1
|
Wang H, Xu X, Yang Z, Zhang T. Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence. Cogn Neurodyn 2025; 19:2. [PMID: 39749102 PMCID: PMC11688264 DOI: 10.1007/s11571-024-10185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Adolescent brain development is characterized by significant anatomical and physiological alterations, but little is known whether and how these alterations impact the neural network. Here we investigated the development of functional networks by measuring synaptic plasticity and neural synchrony of local filed potentials (LFPs), and further explored the underlying mechanisms. LFPs in the hippocampus were recorded in young (21 ~ 25 days), adolescent (1.5 months) and adult (3 months) rats. Long term potentiation (LTP) and neural synchrony were analyzed. The results showed that the LTP was the lowest in adolescent rats. During development, the theta coupling strength was increased progressively but there was no significant change of gamma coupling between young rats and adolescent rats. The density of dendrite spines was decreased progressively during development. The lowest levels of NR2A, NR2B and PSD95 were detected in adolescent rats. Importantly, it was found that the expression levels of autophagy markers were the highest during adolescent compared to that in other developmental stages. Moreover, there were more co-localization of autophagosome and PSD95 in adolescent rats. It suggests that autophagy is possibly involved in synaptic elimination during adolescence, and further impacts synaptic plasticity and neural synchrony.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China
| | - Xiaxia Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China
| | - Zhuo Yang
- College of Medicine Science, Nankai University, Tianjin, 300071 PR China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China
| |
Collapse
|
2
|
Liu G, Jia D, Li W, Huang Z, Shan R, Huang C. Trifluoro-Icaritin Ameliorates Neuroinflammation Against Complete Freund's Adjuvant-Induced Microglial Activation by Improving CB2 Receptor-Mediated IL-10/β-endorphin Signaling in the Spinal Cord of Rats. J Neuroimmune Pharmacol 2024; 19:53. [PMID: 39387998 DOI: 10.1007/s11481-024-10152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The underlying pathogenesis of chronic inflammatory pain is greatly complex, but the relevant therapies are still unavailable. Development of effective candidates for chronic inflammatory pain is highly urgent. We previously identified that trifluoro-icaritin (ICTF) exhibited a significant therapeutic activity against complete Freund's adjuvant (CFA)-induced chronic inflammatory pain, however, the precise mechanisms remain elusive. Here, the paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and CatWalk gait analysis were used to determine the pain-related behaviors. The expression and co-localization of pain-related signaling molecules were detected by Western blot and immunofluorescence staining. Our results demonstrated that ICTF (3.0 mg/kg, i.p.) effectively attenuated mechanical allodynia, thermal hyperalgesia and improved motor dysfunction induced by CFA, and the molecular docking displayed that CB2 receptor may be the therapeutic target of ICTF. Furthermore, ICTF not only up-regulated the levels of CB2 receptor, IL-10, β-endorphin and CD206, but also reduced the expression of P2Y12 receptor, NLRP3, ASC, Caspase-1, IL-1β, CD11b, and iNOS in the spinal cord of CFA rats. Additionally, the immunofluorescence staining from the spinal cord showed that ICTF significantly increased the co-expression between the microglial marker Iba-1 and CB2 receptor, IL-10, β-endorphin, respectively, but markedly decreased the co-localization between Iba-1 and P2Y12 receptor. Conversely, intrathecal administration of CB2 receptor antagonist AM630 dramatically reversed the inhibitory effects of ICTF on CFA-induced chronic inflammatory pain, leading to a promotion of pain hypersensitivity, abnormal gait parameters, microglial activation, and up-regulation of P2Y12 receptor and NLRP3 inflammasome, as well as the inhibition of CB2 receptor and IL-10/β-endorphin cascade. Taken together, these findings highlighted that ICTF alleviated CFA-induced neuroinflammation by enhancing CB2 receptor-mediated IL-10/β-endorphin signaling and suppressing microglial activation in the spinal cord, and uncovered that CB2 receptor may be exploited as a novel and promising target for ICTF treatment of chronic inflammatory pain.
Collapse
Grants
- NO. 2021B614 Science and Technology Project of Administration of Chinese Medicine, Jiangxi Province, China
- NO. HX202207 Horizontal Project of Gannan Medical University, Jiangxi Province, China
- No.ZD201904 University-level Key Project of Gannan Medical University, Jiangxi Province, China
- No. 20204469 Health Commission General Science and Technology Program, Jiangxi Province, China
- No. 31160213 National Natural Science Foundation of China
- No. 20142BCBC22008 Talent Project of Department of Scientific and Technology, Jiangxi Province, China
Collapse
Affiliation(s)
- Guangsen Liu
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Dandan Jia
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Weiwei Li
- School of Public Health and Health management, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Reai Shan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, P. R. China.
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Jiangxi, 341000, P. R. China.
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, 341000, P. R. China.
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China.
