1
|
Rivas-Santisteban R, Muñoz A, Lillo J, Raïch I, Rodríguez-Pérez AI, Navarro G, Labandeira-García JL, Franco R. Cannabinoid regulation of angiotensin II-induced calcium signaling in striatal neurons. NPJ Parkinsons Dis 2024; 10:220. [PMID: 39548112 PMCID: PMC11568119 DOI: 10.1038/s41531-024-00827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Calcium ion (Ca2+) homeostasis is crucial for neuron function and neurotransmission. This study focused on the actions mediated by the CB1 receptor (CB1R), the most abundant G protein-coupled receptor (GPCR) in central nervous system (CNS) neurons, over by the AT1R, which is one of the few G protein-coupled CNS receptors able to regulate cytoplasmic Ca2+ levels. A functional interaction suggesting a direct association between these receptors was detected. AT1-CB1 receptor heteromers (AT1CB1Hets) were identified in HEK-293T cells by bioluminescence resonance energy transfer (BRET2). Functional interactions within the AT1-CB1 complex and their potential relevance in Parkinson's disease (PD) were assessed. In situ proximity ligation assays (PLA) identified AT1CB1Hets in neurons, in which an important finding was that Ca2+ level increase upon AT1R activation was reduced in the presence of cannabinoids acting on CB1Rs. AT1CB1Het expression was quantified in samples from the 6-hydroxydopamine (6-OHDA) hemilesioned rat model of PD in which a lower expression of AT1CB1Hets was observed in striatal neurons from lesioned animals (versus non-lesioned). AT1CB1Het expression changed depending on both the lesion and the consequences of levodopa administration, i.e., dyskinesias versus lack of involuntary movements. A partial recovery in AT1CB1Het expression was detected in lesioned animals that developed levodopa-induced dyskinesias. These findings support the existence of a compensatory mechanism mediated by AT1CB1Hets that modulates susceptibility to levodopa-induced dyskinesias in PD. Therefore, cannabinoids may be useful in reducing calcium dyshomeostasis in dyskinesia.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, Barcelona, Spain.
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain.
| | - Ana Muñoz
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jaume Lillo
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Iu Raïch
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Ana I Rodríguez-Pérez
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Navarro
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institute of Neuroscience of the University of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - José L Labandeira-García
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rafael Franco
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos iii, Madrid, Spain.
- Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Franco R, Navarro G. Neuroprotection afforded by targeting G protein-coupled receptors in heteromers and by heteromer-selective drugs. Front Pharmacol 2023; 14:1222158. [PMID: 37521478 PMCID: PMC10373065 DOI: 10.3389/fphar.2023.1222158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the target of hundreds of approved drugs. Although these drugs were designed to target individual receptors, it is becoming increasingly apparent that GPCRs interact with each other to form heteromers. Approved drug targets are often part of a GPCR heteromer, and therefore new drugs can be developed with heteromers in mind. This review presents several strategies to selectively target GPCRs in heteromeric contexts, namely, taking advantage of i) heteromer-mediated biased agonism/signalling, ii) discovery of drugs with higher affinity for the receptor if it is part of a heteromer (heteromer selective drugs), iii) allosteric compounds directed against the interacting transmembrane domains and, eventually, iv) antagonists that block both GPCRs in a heteromer. Heteromers provide unique allosteric sites that should help designing a new type of drug that by definition would be a heteromer selective drug. The review also provides examples of rhodopsin-like class A receptors in heteromers that could be targeted to neuroprotect and/or delay the progression of diseases such as Parkinson's and Alzheimer's. GPCRs in heteromers (GriH) with the potential to address dyskinesias, a common complication of dopaminergic replacement therapy in parkinsonian patients, are also described.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Kinlein SA, Wallace NK, Savenkova MI, Karatsoreos IN. Chronic hypothalamic-pituitary-adrenal axis disruption alters glutamate homeostasis and neural responses to stress in male C57Bl6/N mice. Neurobiol Stress 2022; 19:100466. [PMID: 35720261 PMCID: PMC9198473 DOI: 10.1016/j.ynstr.2022.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
It is now well-established that stress elicits brain- and body-wide changes in physiology and has significant impacts on many aspects of health. The hypothalamic-pituitary-adrenal (HPA) axis is the major neuroendocrine system mediating the integrated response to stress. Appropriate engagement and termination of HPA activity enhances survival and optimizes physiological and behavioral responses to stress, while dysfunction of this system is linked to negative health outcomes such as depression, anxiety, and post-traumatic stress disorder. Glutamate signaling plays a large role in the transmission of stress-related information throughout the brain. Furthermore, aberrant glutamate signaling has negative consequences for neural plasticity and synaptic function and is linked to stress-related pathology. However, the connection between HPA dysfunction and glutamate signaling is not fully understood. We tested how HPA axis dysfunction (using low dose chronic corticosterone in the drinking water) affects glutamate homeostasis and neural responses under baseline and acute stress in male C57BL/6N mice. Using laser microdissection and transcriptomic analyses, we show that chronic disruption of the HPA axis alters the expression of genes related to glutamate signaling in the medial prefrontal cortex (mPFC), hippocampus, and amygdala. While neural responses to stress (as measured by FOS) in the hippocampus and amygdala were not affected in our model of HPA dysfunction, we observed an exaggerated response to stress in the mPFC. To further probe this we undertook in vivo biosensor measurements of the dynamics of extracellular glutamate responses to stress in the mPFC in real-time, and found glutamate dynamics in the mPFC were significantly altered by chronic HPA dysfunction. Together, these findings support the hypothesis that chronic HPA axis dysfunction alters glutamatergic signaling in regions known to regulate emotional behavior, providing more evidence linking HPA dysfunction and stress vulnerability.
