1
|
Sitnikova E. Behavioral and Cognitive Comorbidities in Genetic Rat Models of Absence Epilepsy (Focusing on GAERS and WAG/Rij Rats). Biomedicines 2024; 12:122. [PMID: 38255227 PMCID: PMC10812980 DOI: 10.3390/biomedicines12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Absence epilepsy is a non-convulsive type of epilepsy characterized by the sudden loss of awareness. It is associated with thalamo-cortical impairment, which may cause neuropsychiatric and neurocognitive problems. Rats with spontaneous absence-like seizures are widely used as in vivo genetic models for absence epilepsy; they display behavioral and cognitive problems similar to epilepsy in humans, such as genetic absence epilepsy rats from Strasbourg (GAERS) and Wistar Albino rats from Rijswijk (WAG/Rij). Depression- and anxiety-like behaviors were apparent in GAERS, but no anxiety and depression-like symptoms were found in WAG/Rij rats. Deficits in executive functions and memory impairment in WAG/Rij rats, i.e., cognitive comorbidities, were linked to the severity of epilepsy. Wistar rats can develop spontaneous seizures in adulthood, so caution is advised when using them as a control epileptic strain. This review discusses challenges in the field, such as putative high emotionality in genetically prone rats, sex differences in the expression of cognitive comorbidities, and predictors of cognitive problems or biomarkers of cognitive comorbidities in absence epilepsy, as well as the concept of "the cognitive thalamus". The current knowledge of behavioral and cognitive comorbidities in drug-naive rats with spontaneous absence epilepsy is beneficial for understanding the pathophysiology of absence epilepsy, and for finding new treatment strategies.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| |
Collapse
|
2
|
Yang X, Qu H. Bibliometric review on biomarkers for Alzheimer's disease between 2000 and 2023. Medicine (Baltimore) 2023; 102:e34982. [PMID: 37682187 PMCID: PMC10489337 DOI: 10.1097/md.0000000000034982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common cause of dementia and frailty. Therefore, it is important to develop biomarkers that can diagnose these changes to improve the likelihood of monitoring and treating potential causes. Therefore, this study aimed to examine the relationship between biomarkers and AD, identify journal publications and collaborators, and analyze keywords and research trends using a bibliometric method. METHODS We systematically searched for papers published in the Web of Science Core Collection database on biomarkers and AD. The search strategy was as follows: (TS) = (Alzheimer's OR Alzheimer's OR Alzheimer OR "Alzheimer's disease" OR "Alzheimer disease") AND TS = (biomarker OR biomarkers). Only articles and reviews were included as document types, with English as the primary language. The CiteSpace software was used to analyze the retrieved data on countries/regions, institutions, authors, published journals, and keywords. Simultaneously, the co-occurrence of the keywords was constructed. RESULTS There were 2625 articles on biomarkers and AD research published by 51 institutions located in 41 countries in 75 journals; the number of articles has shown an increasing trend over the past 20 years. Keywords analysis showed that Alzheimer's disease, cerebrospinal fluid, mild cognitive impairment, amyloid beta, and tau were also highly influential. CONCLUSION This was the first study to provide an overview of the current status of development, hot spots of study, and future trends in biomarkers for AD. These findings will provide useful information for researchers to explore trends and gaps in the field of biomarkers and AD.
Collapse
Affiliation(s)
- Xiaojie Yang
- Department of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Huiling Qu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
3
|
C-Met Receptors Deficiency Was Involved in Absence Seizures Development in WAG/Rij Rats. ARCHIVES OF NEUROSCIENCE 2023. [DOI: 10.5812/ans-132959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: A variety of receptors may be involved in the pathogenesis of absence seizures. The c-Met receptors have a critical role in modulating the GABAergic interneurons and creating a balance between excitatory and inhibitory neurotransmission, sensorimotor gating, and normal synaptic plasticity. Objectives: This study aimed to assess the changes of the c-Met receptor during the appearance of absence attacks in the experimental model of absence epilepsy. Methods: A total of 48 animals were divided into four groups of two- and six-month-old WAG/Rij and Wistar rats. Epileptic WAG/Rij rats showing SWP in electrocorticogram (ECoG) were included in the epileptic group. The two-month-old WAG/Rij rats as well as two- and six-month-old Wistar rats not exhibiting SWP in ECoG were selected as the non-epileptic. Gene (RT-PCR) and protein expression (western blotting) of c-Met receptors as well as c-Met protein distribution (immunohistochemistry) in the somatosensory cortex and hippocampus were assessed during seizure development of the absence attacks. Results: According to the study findings, a lower c-Met gene and protein expression, as well as a lower protein distribution, were observed in the hippocampus (P < 0.001, P < 0.05, and P < 0.001, respectively) and cortex (P < 0.01, P < 0.001 and P < 0.001, respectively) of the two-month-old WAG/Rij rats compared to the same-age Wistar rats. Moreover, the data revealed a reduction of hippocampal and cortical c-Met protein expression (P < 0.001, for both) in six-month-old WAG/Rij rats compared to two-month-old ones. Six-month-old WAG/Rij rats had a lower cortical c-Met gene (P < 0.05) and protein expression (P < 0.001) as well as lower hippocampal and cortical protein distribution (P < 0.05 and P < 0.001) than the same-age Wistar rats. Conclusions: In sum, the c-Met receptor was found to play a significant role in the development of absence epilepsy. This receptor, therefore, may have been considered as an effective goal for absence seizure inhibition.
Collapse
|
4
|
Jing G, Zuo J, Fang Q, Yuan M, Xia Y, Jin Q, Liu Y, Wang Y, Zhang Z, Liu W, Wu X, Song X. Erbin protects against sepsis-associated encephalopathy by attenuating microglia pyroptosis via IRE1α/Xbp1s-Ca 2+ axis. J Neuroinflammation 2022; 19:237. [PMID: 36171629 PMCID: PMC9520943 DOI: 10.1186/s12974-022-02598-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/16/2022] [Indexed: 06/27/2024] Open
Abstract
Background Microglia pyroptosis-mediated neuroinflammation is thought to be the crucial pathogenesis of sepsis-associated encephalopathy (SAE). Erbin has been reported to be associated with various inflammatory diseases. However, the role of Erbin in SAE and the relationship between Erbin and microglia pyroptosis are unknown. In this study, we investigated the promising role and underlying molecular mechanism of Erbin in the regulation of microglia pyroptosis. Methods WT and Erbin knockout mice underwent cecum ligation perforation (CLP) to induce SAE. Primary mouse microglia and BV2 cells were treated with LPS/nigericin in vitro. Behavioral tests were performed to evaluate cognitive function. Nissl staining and transmission electron microscopy were used to assess histological and structural lesions. ELISA and qPCR were carried out to detect neuroinflammation. Western blot and immunofluorescence were used to analyze protein expression. Flow cytometry and confocal microscopy were utilized to observe the Ca2+ changes in the cytoplasm and endoplasmic reticulum (ER). To further explore the underlying mechanism, STF083010 was administered to block the IRE1α/Xbp1s pathway. Results Erbin deletion resulted in more pronounced neuronal damage and cognitive impairment in mice that underwent CLP. Erbin knockout promoted microglial pyroptosis and inflammatory cytokines secretion in vivo and in vitro, which was mediated by activation of the IRE1α/Xbp1s. Treatment with the selective inhibitor STF083010 significantly inhibited IRE1α/Xbp1s pathway activity, decreased intracytoplasmic Ca2+, attenuated microglial pyroptosis, reduced pro-inflammatory cytokine secretion, lessened neuronal damage, and improved cognitive function. Conclusions In SAE, Erbin inhibits IRE1/Xbp1s pathway activity and reduces the ER Ca2+ influx to the cytoplasm, reducing microglial pyroptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02598-5.