- School of Public Health and Health management, Gannan Medical University, Ganzhou, 341000, P. R. China.
| |
Collapse
|
3
|
Logan-Wesley AL, Gorse KM, Lafrenaye AD. Microglial process convergence onto injured axonal swellings, a human postmortem brain tissue study. Sci Rep 2024; 14:21369. [PMID: 39266604 PMCID: PMC11392954 DOI: 10.1038/s41598-024-71312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Traumatic brain injury (TBI) affects millions globally, with a majority of TBI cases being classified as mild, in which diffuse pathologies prevail. Two of the pathological hallmarks of TBI are diffuse axonal injury (DAI) and microglial activation. While progress has been made investigating the breadth of TBI-induced axonal injury and microglial changes in rodents, the neuroinflammatory progression and interaction between microglia and injured axons in humans is less well understood. Our group previously investigated microglial process convergence (MPC), in which processes of non-phagocytic microglia directly contact injured proximal axonal swellings, in rats and micropigs acutely following TBI. These studies demonstrated that MPC occurred on injured axons in the micropig, but not in the rat, following diffuse TBI. While it has been shown that microglia co-exist and interact with injured axons in humans post-TBI, the occurrence of MPC has not been quantitatively measured in the human brain. Therefore, in the current study we sought to validate our pig findings in human postmortem tissue. We investigated MPC onto injured axonal swellings and intact myelinated fibers in cases from individuals with confirmed DAI and control human brain tissue using multiplex immunofluorescent histochemistry. We found an increase in MPC onto injured axonal swellings, consistent with our previous findings in micropigs, indicating that MPC is a clinically relevant phenomenon that warrants further investigation.
Collapse
Affiliation(s)
| | - Karen M Gorse
- Virginia Commonwealth University, BOX 980709, Richmond, VA, 23298, USA
| | | |
Collapse
|
4
|
Logan-Wesley AL, Gorse KM, Lafrenaye AD. Microglial process convergence onto injured axonal swellings, a human postmortem brain tissue study. RESEARCH SQUARE 2024:rs.3.rs-4713316. [PMID: 39149456 PMCID: PMC11326398 DOI: 10.21203/rs.3.rs-4713316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Traumatic brain injury (TBI) affects millions globally, with a majority of TBI cases being classified as mild, in which diffuse pathologies prevail. Two of the pathological hallmarks of TBI are diffuse axonal injury and microglial activation. While progress has been made investigating the breadth of TBI-induced axonal injury and microglial changes in rodents, the neuroinflammatory progression and interaction between microglia and injured axons following brain injury in humans is less well understood. Our group previously investigated microglial process convergence (MPC), in which processes of non-phagocytic microglia directly contact injured proximal axonal segments, in rats and micropigs acutely following TBI. These studies demonstrated that MPC occurred on injured axons in the micropig, but not in the rat, following diffuse TBI. While it has been shown that microglia co-exist and interact with injured axons in humans post-TBI, the occurrence of MPC has not been quantitatively measured in the human brain. Therefore, in the current study we sought to validate our pig findings in human postmortem tissue. We investigated MPC onto injured axonal swellings and intact myelinated fibers in cases from individuals that sustained a TBI and control human brain tissue using multiplex immunofluorescent histochemistry. We found an increase in MPC onto injured axonal swellings, consistent with our previous findings in micropigs, indicating that MPC is a clinically relevant phenomenon that warrants further investigation.
Collapse
|
5
|
Wallis GJ, Bell LA, Wagner JN, Buxton L, Balachandar L, Wilcox KS. Reactive microglia fail to respond to environmental damage signals in a viral-induced mouse model of temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583768. [PMID: 38558969 PMCID: PMC10979929 DOI: 10.1101/2024.03.06.583768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Microglia are highly adaptable innate immune cells that rapidly respond to damage signals in the brain through adoption of a reactive phenotype and production of defensive inflammatory cytokines. Microglia express a distinct transcriptome, encoding receptors that allow them to dynamically respond to pathogens, damage signals, and cellular debris. Expression of one such receptor, the microglia-specific purinergic receptor P2ry12, is known to be downregulated in reactive microglia. Here, we explore the microglial response to purinergic damage signals in reactive microglia in the TMEV mouse model of viral brain infection and temporal lobe epilepsy. Using two-photon calcium imaging in acute hippocampal brain slices, we found that the ability of microglia to detect damage signals, engage calcium signaling pathways, and chemoattract towards laser-induced tissue damage was dramatically reduced during the peak period of seizures, cytokine production, and infection. Using combined RNAscope in situ hybridization and immunohistochemistry, we found that during this same stage of heightened infection and seizures, microglial P2ry12 expression was reduced, while the pro-inflammatory cytokine TNF-a expression was upregulated in microglia, suggesting that the depressed ability of microglia to respond to new damage signals via P2ry12 occurs during the time when local elevated cytokine production contributes to seizure generation following infection. Therefore, changes in microglial purinergic receptors during infection likely limit the ability of reactive microglia to respond to new threats in the CNS and locally contain the scale of the innate immune response in the brain.
Collapse
Affiliation(s)
- Glenna J. Wallis
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Laura A. Bell
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 80904
| | - John N. Wagner
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Lauren Buxton
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Lakshmini Balachandar
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Karen S. Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 80904
| |
Collapse
|
6
|
Zhao S, Umpierre AD, Wu LJ. Tuning neural circuits and behaviors by microglia in the adult brain. Trends Neurosci 2024; 47:181-194. [PMID: 38245380 PMCID: PMC10939815 DOI: 10.1016/j.tins.2023.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/04/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Microglia are the primary immune cells of the CNS, contributing to both inflammatory damage and tissue repair in neurological disorder. In addition, emerging evidence highlights the role of homeostatic microglia in regulating neuronal activity, interacting with synapses, tuning neural circuits, and modulating behaviors. Herein, we review how microglia sense and regulate neuronal activity through synaptic interactions, thereby directly engaging with neural networks and behaviors. We discuss current studies utilizing microglial optogenetic and chemogenetic approaches to modulate adult neural circuits. These manipulations of microglia across different CNS regions lead to diverse behavioral consequences. We propose that spatial heterogeneity of microglia-neuron interaction lays the groundwork for understanding diverse functions of microglia in neural circuits and behaviors.
