (IMs) as targets with potential therapeutic efficacy across distinct NDD subtypes. The scope of this review is to present clinical and preclinical evidence supporting the link between disruption of IMs and neuronal death in specific NDDs and to critically revise past and ongoing attempts of harnessing IMs for the development of neuroprotective treatments.
Collapse
Affiliation(s)
- A Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy; School of Pharmacy, University of Camerino, Camerino, Italy.
| | - R Narducci
- Italian Institute of Technology (IIT), Department of Neuroscience and Brain Technologies, Genova, Italy
| | - G Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy; Toxicology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
45
|
Chang X, Wang J, Jiang H, Shi L, Xie J. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: An Emerging Role in Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:141. [PMID: 31231190 PMCID: PMC6560157 DOI: 10.3389/fnmol.2019.00141] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) are chronic, progressive, and age-associated neurological disorders characterized by neuronal deterioration in specific brain regions. Although the specific pathological mechanisms underlying these disorders have remained elusive, ion channel dysfunction has become increasingly accepted as a potential mechanism for neurodegenerative diseases. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by the HCN1-4 gene family and conduct the hyperpolarization-activated current (I h). These channels play important roles in modulating cellular excitability, rhythmic activity, dendritic integration, and synaptic transmission. In the present review, we first provide a comprehensive picture of the role of HCN channels in PD by summarizing their role in the regulation of neuronal activity in PD-related brain regions. Dysfunction of I h may participate in 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity and represent a pathogenic mechanism in PD. Given current reports of the critical role of HCN channels in neuroinflammation and depression, we also discussed the putative contribution of HCN channels in inflammatory processes and non-motor symptoms in PD. In the second section, we summarize how HCN channels regulate the formation of β-amyloid peptide in AD and the role of these channels in learning and memory. Finally, we briefly discuss the effects of HCN channels in ALS and SMA based on existing discoveries.
Collapse
Affiliation(s)
- Xiaoli Chang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| |
Collapse
|
46
|
Milanese C, Payán-Gómez C, Mastroberardino PG. Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson’s disease. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Corti O. Neuronal Mitophagy: Lessons from a Pathway Linked to Parkinson's Disease. Neurotox Res 2019; 36:292-305. [PMID: 31102068 DOI: 10.1007/s12640-019-00060-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Neurons are specialized cells with complex and extended architecture and high energy requirements. Energy in the form of adenosine triphosphate, produced essentially by mitochondrial respiration, is necessary to preserve neuronal morphology, maintain resting potential, fire action potentials, and ensure neurotransmission. Pools of functional mitochondria are required in all neuronal compartments, including cell body and dendrites, nodes of Ranvier, growth cones, axons, and synapses. The mechanisms by which old or damaged mitochondria are removed and replaced in neurons remain to be fully understood. Mitophagy has gained considerable interest since the discovery of familial forms of Parkinson's disease caused by dysfunction of PINK1 and Parkin, two multifunctional proteins cooperating in the regulation of this process. Over the past 10 years, the molecular mechanisms by which PINK1 and Parkin jointly promote the degradation of defective mitochondria by autophagy have been dissected. However, our understanding of the relevance of mitophagy to mitochondrial homeostasis in neurons remains poor. Insight has been recently gained thanks to the development of fluorescent reporter systems for tracking mitochondria in the acidic compartment of the lysosome. Using these tools, mitophagy events have been visualized in primary neurons in culture and in vivo, under basal conditions and in response to toxic insults. Despite these advances, whether PINK1 and Parkin play a major role in promoting neuronal mitophagy under physiological conditions in adult animals and during aging remains a matter of debate. Future studies will have to clarify in how far dysfunction of neuronal mitophagy is central to the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- Olga Corti
- Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
- Inserm, U1127, F-75013, Paris, France.
- CNRS, UMR 7225, F-75013, Paris, France.