Collapse
|
4
|
Franco R, Morales P, Navarro G, Jagerovic N, Reyes-Resina I. The Binding Mode to Orthosteric Sites and/or Exosites Underlies the Therapeutic Potential of Drugs Targeting Cannabinoid CB2 Receptors. Front Pharmacol 2022; 13:852631. [PMID: 35250601 PMCID: PMC8889005 DOI: 10.3389/fphar.2022.852631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
The classical terms agonists and antagonists for G protein coupled receptors (GPCRs) have often become misleading. Even the biased agonism concept does not describe all the possibilities already demonstrated for GPCRs. The cannabinoid CB2 receptor (CB2R) emerged as a promising target for a variety of diseases. Reasons for such huge potential are centered around the way drugs sit in the orthosteric and/or exosites of the receptor. On the one hand, a given drug in a specific CB2R conformation leads to a signaling cascade that differs qualitatively and/or quantitatively from that triggered by another drug. On the other hand, a given drug may lead to different signaling outputs in two different tissues (or cell contexts) in which the conformation of the receptor is affected by allosteric effects derived from interactions with other proteins or with membrane lipids. This highlights the pharmacological complexity of this receptor and the need to further unravel the binding mode of CB2R ligands in order to fine-tune signaling effects and therapeutic propositions.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biolomedicine, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Rafael Franco,
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Gemma Navarro
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Irene Reyes-Resina
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biolomedicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Nicola C, Dubois M, Campart C, Al Sagheer T, Desrues L, Schapman D, Galas L, Lange M, Joly F, Castel H. The Prostate Cancer Therapy Enzalutamide Compared with Abiraterone Acetate/Prednisone Impacts Motivation for Exploration, Spatial Learning and Alters Dopaminergic Transmission in Aged Castrated Mice. Cancers (Basel) 2021; 13:cancers13143518. [PMID: 34298734 PMCID: PMC8304001 DOI: 10.3390/cancers13143518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Cognitive side effects and fatigue after cancer treatment now constitute a major challenge in oncology. Abiraterone acetate plus prednisone (AAP) and enzalutamide (ENZ) are next-generation therapies improving metastatic castration-resistant prostate cancer (mCRPC) patient survival, but also associated with neurological disturbances. We developed a behavioral 17 months-aged and castrated mouse model receiving AAP or ENZ for 5 days per week for six weeks. We establish that ENZ impacts locomotor and explorative behaviors, and strength capacity likely by preventing binding of central synthetized androgens to androgen receptors expressed by dopamine neurons of the Substantia Nigra and the Ventral Tegmentum. ENZ also reduces the cognitive score, associated with less neuronal activity in dorsal hippocampal areas. This demonstrates ENZ-specific consequences on motivation to exploration and cognition, being of particular importance for future management of elderly prostate cancer patients and their quality of life. Abstract Cognitive side effects after cancer treatment threatening quality of life (QoL) constitute a major challenge in oncology. Abiraterone acetate plus prednisone (AAP) and enzalutamide (ENZ) are examples of next-generation therapy (NGT) administered to metastatic castration-resistant prostate cancer (mCRPC) patients. NGT significantly improved mCRPC overall survival but neurological side effects such as fatigue and cognitive impairment were reported. We developed a behavioral 17 months-aged and castrated mouse model receiving per os AAP or ENZ for 5 days per week for six consecutive weeks. ENZ exposure reduced spontaneous activity and exploratory behavior associated with a decreased tyrosine hydroxylase (TH)-dopaminergic activity in the substantia nigra pars compacta and the ventral tegmental area. A decrease in TH+-DA afferent fibers and Phospho-DARPP32-related dopaminergic neuronal activities in the striatum and the ventral hippocampus highlighted ENZ-induced dopaminergic regulation within the nigrostriatal and mesolimbocortical pathways. ENZ and AAP treatments did not substantially modify spatial learning and memory performances, but ENZ led to a thygmotaxis behavior impacting the cognitive score, and reduced c-fos-related activity of NeuN+-neurons in the dorsal hippocampus. The consequences of the mCRPC treatment ENZ on aged castrated mouse motivation to exploration and cognition should make reconsider management strategy of elderly prostate cancer patients.