Collapse
Affiliation(s)
- Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
7
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
8
|
Lee CLM, Yap PS, Umemura K, Shintani T, Kobayashi K, Hozumi N, Yoshida S. Noninvasive imaging of rat-derived microglia and its reactivity to inflammatory molecules via acoustic impedance microscopy. J Med Ultrason (2001) 2024; 51:29-37. [PMID: 37971564 PMCID: PMC10803564 DOI: 10.1007/s10396-023-01379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Microglia, the brain's immune cells, play important roles in neuronal differentiation, survival, and death. The function of microglia is deeply related to the morphologies; however, it is too complex to observe conventionally and identify the condition of living microglia using optical microscopes. Herein, we proposed a new method to observe living cultured microglia and their reactivity to inflammation via the acoustic impedance mode of a scanning acoustic microscope. METHODS Primary cultured microglia collected from rat pups exposed to acetamiprid, an insecticide, in utero were observed with both acoustic interface impedance mode (C-mode) and transparent three-dimensional impedance mode (B-mode). RESULTS We characterized microglia into four types based on the results obtained from acoustic impedance, cytoskeletal information, and laser confocal imaging. Biphasic acoustic observation using B-mode and C-mode gave us information regarding the dynamic morphologies of living microglia treated with adenosine triphosphate (ATP) (600 μmol/L), which reflects distress signals from inflamed neurons. Acetamiprid exposure induced microglia response even in the neonatal period. ATP stimulus altered the shape and thickness of microglia with a change in the bulk modulus of the cell. Three-dimensional alteration with ATP stimulus could be observed only after biphasic acoustic observation using B-mode and C-mode. This acoustic observation was consistent with confocal observation using anti-Iba-1 and P2Y12 immunocytochemistry. CONCLUSION This study demonstrated the adequacy of using a scanning acoustic microscope in analyzing microglia's shape, motility, and response to inflammation.
Collapse
Affiliation(s)
- Christine Li Mei Lee
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
| | - Pey Shin Yap
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Kiyoshi Umemura
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Taichi Shintani
- Department of Electrical and Electronic Information Engineering, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | | | - Naohiro Hozumi
- Department of Electrical and Electronic Information Engineering, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Sachiko Yoshida
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
9
|
Abstract
The adenosine A2A receptor (A2AR) is abundantly expressed in the brain, including both neurons and glial cells. While the expression of A2AR is relative low in glia, its levels elevate robustly in astrocytes and microglia under pathological conditions. Elevated A2AR appears to play a detrimental role in a number of disease states, by promoting neuroinflammation and astrocytic reaction to contribute to the progression of neurodegenerative and psychiatric diseases.
Collapse
Affiliation(s)
- Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, West Wenyi Road, Hangzhou, P.R. China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
10
|
Chen J, Zhong H, Yu H, Sun J, Shen B, Xu X, Huang S, Huang P, Zhong Y. Interleukin-17A modulates retinal inflammation by regulating microglial activation via the p38 MAPK pathway in experimental glaucoma neuropathy. FASEB J 2023; 37:e22945. [PMID: 37144630 DOI: 10.1096/fj.202202056rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
As a prototypical member of the IL-17 family, interleukin-17A (IL-17A) has received increasing attentions for its potent proinflammatory role as well as potential to be a key therapeutic target in human autoimmune inflammatory diseases; however, its roles in other pathological scenarios like neuroinflammations are not fully elucidated yet but appear essentially correlating and promising. Glaucoma is the leading cause of irreversible blindness with complicated pathogenesis still to be understood, where neuroinflammation was reported to be critically involved in its both initiation and progression. Whether IL-17A takes part in the pathogenesis of glaucoma through interfering neuroinflammation due to its potent proinflammatory effect is still unknown. In the present study, we investigated the role of IL-17A in the pathological process of glaucoma neuropathy as well as its relationship with the predominant immune inflammation mediator microglia in retina, trying to elucidate the underlying mechanisms from the view of inflammation modulation. In our study, RNA sequencing was performed for the retinas of chronic ocular hypertension (COH) and control mice. Western blot, RT-PCR, immunofluorescence, and ELISA were used to evaluate the microglial activation and proinflammatory cytokines release at conditioned levels of IL-17A, along with assessment of optic nerve integrity including retinal ganglion cells (RGCs) counting, axonal neurofilament quantification, and flash visual-evoked potential (F-VEP) examination. And the possibly involved signaling pathways were screened out to go through further validation in scenarios with conditioned IL-17A. Subsequently, IL-17A was found to be significantly upregulated in COH retina. Furthermore, suppression of IL-17A effectively diminished the loss of RGCs, improved axonal quality, and F-VEP performance in COH mice. Mechanistically, IL-17A promoted microglial activation and proinflammatory cytokines release along with enhanced phenotypic conversion of activated microglia to M2-type in early stage and to M1-type in late stage in glaucomatous retinas. Microglia elimination decreased the proinflammatory factors secretion, enhanced the RGCs survival and axonal quality mediated by IL-17A. Furthermore, IL-17A-induced the overactivation of microglia in glaucomatous condition was alleviated after blocking the p38 MAPK pathway. Taken together, IL-17A is involved in the regulation of retinal immune response and RGCs cell death in experimental glaucoma by essentially promoting retinal microglial activation via p38 MAPK signaling pathway. IL-17A dynamically regulates the phenotypic conversion of retinal microglia in experimental glaucoma partly depending on the duration of elevated intraocular pressure. Suppression of IL-17A contributes to alleviate glaucoma neuropathy and exhibits promising potential as an innovative target for therapeutic strategy in glaucoma.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Zhong
