1
|
Rose KN, Zorlu M, Fassini A, Lee H, Cai W, Xue X, Lin S, Kivisakk P, Schwarzschild MA, Chen X, Gomperts SN. Neuroprotection of low dose carbon monoxide in Parkinson's disease models commensurate with the reduced risk of Parkinson's among smokers. NPJ Parkinsons Dis 2024; 10:152. [PMID: 39174550 PMCID: PMC11341721 DOI: 10.1038/s41531-024-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Paradoxically, cigarette smoking is associated with a reduced risk of Parkinson's Disease (PD). This led us to hypothesize that carbon monoxide (CO) levels, which are constitutively but modestly elevated in smokers, might contribute to neuroprotection. Using rodent models of PD based on α-synuclein (αSyn) accumulation and oxidative stress, we show that low-dose CO mitigates neurodegeneration and reduces αSyn pathology. Oral CO administration activated signaling cascades mediated by heme oxygenase-1 (HO-1), which have been implicated in limiting oxidative stress, and in promoting αSyn degradation, thereby conferring neuroprotection. Consistent with the neuroprotective effect of smoking, HO-1 levels in cerebrospinal fluid were higher in human smokers compared to nonsmokers. Moreover, in PD brain samples, HO-1 levels were higher in neurons without αSyn pathology. Thus, CO in rodent PD models reduces pathology and increases oxidative stress responses, phenocopying possible protective effects of smoking evident in PD patients. These data highlight the potential for low-dose CO-modulated pathways to slow symptom onset and limit pathology in PD patients.
Collapse
Affiliation(s)
- K N Rose
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - M Zorlu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - A Fassini
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - H Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - W Cai
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - X Xue
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - S Lin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - P Kivisakk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - M A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - X Chen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S N Gomperts
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Leupold D, Buder S, Pfeifer L, Szyc L, Riederer P, Strobel S, Monoranu CM. New Aspects Regarding the Fluorescence Spectra of Melanin and Neuromelanin in Pigmented Human Tissue Concerning Hypoxia. Int J Mol Sci 2024; 25:8457. [PMID: 39126026 PMCID: PMC11313424 DOI: 10.3390/ijms25158457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Melanin is a crucial pigment in melanomagenesis. Its fluorescence in human tissue is exceedingly weak but can be detected through advanced laser spectroscopy techniques. The spectral profile of melanin fluorescence distinctively varies among melanocytes, nevomelanocytes, and melanoma cells, with melanoma cells exhibiting a notably "red" fluorescence spectrum. This characteristic enables the diagnosis of melanoma both in vivo and in histological samples. Neuromelanin, a brain pigment akin to melanin, shares similar fluorescence properties. Its fluorescence can also be quantified with high spectral resolution using the same laser spectroscopic methods. Documented fluorescence spectra of neuromelanin in histological samples from the substantia nigra substantiate these findings. Our research reveals that the spectral behavior of neuromelanin fluorescence mirrors that of melanin in melanomas. This indicates that the typical red fluorescence is likely influenced by the microenvironment around (neuro)melanin, rather than by direct pigment interactions. Our ongoing studies aim to further explore this distinctive "red" fluorescence. We have observed this red fluorescence spectrum in post-mortem measurements of melanin in benign nevus. The characteristic red spectrum is also evident here (unlike the benign nevus in vivo), suggesting that hypoxia may contribute to this phenomenon. Given the central role of hypoxia in both melanoma development and treatment, as well as in fundamental Parkinson's disease mechanisms, this study discusses strategies aimed at reinforcing the hypothesis that red fluorescence from (neuro)melanin serves as an indicator of hypoxia.
Collapse
Affiliation(s)
- Dieter Leupold
- LTB Lasertechnik Berlin GmbH, 12489 Berlin, Germany; (D.L.); (L.P.)
| | - Susanne Buder
- Clinic for Dermatology and Venerology, Vivantes Klinikum Neukölln, 12351 Berlin, Germany;
| | - Lutz Pfeifer
- LTB Lasertechnik Berlin GmbH, 12489 Berlin, Germany; (D.L.); (L.P.)