Collapse
Affiliation(s)
- Celeste Nicola
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Martine Dubois
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Cynthia Campart
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Tareq Al Sagheer
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
| | - Laurence Desrues
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Damien Schapman
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Normandie University, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| | - Ludovic Galas
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Normandie University, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| | - Marie Lange
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
- Centre François Baclesse, Clinical Research Department, 14000 Caen, France
- Normandie University, UNICAEN, INSERM, U1086 ANTICIPE, 14000 Caen, France
| | - Florence Joly
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
- Centre François Baclesse, Clinical Research Department, 14000 Caen, France
- Normandie University, UNICAEN, INSERM, U1086 ANTICIPE, 14000 Caen, France
- University Hospital of Caen, 14000 Caen, France
| | - Hélène Castel
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
- Normandie University, UNIROUEN, INSERM, DC2N, Team Astrocyte and Vascular Niche, Place Emile Blondel, CEDEX, 76821 Mont-Saint-Aignan, France
- Correspondence: ; Tel.: +33-2-35-14-66-23
| |
Collapse
|
6
|
Franco R, Rivas‐Santisteban R, Reyes-Resina I, Navarro G. The Old and New Visions of Biased Agonism Through the Prism of Adenosine Receptor Signaling and Receptor/Receptor and Receptor/Protein Interactions. Front Pharmacol 2021; 11:628601. [PMID: 33584311 PMCID: PMC7878529 DOI: 10.3389/fphar.2020.628601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Biased signaling is a concept that has arisen in the G protein-coupled receptor (GCPR) research field, and holds promise for the development of new drug development strategies. It consists of different signaling outputs depending on the agonist's chemical structure. Here we review the most accepted mechanisms for explaining biased agonism, namely the induced fit hypothesis and the key/lock hypothesis, but we also consider how bias can be produced by a given agonist. In fact, different signaling outputs may originate at a given receptor when activated by, for instance, the endogenous agonist. We take advantage of results obtained with adenosine receptors to explain how such mechanism of functional selectivity depends on the context, being receptor-receptor interactions (heteromerization) one of the most relevant and most studied mechanisms for mammalian homeostasis. Considering all the possible mechanisms underlying functional selectivity is essential to optimize the selection of biased agonists in the design of drugs targeting GPCRs.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
| | - Rafael Rivas‐Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
| | - Irene Reyes-Resina
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Hasbi A, Sivasubramanian M, Milenkovic M, Komarek K, Madras BK, George SR. Dopamine D1-D2 receptor heteromer expression in key brain regions of rat and higher species: Upregulation in rat striatum after cocaine administration. Neurobiol Dis 2020; 143:105017. [PMID: 32679312 PMCID: PMC7450246 DOI: 10.1016/j.nbd.2020.105017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dopamine receptors interact with other receptors to form heterooligomers. One such complex, the D1-D2 heteromer, demonstrated in cultured striatal neurons and rat striatum has been linked to drug addiction, Parkinson's disease, schizophrenia, depression and anhedonia. METHODS D1-D2 heteromer expression was evaluated using in situ proximity ligation assay, in parallel with cellular colocalization of D1 and D2 mRNA using in situ hybridization in 19 different key rat brain regions. Expression in higher species and changes in rat striatum after repeated cocaine administration were evaluated. RESULTS Differences in D1-D2 heteromer expression in striatal subregions are documented in higher species with nonhuman primate and human demonstrating higher density of heteromer-expressing neurons compared to rodents. All species had higher density of D1-D2 neurons in nucleus accumbens compared to dorsal striatum. Multiple other brain regions are identified where D1-D2 heteromer is expressed, prominently in cerebral cortical subregions including piriform, medial prefrontal, orbitofrontal and others; subcortical regions such as claustrum, amygdala and lateral habenula. Three categories of regions are identified: D1-D2 heteromer expressed despite little to no observed D1/D2 mRNA colocalization, likely representing heteromer on neuronal projections from other brain regions; D1-D2 heteromer originating locally with the density of neurons expressing heteromer matching neurons with colocalized D1/D2 mRNA; regions with both a local origin and targeted inputs projecting from other regions. Repeated cocaine administration significantly increased density of neurons expressing D1-D2 heteromer and D1/D2 mRNA colocalization in rat striatum, with changes in both direct and indirect pathway neurons. CONCLUSION The dopamine D1-D2 heteromer is expressed in key brain cortical and subcortical regions of all species examined. Species differences in striatum revealed greater abundance in human>nonhuman-primate>rat>mouse, suggesting an evolutionary biologic role for the D1-D2 heteromer in higher CNS function. Its upregulation in rat striatum following cocaine points to regulatory significance with possible relevance for clinical disorders such as drug addiction. The dopamine D1-D2 receptor heteromer may represent a potential target for neuropsychiatric and neurodegenerative disorders, given its distribution in highly relevant brain regions.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | | | - Marija Milenkovic