Collapse
Affiliation(s)
- Guoqing Jing
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Zuo
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Fang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun Xia
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiyan Jin
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuping Liu
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanlin Wang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zongze Zhang
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanhong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Zhao M, Deng L, Lu X, Fan L, Zhu Y, Zhao L. The involvement of oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation in acrylamide-induced neurotoxicity in C57/BL6 mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41151-41167. [PMID: 35088269 DOI: 10.1007/s11356-021-18146-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Acrylamide (ACR) is a typical environmental contaminant, presenting potential health hazards that have been attracting increasing attention. Its neurotoxicity is known to cause significant damage to health. However, the mechanisms of ACR-induced neurotoxicity require further clarification. This study uses a mouse model to explore how ACR-induced oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation mutually contribute to neurotoxicity. A distinct increase in the cellular reactive oxygen species (ROS) levels, malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) content and a significant decrease in the glutathione (GSH) content after ACR exposure were indicative of oxidative stress. Moreover, ACR caused neurological defects associated with gait abnormality and neuronal loss while suppressing the acetylcholine (ACh) and dopamine (DA) levels and increasing the protein expression of α-synuclein (α-syn), further inhibiting cholinergic and dopaminergic neuronal function. Additionally, ACR treatment caused an inflammatory response via nuclear factor-kappa B (NF-κB) activation and increased the protein expression of NOD-like receptor protein-3 (NLRP3), consequently activating the NLRP3 inflammasome constituents, including cysteinyl aspartate specific proteinase 1 (Caspase-1), apoptosis-associated speck-like protein containing CARD (ASC), N domain gasdermin D (N-GSDMD), interleukin-1β (IL-1β), and IL-18. The results revealed the underlying molecular mechanism of ACR-induced neurotoxicity via oxidative stress, neurotransmission impairment, and neuroinflammation-related signal cascade. This information will further improve the development of an alternative pathway strategy for investigating the risk posed by ACR. The hypothetical mechanism of ACR-induced neurotoxicity in vivo.
Collapse
Affiliation(s)
- Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Linlin Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Xiaoxuan Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China
| | - Yang Zhu
- Bioprocess Engineering Group, Wageningen University and Research, P.O. Box 16, 6700AA, Wageningen, Netherlands
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 200237, Shanghai, China.
| |
Collapse
|
6
|
Epileptic Mechanisms Shared by Alzheimer's Disease: Viewed via the Unique Lens of Genetic Epilepsy. Int J Mol Sci 2021; 22:ijms22137133. [PMID: 34281185 PMCID: PMC8268161 DOI: 10.3390/ijms22137133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Our recent work on genetic epilepsy (GE) has identified common mechanisms between GE and neurodegenerative diseases including Alzheimer's disease (AD). Although both disorders are seemingly unrelated and occur at opposite ends of the age spectrum, it is likely there are shared mechanisms and studies on GE could provide unique insights into AD pathogenesis. Neurodegenerative diseases are typically late-onset disorders, but the underlying pathology may have already occurred long before the clinical symptoms emerge. Pathophysiology in the early phase of these diseases is understudied but critical for developing mechanism-based treatment. In AD, increased seizure susceptibility and silent epileptiform activity due to disrupted excitatory/inhibitory (E/I) balance has been identified much earlier than cognition deficit. Increased epileptiform activity is likely a main pathology in the early phase that directly contributes to impaired cognition. It is an enormous challenge to model the early phase of pathology with conventional AD mouse models due to the chronic disease course, let alone the complex interplay between subclinical nonconvulsive epileptiform activity, AD pathology, and cognition deficit. We have extensively studied GE, especially with gene mutations that affect the GABA pathway such as mutations in GABAA receptors and GABA transporter 1. We believe that some mouse models developed for studying GE and insights gained from GE could provide unique opportunity to understand AD. These include the pathology in early phase of AD, endoplasmic reticulum (ER) stress, and E/I imbalance as well as the contribution to cognitive deficit. In this review, we will focus on the overlapping mechanisms between GE and AD, the insights from mutations affecting GABAA receptors, and GABA transporter 1. We will detail mechanisms of E/I imbalance and the toxic epileptiform generation in AD, and the complex interplay between ER stress, impaired membrane protein trafficking, and synaptic physiology in both GE and AD.
Collapse
|
7
|
Di Cicco G, Marzano E, Iacovelli L, Celli R, van Luijtelaar G, Nicoletti F, Ngomba RT, Wall MJ. Group I metabotropic glutamate receptor-mediated long term depression is disrupted in the hippocampus of WAG/Rij rats modelling absence epilepsy. Neuropharmacology 2021; 196:108686. [PMID: 34197893 DOI: 10.1016/j.neuropharm.2021.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Absence epilepsy is frequently associated with cognitive dysfunction, although the underlying mechanisms are not well understood. Here we report that some forms of hippocampal synaptic plasticity are abnormal in symptomatic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. Metabotropic Glu 1/5 receptor-mediated long term depression (LTD) at Schaffer collateral CA1 synapses is significantly reduced in symptomatic, 5-6 months old WAG/Rij rats compared to age-matched non epileptic control rats. There were no significant changes in mGlu1/5-dependent LTD in pre-symptomatic, 4-6 weeks old WAG/Rij rats compared to age matched controls. The changes in LTD found in symptomatic WAG/Rij forms are not indicative of general deficits in all forms of synaptic plasticity as long term potentiation (LTP) was unchanged. Immunoblot analysis of hippocampal tissue showed a significant reduction in mGlu5 receptor expression, a trend to an increase in pan Homer protein levels and a decrease in GluA1 receptor expression in the hippocampus of symptomatic WAG/Rij rats vs non-epileptic control rats. There were no changes in mGlu1α receptor or GluA2 protein levels. These findings suggest that abnormalities in hippocampal mGlu5 receptor-dependent synaptic plasticity are associated with the pathological phenotype of WAG/Rij rats. This lays the groundwork for the study of mGlu5 receptors as a candidate drug target for the treatment of cognitive dysfunction linked to absence epilepsy.
Collapse
Affiliation(s)
- Gabriele Di Cicco
- Departments of Physiology and Pharmacology, University Sapienza of Rome, Italy
| | - Emanuela Marzano
- Departments of Physiology and Pharmacology, University Sapienza of Rome, Italy
| | - Luisa Iacovelli
- Departments of Physiology and Pharmacology, University Sapienza of Rome, Italy
| | | | | | - Ferdinando Nicoletti
- Departments of Physiology and Pharmacology, University Sapienza of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Richard T Ngomba
- University of Lincoln, School of Pharmacy Lincoln, United Kingdom; and, Coventry, UK.
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
8
|
Farag OM, Abd-Elsalam RM, Ogaly HA, Ali SE, El Badawy SA, Alsherbiny MA, Li CG, Ahmed KA. Metabolomic Profiling and Neuroprotective Effects of Purslane Seeds Extract Against Acrylamide Toxicity in Rat's Brain. Neurochem Res 2021; 46:819-842. [PMID: 33439429 DOI: 10.1007/s11064-020-03209-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
AIM Acrylamide (ACR) is an environmental pollutant with well-demonstrated neurotoxic and neurodegenerative effects in both humans and experimental animals. The present study aimed to investigate the neuroprotective effect of Portulaca oleracea seeds extract (PSE) against ACR-induced neurotoxicity in rats and its possible underlying mechanisms. PSE was subjected to phytochemical investigation using ultra-high-performance liquid chromatography (UPLC) coupled with quantitative time of flight mass spectrometry (qTOF-MS). Multivariate, clustering and correlation data analyses were performed to assess the overall effects of PSE on ACR-challenged rats. Rats were divided into six groups including negative control, ACR-intoxicated group (10 mg/kg/day), PSE treated groups (200 and 400 mg/kg/day), and ACR + PSE treated groups (200 and 400 mg/kg/day, respectively). All treatments were given intragastrically for 60 days. PSE markedly ameliorated brain damage as evidenced by the decreased lactate dehydrogenase (LDL), increased acetylcholinesterase (AchE) activities, as well as the increased brain-derived neurotrophic factor (BDNF) that were altered by the toxic dose of ACR. In addition, PSE markedly attenuated ACR-induced histopathological alterations in the cerebrum, cerebellum, hippocampus and sciatic nerve and downregulated the ACR-inclined GFAP expression. PSE restored the oxidative status in the brain as indicated by glutathione (GSH), lipid peroxidation and increased total antioxidant capacity (TAC). PSE upregulated the mRNA expression of protein kinase B (AKT), which resulted in an upsurge in its downstream cAMP response element-binding protein (CREB)/BDNF mRNA expression in the brain tissue of ACR-intoxicated rats. All exerted PSE beneficial effects were dose-dependent, with the ACR-challenged group received PSE 400 mg/kg dose showed a close clustering to the negative control in both unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-Da) alongside with the hierarchical clustering analysis (HCA). The current investigation confirmed the neuroprotective capacity of PSE against ACR-induced brain injury, and our findings indicate that AKT/CREB pathways and BDNF synthesis may play an important role in the PSE-mediated protective effects against ACR-triggered neurotoxicity.