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Bingqiao Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Shanghai, China
- Department of Ophthalmology, Zhoushan Branch of Ruijin Hospital Affiliated Medical School, Shanghai Jiao Tong University, Zhoushan, China
| |
Collapse
|
11
|
Zhang WJ, Li MY, Wang CY, Feng X, Hu DX, Wu LD, Hu JL. P2Y12 receptor involved in the development of chronic nociceptive pain as a sensory information mediator. Biomed Pharmacother 2023; 164:114975. [PMID: 37267639 DOI: 10.1016/j.biopha.2023.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Direct or indirect damage to the nervous system (such as inflammation or tumor invasion) can lead to dysfunction and pain. The generation of pain is mainly reflected in the activation of glial cells and the abnormal discharge of sensory neurons, which transmit stronger sensory information to the center. P2Y12 receptor plays important roles in physiological and pathophysiological processes including inflammation and pain. P2Y12 receptor involved in the occurrence of pain as a sensory information mediator, which enhances the activation of microglia and the synaptic plasticity of primary sensory neurons, and reaches the higher center through the ascending conduction pathway (mainly spinothalamic tract) to produce pain. While the application of P2Y12 receptor antagonists (PBS-0739, AR-C69931MX and MRS2359) have better antagonistic activity and produce analgesic pharmacological properties. Therefore, in this article, we discussed the role of the P2Y12 receptor in different chronic pains and its use as a pharmacological target for pain relief.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Mei-Yong Li
- Department of Laboratory medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng-Yi Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Xiao Feng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Li-Dong Wu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Jia-Ling Hu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
12
|
Cheng L, Yu L, Zhan X, Tse G, Liu T, Fu H, Li G. Ticagrelor Can Regulate the Ion Channel Characteristics of Superior Cervical Ganglion Neurons after Myocardial Infarction. J Cardiovasc Dev Dis 2023; 10:jcdd10020071. [PMID: 36826567 PMCID: PMC9966694 DOI: 10.3390/jcdd10020071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The superior cervical ganglion (SCG) plays a key role in cardiovascular diseases. The aim of this study was to determine the changes in the ion channel characteristics of the SCG following myocardial infarction (MI) and the role of pretreatment with the P2Y12 receptor antagonist ticagrelor (TIC). METHODS A total of 18 male rabbits were randomly divided into a control group, MI group, and P2Y12 receptor antagonist (TIC) group (abbreviated as the TIC group). Rabbit MI was performed via two abdominal subcutaneous injections of 150 mg·kg-1·d-1 of isoproterenol (ISO) with an interval of 24 h. TIC pretreatment at 20 mg·kg-1·d-1 was administered via gavage for two consecutive days. The cardiac function of each group was evaluated with echocardiography. ADP receptor P2Y12 expressions in SCGs were determined using RT-PCR and immunofluorescence staining. Ion channel characteristics of SCG neurons were measured using a whole-cell patch clamp. Intracellular calcium concentrations for SCG neurons were measured using confocal microscopy. RESULTS Cardiac function was reduced in the rabbits of the MI group, the sympathetic nerve activity of SCGs was increased, and the current amplitude of the neuron ion channel was increased. MI led to alterations in the activation and inactivation characteristics of INa channels accompanied by increased expression of P2Y12 in SCGs. Most of these abnormalities were prevented by TIC pretreatment in the TIC group. CONCLUSIONS TIC pretreatment could attenuate the increase in P2Y12 expression in SCGs and the changes to the ion channel characteristics of SCG neurons after MI. This may be the mechanism underlying the cardiac protective effects of TIC.
Collapse
Affiliation(s)
- Lijun Cheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lin Yu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiaoping Zhan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Huaying Fu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Correspondence: (H.F.); (G.L.); Tel.: +86-22-88326237 (H.F.); Fax: +86-22-28261158 (G.L.)
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Correspondence: (H.F.); (G.L.); Tel.: +86-22-88326237 (H.F.); Fax: +86-22-28261158 (G.L.)
| |
Collapse
|
13
|
Chun BJ, Aryal SP, Varughese P, Sun B, Bruno JA, Richards CI, Bachstetter AD, Kekenes-Huskey PM. Purinoreceptors and ectonucleotidases control ATP-induced calcium waveforms and calcium-dependent responses in microglia: Roles of P2 receptors and CD39 in ATP-stimulated microglia. Front Physiol 2023; 13:1037417. [PMID: 36699679 PMCID: PMC9868579 DOI: 10.3389/fphys.2022.1037417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites drive microglia migration and cytokine production by activating P2X- and P2Y- class purinergic receptors. Purinergic receptor activation gives rise to diverse intracellular calcium (Ca2+ signals, or waveforms, that differ in amplitude, duration, and frequency. Whether and how these characteristics of diverse waveforms influence microglia function is not well-established. We developed a computational model trained with data from published primary murine microglia studies. We simulate how purinoreceptors influence Ca2+ signaling and migration, as well as, how purinoreceptor expression modifies these processes. Our simulation confirmed that P2 receptors encode the amplitude and duration of the ATP-induced Ca2+ waveforms. Our simulations also implicate CD39, an ectonucleotidase that rapidly degrades ATP, as a regulator of purinergic receptor-induced Ca2+ responses. Namely, it was necessary to account for CD39 metabolism of ATP to align the model's predicted purinoreceptor responses with published experimental data. In addition, our modeling results indicate that small Ca2+ transients accompany migration, while large and sustained transients are needed for cytokine responses. Lastly, as a proof-of-principal, we predict Ca2+ transients and cell membrane displacements in a BV2 microglia cell line using published P2 receptor mRNA data to illustrate how our computer model may be extrapolated to other microglia subtypes. These findings provide important insights into how differences in purinergic receptor expression influence microglial responses to ATP.