- Sorbonne Universités, F-75013, Paris, France.
| |
Collapse
|
48
|
Tomagra G, Picollo F, Battiato A, Picconi B, De Marchis S, Pasquarelli A, Olivero P, Marcantoni A, Calabresi P, Carbone E, Carabelli V. Quantal Release of Dopamine and Action Potential Firing Detected in Midbrain Neurons by Multifunctional Diamond-Based Microarrays. Front Neurosci 2019; 13:288. [PMID: 31024230 PMCID: PMC6465646 DOI: 10.3389/fnins.2019.00288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Micro-Graphitic Single Crystal Diamond Multi Electrode Arrays (μG-SCD-MEAs) have so far been used as amperometric sensors to detect catecholamines from chromaffin cells and adrenal gland slices. Besides having time resolution and sensitivity that are comparable with carbon fiber electrodes, that represent the gold standard for amperometry, μG-SCD-MEAs also have the advantages of simultaneous multisite detection, high biocompatibility and implementation of amperometric/potentiometric protocols, aimed at monitoring exocytotic events and neuronal excitability. In order to adapt diamond technology to record neuronal activity, the μG-SCD-MEAs in this work have been interfaced with cultured midbrain neurons to detect electrical activity as well as quantal release of dopamine (DA). μG-SCD-MEAs are based on graphitic sensing electrodes that are embedded into the diamond matrix and are fabricated using MeV ion beam lithography. Two geometries have been adopted, with 4 × 4 and 8 × 8 microelectrodes (20 μm × 3.5 μm exposed area, 200 μm spacing). In the amperometric configuration, the 4 × 4 μG-SCD-MEAs resolved quantal exocytosis from midbrain dopaminergic neurons. KCl-stimulated DA release occurred as amperometric spikes of 15 pA amplitude and 0.5 ms half-width, at a mean frequency of 0.4 Hz. When used as potentiometric multiarrays, the 8 × 8 μG-SCD-MEAs detected the spontaneous firing activity of midbrain neurons. Extracellularly recorded action potentials (APs) had mean amplitude of ∼-50 μV and occurred at a mean firing frequency of 0.7 Hz in 67% of neurons, while the remaining fired at 6.8 Hz. Comparable findings were observed using conventional MEAs (0.9 and 6.4 Hz, respectively). To test the reliability of potentiometric recordings with μG-SCD-MEAs, the D2-autoreceptor modulation of firing was investigated by applying levodopa (L-DOPA, 20 μM), and comparing μG-SCD-MEAs, conventional MEAs and current-clamp recordings. In all cases, L-DOPA reduced the spontaneous spiking activity in most neurons by 70%, while the D2-antagonist sulpiride reversed this effect. Cell firing inhibition was generally associated with increased APs amplitude. A minority of neurons was either insensitive to, or potentiated by L-DOPA, suggesting that AP recordings originate from different midbrain neuronal subpopulations and reveal different modulatory pathways. Our data demonstrate, for the first time, that μG-SCD-MEAs are multi-functional biosensors suitable to resolve real-time DA release and AP firing in in vitro neuronal networks.