Collapse
Affiliation(s)
- Ola M Farag
- General Organization for Veterinary Services, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
9
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
10
|
Karson A, Utkan T, Şahin TD, Balcı F, Arkan S, Ateş N. Etanercept rescues cognitive deficits, depression-like symptoms, and spike-wave discharge incidence in WAG/Rij rat model of absence epilepsy. Epilepsy Behav 2021; 115:107532. [PMID: 33444990 DOI: 10.1016/j.yebeh.2020.107532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 10/22/2022]
Abstract
Pro-inflammatory cytokines have been shown to be associated with the development of seizures in the WAG/Rij rat model of absence epilepsy. Importantly, WAG/Rij rats also exhibit cognitive deficits and depression-like behaviors. It is possible that pro-inflammatory cytokines mediate these comorbid conditions of absence epilepsy given their well-established effects on cognition and affective responses. The current study investigated the potential therapeutic effect of etanercept (tumor necrosis factor inhibitor) on cognitive impairment, depression-like behavior, and spike-wave discharges (SWDs) typically observed in the WAG/Rij rats. Eight-month-old male WAG/Rij rats and Wistar controls were tested in Morris water maze (MWM), passive avoidance (PA), forced swimming, sucrose preference, and locomotor activity tests, and electroencephalogram (EEG) recordings were taken from a separate group of WAG/Rij rats after 8 weeks of etanercept or vehicle treatment. Consistent with earlier work, WAG/Rij rats exhibited cognitive deficits and depression-like behavior. From these, the cognitive deficits and despair-like behavior were rescued by etanercept administration, which also reduced the frequency of SWDs without affecting their duration. Our results support the hypothesis that pro-inflammatory cytokines mediate the absence seizures and comorbid symptoms of absence epilepsy.
Collapse
Affiliation(s)
- Ayşe Karson
- Kocaeli University, School of Medicine, Department of Physiology, Turkey.
| | - Tijen Utkan
- Kocaeli University, School of Medicine, Department of Pharmacology, Turkey.
| | | | - Fuat Balcı
- Koç University, Department of Psychology & Research Center for Translational Medicine, Turkey
| | - Sertan Arkan
- Kocaeli University, School of Medicine, Department of Physiology, Turkey
| | - Nurbay Ateş
- Kocaeli University, School of Medicine, Department of Physiology, Turkey
| |
Collapse
|
11
|
Jafarian M, Modarres Mousavi SM, Rahimi S, Ghaderi Pakdel F, Lotfinia AA, Lotfinia M, Gorji A. The effect of GABAergic neurotransmission on the seizure-related activity of the laterodorsal thalamic nuclei and the somatosensory cortex in a genetic model of absence epilepsy. Brain Res 2021; 1757:147304. [PMID: 33524378 DOI: 10.1016/j.brainres.2021.147304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022]
Abstract
The present study aimed to investigate the alterations of the GABAergic system in the laterodorsal nucleus (LDN) of the thalamus and the somatosensory cortex (SC) in an experimental model of absence seizure. The effects of pharmacological manipulation of both GABAA and GABAB receptor subunits in the LDN on the generation of spike-wave discharges (SWD) were evaluated. The experiments were carried out in four groups of both WAG/Rij and Wistar rats with 2 and 6 months of age. The expressions of various GABA receptor subunits were studied in the LDN and SC. Furthermore, recordings of unit activity from the LDN and electrocorticography were simultaneously monitored before, during, and after the application of GABAA and GABAB antagonists in the LDN. The generation of SWD in the older WAG/Rij rats was associated with significant alterations in the expression of GABAARα1, GABAARβ3, and GABABR2 subunits in the LDN as well as GABAARα1, GABAARβ3, GABAARγ2, and GABABR2 subunits in the SC. Furthermore, the occurrence of SWD was associated with a significant reduction of gene expression of GABAARα1 and increase of GABAARβ3 in the LDN as well as reduction of GABAARα1, GABAARβ3, GABAARγ2, and GABABR2 in the SC. The microionthophoretic application of the GABAA antagonist bicuculline resulted in a significant increase in the population firing rate of LDN neurons as well as the mean number and duration of SWD. The application of the GABAB antagonist CGP35348 significantly increased the population firing rate of LDN neurons but decreased the mean number of SWD. Our data indicate the regulatory effect of the GABAergic system of the LDN and SC in absence seizures.
Collapse
Affiliation(s)
- Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Sayed Mostafa Modarres Mousavi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Rahimi
- Department of Genetics and Pharmacology, Institute of Molecular and Cellular Pharmacology, Medical University of Innsbruck, Innsbruck, Austria; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firuze Ghaderi Pakdel
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Ali Lotfinia
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mahmoud Lotfinia
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universitat Münster, Münster, Germany.
| |
Collapse
|
12
|
Crunelli V, Lőrincz ML, McCafferty C, Lambert RC, Leresche N, Di Giovanni G, David F. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 2020; 143:2341-2368. [PMID: 32437558 PMCID: PMC7447525 DOI: 10.1093/brain/awaa072] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Absence seizures in children and teenagers are generally considered relatively benign because of their non-convulsive nature and the large incidence of remittance in early adulthood. Recent studies, however, show that 30% of children with absence seizures are pharmaco-resistant and 60% are affected by severe neuropsychiatric comorbid conditions, including impairments in attention, cognition, memory and mood. In particular, attention deficits can be detected before the epilepsy diagnosis, may persist even when seizures are pharmacologically controlled and are aggravated by valproic acid monotherapy. New functional MRI-magnetoencephalography and functional MRI-EEG studies provide conclusive evidence that changes in blood oxygenation level-dependent signal amplitude and frequency in children with absence seizures can be detected in specific cortical networks at least 1 min before the start of a seizure, spike-wave discharges are not generalized at seizure onset and abnormal cortical network states remain during interictal periods. From a neurobiological perspective, recent electrical recordings and imaging of large neuronal ensembles with single-cell resolution in non-anaesthetized models show that, in contrast to the predominant opinion, cortical mechanisms, rather than an exclusively thalamic rhythmogenesis, are key in driving seizure ictogenesis and determining spike-wave frequency. Though synchronous ictal firing characterizes cortical and thalamic activity at the population level, individual cortico-thalamic and thalamocortical neurons are sparsely recruited to successive seizures and consecutive paroxysmal cycles within a seizure. New evidence strengthens previous findings on the essential role for basal ganglia networks in absence seizures, in particular the ictal increase in firing of substantia nigra GABAergic neurons. Thus, a key feature of thalamic ictogenesis is the powerful increase in the inhibition of thalamocortical neurons that originates at least from two sources, substantia nigra and thalamic reticular nucleus. This undoubtedly provides a major contribution to the ictal decrease in total firing and the ictal increase of T-type calcium channel-mediated burst firing of thalamocortical neurons, though the latter is not essential for seizure expression. Moreover, in some children and animal models with absence seizures, the ictal increase in thalamic inhibition is enhanced by the loss-of-function of the astrocytic GABA transporter GAT-1 that does not necessarily derive from a mutation in its gene. Together, these novel clinical and experimental findings bring about paradigm-shifting views of our understanding of absence seizures and demand careful choice of initial monotherapy and continuous neuropsychiatric evaluation of affected children. These issues are discussed here to focus future clinical and experimental research and help to identify novel therapeutic targets for treating both absence seizures and their comorbidities.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - Magor L Lőrincz
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK.,Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Cian McCafferty
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Régis C Lambert
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Nathalie Leresche
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - François David
- Cerebral dynamics, learning and plasticity, Integrative Neuroscience and Cognition Center - UMR 8002, Paris, France
| |
Collapse
|
13
|
Sitnikova E, Smirnov K. Active avoidance learning in WAG/Rij rats with genetic predisposition to absence epilepsy. Brain Res Bull 2020; 165:198-208. [DOI: 10.1016/j.brainresbull.2020.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022]
|
14
|
Jafarian M, Esmaeil Alipour M, Karimzadeh F. Experimental Models of Absence Epilepsy. Basic Clin Neurosci 2020; 11:715-726. [PMID: 33850609 PMCID: PMC8019851 DOI: 10.32598/bcn.11.6.731.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/10/2019] [Accepted: 11/30/2019] [Indexed: 11/27/2022] Open
Abstract
Introduction: Absence epilepsy is a brief non-convulsive seizure associated with sudden abruptness in consciousness. Because of the unpredictable occurrence of absence seizures and the ethical issues of human investigation on the pathogenesis and drug assessment, researchers tend to study animal models. This paper aims to review the advantages and disadvantages of several animal models of nonconvulsive induced seizure. Methods: The articles that were published since 1990 were assessed. The publications that used genetic animals were analyzed, too. Besides, we reviewed possible application methods of each model, clinical types of seizures induced, purposed mechanism of epileptogenesis, their validity, and relevance to the absence epileptic patients. Results: The number of studies that used genetic models of absence epilepsy from years of 2000 was noticeably more than pharmacological models. Genetic animal models have a close correlation of electroencephalogram features and epileptic behaviors to the human condition. Conclusion: The validity of genetic models of absence epilepsy would motivate the researchers to focus on genetic modes in their studies. As there are some differences in the pathophysiology of absence epilepsy between animal models and humans, the development of new animal models is necessary to understand better the epileptogenic process and, or discover novel therapies for this disorder.