| | | | - Peter Riederer
- Department and Research Unit of Psychiatry, University of Southern Denmark, 5230 Odense, Denmark;
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Sabrina Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, 97080 Wuerzburg, Germany;
| | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, 97080 Wuerzburg, Germany;
| |
Collapse
|
3
|
Janssen Daalen JM, Meinders MJ, Mathur S, van Hees HWH, Ainslie PN, Thijssen DHJ, Bloem BR. Randomized controlled trial of intermittent hypoxia in Parkinson's disease: study rationale and protocol. BMC Neurol 2024; 24:212. [PMID: 38909201 PMCID: PMC11193237 DOI: 10.1186/s12883-024-03702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that repeated exposure to intermittent hypoxia might have short- and long-term benefits in PD. In a previous exploratory phase I trial, we demonstrated that in-clinic intermittent hypoxia exposure is safe and feasible with short-term symptomatic effects on PD symptoms. The current study aims to explore the safety, tolerability, feasibility, and net symptomatic effects of a four-week intermittent hypoxia protocol, administered at home, in individuals with PD. METHODS/DESIGN This is a two-armed double-blinded randomized controlled trial involving 40 individuals with mild to moderate PD. Participants will receive 45 min of normobaric intermittent hypoxia (fraction of inspired oxygen 0.16 for 5 min interspersed with 5 min normoxia), 3 times a week for 4 weeks. Co-primary endpoints include nature and total number of adverse events, and a feasibility-tolerability questionnaire. Secondary endpoints include Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part II and III scores, gait tests and biomarkers indicative of hypoxic dose and neuroprotective pathway induction. DISCUSSION This trial builds on the previous phase I trial and aims to investigate the safety, tolerability, feasibility, and net symptomatic effects of intermittent hypoxia in individuals with PD. Additionally, the study aims to explore induction of relevant neuroprotective pathways as measured in plasma. The results of this trial could provide further insight into the potential of hypoxia-based therapy as a novel treatment approach for PD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05948761 (registered June 20th, 2023).
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands.
| | - Marjan J Meinders
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | | | - Hieronymus W H van Hees
- Radboud University Medical Center, Department of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Philip N Ainslie
- University of British Columbia, Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Kelowna, Canada
| | - Dick H J Thijssen
- Radboud University Medical Center, Department of Medical BioSciences, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Salvagno M, Coppalini G, Taccone FS, Strapazzon G, Mrakic-Sposta S, Rocco M, Khalife M, Balestra C. The Normobaric Oxygen Paradox-Hyperoxic Hypoxic Paradox: A Novel Expedient Strategy in Hematopoiesis Clinical Issues. Int J Mol Sci 2022; 24:ijms24010082. [PMID: 36613522 PMCID: PMC9820104 DOI: 10.3390/ijms24010082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxia, even at non-lethal levels, is one of the most stressful events for all aerobic organisms as it significantly affects a wide spectrum of physiological functions and energy production. Aerobic organisms activate countless molecular responses directed to respond at cellular, tissue, organ, and whole-body levels to cope with oxygen shortage allowing survival, including enhanced neo-angiogenesis and systemic oxygen delivery. The benefits of hypoxia may be evoked without its detrimental consequences by exploiting the so-called normobaric oxygen paradox. The intermittent shift between hyperoxic-normoxic exposure, in addition to being safe and feasible, has been shown to enhance erythropoietin production and raise hemoglobin levels with numerous different potential applications in many fields of therapy as a new strategy for surgical preconditioning aimed at frail patients and prevention of postoperative anemia. This narrative review summarizes the physiological processes behind the proposed normobaric oxygen paradox, focusing on the latest scientific evidence and the potential applications for this strategy. Future possibilities for hyperoxic-normoxic exposure therapy include implementation as a synergistic strategy to improve a patient's pre-surgical condition, a stimulating treatment in critically ill patients, preconditioning of athletes during physical preparation, and, in combination with surgery and conventional chemotherapy, to improve patients' outcomes and quality of life.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Giacomo Coppalini
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology—National Research Council (CNR-IFC), 20162 Milano, Italy
| | - Monica Rocco
- Dipartimento di Scienze Medico Chirurgiche e Medicina Traslazionale, Sapienza University of Rome, 00189 Rome, Italy
| | - Maher Khalife
- Department of Anesthesiology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1050 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1020 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
6
|
Snyder B, Wu HK, Tillman B, Floyd TF. Aged Mouse Hippocampus Exhibits Signs of Chronic Hypoxia and an Impaired HIF-Controlled Response to Acute Hypoxic Exposures. Cells 2022; 11:cells11030423. [PMID: 35159233 PMCID: PMC8833982 DOI: 10.3390/cells11030423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Altered hypoxia-inducible factor-alpha (HIF-α) activity may have significant consequences in the hippocampus, which mediates declarative memory, has limited vascularization, and is vulnerable to hypoxic insults. Previous studies have reported that neurovascular coupling is reduced in aged brains and that diseases which cause hypoxia increase with age, which may render the hippocampus susceptible to acute hypoxia. Most studies have investigated the actions of HIF-α in aging cortical structures, but few have focused on the role of HIF-α within aged hippocampus. This study tests the hypothesis that aging is associated with impaired hippocampal HIF-α activity. Dorsal hippocampal sections from mice aged 3, 9, 18, and 24 months were probed for the presence of HIF-α isoforms or their associated gene products using immunohistochemistry and fluorescent in situ hybridization (fISH). A subset of each age was exposed to acute hypoxia (8% oxygen) for 3 h to investigate changes in the responsiveness of HIF-α to hypoxia. Basal mean intensity of fluorescently labeled HIF-1α protein increases with age in the hippocampus, whereas HIF-2α intensity only increases in the 24-month group. Acute hypoxic elevation of HIF-1α is lost with aging and is reversed in the 24-month group. fISH reveals that glycolytic genes induced by HIF-1α (lactose dehydrogenase-a, phosphoglycerate kinase 1, and pyruvate dehydrogenase kinase 1) are lower in aged hippocampus than in 3-month hippocampus, and mRNA for monocarboxylate transporter 1, a lactose transporter, increases. These results indicate that lactate, used in neurotransmission, may be limited in aged hippocampus, concurrent with impaired HIF-α response to hypoxic events. Therefore, impaired HIF-α may contribute to age-associated cognitive decline during hypoxic events.