Collapse
Affiliation(s)
- Byeong J. Chun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States,*Correspondence: Byeong J. Chun, ; Peter M. Kekenes-Huskey,
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Peter Varughese
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States
| | - Bin Sun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States
| | - Joshua A. Bruno
- Department of Physics, Loyola University Chicago, Chicago, IL, United States
| | - Chris I. Richards
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | | | - Peter M. Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States,*Correspondence: Byeong J. Chun, ; Peter M. Kekenes-Huskey,
| |
Collapse
|
14
|
Huang T, Wu J, Mu J, Gao J. Advanced Therapies for Traumatic Central Nervous System Injury: Delivery Strategy Reinforced Efficient Microglial Manipulation. Mol Pharm 2023; 20:41-56. [PMID: 36469398 DOI: 10.1021/acs.molpharmaceut.2c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic central nervous system (CNS) injuries, including spinal cord injury and traumatic brain injury, are challenging enemies of human health. Microglia, the main component of the innate immune system in CNS, can be activated postinjury and are key participants in the pathological procedure and development of CNS trauma. Activated microglia can be typically classified into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Reducing M1 polarization while promoting M2 polarization is thought to be promising for CNS injury treatment. However, obstacles such as the low permeability of the blood-brain barrier and short retention time in circulation limit the therapeutic outcomes of administrated drugs, and rational delivery strategies are necessary for efficient microglial regulation. To this end, proper administration methods and delivery systems like nano/microcarriers and scaffolds are investigated to augment the therapeutic effects of drugs, while some of these delivery systems have self-efficacies in microglial manipulation. Besides, systems based on cell and cell-derived exosomes also show impressive effects, and some underlying targeting mechanisms of these delivery systems have been discovered. In this review, we introduce the roles of microglia play in traumatic CNS injuries, discuss the potential targets for the polarization regulation of microglial phenotype, and summarize recent studies and clinical trials about delivery strategies on enhancing the effect of microglial regulation and therapeutic outcome, as well as targeting mechanisms post CNS trauma.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer, Pharmacology and Toxicology Research of Zhejiang Province, Affiliated, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Jinhua Institute of Zhejiang University, Jinhua 321002, China
| |
Collapse
|
15
|
Gu N, Yi MH, Murugan M, Xie M, Parusel S, Peng J, Eyo UB, Hunt CL, Dong H, Wu LJ. Spinal microglia contribute to sustained inflammatory pain via amplifying neuronal activity. Mol Brain 2022; 15:86. [PMID: 36289499 PMCID: PMC9609165 DOI: 10.1186/s13041-022-00970-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
Microglia are highly dynamic immune cells of the central nervous system (CNS). Microglial processes interact with neuronal elements constantly on the order of minutes. The functional significance of this acute microglia-neuron interaction and its potential role in the context of pain is still largely unknown. Here, we found that spinal microglia increased their process motility and electrophysiological reactivity within an hour after the insult in a mouse model of formalin-induced acute, sustained, inflammatory pain. Using an ablation strategy to specifically deplete resident microglia in the CNS, we demonstrate that microglia participate in formalin-induced acute sustained pain behaviors by amplifying neuronal activity in the spinal dorsal horn. Moreover, we identified that the P2Y12 receptor, which is specifically expressed in microglia in the CNS, was required for microglial function in formalin-induced pain. Taken together, our study provides a novel insight into the contribution of microglia and the P2Y12 receptor in inflammatory pain that could be used for potential therapeutic strategies.
Collapse
Affiliation(s)
- Nan Gu
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.417295.c0000 0004 1799 374XDepartment of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 PR China
| | - Min-Hee Yi
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Madhuvika Murugan
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Manling Xie
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Sebastian Parusel
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Jiyun Peng
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Ukpong B. Eyo
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Christine L. Hunt
- grid.417467.70000 0004 0443 9942Department of Pain Medicine, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Hailong Dong
- grid.417295.c0000 0004 1799 374XDepartment of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 PR China
| | - Long-Jun Wu
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
16
|
Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neurosci Bull 2022; 39:368-378. [PMID: 35976535 PMCID: PMC10043090 DOI: 10.1007/s12264-022-00937-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 10/15/2022] Open
Abstract
Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.