Collapse
Affiliation(s)
- Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Mdical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mohammad Esmaeil Alipour
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Liu Y, Zhang X, Yan D, Wang Y, Wang N, Liu Y, Tan A, Chen X, Yan H. Chronic acrylamide exposure induced glia cell activation, NLRP3 infl-ammasome upregulation and cognitive impairment. Toxicol Appl Pharmacol 2020; 393:114949. [DOI: 10.1016/j.taap.2020.114949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
|
16
|
Fonseca Wald ELA, Hendriksen JGM, Drenthen GS, Kuijk SMJV, Aldenkamp AP, Vles JSH, Vermeulen RJ, Debeij-van Hall MHJA, Klinkenberg S. Towards a Better Understanding of Cognitive Deficits in Absence Epilepsy: a Systematic Review and Meta-Analysis. Neuropsychol Rev 2019; 29:421-449. [PMID: 31776780 PMCID: PMC6892766 DOI: 10.1007/s11065-019-09419-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/21/2019] [Indexed: 12/30/2022]
Abstract
Cognition in absence epilepsy (AE) is generally considered undisturbed. However, reports on cognitive deficits in AE in recent years have suggested otherwise. This review systematically assesses current literature on cognitive performance in children with AE. A systematic literature search was performed in Pubmed, Embase, Cochrane and Web of Science. All studies reporting on cognitive performance in children with AE were considered. In total 33 studies were eligible for inclusion. Neuropsychological tests were classified into the following domains: intelligence; executive function; attention; language; motor & sensory-perceptual examinations; visuoperceptual/visuospatial/visuoconstructional function; memory and learning; achievement. Random-effect meta-analyses were conducted by estimating the pooled mean and/or pooling the mean difference in case-control studies. Full-scale IQ in children with AE was estimated at 96.78 (95%CI:94.46–99.10) across all available studies and in case-control studies IQ was on average 8.03 (95%CI:-10.45- -5.61) lower. Verbal IQ was estimated at 97.98 (95%CI:95.80–100.16) for all studies and 9.01 (95%CI:12.11- -5.90) points lower in case-control studies. Performance IQ was estimated at 97.23 (93.24–101.22) for all available studies and 5.32 (95%CI:-8.27–2.36) points lower in case-control studies. Lower performance was most often reported in executive function (cognitive flexibility, planning, and verbal fluency) and attention (sustained, selective and divided attention). Reports on school difficulties, neurodevelopmental problems, and attentional problems were high. In conclusion, in contrast to common beliefs, lower than average neurocognitive performance was noted in multiple cognitive domains, which may influence academic and psychosocial development.
Collapse
Affiliation(s)
- Eric L A Fonseca Wald
- Department of Neurology, Maastricht University Medical Center+, 6202, AZ, Maastricht, The Netherlands. .,Epilepsy Center Kempenhaeghe, Heeze, The Netherlands. .,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Jos G M Hendriksen
- Department of Neurology, Maastricht University Medical Center+, 6202, AZ, Maastricht, The Netherlands.,Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Gerald S Drenthen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sander M J V Kuijk
- Department of KEMTA, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Albert P Aldenkamp
- Department of Neurology, Maastricht University Medical Center+, 6202, AZ, Maastricht, The Netherlands.,Epilepsy Center Kempenhaeghe, Heeze, The Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Johan S H Vles
- Department of Neurology, Maastricht University Medical Center+, 6202, AZ, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R Jeroen Vermeulen
- Department of Neurology, Maastricht University Medical Center+, 6202, AZ, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Sylvia Klinkenberg
- Department of Neurology, Maastricht University Medical Center+, 6202, AZ, Maastricht, The Netherlands. .,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Yavuz M, Albayrak N, Özgür M, Gülçebi İdriz Oğlu M, Çavdar S, Onat F. The effect of prenatal and postnatal caffeine exposure on pentylentetrazole induced seizures in the non-epileptic and epileptic offsprings. Neurosci Lett 2019; 713:134504. [PMID: 31539618 DOI: 10.1016/j.neulet.2019.134504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 11/29/2022]
Abstract
Caffeine, a central nervous system stimulant, has been reported to modulate seizure activity in various studies. In this study the effects of caffeine exposure on the pentylenetetrazole (PTZ) induced seizure thresholds and seizure stages in the Wistar and genetic absence epilepsy model offsprings were examined. Adult female and male Wistar rats and genetic absence epilepsy rats from Strasbourg (GAERS) consumed caffeine dissolved in water (0.3 g/L) before conception, during the gestational periods and lactation period whereas control groups of each strain received tap water. All offsprings at postnatal day 30 (PN30) subjected to 70 mg/kg of PTZ were evaluated in terms of overall seizure stages, the latency to the first generalized seizure and the c-Fos protein activity in the brain regions of somatosensorial cortex (SSCx), reticular thalamic nucleus (Rt), ventrobasal thalamus (VB), centromedial nucleus (CM) and lateral geniculate nucleus (LGN). The Wistar caffeine group had significantly shorter latency to the first generalized seizure (1.53 ± 0.49 min) comparing to the Wistar control offsprings (3.40 ± 0.68 min). GAERS caffeine group (6.52 ± 2.48 min) showed significantly longer latency comparing to Wistar caffeine group (1.53 ± 0.49 min). Although statistically not significant, GAERS caffeine group showed a longer latency comparing to the GAERS control group (4.71 ± 1.82 min). In all regions of SSCx, Rt, VB, CM and LGN, GAERS caffeine group had lower c-Fos protein expression comparing to the GAERS control group (p < 0.05). Wistar caffeine rats had lower expression of c-Fos protein comparing to the Wistar control group only in SSCx. In CM, GAERS rats expressed lower c-Fos protein comparing to the Wistar control (p < 0.05). In conclusion differential effects of caffeine in the seizure modulation may involve c-Fos protein activity-dependent protection mechanisms.
Collapse
Affiliation(s)
- Melis Yavuz
- Department of Medical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Nazlı Albayrak
- School of Medicine, Acibadem M. A. Aydınlar University, Istanbul, Turkey
| | - Merve Özgür
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Medine Gülçebi İdriz Oğlu
- Department of Medical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Epilepsy Research Centre (EPAM), Marmara University, Istanbul, Turkey
| | - Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, Istanbul, Turkey
| | - Filiz Onat
- Department of Medical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Epilepsy Research Centre (EPAM), Marmara University, Istanbul, Turkey.
| |
Collapse
|
18
|
Leo A, Caro CD, Nesci V, Palma E, Tallarico M, Iannone M, Constanti A, Sarro GD, Russo E, Citraro R. Antiepileptogenic effects of Ethosuximide and Levetiracetam in WAG/Rij rats are only temporary. Pharmacol Rep 2019; 71:833-838. [PMID: 31386986 DOI: 10.1016/j.pharep.2019.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND WAG/Rij rats represent a validated genetic animal model of epileptogenesis, absence epilepsy and depressive-like comorbidity. Some treatments (e.g. ethosuximide), using specific protocols, prevent the development of spontaneous absence seizures. Accordingly, ethosuximide increases remission occurrence in children with childhood absence epilepsy in comparison to valproic acid. Considering that in this animal model, antiepileptogenic effects are, in some cases, not retained over time, we studied whether the antiepileptogenic effects of both ethosuximide and levetiracetam (which also possesses antiepileptogenic effects in this and other animal epilepsy models) would be retained 5 months after drug suspension. METHODS WAG/Rij rats of ˜1 month of age were treated long-term with one of the two drugs at a dose of ˜80 mg/kg/day for 17 consecutive weeks; 1 and 5 months after drug suspension, the development of absence seizures as well as depressive-like behaviour were assessed by EEG recordings and the forced swimming test (FST). RESULTS In agreement with a previous report, both drugs continued to show antiepileptogenic effects 1 month after their discontinuation. Furthermore, ethosuximide improved depressive-like behaviour, whereas in contrast, levetiracetam worsened this symptom. However, none of the drugs maintained their antiepileptogenic effects 5 months after suspension, and in addition, animal behaviour in the FST returned to control conditions. CONCLUSION Overall, these results demonstrate that the antiepileptogenic effects of both ethosuximide and levetiracetam on absence seizure development and associated depressive-like behaviour in this model are only temporary.