Collapse
Affiliation(s)
- Giulia Tomagra
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | - Federico Picollo
- Department of Physics and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Turin, Italy
| | - Alfio Battiato
- Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Turin, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Pisana, University San Raffaele, Rome, Italy.,University San Raffaele, Rome, Italy
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology and "NICO" Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Turin, Italy
| | | | - Paolo Olivero
- Department of Physics and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Turin, Italy
| | - Andrea Marcantoni
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | - Paolo Calabresi
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Emilio Carbone
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| |
Collapse
|
49
|
Stutz B, Nasrallah C, Nigro M, Curry D, Liu ZW, Gao XB, Elsworth JD, Mintz L, Horvath TL. Dopamine neuronal protection in the mouse Substantia nigra by GHSR is independent of electric activity. Mol Metab 2019; 24:120-138. [PMID: 30833218 PMCID: PMC6531791 DOI: 10.1016/j.molmet.2019.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/25/2022] Open
Abstract
Objective Dopamine neurons in the Substantia nigra (SN) play crucial roles in control of voluntary movement. Extensive degeneration of this neuronal population is the cause of Parkinson's disease (PD). Many factors have been linked to SN DA neuronal survival, including neuronal pacemaker activity (responsible for maintaining basal firing and DA tone) and mitochondrial function. Dln-101, a naturally occurring splice variant of the human ghrelin gene, targets the ghrelin receptor (GHSR) present in the SN DA cells. Ghrelin activation of GHSR has been shown to protect SN DA neurons against 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. We decided to compare the actions of Dln-101 with ghrelin and identify the mechanisms associated with neuronal survival. Methods Histologial, biochemical, and behavioral parameters were used to evaluate neuroprotection. Inflammation and redox balance of SN DA cells were evaluated using histologial and real-time PCR analysis. Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology was used to modulate SN DA neuron electrical activity and associated survival. Mitochondrial dynamics in SN DA cells was evaluated using electron microscopy data. Results Here, we report that the human isoform displays an equivalent neuroprotective factor. However, while exogenous administration of mouse ghrelin electrically activates SN DA neurons increasing dopamine output, as well as locomotion, the human isoform significantly suppressed dopamine output, with an associated decrease in animal motor behavior. Investigating the mechanisms by which GHSR mediates neuroprotection, we found that dopamine cell-selective control of electrical activity is neither sufficient nor necessary to promote SN DA neuron survival, including that associated with GHSR activation. We found that Dln101 pre-treatment diminished MPTP-induced mitochondrial aberrations in SN DA neurons and that the effect of Dln101 to protect dopamine cells was dependent on mitofusin 2, a protein involved in the process of mitochondrial fusion and tethering of the mitochondria to the endoplasmic reticulum. Conclusions Taken together, these observations unmasked a complex role of GHSR in dopamine neuronal protection independent on electric activity of these cells and revealed a crucial role for mitochondrial dynamics in some aspects of this process. Dln101 is a human splice-variant of the ghrelin gene with different expression pattern. Ghrelin and Dln101 display equivalent levels of neuroprotection of SN DA cells. Modulation of electrical activity of SN DA cells is not relevant for neuroprotection. Mitochondrial fusion protein 2 (MFN 2) blocks DLN101-induced mitochondrial fusion in SN DA neurons and prevents DLN101-induced neuroprotection.
Collapse
Affiliation(s)
- Bernardo Stutz
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, USA.
| | - Carole Nasrallah
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, USA; Interdepartmental Neuroscience Program, USA
| | - Mariana Nigro
- Department of Obstetrics, Gynecology and Reproductive Sciences, USA
| | | | - Zhong-Wu Liu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, USA
| | - Xiao-Bing Gao
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, USA
| | | | | | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, USA; Interdepartmental Neuroscience Program, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, 1078, Hungary.
| |
Collapse
|
50
|
Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, Gamble KL. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci 2019; 51:109-138. [PMID: 30633846 DOI: 10.1111/ejn.14343] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
Abstract
Twenty-four-hour rhythmicity in physiology and behavior are driven by changes in neurophysiological activity that vary across the light-dark and rest-activity cycle. Although this neural code is most prominent in neurons of the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus, there are many other regions in the brain where region-specific function and behavioral rhythmicity may be encoded by changes in electrical properties of those neurons. In this review, we explore the existing evidence for molecular clocks and/or neurophysiological rhythms (i.e., 24 hr) in brain regions outside the SCN. In addition, we highlight the brain regions that are ripe for future investigation into the critical role of circadian rhythmicity for local oscillators. For example, the cerebellum expresses rhythmicity in over 2,000 gene transcripts, and yet we know very little about how circadian regulation drives 24-hr changes in the neural coding responsible for motor coordination. Finally, we conclude with a discussion of how our understanding of circadian regulation of electrical properties may yield insight into disease mechanisms which may lead to novel chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer A Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan K Becker
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Allison Fusilier
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aidan Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|