Collapse
|
17
|
Block CL, Eroglu O, Mague SD, Smith CJ, Ceasrine AM, Sriworarat C, Blount C, Beben KA, Malacon KE, Ndubuizu N, Talbot A, Gallagher NM, Chan Jo Y, Nyangacha T, Carlson DE, Dzirasa K, Eroglu C, Bilbo SD. Prenatal environmental stressors impair postnatal microglia function and adult behavior in males. Cell Rep 2022; 40:111161. [PMID: 35926455 PMCID: PMC9438555 DOI: 10.1016/j.celrep.2022.111161] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/18/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Gestational exposure to environmental toxins and socioeconomic stressors is epidemiologically linked to neurodevelopmental disorders with strong male bias, such as autism. We model these prenatal risk factors in mice by co-exposing pregnant dams to an environmental pollutant and limited-resource stress, which robustly activates the maternal immune system. Only male offspring display long-lasting behavioral abnormalities and alterations in the activity of brain networks encoding social interactions. Cellularly, prenatal stressors diminish microglial function within the anterior cingulate cortex, a central node of the social coding network, in males during early postnatal development. Precise inhibition of microglial phagocytosis within the anterior cingulate cortex (ACC) of wild-type (WT) mice during the same critical period mimics the impact of prenatal stressors on a male-specific behavior, indicating that environmental stressors alter neural circuit formation in males via impairing microglia function during development. Block et al. show that combined exposure to air pollution and maternal stress during pregnancy activates the maternal immune system and induces male-specific impairments in social behavior and circuit connectivity in offspring. Cellularly, prenatal stressors diminish microglia phagocytic function, and inhibition of microglia phagocytosis phenocopies behavioral deficits from prenatal stressors.
Collapse
Affiliation(s)
- Carina L Block
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Oznur Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephen D Mague
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Caroline J Smith
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | | | - Cameron Blount
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kathleen A Beben
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Karen E Malacon
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Nkemdilim Ndubuizu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Austin Talbot
- Department of Statistical Science, Duke University, Durham, NC 27710, USA
| | - Neil M Gallagher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Young Chan Jo
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Timothy Nyangacha
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - David E Carlson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Durham, NC 27710, USA; Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Beeken J, Mertens M, Stas N, Kessels S, Aerts L, Janssen B, Mussen F, Pinto S, Vennekens R, Rigo JM, Nguyen L, Brône B, Alpizar YA. Acute inhibition of transient receptor potential vanilloid-type 4 cation channel halts cytoskeletal dynamism in microglia. Glia 2022; 70:2157-2168. [PMID: 35809029 DOI: 10.1002/glia.24243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/04/2023]
Abstract
Microglia, the resident macrophages of the central nervous system, are highly motile cells that support brain development, provision neuronal signaling, and protect brain cells against damage. Proper microglial functioning requires constant cell movement and morphological changes. Interestingly, the transient receptor potential vanilloid 4 (TRPV4) channel, a calcium-permeable channel, is involved in hypoosmotic morphological changes of retinal microglia and regulates temperature-dependent movement of microglial cells both in vitro and in vivo. Despite the broad functions of TRPV4 and the recent findings stating a role for TRPV4 in microglial movement, little is known about how TRPV4 modulates cytoskeletal remodeling to promote changes of microglial motility. Here we show that acute inhibition of TRPV4, but not its constitutive absence in the Trpv4 KO cells, affects the morphology and motility of microglia in vitro. Using high-end confocal imaging techniques, we show a decrease in actin-rich filopodia and tubulin dynamics upon acute inhibition of TRPV4 in vitro. Furthermore, using acute brain slices we demonstrate that Trpv4 knockout microglia display lower ramification complexity, slower process extension speed and consequently smaller surveyed area. We conclude that TRPV4 inhibition triggers a shift in cytoskeleton remodeling of microglia influencing their migration and morphology.
Collapse
Affiliation(s)
- Jolien Beeken
- UHasselt, BIOMED, Diepenbeek, Belgium.,Université de Liège, GIGA-Stem-Cells, Liège, Belgium
| | | | | | | | | | | | | | - Silvia Pinto
- Laboratory of Ion Channel Research, VIB-KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB-KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
19
|
Pulukool SK, Srimadh Bhagavatham SK, Kannan V, Parim B, Challa S, Karnatam V, V.M DD, Ahmad Mir I, Sukumar P, Venkateshan V, Sharma A, Sivaramakrishnan V. Elevated ATP, cytokines and potential microglial inflammation distinguish exfoliation glaucoma from exfoliation syndrome. Cytokine 2022; 151:155807. [DOI: 10.1016/j.cyto.2022.155807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022]
|
20
|
Iring A, Tóth A, Baranyi M, Otrokocsi L, Módis LV, Gölöncsér F, Varga B, Hortobágyi T, Bereczki D, Dénes Á, Sperlágh B. The dualistic role of the purinergic P2Y12-receptor in an in vivo model of Parkinson's disease: Signalling pathway and novel therapeutic targets. Pharmacol Res 2022; 176:106045. [PMID: 34968684 DOI: 10.1016/j.phrs.2021.106045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a chronic, progressive neurodegenerative condition; characterized with the degeneration of the nigrostriatal dopaminergic pathway and neuroinflammation. During PD progression, microglia, the resident immune cells in the central nervous system (CNS) display altered activity, but their role in maintaining PD development has remained unclear to date. The purinergic P2Y12-receptor (P2Y12R), which is expressed on the microglia in the CNS has been shown to regulate microglial activity and responses; however, the function of the P2Y12R in PD is unknown. Here we show that MPTP-induced PD symptoms in mice are associated with marked neuroinflammatory changes and P2Y12R contribute to the activation of microglia and progression of the disease. Surprisingly, while pharmacological or genetic targeting of the P2Y12R augments acute mortality in MPTP-treated mice, these interventions protect against the neurodegenerative cell loss and the development of neuroinflammation in vivo. Pharmacological inhibition of receptors during disease development reverses the symptoms of PD and halts disease progression. We found that P2Y12R regulates ROCK and p38 MAPK activity and control cytokine production. Our principal finding is that the receptor has a dualistic role in PD: functional P2Y12Rs are essential to initiate a protective inflammatory response, since the lack of the receptor leads to reduced survival; however, at later stages of neurodegeneration, P2Y12Rs are apparently responsible for maintaining the activated state of microglia and stimulating pro-inflammatory cytokine response. Understanding protective and detrimental P2Y12R-mediated actions in the CNS may reveal novel approaches to control neuroinflammation and modify disease progression in PD.