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Kristina Komarek
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Bertha K Madras
- Department of Psychiatry, Harvard Medical School, Boston and McLean Hospital, Belmont, MA, USA
| | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Zhang Y, Zhai H. Bilobalide assuages morphine-induced addiction in hippocampal neuron cells through upregulation of microRNA-101. J Biochem Mol Toxicol 2020; 34:e22493. [PMID: 32319158 DOI: 10.1002/jbt.22493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 03/03/2020] [Indexed: 11/09/2022]
Abstract
Bilobalide exhibits many biological activities, but its effects on morphine stimulation have not been elucidated. The research aims to explore the function and underlying mechanisms of bilobalide in morphine-led hippocampal neuron cells. Cells were treated with or without morphine or oxaliplatin (OXA), bilobalide, or SCH772984 dilutions. miR-101 inhibitor and negative control were transfected into cells. Western blot and quantitative reverse transcription-polymerase chain reaction were, respectively, conducted to measure the relative expression of proteins or RNAs. Morphine improved the expression levels of orexin1 receptor (OX1R) and c-FOS, the p/t-ERK/PKC as well. The c-FOS protein level and p/t-ERK/PKC were significantly elevated by morphine + OXA. Bilobalide had no effect on OX1R and p/t-PKC but evidently decreased the c-FOS and p/t-ERK. The p-ERK and the c-FOS accumulation levels were remarkably reduced by SCH772984. The production of miR-101 was promoted by bilobalide but inhibited by the miR-101 inhibitor. miR-101 inhibitor abolished bilobalide's inhibitory effects on p/t-ERK. Bilobalide exhibited morphine-induced effects on hippocampal neuron cells by upregulating miR-101.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Hongyin Zhai
- Department of Children Rehabilitation Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
10
|
Glovaci I, Chapman CA. Dopamine induces release of calcium from internal stores in layer II lateral entorhinal cortex fan cells. Cell Calcium 2019; 80:103-111. [PMID: 30999216 DOI: 10.1016/j.ceca.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022]
Abstract
The entorhinal cortex plays an important role in temporal lobe processes including learning and memory, object recognition, and contextual information processing. The alteration of the strength of synaptic inputs to the lateral entorhinal cortex may therefore contribute substantially to sensory and mnemonic functions. The neuromodulatory transmitter dopamine exerts powerful effects on excitatory glutamatergic synaptic transmission in the entorhinal cortex. Interestingly, inputs from midbrain dopamine neurons appear to specifically target clusters of excitatory cells located in the superficial layers of the entorhinal cortex. We have previously demonstrated that dopamine facilitates synaptic transmission through the activation of D1-like receptors. This facilitation of synaptic transmission is dependent on both activation of classical D1-like-receptors, and upon activation of dopamine receptors linked to increases in phospholipase C, inositol triphosphate (IP3), and intracellular calcium. In the present study we combined electrophysiological recordings of evoked excitatory postsynaptic currents with imaging of intracellular calcium using the fluorescent indicator fluo-4 to monitor calcium transients evoked by dopamine in electrophysiologically identified putative fan and pyramidal cells of the lateral entorhinal cortex. Bath application of dopamine (1 μM), or the phosphatidylinositol (PI)-linked D1-like-receptor agonist SKF83959 (5 μM), induced reliable and reversible increases in fluo-4 fluorescence and excitatory postsynaptic currents in fan cells, but not in pyramidal cells. In contrast, application of the classical D1-like-receptor agonist SKF38393 (10 μM) did not result in significant increases in fluorescence. Blocking release of calcium from internal stores by loading cells with the IP3 receptor blocker heparin (1 mM) or the ryanodine receptor blocker dantrolene (20 μM) abolished both the calcium transients and the facilitation of evoked synaptic currents induced by dopamine. Dopamine also induced calcium transients in fan cells when calcium was excluded from the extracellular medium, further indicating that the calcium transients are linked to release from internal stores. These results indicate that following D1-like-receptor binding, dopamine selectively induces transient elevations in intracellular calcium via activation of IP3 and ryanodine receptors, and that these elevations are linked to the facilitation of synaptic responses in putative layer II entorhinal cortex fan cells.