Collapse
Affiliation(s)
- Antonio Leo
- University of Catanzaro, School of Medicine, Science of Health Department, Catanzaro, Italy
| | - Carmen De Caro
- University of Catanzaro, School of Medicine, Science of Health Department, Catanzaro, Italy
| | - Valentina Nesci
- University of Catanzaro, School of Medicine, Science of Health Department, Catanzaro, Italy
| | - Ernesto Palma
- University of Catanzaro, School of Medicine, Science of Health Department, Catanzaro, Italy
| | - Martina Tallarico
- University of Catanzaro, School of Medicine, Science of Health Department, Catanzaro, Italy; CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | | | | | - Emilio Russo
- University of Catanzaro, School of Medicine, Science of Health Department, Catanzaro, Italy
| | - Rita Citraro
- University of Catanzaro, School of Medicine, Science of Health Department, Catanzaro, Italy.
| |
Collapse
|
19
|
Leo A, Citraro R, Tallarico M, Iannone M, Fedosova E, Nesci V, De Sarro G, Sarkisova K, Russo E. Cognitive impairment in the WAG/Rij rat absence model is secondary to absence seizures and depressive-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109652. [PMID: 31095993 DOI: 10.1016/j.pnpbp.2019.109652] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023]
Abstract
Neuropsychiatric comorbidities are common in patients with epilepsy, remaining still an urgent unmet clinical need. Therefore, the management of epileptic disorders should not only be restricted to the achievement of seizure-freedom but must also be able to counteract its related comorbidities. Experimental animal models of epilepsy represent a valid tool not only to study epilepsy but also its associated comorbidities. The WAG/Rij rat is a well-established genetically-based model of absence epilepsy with depressive-like comorbidity, in which learning and memory impairment was also recently reported. Aim of this study was to clarify whether this cognitive decline is secondary or not to absence seizures and/or depressive-like behavior. The behavioral performance of untreated and ethosuximide-treated (300 mg/kg/day; 17 days) WAG/Rij rats at 6 and 12 months of age were assessed in several tests: forced swimming test, objects recognition test, social recognition test, Morris water maze and passive avoidance. According to our results, it seems that cognitive impairment in this strain, similarly to depressive-like behavior, is secondary to the occurrence of absence seizures, which might be necessary for the expression of cognitive impairment. Furthermore, our results suggest an age-dependent impairment of cognitive performance in WAG/Rij rats, which could be linked to the age-dependent increase of spike wave discharges. Consistently, it is possible that absence seizures, depressive-like behavior and cognitive deficit may arise independently and separately in lifetime from the same underlying network disease, as previously suggested for the behavioral features associated with other epileptic syndromes.
Collapse
Affiliation(s)
- Antonio Leo
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy
| | - Rita Citraro
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy.
| | - Martina Tallarico
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy; CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Ekaterina Fedosova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Valentina Nesci
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy
| | | | - Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Emilio Russo
- University of Catanzaro, School of Medicine, Science of Health Dept., Catanzaro, Italy
| |
Collapse
|
20
|
Young JC, Paolini AG, Pedersen M, Jackson GD. Genetic absence epilepsy: Effective connectivity from piriform cortex to mediodorsal thalamus. Epilepsy Behav 2019; 97:219-228. [PMID: 31254842 DOI: 10.1016/j.yebeh.2019.05.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of the study was to quantify effective connectivity from the piriform cortex to mediodorsal thalamus, in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). METHODS Local field potentials (LFPs) were recorded using microelectrode arrays implanted in the mediodorsal thalamus and piriform cortex, in three urethane anesthetized GAERS and three control rats. Screw electrodes were placed in the primary motor cortex to identify epileptiform discharges. We used transfer entropy to measure effective connectivity from piriform cortex to mediodorsal thalamus prior to and during generalized epileptiform discharges. RESULTS We observed increased theta band effective connectivity from piriform cortex to mediodorsal thalamus, prior to and during epileptiform discharges in GAERS compared with controls. Increased effective connectivity was also observed in beta and gamma bands from the piriform cortex to mediodorsal thalamus, but only during epileptiform discharges. CONCLUSIONS This preliminary study suggests that increased effective theta connectivity from the piriform cortex to the mediodorsal thalamus may be a feature of the 'epileptic network' associated with genetic absence epilepsy. Our findings indicate an underlying predisposition of this direct pathway to propagate epileptiform discharges in genetic absence epilepsy.
Collapse
Affiliation(s)
- James C Young
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Antonio G Paolini
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Mangor Pedersen
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Melbourne, Australia
| |
Collapse
|
21
|
Citraro R, Leo A, De Caro C, Nesci V, Gallo Cantafio ME, Amodio N, Mattace Raso G, Lama A, Russo R, Calignano A, Tallarico M, Russo E, De Sarro G. Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats. Mol Neurobiol 2019; 57:408-421. [PMID: 31368023 DOI: 10.1007/s12035-019-01712-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
Epigenetic mechanisms, such as alterations in histone acetylation based on histone deacetylases (HDACs) activity, have been linked not only to normal brain function but also to several brain disorders including epilepsy and the epileptogenic process. In WAG/Rij rats, a genetic model of absence epilepsy, epileptogenesis and mild-depression comorbidity, we investigated the effects of two HDAC inhibitors (HDACi), namely sodium butyrate (NaB), valproic acid (VPA) and their co-administration, on the development of absence seizures and related psychiatric/neurologic comorbidities following two different experimental paradigms. Treatment effects have been evaluated by EEG recordings (EEG) and behavioural tests at different time points. Prolonged and daily VPA and NaB treatment, started before absence seizure onset (P30), significantly reduced the development of absence epilepsy showing antiepileptogenic effects. These effects were enhanced by NaB/VPA co-administration. Furthermore, early-chronic HDACi treatment improved depressive-like behaviour and cognitive performance 1 month after treatment withdrawal. WAG/Rij rats of 7 months of age showed reduced acetylated levels of histone H3 and H4, analysed by Western Blotting of homogenized brain, in comparison to WAG/Rij before seizure onset (P30). The brain histone acetylation increased significantly during treatment with NaB or VPA alone and more markedly during co-administration. We also observed decreased expression of both HDAC1 and 3 following HDACi treatment compared to control group. Our results suggest that histone modifications may have a crucial role in the development of epilepsy and early treatment with HDACi might be a possible strategy for preventing epileptogenesis also affecting behavioural comorbidities.
Collapse
Affiliation(s)
- Rita Citraro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Carmen De Caro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Valentina Nesci
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Maria E Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Martina Tallarico
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy.,Pharmacology Section, CNR, Institute of Neurological Sciences, Roccelletta di Borgia, Catanzaro, Italy
| | - Emilio Russo
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy.
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| |
Collapse
|
22
|
Li M, Cui L, Feng X, Wang C, Zhang Y, Wang L, Ding Y, Zhao T. Losmapimod Protected Epileptic Rats From Hippocampal Neuron Damage Through Inhibition of the MAPK Pathway. Front Pharmacol 2019; 10:625. [PMID: 31231220 PMCID: PMC6565798 DOI: 10.3389/fphar.2019.00625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: This research aimed to validate the therapeutic effect of losmapimod and explore the underlying mechanism in its treatment of epilepsy. Methods: A rat model of epilepsy was constructed with an injection of pilocarpine. Microarray analysis was performed to screen aberrantly expressed mRNAs and activated signaling pathways between epileptic rats and normal controls. A TdT-mediated dUTP nick-end labeling (TUNEL) assay was used to identify cell apoptosis. Hippocampal cytoarchitecture was visualized with Nissl staining. The secretion of inflammatory factors as well as the marker proteins in the mitogen-activated protein kinase (MAPK) pathway were detected by Western blot. A Morris water maze navigation test evaluated the rats’ cognitive functions. Results: Activation of the MAPK signaling pathway was observed in epilepsy rats. A decrease in the MAPK phosphorylation level by application of losmapimod protected against epilepsy by reducing neuron loss. Losmapimod effectively improved memory, reduced the frequency of seizures, protected the neuron from damage, and limited the apoptosis of neurons in epilepsy rats. Conclusion: The application of losmapimod could partly reverse the development of epilepsy.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Lexiang Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xuemin Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chao Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Major in Clinical Medicine, Medical College of Nanchang University, Nanchang, China
| | - Lijie Wang
- Department of Traditional Chinese Medicine, General Hospital of FAW, Fourth Hospital of Jilin University, Changchuan, China
| | - Ying Ding
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Teng Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Jafarian M, Modarres Mousavi SM, Alipour F, Aligholi H, Noorbakhsh F, Ghadipasha M, Gharehdaghi J, Kellinghaus C, Kovac S, Khaleghi Ghadiri M, Meuth SG, Speckmann EJ, Stummer W, Gorji A. Cell injury and receptor expression in the epileptic human amygdala. Neurobiol Dis 2019; 124:416-427. [DOI: 10.1016/j.nbd.2018.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/04/2018] [Accepted: 12/22/2018] [Indexed: 02/06/2023] Open
|
24
|
Huang IY, Hsu YL, Chen CC, Chen MF, Wen ZH, Huang HT, Liu IY. Excavatolide-B Enhances Contextual Memory Retrieval via Repressing the Delayed Rectifier Potassium Current in the Hippocampus. Mar Drugs 2018; 16:md16110405. [PMID: 30366389 PMCID: PMC6266063 DOI: 10.3390/md16110405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Memory retrieval dysfunction is a symptom of schizophrenia, autism spectrum disorder (ASD), and absence epilepsy (AE), as well as an early sign of Alzheimer’s disease. To date, few drugs have been reported to enhance memory retrieval. Here, we found that a coral-derived natural product, excavatolide-B (Exc-B), enhances contextual memory retrieval in both wild-type and Cav3.2−/− mice via repressing the delayed rectifier potassium current, thus lowering the threshold for action potential initiation and enhancing induction of long-term potentiation (LTP). The human CACNA1H gene encodes a T-type calcium channel (Cav3.2), and its mutation is associated with schizophrenia, ASD, and AE, which are all characterized by abnormal memory function. Our previous publication demonstrated that Cav3.2−/− mice exhibit impaired contextual-associated memory retrieval, whilst their retrieval of spatial memory and auditory cued memory remain intact. The effect of Exc-B on enhancing the retrieval of context-associated memory provides a hope for novel drug development.