Collapse
Affiliation(s)
- András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Adrián Tóth
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, 1085 Budapest, Hungary; Department of Neurology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - László V Módis
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bernadett Varga
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, 1085 Budapest, Hungary
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary; Institute of Pathology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Dániel Bereczki
- Department of Neurology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, 1085 Budapest, Hungary.
| |
Collapse
|
21
|
Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation 2021; 18:258. [PMID: 34742308 PMCID: PMC8571840 DOI: 10.1186/s12974-021-02309-6] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia are emerging as critical regulators of neuronal function and behavior in nearly every area of neuroscience. Initial reports focused on classical immune functions of microglia in pathological contexts, however, immunological concepts from these studies have been applied to describe neuro-immune interactions in the absence of disease, injury, or infection. Indeed, terms such as 'microglia activation' or 'neuroinflammation' are used ubiquitously to describe changes in neuro-immune function in disparate contexts; particularly in stress research, where these terms prompt undue comparisons to pathological conditions. This creates a barrier for investigators new to neuro-immunology and ultimately hinders our understanding of stress effects on microglia. As more studies seek to understand the role of microglia in neurobiology and behavior, it is increasingly important to develop standard methods to study and define microglial phenotype and function. In this review, we summarize primary research on the role of microglia in pathological and physiological contexts. Further, we propose a framework to better describe changes in microglia1 phenotype and function in chronic stress. This approach will enable more precise characterization of microglia in different contexts, which should facilitate development of microglia-directed therapeutics in psychiatric and neurological disease.
Collapse
Affiliation(s)
- Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
23
|
Li F, Xu D, Hou K, Gou X, Li Y. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis 2021; 50:874-885. [PMID: 32248335 DOI: 10.1007/s11239-020-02098-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
P2Y12 receptors on platelets have long been the main target of antiplatelet drugs. However, a growing number of studies have revealed that P2Y12 receptor activation on microglia and vascular smooth muscle cells (VSMCs) also aggravates ischemic stroke injury. The proliferation and migration of VSMCs in the vascular wall have important influence on the early lesion of atherosclerosis, which may lead to the origin of cerebral ischemic attack of atherosclerosis. Blockage of cellular P2Y12 receptors could inhibit microglial activation, block formation of platelet-leukocyte aggregates, reduce proinflammatory cytokine levels and suppress migration and proliferation of VSMCs, implying that apart from anti-thrombotic effect, P2Y12 inhibitors have additional neuroprotective, anti-inflammatory and anti-atherosclerotic therapeutic benefits against ischemic stroke. In this review, we will summarize recent advances in studies on P2Y12 receptors and emphatically introduce their significance in microglia, platelets and VSMCs after ischemic stroke, discussing how to exert the beneficial effects of P2Y12 inhibition.
Collapse
Affiliation(s)
- Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
24
|
Mendes MS, Majewska AK. An overview of microglia ontogeny and maturation in the homeostatic and pathological brain. Eur J Neurosci 2021; 53:3525-3547. [PMID: 33835613 PMCID: PMC8225243 DOI: 10.1111/ejn.15225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and are increasingly recognized as critical players in development, brain homeostasis, and disease pathogenesis. The lifespan, maintenance, proliferation, and turnover of microglia are important factors that regulate microglial behavior and affect their roles in the CNS. However, emerging evidence suggests that microglia are morphologically and phenotypically distinct in different brain areas, at different ages, and during disease. Ongoing research focuses on understanding how microglia acquire specific phenotypes in response to extrinsic cues in the environment and how phenotypes are specified by intrinsic properties of different populations of microglia. With the development of pharmacological and genetic tools that allow the investigation of microglia in vivo, there have been considerable advances in understanding molecular signatures of both homeostatic microglia and those reacting to injury and disease. Here, we review the master gene regulators that define microglia as well as discuss the evidence that microglia are heterogeneous and fall into distinct clusters that display specific intrinsic properties and perform unique tasks in different settings. Taken together, the information presented supports the idea that microglia morphology and transcriptional heterogeneity should be considered when studying the complex nature of microglia and their roles in brain health and disease.
Collapse
Affiliation(s)
- Monique S Mendes
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| |
Collapse
|
25
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
26
|
Andoh M, Koyama R. Assessing Microglial Dynamics by Live Imaging. Front Immunol 2021; 12:617564. [PMID: 33763064 PMCID: PMC7982483 DOI: 10.3389/fimmu.2021.617564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are highly dynamic in the brain in terms of their ability to migrate, proliferate, and phagocytose over the course of an individual's life. Real-time imaging is a useful tool to examine how microglial behavior is regulated and how it affects the surrounding environment. However, microglia are sensitive to environmental stimuli, so they possibly change their state during live imaging in vivo, mainly due to surgical damage, and in vitro due to various effects associated with culture conditions. Therefore, it is difficult to perform live imaging without compromising the properties of the microglia under physiological conditions. To overcome this barrier, various experimental conditions have been developed; recently, it has become possible to perform live imaging of so-called surveillant microglia in vivo, ex vivo, and in vitro, although there are various limitations. Now, we can choose in vivo, ex vivo, or in vitro live imaging systems according to the research objective. In this review, we discuss the advantages and disadvantages of each experimental system and outline the physiological significance and molecular mechanisms of microglial behavior that have been elucidated by live imaging.