Collapse
Affiliation(s)
- Brina Snyder
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
| | - Hua-Kang Wu
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
| | - Brianna Tillman
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
| | - Thomas F. Floyd
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.S.); (H.-K.W.); (B.T.)
- Department of Cardiothoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
7
|
Zarezadehmehrizi A, Hong J, Lee J, Rajabi H, Gharakhanlu R, Naghdi N, Azimi M, Park Y. Exercise training ameliorates cognitive dysfunction in amyloid beta-injected rat model: possible mechanisms of Angiostatin/VEGF signaling. Metab Brain Dis 2021; 36:2263-2271. [PMID: 34003412 DOI: 10.1007/s11011-021-00751-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) regulates angio/neurogenesis and also tightly links to the pathogenesis of Alzheimer's disease (AD). Although exercise has a beneficial effect on neurovascular function and cognitive function, the direct effect of exercise on VEGF-related signaling and cognitive deficit in AD is incompletely understood. Therefore, the purpose of this study was to investigate the protective effect of exercise on angiostatin/VEGF cascade and cognitive function in AD model rats. Wistar male rats were randomly divided into five groups: control (CON), injection of DMSO (Sham-CON), CON-exercise (sham-EX), intrahippocampal injection of Aβ (Aβ), and Aβ-exercise (Aβ-EX). Rats in EX groups underwent treadmill exercise for 4 weeks, then the cognitive function was measured by the Morris Water Maze (MWM) test. mRNA levels of hypoxia-induced factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and angiostatin were determined in hippocampus by RT-PCR. We found that spatial learning and memory were impaired in Aβ-injected rats, but exercise training improved it. Moreover, exercise training increased the reduced mRNA expression level of VEGF signaling, including HIF1α, VEGF, and VEGFR2 in the hippocampus from Aβ-injected rats. Also, the mRNA expression level of angiostatin was elevated in the hippocampus from Aβ-injected rats, and exercise training abrogated its expression. Our findings suggest that exercise training improves cognitive function in Aβ-injected rats, possibly through enhancing VEGF signaling and reducing angiostatin.
Collapse
Affiliation(s)
- Aliasghar Zarezadehmehrizi
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Kharazmi University, Tehran, Iran
| | - Junyoung Hong
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Jonghae Lee
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Kharazmi University, Tehran, Iran
| | - Reza Gharakhanlu
- Department of Physical Education and Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Naser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran 13164, Tehran, Iran
| | - Mohammad Azimi
- Department of Physical Education and Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA.
| |
Collapse
|
8
|
Kim SW, Kim Y, Kim SE, An JY. Ferroptosis-Related Genes in Neurodevelopment and Central Nervous System. BIOLOGY 2021; 10:35. [PMID: 33419148 PMCID: PMC7825574 DOI: 10.3390/biology10010035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis, first introduced as a new form of regulated cell death induced by erastin, is accompanied by the accumulation of iron and lipid peroxides, thus it can be inhibited either by iron chelators or by lipophilic antioxidants. In the past decade, multiple studies have introduced the potential importance of ferroptosis in many human diseases, including cancer and neurodegenerative diseases. In this review, we will discuss the genetic association of ferroptosis with neurological disorders and development of the central nervous system.
Collapse
Affiliation(s)
- Soo-Whee Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (S.-W.K.); (Y.K.)
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (S.-W.K.); (Y.K.)
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Sung Eun Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (S.-W.K.); (Y.K.)
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Joon-Yong An
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (S.-W.K.); (Y.K.)