Collapse
Affiliation(s)
- Irene Y Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
| | - Yu-Luan Hsu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, 128, Academia road, Section 2, Nangang, Taipei 115, Taiwan.
| | - Mei-Fang Chen
- Cardiovascular and Metabolomics Research Center, Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Hsien-Ting Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan.
| | - Ingrid Y Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
25
|
Chronic Upregulation of Cleaved-Caspase-3 Associated with Chronic Myelin Pathology and Microvascular Reorganization in the Thalamus after Traumatic Brain Injury in Rats. Int J Mol Sci 2018; 19:ijms19103151. [PMID: 30322151 PMCID: PMC6214127 DOI: 10.3390/ijms19103151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with long-term disabilities and devastating chronic neurological complications including problems with cognition, motor function, sensory processing, as well as behavioral deficits and mental health problems such as anxiety, depression, personality change and social unsuitability. Clinical data suggest that disruption of the thalamo-cortical system including anatomical and metabolic changes in the thalamus following TBI might be responsible for some chronic neurological deficits following brain trauma. Detailed mechanisms of these pathological processes are not completely understood. The goal of this study was to evaluate changes in the thalamus following TBI focusing on cleaved-caspase-3, a specific effector of caspase pathway activation and myelin and microvascular pathologies using immuno- and histochemistry at different time points from 24 h to 3 months after controlled cortical impact (CCI) in adult Sprague-Dawley rats. Significant increases in cleaved-caspase-3 immunoreactivity in the thalamus were observed starting one month and persisting for at least three months following experimental TBI. Further, the study demonstrated an association of cleaved-caspase-3 with the demyelination of neuronal processes and tissue degeneration in the gray matter in the thalamus, as reflected in alterations of myelinated fiber integrity (luxol fast blue) and decreases in myelin basic protein (MBP) immunoreactivity. The immunofluorescent counterstaining of cleaved-caspase-3 with endothelial barrier antigen (EBA), a marker of blood-brain barrier, revealed limited direct and indirect associations of cleaved caspase-3 with blood-brain barrier damage. These results demonstrate for the first time a significant chronic upregulation of cleaved-caspase-3 in selected thalamic regions associated with cortical regions directly affected by CCI injury. Further, our study is also the first to report that significant upregulation of cleaved-caspase-3 in selected ipsilateral thalamic regions is associated with microvascular reorganization reflected in the significant increases in the number of microvessels with blood-brain barrier alterations detected by EBA staining. These findings provide new insights into potential mechanisms of TBI cell death involving chronic activation of caspase-3 associated with disrupted cortico-thalamic and thalamo-cortical connectivity. Moreover, this study offers the initial evidence that this upregulation of activated caspase-3, delayed degeneration of myelinated nerve fibers and microvascular reorganization with impaired blood-brain barrier integrity in the thalamus might represent reciprocal pathological processes affecting neuronal networks and brain function at the chronic stages of TBI.
Collapse
|
26
|
Papp P, Kovács Z, Szocsics P, Juhász G, Maglóczky Z. Alterations in hippocampal and cortical densities of functionally different interneurons in rat models of absence epilepsy. Epilepsy Res 2018; 145:40-50. [DOI: 10.1016/j.eplepsyres.2018.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
|
27
|
Russo E, Citraro R. Pharmacology of epileptogenesis and related comorbidities in the WAG/Rij rat model of genetic absence epilepsy. J Neurosci Methods 2018; 310:54-62. [PMID: 29857008 DOI: 10.1016/j.jneumeth.2018.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/23/2023]
Abstract
Animal studies currently represent the best source of information also in the field of epileptogenesis research. Many animal models have been proposed and studied so far both from the pathophysiological and pharmacological point of view. Furthermore, they are widely used for the identification of potentially clinically valuable biomarkers. The WAG/Rij rat model, similarly to other genetic animal strains, represents a suitable animal model of absence epileptogenesis accompanied by depressive-like and cognitive comorbidities. Generally, animal models of epileptogenesis are characterized by an identifiable initial insult (e.g. traumatic brain injury), a latent phase lasting up to the appearance of the first spontaneous seizure and a chronic phase characterized by recurrent spontaneous seizures. In most of genetic models: the initial insult should be defined as the mutation causing epilepsy, which is not clearly defined in the WAG/Rij rat model; the latent phase ends at the appearance of the first spontaneous seizure, which is about 2-3 months of age in WAG/Rij rats and thereafter the chronic phase. WAG/Rij rats also display depressive-like comorbidity around the age of 4 months, which is apparently linked to the development of absence seizures considering both its ontogeny and the fact that drugs affecting absence seizures development also block the development of depressive-like behavior. Finally, WAG/Rij rats also display cognitive impairment in some memory tasks, however, this has not been yet definitively linked to absence seizures development and may represent an epiphenomenon. This review is focused on the effects of pharmacological treatments against epileptogenesis and their effects on comorbidities.
Collapse
Affiliation(s)
- Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Italy.
| | - Rita Citraro
- Science of Health Department, School of Medicine, University of Catanzaro, Italy
| |
Collapse
|
28
|
Sun F, Si Y, Bao H, Xu Y, Pan X, Zeng L, Jing L. Regulation of Sirtuin 3-Mediated Deacetylation of Cyclophilin D Attenuated Cognitive Dysfunction Induced by Sepsis-Associated Encephalopathy in Mice. Cell Mol Neurobiol 2017; 37:1457-1464. [PMID: 28236057 PMCID: PMC5630658 DOI: 10.1007/s10571-017-0476-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 01/13/2023]
Abstract
The present study aimed to investigate cognitive dysfunction in the hippocampus induced by sepsis-associated encephalopathy (SAE) via acetylation of cyclophilin D (CypD) and opening of mitochondrial permeability transition pore. It also explored whether activating sirtuin 3 (SIRT3) can mediate deacetylation of CypD and prevent the development of SAE. Male mice were randomly assigned to six groups: sham group, cecal ligation puncture group, CypD siRNA transfection (CypD-si) group, CypD control siRNA transfection (CypD-c) group, SIRT3 overexpression vector pcDNA3.1 (SIRT3-p) group, and SIRT3 empty vector pcDNA3.1 (SIRT3-v) group (n = 18). The CypD-si and CypD-c groups were transfected with CypD siRNA and CypD control siRNA, respectively. The SIRT3-p and SIRT3-v groups were injected with SIRT3 pcDNA3.1 and vector pcDNA3.1, respectively. The learning and memory function was assessed using the learning version of the Morris water maze test. Then, cell apoptosis and the levels of CypD, acetylated CypD, SIRT-3, interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and caspase-3 in the hippocampus were determined. The levels of CypD and acetylation of CypD increased in the hippocampus induced by SAE. Increasing SIRT3 and decreasing CypD can attenuate cognitive impairment and neuroapoptosis, and protect the integrity of mitochondrial membrane from damage and restore the protein expressions of IL-6, TNF-α, and caspase-3. Activating SIRT3-mediated deacetylation of CypD attenuated learning and memory dysfunction induced by SAE.