Collapse
Affiliation(s)
- Iulia Glovaci
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
11
|
Romanova IV, Mikhrina AL, Shpakov AO. Immunohistochemical Evidence for the Localization of Dopamine Receptors on Neuropeptide Y-Expressing Neurons in Rat Arcuate Nuclei. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Beeler JA, Mourra D. To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Front Integr Neurosci 2018; 12:6. [PMID: 29487508 PMCID: PMC5816947 DOI: 10.3389/fnint.2018.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Five years ago, we introduced the thrift hypothesis of dopamine (DA), suggesting that the primary role of DA in adaptive behavior is regulating behavioral energy expenditure to match the prevailing economic conditions of the environment. Here we elaborate that hypothesis with several new ideas. First, we introduce the concept of affordability, suggesting that costs must necessarily be evaluated with respect to the availability of resources to the organism, which computes a value not only for the potential reward opportunity, but also the value of resources expended. Placing both costs and benefits within the context of the larger economy in which the animal is functioning requires consideration of the different timescales against which to compute resource availability, or average reward rate. Appropriate windows of computation for tracking resources requires corresponding neural substrates that operate on these different timescales. In discussing temporal patterns of DA signaling, we focus on a neglected form of DA plasticity and adaptation, changes in the physical substrate of the DA system itself, such as up- and down-regulation of receptors or release probability. We argue that changes in the DA substrate itself fundamentally alter its computational function, which we propose mediates adaptations to longer temporal horizons and economic conditions. In developing our hypothesis, we focus on DA D2 receptors (D2R), arguing that D2R implements a form of “cost control” in response to the environmental economy, serving as the “brain’s comptroller”. We propose that the balance between the direct and indirect pathway, regulated by relative expression of D1 and D2 DA receptors, implements affordability. Finally, as we review data, we discuss limitations in current approaches that impede fully investigating the proposed hypothesis and highlight alternative, more semi-naturalistic strategies more conducive to neuroeconomic investigations on the role of DA in adaptive behavior.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| | - Devry Mourra
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
13
|
The Leptin, Dopamine and Serotonin Receptors in Hypothalamic POMC-Neurons of Normal and Obese Rodents. Neurochem Res 2018; 43:821-837. [PMID: 29397535 DOI: 10.1007/s11064-018-2485-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
The pro-opiomelanocortin (POMC)-expressing neurons of the hypothalamic arcuate nucleus (ARC) are involved in the control of food intake and metabolic processes. It is assumed that, in addition to leptin, the activity of these neurons is regulated by serotonin and dopamine, but only subtype 2C serotonin receptors (5-HT2CR) was identified earlier on the POMC-neurons. The aim of this work was a comparative study of the localization and number of leptin receptors (LepR), types 1 and 2 dopamine receptors (D1R, D2R), 5-HT1BR and 5-HT2CR on the POMC-neurons and the expression of the genes encoding them in the ARC of the normal and diet-induced obese (DIO) rodents and the agouti mice (A y /a) with the melanocortin obesity. As shown by immunohistochemistry (IHC), all the studied receptors were located on the POMC-immunopositive neurons, and their IHC-content was in agreement with the expression of their genes. In DIO rats the number of D1R and D2R in the POMC-neurons and their expression in the ARC were reduced. In DIO mice the number of D1R and D2R did not change, while the number of LepR and 5-HT2CR was increased, although to a small extent. In the POMC-neurons of agouti mice the number of LepR, D2R, 5-HT1BR and 5-HT2CR was increased, and the D1R number was reduced. Thus, our data demonstrates for the first time the localization of different types of the serotonin and dopamine receptors on the POMC-neurons and a specific pattern of the changes of their number and expression in the DIO and melanocortin obesity.