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Lawler AJ, Brown AR, Bouchard RS, Toong N, Kim Y, Velraj N, Fox G, Kleyman M, Kang B, Gittis AH, Pfenning AR. Cell Type-Specific Oxidative Stress Genomic Signatures in the Globus Pallidus of Dopamine-Depleted Mice. J Neurosci 2020; 40:9772-9783. [PMID: 33188066 PMCID: PMC7726543 DOI: 10.1523/jneurosci.1634-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
Neuron subtype dysfunction is a key contributor to neurologic disease circuits, but identifying associated gene regulatory pathways is complicated by the molecular complexity of the brain. For example, parvalbumin-expressing (PV+) neurons in the external globus pallidus (GPe) are critically involved in the motor deficits of dopamine-depleted mouse models of Parkinson's disease, where cell type-specific optogenetic stimulation of PV+ neurons over other neuron populations rescues locomotion. Despite the distinct roles these cell types play in the neural circuit, the molecular correlates remain unknown because of the difficulty of isolating rare neuron subtypes. To address this issue, we developed a new viral affinity purification strategy, Cre-Specific Nuclear Anchored Independent Labeling, to isolate Cre recombinase-expressing (Cre+) nuclei from the adult mouse brain. Applying this technology, we performed targeted assessments of the cell type-specific transcriptomic and epigenetic effects of dopamine depletion on PV+ and PV- cells within three brain regions of male and female mice: GPe, striatum, and cortex. We found GPe PV+ neuron-specific gene expression changes that suggested increased hypoxia-inducible factor 2α signaling. Consistent with transcriptomic data, regions of open chromatin affected by dopamine depletion within GPe PV+ neurons were enriched for hypoxia-inducible factor family binding motifs. The gene expression and epigenomic experiments performed on PV+ neurons isolated by Cre-Specific Nuclear Anchored Independent Labeling identified a transcriptional regulatory network mediated by the neuroprotective factor Hif2a as underlying neural circuit differences in response to dopamine depletion.SIGNIFICANCE STATEMENT Cre-Specific Nuclear Anchored Independent Labeling is an enhanced, virus-based approach to isolate nuclei of a specific cell type for transcriptome and epigenome interrogation that decreases dependency on transgenic animals. Applying this technology to GPe parvalbumin-expressing neurons in a mouse model of Parkinson's disease, we discovered evidence for an upregulation of the oxygen homeostasis maintaining pathway involving Hypoxia-inducible factor 2α. These results provide new insight into how neuron subtypes outside the substantia nigra pars compacta may be compensating at a molecular level for differences in the motor production neural circuit during the progression of Parkinson's disease. Furthermore, they emphasize the utility of cell type-specific technologies, such as Cre-Specific Nuclear Anchored Independent Labeling, for isolated assessment of specific neuron subtypes in complex systems.
Collapse
Affiliation(s)
- Alyssa J Lawler
- Computational Biology
- Biological Sciences
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Ashley R Brown
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Rachel S Bouchard
- Biological Sciences
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Noelle Toong
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Yeonju Kim
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Nitinram Velraj
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Grant Fox
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Michael Kleyman
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Byungsoo Kang
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Aryn H Gittis
- Biological Sciences
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Andreas R Pfenning
- Computational Biology
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
10
|
Aerobic exercise increases sprouting angiogenesis in the male rat motor cortex. Brain Struct Funct 2020; 225:2301-2314. [PMID: 32918614 DOI: 10.1007/s00429-020-02100-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Exercise is beneficial to brain health, and historically, the advantageous effects of exercise on the brain have been attributed to neuronal plasticity. However, it has also become clear that the brain vascular system also exhibits plasticity in response to exercise. This plasticity occurs in areas involved in movement, such as the motor cortex. This experiment aimed to further characterize the effects of exercise on structural vascular plasticity in the male rat motor cortex, by specifically identifying whether features of angiogenesis, the growth of new capillaries, or changes in vessel diameter were present. Male rats in the exercise group engaged in a 5-week bout of voluntary wheel running, while a second group of rats remained sedentary. After the exercise regimen, vascular corrosion casts, resin replicas of the brain vasculature, were made for all animals and imaged using a scanning electron microscope. Results indicate sprouting angiogenesis was the primary form of structural vascular plasticity detected in the motor cortex under these aerobic exercise parameters. Additionally, exercised rats displayed a slight increase in capillary diameter and expanded endothelial cell nuclei diameters in this region.
Collapse
|
11
|
Talebian H, Monfared AS, Niaki HA, Fattahi S, Bakhtiari E, Changizi V. Investigating the expression level of NF-KB and HIF1A genes among the inhabitants of two different background radiation areas in Ramsar, Iran. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 220-221:106292. [PMID: 32658641 DOI: 10.1016/j.jenvrad.2020.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/13/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the fluctuation of NF-KB and HIF-1a gene expression between inhabitants of a high-level background radiation area (HBRA) and a normal-level background radiation area (NBRA) of Ramsar, Iran. Sixty participants with the mean age of 48 ± 15 years were selected and divided into two groups. The group receiving a dose of ≤1.5 mGy/year (NBRA) was considered the control group and the target group (HBRA) received a dose of >1.5 mGy/year. These two groups were from neighbor regions to minimize socioeconomic differences between the participants. Blood samples were collected from each group and NF-KB and HIF-1a expression levels were compared using quantitative real-time PCR (qPCR) based on the stem loop method. The effects of residency duration in the respective areas and gender on the expression of NF-KB and HIF-1a was also examined. The HIF-1a expression level was statistically lower in the HLBRA region (P < 0.0002), while NF-KB expression was upregulated (P < 0.0001). Although the under-expression of HIF-1a in response to dose rate was significant in females (P < 0.0004), it was not different in males (P = 0.74), indicating a significant difference between sexes (P = 0.0047). The upregulation of NF-KB expression related to dose level was also significant for the female group (P < 0.0001), whereas it was not for the male group (P = 0.72). Notably and as expected, there was a significant relation between longer residency in the HBRA and HIF-1A under-expression (P < 0.026), while there was no effect of increasing residency time for NF-KB over-expression level (P = 0.29). The dwellers of the HBRA those noted that despite receiving an elevated radiation level were seemingly good in general health, showed some alterations in their molecular mechanisms, specifically HIF-1a and NF-KB expression levels. It is not clear if this is indicative of a beneficial adaptive response and more research is recommended.