Collapse
Affiliation(s)
- Fan Sun
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Yajie Xu
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - XiaoXiao Pan
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Lingqing Zeng
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Ling Jing
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| |
Collapse
|
29
|
Neurochemical Changes and c-Fos Mapping in the Brain after Carisbamate Treatment of Rats Subjected to Lithium-Pilocarpine-Induced Status Epilepticus. Pharmaceuticals (Basel) 2017; 10:ph10040085. [PMID: 29104261 PMCID: PMC5748642 DOI: 10.3390/ph10040085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 12/03/2022] Open
Abstract
The administration of lithium–pilocarpine (LiPilo) in adult rats is a validated model reproducing the main clinical and neuropathological features of temporal lobe epilepsy (TLE). Previous studies have shown that carisbamate (CRS) has the property of modifying epileptogenesis in this model. When treated with CRS, about 50% of rats undergoing LiPilo status epilepticus (SE) develop non-convulsive seizures (NCS) instead of convulsive ones (commonly observed in TLE). The goal of this work was to determine some of the early changes that occur after CRS administration, as they could be involved in the insult- and epileptogenesis-modifying effects of CRS. Thus, we performed high-performance liquid chromatography (HPLC) to quantify levels of amino acids and monoamines, and c-Fos immunohistochemical labeling to map cerebral activation during seizures. Comparing rats treated one hour after SE onset with saline (CT), CRS, or diazepam (DZP), HPLC showed that 4 h after SE onset, dopamine (DA), norepinephrine (NE), and GABA levels were normal, whereas serotonin levels were increased. Using c-Fos labeling, we demonstrated increased activity in thalamic mediodorsal (MD) and laterodorsal (LD) nuclei in rats treated with CRS. In summary, at early times, CRS seems to modulate excitability by acting on some monoamine levels and increasing activity of MD and LD thalamic nuclei, suggesting a possible involvement of these nuclei in insult- and/or epileptogenesis-modifying effects of CRS.
Collapse
|
30
|
Leo A, Citraro R, Amodio N, De Sarro C, Gallo Cantafio ME, Constanti A, De Sarro G, Russo E. Fingolimod Exerts only Temporary Antiepileptogenic Effects but Longer-Lasting Positive Effects on Behavior in the WAG/Rij Rat Absence Epilepsy Model. Neurotherapeutics 2017; 14:1134-1147. [PMID: 28653281 PMCID: PMC5722759 DOI: 10.1007/s13311-017-0550-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the major challenges in the epilepsy field is identifying disease-modifying drugs in order to prevent or delay spontaneous recurrent seizure onset or to cure already established epilepsy. It has been recently reported that fingolimod, currently approved for the treatment of relapsing-remitting multiple sclerosis, has demonstrated antiepileptogenic effects in 2 different preclinical models of acquired epilepsy. However, to date, no data exist regarding the role of fingolimod against genetic epilepsy. Therefore, we have addressed this issue by studying the effects of fingolimod in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, a well-established genetic model of absence epilepsy, epileptogenesis, and neuropsychiatric comorbidity. Our results have demonstrated that an early long-term treatment with fingolimod (1 mg/kg/day), started before absence seizure onset, has both antiepileptogenic and antidepressant-like effects in WAG/Rij rats. However, these effects were transitory, as 5 months after treatment discontinuation, both absence seizure and depressive like-behavior returned to control levels. Furthermore, a temporary reduction of mTOR signaling pathway activity, indicated by reduced phosphorylated mammalian target of rapamycin and phosphorylated p70S6k levels, and by increased phosphorylated Akt in WAG/Rij rats of 6 months of age accompanied the transitory antiepileptogenic effects of fingolimod. Surprisingly, fingolimod has demonstrated longer-lasting positive effects on cognitive decline in this strain. This effect was accompanied by an increased acetylation of lysine 8 of histone H4 (at both 6 and 10 months of age). In conclusion, our results support the antiepileptogenic effects of fingolimod. However, the antiepileptogenic effects were transitory. Moreover, fingolimod might also have a positive impact on animal behavior and particularly in protecting the development of memory decline.
Collapse
Affiliation(s)
- Antonio Leo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Caterina De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
31
|
Karimzadeh F, Modarres Mousavi SM, Alipour F, Hosseini Ravandi H, Kovac S, Gorji A. Developmental changes in Notch1 and NLE1 expression in a genetic model of absence epilepsy. Brain Struct Funct 2017; 222:2773-2785. [PMID: 28210849 DOI: 10.1007/s00429-017-1371-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/16/2017] [Indexed: 01/08/2023]
Abstract
Childhood absence epilepsy (CAE) is an epilepsy syndrome with seizures occurring in the early childhood, highlighting that seizures susceptibility in CAE is dependent on brain development. The Notch 1 signalling pathway is important in brain development, yet the role of the Notch1 signalling pathway in CAE remains elusive. We here explored Notch1 and its modulator notchless homologue 1 (NLE1) expression in WAG/Rij and control rats using immunohistochemistry. Functional Notch 1 effects were assessed in WAG/Rij rats in vivo. WAG/Rij rats lack the developmental increase in cortical Notch1 and NLE 1 mRNA expression seen in controls, and Notch 1 and NLE1 mRNA and protein expression were lower in somatosensory cortices of WAG/Rij rats when compared to controls. This coincided with an overall decreased cortical GFAP expression in the early development in WAG/Rij rats. These effects were region-specific as they were not observed in thalamic tissues. Neuron-to-glia ratio as a marker of the impact of Notch signalling on differentiation was higher in layer 4 of somatosensory cortex of WAG/Rij rats. Acute application of Notch 1 agonist Jagged 1 suppressed, whereas DAPT, a Notch antagonist, facilitated spike and wave discharges (SWDs) in WAG/Rij rats. These findings point to Notch1 as an important signalling pathway in CAE which likely shapes architectural organization of the somatosensory cortex, a region critically involved in developmental epileptogenesis in CAE. More immediate effects of Notch 1 signalling are seen on in vivo SWDs in CAE, pointing to the Notch 1 pathway as a possible treatment target in CAE.
Collapse
MESH Headings
- Age Factors
- Animals
- Antigens, Nuclear/metabolism
- Brain Waves
- Disease Models, Animal
- Electrocorticography
- Epilepsy, Absence/genetics
- Epilepsy, Absence/metabolism
- Epilepsy, Absence/physiopathology
- Gene Expression Regulation, Developmental
- Genetic Predisposition to Disease
- Glial Fibrillary Acidic Protein/metabolism
- Immunohistochemistry
- Jagged-1 Protein/administration & dosage
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Phenotype
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Receptor, Notch1/drug effects
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Somatosensory Cortex/drug effects
- Somatosensory Cortex/growth & development
- Somatosensory Cortex/metabolism
- Somatosensory Cortex/physiopathology
- Thalamus/metabolism
- Thalamus/physiopathology
Collapse
Affiliation(s)
- Fariba Karimzadeh
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Alipour
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Stjepana Kovac
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Centre, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Robert-Koch-Straße 45, 48149, Münster, Germany.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
P38 MAPK pathway mediates cognitive damage in pentylenetetrazole-induced epilepsy via apoptosis cascade. Epilepsy Res 2017; 133:89-92. [PMID: 28472735 DOI: 10.1016/j.eplepsyres.2017.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/26/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Our group has previously reported the role of P38 mitogen-activated protein kinase (MAPK) pathway in the memory impairment of pentylenetetrazole (PTZ)-kindled rats. However, any contribution of p38 MAPK pathways to the cognitive dysfunction of PTZ-kindled rats remains unclear. The objective of this study is to verify the relationship between p38 MAPK pathway and cognitive function of epileptic rats, and discuss probable mechanisms. METHODS Thirty male SD rats were divided into three groups, namely, PTZ, inhibitor, and sham groups. All rats except those from the sham group were treated with PTZ to establish temporal lobe epilepsy (TLE) models, whereas the P38 MAPK inhibitor SB 203580 was given to the inhibitor group. Morris water maze test was performed to assay their learning and memory abilities. The levels of phosphorylated p38 (p-p38) and caspase 3 were confirmed using Western blot. RESULTS In the probe test of water maze, the PTZ group had the longest escape latency and least time to pass through the platform. Compared with the PTZ group, the inhibitor group had better performance in escape latency and spatial probe tests. Performance in the water maze test corresponded with the level of p-p38 and caspase 3 in hippocampus. We also found that the down-regulation of p-p38 in the inhibitor group led to down-regulated levels of caspase 3. CONCLUSIONS P38 MAPK pathway contributed to cognitive damage in PTZ-induced epilepsy via apoptosis cascade.