Collapse
|
14
|
Perreault ML, Fan T, Banasikowski TJ, Grace AA, George SR. The atypical dopamine receptor agonist SKF 83959 enhances hippocampal and prefrontal cortical neuronal network activity in a rat model of cognitive dysfunction. Eur J Neurosci 2017; 46:2015-2025. [PMID: 28677227 DOI: 10.1111/ejn.13635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
Deficits in neuronal network synchrony in hippocampus and prefrontal cortex have been widely demonstrated in disorders of cognitive dysfunction, including schizophrenia and Alzheimer's disease. The atypical dopamine agonist SKF 83959 has been shown to increase brain-derived neurotrophic factor signalling and suppress activity of glycogen synthase kinase-3 in PFC, two processes important to learning and memory. The purpose of this study was to therefore evaluate the impact of SKF 83959 on oscillatory deficits in methylazoxymethanol acetate (MAM) rat model of schizophrenia. To achieve this, local field potentials were recorded simultaneously from the hippocampus and prefrontal cortex of anesthetized rats at 15 and 90 min following both acute and repeated administration of SKF 83959 (0.4 mg/kg). In MAM rats, but not controls, repeated SKF 83959 treatment increased signal amplitude in hippocampus and enhanced the spectral power of low frequency delta and theta oscillations in this region. In PFC, SKF 83959 increased delta, theta and gamma spectral power. Increased HIP-PFC theta coherence was also evident following acute and repeated SKF 83959. In apparent contradiction to these oscillatory effects, in MAM rats, SKF 83959 inhibited spatial learning and induced a significant increase in thigmotactic behaviour. These findings have uncovered a previously unknown role for SKF 83959 in the positive regulation of hippocampal-prefrontal cortical oscillatory network activity. As SKF 83959 is known to have affinity for a number of receptors, delineating the receptor mechanisms that mediate the positive drug effects on neuronal oscillations could have significant future implications in disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Melissa L Perreault
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Bldg. Room 4358, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Theresa Fan
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Bldg. Room 4358, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Tomek J Banasikowski
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan R George
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Bldg. Room 4358, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Vekshina NL, Anokhin PK, Veretinskaya AG, Shamakina IY. Dopamine D1–D2 receptor heterodimers: A literature review. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s199075081702010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Vekshina N, Anokhin P, Veretinskaya A, Shamakina I. Heterodimeric D1-D2 dopamine receptors: a review. ACTA ACUST UNITED AC 2017. [DOI: 10.18097/pbmc20176301005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes modern data on the structure and functions ofheteromersformed by D1 and D2 dopamine receptors focusing on their role in the mechanisms of drug dependence. This article discusses potential functional significance of heterodimeric D1-D2 dopamine receptorsdue to their localization in the brain as well as unique pharmacological propertiesversus constituent monomers. It is shown that heteromerization results in dramatic changes in activated signaling pathways compare to the corresponding monomers. These studies update our current knowledge of ligand-receptor interactions and provide better understanding of dopamine receptors pharmacology. Furthermore elucidation of significance of heterodimeric D1-D2 dopamine receptors as drug targets is important for the development of new effective drug addiction treatment.