Collapse
Affiliation(s)
- Hoda Talebian
- Student Research Committee, Tehran University of Medical Sciences, Tehran, IR, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol, IR, Iran
| | - Ali Shabestani Monfared
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, IR, Iran
| | - Haleh Akhavan Niaki
- Department of Genetics, School of Medicine, Babol University of Medical Sciences, Babol, IR, Iran
| | - Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol, IR, Iran; North Research Centre of Pasteur Institute, Amol, IR, Iran
| | - Elaheh Bakhtiari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol, IR, Iran
| | - Vahid Changizi
- Department of Technology of Radiology and Radiotherapy, Alliend Medical Sciences School, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Crotty GF, Schwarzschild MA. Chasing Protection in Parkinson's Disease: Does Exercise Reduce Risk and Progression? Front Aging Neurosci 2020; 12:186. [PMID: 32636740 PMCID: PMC7318912 DOI: 10.3389/fnagi.2020.00186] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Exercise may be the most commonly offered yet least consistently followed therapeutic advice for people with Parkinson's disease (PD). Epidemiological studies of prospectively followed cohorts have shown a lower risk for later developing PD in healthy people who report moderate to high levels of physical activity, and slower rates of motor and non-motor symptom progression in people with PD who report higher baseline physical activity. In animal models of PD, exercise can reduce inflammation, decrease α-synuclein expression, reduce mitochondrial dysfunction, and increase neurotrophic growth factor expression. Randomized controlled trials of exercise in PD have provided clear evidence for short-term benefits on many PD measurements scales, ranging from disease severity to quality of life. In this review, we present these convergent epidemiological and laboratory data with particular attention to translationally relevant features of exercise (e.g., intensity requirements, gender differences, and associated biomarkers). In the context of these findings we will discuss clinical trial experience, design challenges, and emerging opportunities for determining whether exercise can prevent PD or slow its long-term progression.
Collapse
Affiliation(s)
- Grace F. Crotty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
13
|
Pharmacological enrichment of polygenic risk for precision medicine in complex disorders. Sci Rep 2020; 10:879. [PMID: 31964963 PMCID: PMC6972917 DOI: 10.1038/s41598-020-57795-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022] Open
Abstract
Individuals with complex disorders typically have a heritable burden of common variation that can be expressed as a polygenic risk score (PRS). While PRS has some predictive utility, it lacks the molecular specificity to be directly informative for clinical interventions. We therefore sought to develop a framework to quantify an individual’s common variant enrichment in clinically actionable systems responsive to existing drugs. This was achieved with a metric designated the pharmagenic enrichment score (PES), which we demonstrate for individual SNP profiles in a cohort of cases with schizophrenia. A large proportion of these had elevated PES in one or more of eight clinically actionable gene-sets enriched with schizophrenia associated common variation. Notable candidates targeting these pathways included vitamins, antioxidants, insulin modulating agents, and cholinergic drugs. Interestingly, elevated PES was also observed in individuals with otherwise low common variant burden. The biological saliency of PES profiles were observed directly through their impact on gene expression in a subset of the cohort with matched transcriptomic data, supporting our assertion that this gene-set orientated approach could integrate an individual’s common variant risk to inform personalised interventions, including drug repositioning, for complex disorders such as schizophrenia.
Collapse
|
14
|
Intensive treadmill exercise increases expression of hypoxia-inducible factor 1α and its downstream transcript targets: a potential role in neuroplasticity. Neuroreport 2019; 30:619-627. [PMID: 31045849 DOI: 10.1097/wnr.0000000000001239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exercise and other forms of physical activity lead to the activation of specific motor and cognitive circuits within the mammalian brain. These activated neuronal circuits are subjected to increased metabolic demand and must respond to transient but significant reduction in available oxygen. The transcription factor hypoxia-inducible factor 1α (HIF-1α) is a regulatory mediator of a wide spectrum of genes involved in metabolism, synaptogenesis, and blood flow. The purpose of this study was to begin to explore the potential relationship between exercise in the form of running on a motorized treadmill and the activation of genes involved in exercise-dependent neuroplasticity to begin to elucidate the underlying molecular mechanisms involved. Mice were subjected to treadmill exercise and striatal tissues analyzed with a commercial microarray designed to identify transcripts whose expression is altered by exposure to hypoxia, a condition occurring in cells under a high metabolic demand. Several candidate genes were identified, and a subset involved in metabolism and angiogenesis were selected to elucidate their temporal and regional patterns of expression with exercise. Transcript analysis included Hif1a (hypoxia-inducible factor 1α), Ldha (lactate dehydrogenase A), Slc2a1 (glucose transporter 1), Slc16a1 (monocarboxylate transporter 1), Slc16a7 (monocarboxylate transporter 2), and Vegf (vascular endothelial growth factor). Overall these results indicate that several genes involved in the elevated metabolic response with exercise are consistent with increased expression of HIF-1α suggesting a regulatory role for HIF-1α in exercise-enhanced neuroplasticity. Furthermore, these increases in gene expression appear regionally specific; occurring with brain regions we have previously shown to be sites for increased cerebral blood flow with activity. Such findings are beginning to lay down a working hypothesis that specific forms of exercise lead to circuit specific neuronal activation and can identify a potentially novel therapeutic approach to target dysfunctional behaviors subserved by such circuitry.