Collapse
|
33
|
Citraro R, Leo A, Franco V, Marchiselli R, Perucca E, De Sarro G, Russo E. Perampanel effects in the WAG/Rij rat model of epileptogenesis, absence epilepsy, and comorbid depressive-like behavior. Epilepsia 2016; 58:231-238. [PMID: 27988935 DOI: 10.1111/epi.13629] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Perampanel (PER), a selective non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor antagonist, exhibits broad-spectrum anticonvulsant activity in several seizure models, but its potential disease-modifying effects have not been investigated. Because of the relevance of AMPA receptors in epileptogenesis and psychiatric comorbidities, we studied the effects of PER in the WAG/Rij rat model of epileptogenesis, absence epilepsy, and depressive-like comorbidity. METHODS We investigated the effects of acute, subchronic, and chronic treatment with PER (0.25-3 mg/kg) on absence seizures, their development, and related psychiatric/neurologic comorbidity in WAG/Rij rats. Depression-related behavior was studied by using the forced swimming and the sucrose preference test; anxiety-related behavior by using the open field and elevated plus maze test; and memory by using the passive avoidance test. RESULTS PER (3 mg/kg/day orally for 17 weeks starting from P30) significantly reduced the development of absence seizures at 6 months of age (1 month after treatment withdrawal), but this effect was not maintained when reassessed 4 months later. Attenuated absence seizure development was accompanied by reduced depressive-like behavior in the forced swimming test (FST), whereas no effects were observed on anxiety-related behavior and memory. Subchronic (1 and 3 mg/kg/day orally for 1 week) and acute PER (0.25-1 mg/kg, i.p.) dosing did not affect established absence seizures and behavior. SIGNIFICANCE These results suggest that AMPA receptors are involved in mechanisms of epileptogenesis in an established model of absence epilepsy, and that these mechanisms differ from those responsible for seizure generation and spread when epilepsy has become established.
Collapse
Affiliation(s)
- Rita Citraro
- Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, Catanzaro, Italy
| | | | - Roberto Marchiselli
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Emilio Perucca
- C. Mondino National Neurological Institute, Pavia, Italy.,Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Giovambattista De Sarro
- Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
34
|
Zhang B, Zhang JW, Wang WP, Dong RF, Tian S, Zhang C. Effect of lamotrigine on epilepsy-induced cognitive impairment and hippocampal neuronal apoptosis in pentylenetetrazole-kindled animal model. Synapse 2016; 71. [PMID: 27733018 DOI: 10.1002/syn.21945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Bing Zhang
- Key Laboratory of Neurology of Hebei Province; The Second Hospital of Hebei Medical University; Shijiazhuang 050000 China
| | - Jia-Wei Zhang
- Key Laboratory of Neurology of Hebei Province; The Second Hospital of Hebei Medical University; Shijiazhuang 050000 China
| | - Wei-Ping Wang
- Key Laboratory of Neurology of Hebei Province; The Second Hospital of Hebei Medical University; Shijiazhuang 050000 China
| | - Rui-Fang Dong
- Department of Neurology; Cangzhou central Hospital; Cangzhou 061000 China
| | - Shuang Tian
- Department of Neurology; the First Hospital of Shijiazhuang; Shijiazhuang 050000 China
| | - Chao Zhang
- Department of Neurology; the First Hospital of Shijiazhuang; Shijiazhuang 050000 China
| |
Collapse
|
35
|
Tondelli M, Vaudano AE, Ruggieri A, Meletti S. Cortical and subcortical brain alterations in Juvenile Absence Epilepsy. NEUROIMAGE-CLINICAL 2016; 12:306-11. [PMID: 27551668 PMCID: PMC4983643 DOI: 10.1016/j.nicl.2016.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/28/2022]
Abstract
Despite the common assumption that genetic generalized epilepsies are characterized by a macroscopically normal brain on magnetic resonance imaging, subtle structural brain alterations have been detected by advanced neuroimaging techniques in Childhood Absence Epilepsy syndrome. We applied quantitative structural MRI analysis to a group of adolescents and adults with Juvenile Absence Epilepsy (JAE) in order to investigate micro-structural brain changes using different brain measures. We examined grey matter volumes, cortical thickness, surface areas, and subcortical volumes in 24 patients with JAE compared to 24 healthy controls; whole-brain voxel-based morphometry (VBM) and Freesurfer analyses were used. When compared to healthy controls, patients revealed both grey matter volume and surface area reduction in bilateral frontal regions, anterior cingulate, and right mesial-temporal lobe. Correlation analysis with disease duration showed that longer disease was correlated with reduced surface area in right pre- and post-central gyrus. A possible effect of valproate treatment on brain structures was excluded. Our results indicate that subtle structural brain changes are detectable in JAE and are mainly located in anterior nodes of regions known to be crucial for awareness, attention and memory.
Collapse
Affiliation(s)
- Manuela Tondelli
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; NOCSAE Hospital, AUSL Modena, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; NOCSAE Hospital, AUSL Modena, Italy
| | - Andrea Ruggieri
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; NOCSAE Hospital, AUSL Modena, Italy
| |
Collapse
|
36
|
Berdyyeva TK, Frady EP, Nassi JJ, Aluisio L, Cherkas Y, Otte S, Wyatt RM, Dugovic C, Ghosh KK, Schnitzer MJ, Lovenberg T, Bonaventure P. Direct Imaging of Hippocampal Epileptiform Calcium Motifs Following Kainic Acid Administration in Freely Behaving Mice. Front Neurosci 2016; 10:53. [PMID: 26973444 PMCID: PMC4770289 DOI: 10.3389/fnins.2016.00053] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/05/2016] [Indexed: 12/24/2022] Open
Abstract
Prolonged exposure to abnormally high calcium concentrations is thought to be a core mechanism underlying hippocampal damage in epileptic patients; however, no prior study has characterized calcium activity during seizures in the live, intact hippocampus. We have directly investigated this possibility by combining whole-brain electroencephalographic (EEG) measurements with microendoscopic calcium imaging of pyramidal cells in the CA1 hippocampal region of freely behaving mice treated with the pro-convulsant kainic acid (KA). We observed that KA administration led to systematic patterns of epileptiform calcium activity: a series of large-scale, intensifying flashes of increased calcium fluorescence concurrent with a cluster of low-amplitude EEG waveforms. This was accompanied by a steady increase in cellular calcium levels (>5 fold increase relative to the baseline), followed by an intense spreading calcium wave characterized by a 218% increase in global mean intensity of calcium fluorescence (n = 8, range [114–349%], p < 10−4; t-test). The wave had no consistent EEG phenotype and occurred before the onset of motor convulsions. Similar changes in calcium activity were also observed in animals treated with 2 different proconvulsant agents, N-methyl-D-aspartate (NMDA) and pentylenetetrazol (PTZ), suggesting the measured changes in calcium dynamics are a signature of seizure activity rather than a KA-specific pathology. Additionally, despite reducing the behavioral severity of KA-induced seizures, the anticonvulsant drug valproate (VA, 300 mg/kg) did not modify the observed abnormalities in calcium dynamics. These results confirm the presence of pathological calcium activity preceding convulsive motor seizures and support calcium as a candidate signaling molecule in a pathway connecting seizures to subsequent cellular damage. Integrating in vivo calcium imaging with traditional assessment of seizures could potentially increase translatability of pharmacological intervention, leading to novel drug screening paradigms and therapeutics designed to target and abolish abnormal patterns of both electrical and calcium excitation.
Collapse
Affiliation(s)
| | - E Paxon Frady
- InscopixPalo Alto, CA, USA; Redwood Center for Theoretical Neuroscience, University of California, BerkeleyBerkeley, CA, USA
| | | | - Leah Aluisio
- Janssen Research & Development, LLC San Diego, CA, USA
| | | | | | - Ryan M Wyatt
- Janssen Research & Development, LLC San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
37
|
The Effect of Melatonin on Behavioral, Molecular, and Histopathological Changes in Cuprizone Model of Demyelination. Mol Neurobiol 2015; 53:4675-84. [PMID: 26310973 DOI: 10.1007/s12035-015-9404-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/17/2015] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system. The protective effects of melatonin (MLT) on various neurodegenerative diseases, including MS, have been suggested. In the present study, we examined the effect of MLT on demyelination, apoptosis, inflammation, and behavioral dysfunctions in the cuprizone toxic model of demyelination. C57BL/6J mice were fed a chaw containing 0.2 % cuprizone for 5 weeks and received two doses of MLT (50 and 100 mg/kg) intraperitoneally for the last 7 days of cuprizone diet. Administration of MLT improved motor behavior deficits induced by cuprizone diet. MLT dose-dependently decreased the mean number of apoptotic cells via decreasing caspase-3 and Bax as well as increasing Bcl-2 levels. In addition, MLT significantly enhanced nuclear factor-κB activation and decreased heme oxygenase-1 level. However, MLT had no effect on interleukin-6 and myelin protein production. Our data revealed that MLT improved neurological deficits and enhanced cell survival but was not able to initiate myelin production in the cuprizone model of demyelination. These findings may be important for the design of potential MLT therapy in demyelinating disorders, such as MS.
Collapse
|