Collapse
Affiliation(s)
- N.L. Vekshina
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - P.K. Anokhin
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - A.G. Veretinskaya
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - I.Yu. Shamakina
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
17
|
Arnsten AF, Girgis RR, Gray DI, Mailman RB. Novel Dopamine Therapeutics for Cognitive Deficits in Schizophrenia. Biol Psychiatry 2017; 81:67-77. [PMID: 26946382 PMCID: PMC4949134 DOI: 10.1016/j.biopsych.2015.12.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/25/2015] [Accepted: 12/31/2015] [Indexed: 11/30/2022]
Abstract
Schizophrenia is characterized by profound cognitive deficits that are not alleviated by currently available medications. Many of these cognitive deficits involve dysfunction of the newly evolved, dorsolateral prefrontal cortex (dlPFC). The brains of patients with schizophrenia show evidence of dlPFC pyramidal cell dendritic atrophy, likely reductions in cortical dopamine, and possible changes in dopamine D1 receptors (D1R). It has been appreciated for decades that optimal levels of dopamine are essential for dlPFC working memory function, with many beneficial actions arising from D1R stimulation. D1R are concentrated on dendritic spines in the primate dlPFC, where their stimulation produces an inverted-U dose response on dlPFC neuronal firing and cognitive performance during working memory tasks. Research in both academia and the pharmaceutical industry has led to the development of selective D1 agonists, e.g., the first full D1 agonist, dihydrexidine, which at low doses improved working memory in monkeys. Dihydrexidine has begun to be tested in patients with schizophrenia or schizotypal disorder. Initial results are encouraging, but studies are limited by the pharmacokinetics of the drug. These data, however, have spurred efforts toward the discovery and development of improved or novel new compounds, including D1 agonists with better pharmacokinetics, functionally selective D1 ligands, and D1R positive allosteric modulators. One or several of these approaches should allow optimization of the beneficial effects of D1R stimulation in the dlPFC that can be translated into clinical practice.
Collapse
Affiliation(s)
- Amy F.T. Arnsten
- Department of Neurobiology, Yale Medical School, New Haven, CT 06510
| | - Ragy R. Girgis
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - David I. Gray
- Neuroscience & Pain Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA 02139
| | - Richard B. Mailman
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17036
| |
Collapse
|
18
|
Romanova IV, Mikhrina AL, Shpakov AO. Localization of the dopamine receptors of types 1 and 2 on the bodies of POMC-expressing neurons of the arcuate nucleus of the hypothalamus in mice and rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2017; 472:11-14. [PMID: 28429261 DOI: 10.1134/s0012496617010082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 06/07/2023]
Abstract
Using immunofluorescent techniques, we have demonstrated the presence of two main types of dopamine receptors, D1 and D2, on the bodies of neurons of the arcuate nucleus of the hypothalamus expressing the precursor of peptides of the melanocortin family proopiomelanocortin in C57Bl/6J mice and Wistar rats. These data show close functional relationship between the dopamine and melanocortin systems of the brain and involvement of dopamine in the control of synthesis and secretion of peptides of the melanocortin family.
Collapse
Affiliation(s)
- I V Romanova
- Sechenov Institute of Evolutionary Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - A L Mikhrina
- Sechenov Institute of Evolutionary Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A O Shpakov
- Sechenov Institute of Evolutionary Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
19
|
Perreault ML, Hasbi A, Shen MYF, Fan T, Navarro G, Fletcher PJ, Franco R, Lanciego JL, George SR. Disruption of a dopamine receptor complex amplifies the actions of cocaine. Eur Neuropsychopharmacol 2016; 26:1366-1377. [PMID: 27480020 DOI: 10.1016/j.euroneuro.2016.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 11/27/2022]
Abstract
Cocaine-induced increases in dopamine signaling in nucleus accumbens (NAc) play a significant role in cocaine seeking behavior. The majority of cocaine addiction research has focused on neuroanatomically segregated dopamine D1 and D2 receptor-expressing neurons, yet an involvement for those NAc neurons coexpressing D1 and D2 receptors in cocaine addiction has never been explored. In situ proximity ligation assay, confocal fluorescence resonance energy transfer and coimmunoprecipitation were used to show native D1 and D2 receptors formed a heteromeric complex in D1/D2 receptor-coexpressing neurons in rat and non-human primate NAc. D1-D2 heteromer expression was lower in NAc of adolescent rats compared to their adult counterparts. Functional disruption of the dopamine D1-D2 receptor heteromer, using a peptide targeting the site of interaction between the D1 and D2 receptor, induced conditioned place preference and increased NAc expression of ∆FosB. D1-D2 heteromer disruption also resulted in the promotion, exacerbation and acceleration of the locomotor activating and incentive motivational effects of cocaine in the self-administration paradigm. These findings support a model for tonic inhibition of basal and cocaine-induced reward processes by the D1-D2 heteromer thus highlighting its potential value as a novel target for drug discovery in cocaine addiction. Given that adolescents show increased drug abuse susceptibility, an involvement for reduced D1-D2 heteromer function in the heightened sensitivity to the rewarding effects of cocaine in adolescence is also implicated.