Collapse
|
15
|
Jonasson LS, Nyberg L, Axelsson J, Kramer AF, Riklund K, Boraxbekk CJ. Higher striatal D2-receptor availability in aerobically fit older adults but non-selective intervention effects after aerobic versus resistance training. Neuroimage 2019; 202:116044. [PMID: 31352122 DOI: 10.1016/j.neuroimage.2019.116044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 12/16/2022] Open
Abstract
There is much evidence that dopamine is vital for cognitive functioning in aging. Here we tested the hypothesis that aerobic exercise and fitness influence dopaminergic neurotransmission in the striatum, and in turn performance on offline working-memory updating tasks. Dopaminergic neurotransmission was measured by positron emission tomography (PET) and the non-displacable binding potential (BPND) of [11C]raclopride, i.e. dopamine (DA) D2-receptor (D2R) availability. Fifty-four sedentary older adults underwent a six-months exercise intervention, performing either aerobic exercise or stretching, toning, and resistance active control training. At baseline, higher aerobic fitness levels (VO2peak) were associated with higher BPND in the striatum, providing evidence of a link between an objective measure of aerobic fitness and D2R in older adults. BPND decreased substantially over the intervention in both groups but the intervention effects were non-selective with respect to exercise group. The decrease was several times larger than any previously estimated annual decline in D2R, potentially due to increased endogenous DA. Working-memory was unrelated to D2R both at baseline and following the intervention. To conclude, we provide partial evidence for a link between physical exercise and DA. Utilizing a PET protocol able to disentangle both D2R and DA levels could shed further light on whether, and how, aerobic exercise impacts the dopaminergic system in older adults.
Collapse
Affiliation(s)
- Lars S Jonasson
- Department of Integrative Medical Biology, Physiology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
| | - Lars Nyberg
- Department of Integrative Medical Biology, Physiology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | - Jan Axelsson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | - Arthur F Kramer
- Departments of Psychology and Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA.
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Center for Demographic and Aging Research, Umeå University, Umeå, Sweden; Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark.
| |
Collapse
|
16
|
Ostrowski RP, Zhang JH. The insights into molecular pathways of hypoxia-inducible factor in the brain. J Neurosci Res 2018; 98:57-76. [PMID: 30548473 DOI: 10.1002/jnr.24366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
The objectives of this present work were to review recent developments on the role of hypoxia-inducible factor (HIF) in the survival of cells under normoxic versus hypoxic and inflammatory brain conditions. The dual nature of HIF effects appears well established, based on the accumulated evidence of HIF playing both the role of adaptive factor and mediator of cell demise. Cellular HIF responses depend on pathophysiological conditions, developmental phase, comorbidities, and administered medications. In addition, HIF-1α and HIF-2α actions may vary in the same tissues. The multiple roles of HIF in stem cells are emerging. HIF not only regulates expression of target genes and thereby influences resultant protein levels but also contributes to epigenetic changes that may reciprocally provide feedback regulations loops. These HIF-dependent alterations in neurological diseases and its responses to treatments in vivo need to be examined alongside with a functional status of subjects involved in such studies. The knowledge of HIF pathways might be helpful in devising HIF-mimetics and modulating drugs, acting on the molecular level to improve clinical outcomes, as exemplified here by clinical and experimental data of selected brain diseases, occasionally corroborated by the data from disorders of other organs. Because of complex role of HIF in brain injuries, prospective therapeutic interventions need to differentially target HIF responses depending on their roles in the molecular mechanisms of neurologic diseases.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - John H Zhang
- Departments of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
17
|
Wang J, Zhang B, Jiao Y, Xu Z, Qian B, Wang Q. Involvement of prostatic interstitial cells of Cajal in inflammatory cytokines-elicited catecholamines production: Implications for the pathophysiology of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Biochem Biophys Res Commun 2018; 503:420-427. [DOI: 10.1016/j.bbrc.2018.04.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/07/2018] [Indexed: 12/24/2022]
|
18
|
Weilnau JN, Carcella MA, Miner KM, Bhatia TN, Hutchison DF, Pant DB, Nouraei N, Leak RK. Evidence for cross-hemispheric preconditioning in experimental Parkinson's disease. Brain Struct Funct 2018; 223:1255-1273. [PMID: 29103154 PMCID: PMC11061878 DOI: 10.1007/s00429-017-1552-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Dopamine loss and motor deficits in Parkinson's disease typically commence unilaterally and remain asymmetric for many years, raising the possibility that endogenous defenses slow the cross-hemispheric transmission of pathology. It is well-established that the biological response to subtoxic stress prepares cells to survive subsequent toxic challenges, a phenomenon known as preconditioning, tolerance, or stress adaptation. Here we demonstrate that unilateral striatal infusions of the oxidative toxicant 6-hydroxydopamine (6-OHDA) precondition the contralateral nigrostriatal pathway against the toxicity of a second 6-OHDA infusion in the opposite hemisphere. 6-OHDA-induced loss of dopaminergic terminals in the contralateral striatum was ablated by cross-hemispheric preconditioning, as shown by two independent markers of the dopaminergic phenotype, each measured by two blinded observers. Similarly, loss of dopaminergic somata in the contralateral substantia nigra was also abolished, according to two blinded measurements. Motor asymmetries in floor landings, forelimb contacts with a wall, and spontaneous turning behavior were consistent with these histological observations. Unilateral 6-OHDA infusions increased phosphorylation of the kinase ERK2 and expression of the antioxidant enzyme CuZn superoxide dismutase in both striata, consistent with our previous mechanistic work showing that these two proteins mediate preconditioning in dopaminergic cells. These findings support the existence of cross-hemispheric preconditioning in Parkinson's disease and suggest that dopaminergic neurons mount impressive natural defenses, despite their reputation as being vulnerable to oxidative injury. If these results generalize to humans, Parkinson's pathology may progress slowly and asymmetrically because exposure to a disease-precipitating insult induces bilateral upregulation of endogenous defenses and elicits cross-hemispheric preconditioning.
Collapse
Affiliation(s)
- Justin N Weilnau
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Michael A Carcella
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Kristin M Miner
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Tarun N Bhatia
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Daniel F Hutchison
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Deepti B Pant
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Negin Nouraei
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
19
|
Kim B, Mitrofanis J, Stone J, Johnstone DM. Remote tissue conditioning is neuroprotective against MPTP insult in mice. IBRO Rep 2018; 4:14-17. [PMID: 30135947 PMCID: PMC6084900 DOI: 10.1016/j.ibror.2018.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/19/2018] [Indexed: 01/27/2023] Open
Abstract
Remote tissue conditioning is an emerging neuroprotective strategy. Remote ischemic conditioning and remote photobiomodulation were tested in MPTP mice. Both interventions protected the midbrain against MPTP insult. Combining the interventions yielded no added benefit.
Current treatments for Parkinson’s disease (PD) are primarily symptomatic, leaving a need for treatments that mitigate disease progression. One emerging neuroprotective strategy is remote tissue conditioning, in which mild stress in a peripheral tissue (e.g. a limb) induces protection of life-critical organs such as the brain. We evaluated the potential of two remote tissue conditioning interventions – mild ischemia and photobiomodulation – in protecting the brain against the parkinsonian neurotoxin MPTP. Further, we sought to determine whether combining these two interventions provided any added benefit. Male C57BL/6 mice (n = 10/group) were pre-conditioned with either ischemia of the leg (4 × 5 min cycles of ischemia/reperfusion), or irradiation of the dorsum with 670 nm light (50 mW/cm2, 3 min), or both interventions, immediately prior to receiving two MPTP injections 24 hours apart (50 mg/kg total). Mice were sacrificed 6 days later and brains processed for tyrosine hydroxylase immunohistochemistry. Stereological counts of functional dopaminergic neurons in the substantia nigra pars compacta revealed that both remote ischemia and remote photobiomodulation rescued around half of the neurons that were compromised by MPTP (p < 0.001). Combining the two interventions provided no added benefit, rescuing only 40% of vulnerable neurons (p < 0.01). The present results suggest that remote tissue conditioning, whether ischemia of a limb or photobiomodulation of the torso, induces protection of brain centers critical in PD. The lack of additional benefit when combining these two interventions suggests they may share common mechanistic pathways. Further research is needed to identify these pathways and determine the conditioning doses that yield optimal neuroprotection.
Collapse
Key Words
- CPu, caudate-putamen complex
- LED, light emitting diode
- MPTP
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Mouse model
- Neuroprotection
- PBM, photobiomodulation
- PD, Parkinson’s disease
- Parkinson’s disease
- Photobiomodulation
- RIC, remote ischemic conditioning
- Remote ischemic conditioning
- SNc, substantia nigra pars compacta
- TH, tyrosine hydroxylase
Collapse
Affiliation(s)
- Boaz Kim
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Physiology, University of Sydney, NSW 2006, Australia.,Melbourne Medical School, University of Melbourne, VIC 3010, Australia
| | - John Mitrofanis
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Anatomy & Histology, University of Sydney, NSW 2006, Australia
| | - Jonathan Stone
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Physiology, University of Sydney, NSW 2006, Australia
| | - Daniel M Johnstone
- Bosch Institute, University of Sydney, NSW 2006, Australia.,Discipline of Physiology, University of Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Davies JMS, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D, Bulteau AL, Derbré F, Rébillard A, Burstein S, Hirsch E, Kloner RA, Jakowec M, Petzinger G, Sauce D, Sennlaub F, Limon I, Ursini F, Maiorino M, Economides C, Pike CJ, Cohen P, Salvayre AN, Halliday MR, Lundquist AJ, Jakowec NA, Mechta-Grigoriou F, Mericskay M, Mariani J, Li Z, Huang D, Grant E, Forman HJ, Finch CE, Sun PY, Pomatto LCD, Agbulut O, Warburton D, Neri C, Rouis M, Cillard P, Capeau J, Rosenbaum J, Davies KJA. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 2017; 39:499-550. [PMID: 29270905 PMCID: PMC5745211 DOI: 10.1007/s11357-017-0002-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.