Collapse
Affiliation(s)
- Melissa L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahmed Hasbi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Maurice Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rafael Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; CIBERNED, Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - José L Lanciego
- CIBERNED, Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Department of Neurosciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Shen MYF, Perreault ML, Bambico FR, Jones-Tabah J, Cheung M, Fan T, Nobrega JN, George SR. Rapid anti-depressant and anxiolytic actions following dopamine D1-D2 receptor heteromer inactivation. Eur Neuropsychopharmacol 2015; 25:2437-48. [PMID: 26431907 DOI: 10.1016/j.euroneuro.2015.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/23/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023]
Abstract
A role for the mesolimbic dopaminergic system in the pathophysiology of depression has become increasingly evident. Specifically, brain-derived neurotrophic factor (BDNF) has been shown to be elevated in the nucleus accumbens of depressed patients and to positively contribute to depression-like behaviour in rodents. The dopamine D1-D2 receptor heteromer exhibits significant expression in NAc and has also been shown to enhance BDNF expression and signalling in this region. We therefore examined the effects of D1-D2 heteromer stimulation in rats by SKF 83959, or its inactivation by a selective heteromer-disrupting TAT-D1 peptide on depression- and anxiety-like behaviours in non-stressed animals and in animals exposed to chronic unpredictable stress. SKF 83959 treatment significantly enhanced the latency to immobility in the forced swim test, increased the latency to drink condensed milk and reduced total milk consumption in the novelty-induced hypophagia test, and additionally reduced the total time spent in the open arms in the elevated plus maze test. These pro-depressant and anxiogenic effects of SKF 83959 were consistently abolished or attenuated by TAT-D1 peptide pre-treatment, signifying the behaviours were mediated by the D1-D2 heteromer. More importantly, in animals exposed to chronic unpredictable stress (CUS), TAT-D1 peptide treatment alone induced significant and rapid anxiolytic and antidepressant-like effects in two tests for CUS-induced anhedonia-like reactivity and in the novelty-suppressed feeding test. Together these findings indicate a positive role for the D1-D2 heteromer in mediating depression- and anxiety-like behaviours and suggest its possible value as a novel therapeutic target.
Collapse
Affiliation(s)
- Maurice Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Melissa L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Francis R Bambico
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Jace Jones-Tabah
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Marco Cheung
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Theresa Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - José N Nobrega
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Conroy JL, Free RB, Sibley DR. Identification of G protein-biased agonists that fail to recruit β-arrestin or promote internalization of the D1 dopamine receptor. ACS Chem Neurosci 2015; 6:681-92. [PMID: 25660762 DOI: 10.1021/acschemneuro.5b00020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The D1 dopamine receptor (D1R) has been implicated in numerous neuropsychiatric disorders, and D1R-selective ligands have potential as therapeutic agents. Previous studies have identified substituted benzazepines as D1R-selective agonists, but the in vivo effects of these compounds have not correlated well with their in vitro pharmacological activities. A series of substituted benzazepines, and structurally dissimilar D1R-selective agonists, were tested for their functional effects on D1R-mediated cAMP accumulation, D1R-promoted β-arrestin recruitment, and D1R internalization using live cell functional assays. All compounds tested elicited an increase in the level of cAMP accumulation, albeit with a range of efficacies. However, when the compounds were evaluated for β-arrestin recruitment, a subset of substituted benzazepines, SKF83959, SKF38393, SKF82957, SKF77434, and SKF75670, failed to activate this pathway, whereas the others showed similar activation efficacies as seen with cAMP accumulation. When tested as antagonists, the five biased compounds all inhibited dopamine-stimulated β-arrestin recruitment. Further, D1R internalization assays revealed a corroborating pattern of activity in that the G protein-biased compounds failed to promote D1R internalization. Interestingly, the biased signaling was unique for the D1R, as the same compounds were agonists of the related D5 dopamine receptor (D5R), but revealed no signaling bias. We have identified a group of substituted benzazepine ligands that are agonists at D1R-mediated G protein signaling, but antagonists of D1R recruitment of β-arrestin, and also devoid of agonist-induced receptor endocytosis. These data may be useful for interpreting the contrasting effects of these compounds in vitro versus in vivo, and also for the understanding of pathway-selective signaling of the D1R.
Collapse
Affiliation(s)
- Jennie L. Conroy
- Molecular Neuropharmacology Section,
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9405, United States
| | - R. Benjamin Free
- Molecular Neuropharmacology Section,
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9405, United States
| | - David R. Sibley
- Molecular Neuropharmacology Section,
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9405, United States
| |
Collapse
|