Collapse
Affiliation(s)
- Joanna M S Davies
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Josiane Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Bertrand Friguet
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Enrique Cadenas
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rachael Cayce
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Andrew Fishmann
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - David Liao
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, 69364, Lyon Cedex 07, France
| | - Frédéric Derbré
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Amélie Rébillard
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Steven Burstein
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Etienne Hirsch
- INSERM UMR 1127-CNRS UMR 7225, Institut du cerveau et de la moelle épinière-ICM Thérapeutique Expérimentale de la Maladie de Parkinson, Université Pierre et Marie Curie, 75651, Paris Cedex 13, France
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, 91105, USA
| | - Michael Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Delphine Sauce
- Chronic infections and Immune ageing, INSERM U1135, Hopital Pitie-Salpetriere, Pierre et Marie Curie University, 75013, Paris, France
| | | | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Christina Economides
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Neurobiology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anne Negre Salvayre
- Lipid peroxidation, Signalling and Vascular Diseases INSERM U1048, 31432, Toulouse Cedex 4, France
| | - Matthew R Halliday
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Adam J Lundquist
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Mathias Mericskay
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire-Inserm UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, Paris, France
| | - Jean Mariani
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Zhenlin Li
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - David Huang
- Department of Radiation Oncology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Ellsworth Grant
- Department of Oncology & Hematology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Henry J Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - David Warburton
- Children's Hospital of Los Angeles, Developmental Biology, Regenerative Medicine and Stem Cell Therapeutics program and the Center for Environmental Impact on Global Health Across the Lifespan at The Saban Research Institute, Los Angeles, CA, 90027, USA
- Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Neri
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Mustapha Rouis
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Pierre Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Jacqueline Capeau
- DR Saint-Antoine UMR_S938, UPMC, Inserm Faculté de Médecine, Université Pierre et Marie Curie, 75012, Paris, France
| | - Jean Rosenbaum
- Scientific Service of the Embassy of France in the USA, Consulate General of France in Los Angeles, Los Angeles, CA, 90025, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
21
|
Hou L, Chen W, Liu X, Qiao D, Zhou FM. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease. Front Aging Neurosci 2017; 9:358. [PMID: 29163139 PMCID: PMC5675869 DOI: 10.3389/fnagi.2017.00358] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients.
Collapse
Affiliation(s)
- Lijuan Hou
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Wei Chen
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China.,Department of Exercise and Rehabilitation, Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Xiaoli Liu
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Decai Qiao
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
22
|
Dai Y, Li W, Zhong M, Chen J, Cheng Q, Liu Y, Li T. The paracrine effect of cobalt chloride on BMSCs during cognitive function rescue in the HIBD rat. Behav Brain Res 2017; 332:99-109. [PMID: 28576310 DOI: 10.1016/j.bbr.2017.05.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
Hypoxia-ischemia (HI)-induced perinatal encephalopathy frequently causes chronic neurological morbidities and acute mortality. Bone mesenchymal stem cell (BMSC) transplantation could potentially promote functional and anatomical recovery of ischemic tissue. In vitro hypoxic preconditioning is an effective strategy to improve the survival of BMSCs in ischemic tissue. In this study, cobalt chloride (CoCl2) preconditioned medium from BMSC cultures was injected into the left lateral ventricle of HI rats using a micro-osmotic pump at a flow rate 1.0μl/h for 7 days. The protein levels of HIF-1α and its target genes, vascular endothelial growth factor and erythropoietin, markedly increased after CoCl2 preconditioning in BMSCs. In 7-week-old rats that received CoCl2 preconditioned BMSC medium, results of the Morris water maze test indicated ameliorated spatial working memory function following hypoxia-ischemia damage. Neuronal loss, cellular disorganization, and shrinkage in brain tissue were also ameliorated. Extracellular field excitatory postsynaptic potentials (fEPSPs) in the brain slices of 8-week-old rats were recorded; administration of CoCl2 preconditioned BMSC culture medium induced a progressive increment of baseline and amplitude of the fEPSPs. Immunohistochemical quantification showed that GluR2 protein expression increased. In conclusion, CoCl2 activates HIF-1α signals in BMSCs. CoCl2 preconditioned BMSC culture medium likely effects neuroprotection by inducing long-term potentiation (LTP), which could be associated with GluR2 expression. The paracrine effects of hypoxia preconditioning on BMSCs could have applications in novel cell-based therapeutic strategies for hypoxic and ischemic brain injury.
Collapse
Affiliation(s)
- Ying Dai
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Wendi Li
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Qian Cheng
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Youxue Liu
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China.
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China.
| |
Collapse
|