Collapse
Affiliation(s)
- Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Yu H, Zhong H, Li N, Chen K, Chen J, Sun J, Xu L, Wang J, Zhang M, Liu X, Deng L, Huang P, Huang S, Shen X, Zhong Y. Osteopontin activates retinal microglia causing retinal ganglion cells loss via p38 MAPK signaling pathway in glaucoma. FASEB J 2021; 35:e21405. [PMID: 33559950 DOI: 10.1096/fj.202002218r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Microglia activation and release of pro-inflammatory cytokines have been closely linked to glaucoma. However, the mechanisms that initiate these pathways remain unclear. Here, we investigated the role of a pro-inflammatory cytokine--osteopontin (OPN), in retinal microglia activation process along with the underlying mechanisms in glaucoma. A rat chronic ocular hypertension (COH) model was established presenting an increase in retinal OPN level and activation of microglia. Primary microglia cells were isolated and cultured under a pressure culture system showing heightened expressions of microglia-derived OPN with changes in inflammatory factors (TNF-α, IL-1β, and IL-6). OPN and OPN neutralizing antibody (Anti-OPN) interventions were both applied systems for comparison, and cross-referenced with OPN knockdown in vitro. JAK/STAT, NF-κB, ERK1/2, and p38 MAPK, recognized as the primary signaling pathways related to microglia activation, were then screened on whether they can facilitate OPN to act on microglia and their impact on specific inhibitors. Thereafter, retrograde labeling of retinal ganglion cells (RGCs) and flash visual evoked potentials (F-VEP) were used to investigate neuron protection in context of each blockade. Results suggest that OPN is able to enhance the proliferation and activation of retinal microglia in experimental glaucoma which may play a role in the glaucomatous optic neuropathy, and contribute to the eventual RGCs loss and vision function impairment. Such effect may be mediated through the regulation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huimin Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Kaizhe Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Lili Xu
- Department of Emergency, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Mingui Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
- Department of Ophthalmology, Zhoushan Branch of Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Zhoushan, China
| |
Collapse
|
28
|
Lin SS, Tang Y, Illes P, Verkhratsky A. The Safeguarding Microglia: Central Role for P2Y 12 Receptors. Front Pharmacol 2021; 11:627760. [PMID: 33519493 PMCID: PMC7840491 DOI: 10.3389/fphar.2020.627760] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Si-Si Lin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- International Collaborative Center on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- International Collaborative Center on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peter Illes
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- International Collaborative Center on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Alexei Verkhratsky
- International Collaborative Center on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
29
|
Laprell L, Schulze C, Brehme ML, Oertner TG. The role of microglia membrane potential in chemotaxis. J Neuroinflammation 2021; 18:21. [PMID: 33423699 PMCID: PMC7798195 DOI: 10.1186/s12974-020-02048-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 11/10/2022] Open
Abstract
Microglia react to danger signals by rapid and targeted extension of cellular processes towards the source of the signal. This positive chemotactic response is accompanied by a hyperpolarization of the microglia membrane. Here, we show that optogenetic depolarization of microglia has little effect on baseline motility, but significantly slows down the chemotactic response. Reducing the extracellular Ca2+ concentration mimics the effect of optogenetic depolarization. As the membrane potential sets the driving force for Ca2+ entry, hyperpolarization is an integral part of rapid stimulus-response coupling in microglia. Compared to typical excitable cells such as neurons, the sign of the activating response is inverted in microglia, leading to inhibition by depolarizing channelrhodopsins.
Collapse
Affiliation(s)
- Laura Laprell
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| | - Christian Schulze
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Marie-Luise Brehme
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
30
|
Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity. Glia 2020; 69:1637-1653. [PMID: 33369790 DOI: 10.1002/glia.23961] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Microglia are innate immune cells of the central nervous system that sense extracellular cues. Brain injuries, inflammation, and pathology evoke dynamic structural responses in microglia, altering their morphology and motility. The dynamic motility of microglia is hypothesized to be a critical first step in sensing local alterations and engaging in pattern-specific responses. Alongside their pathological responses, microglia also sense and regulate neuronal activity. In this review, we consider the extracellular molecules, receptors, and mechanisms that allow microglia to sense neuronal activity changes under both hypoactivity and hyperactivity. We also highlight emerging in vivo evidence that microglia regulate neuronal activity, ranging from physiological to pathophysiological conditions. In addition, we discuss the emerging role of calcium signaling in microglial responses to the extracellular environment. The dynamic function of microglia in monitoring and influencing neuronal activity may be critical for brain homeostasis and circuit modification in health and disease.
Collapse
Affiliation(s)
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
31
|
Varga DP, Menyhárt Á, Pósfai B, Császár E, Lénárt N, Cserép C, Orsolits B, Martinecz B, Szlepák T, Bari F, Farkas E, Dénes Á. Microglia alter the threshold of spreading depolarization and related potassium uptake in the mouse brain. J Cereb Blood Flow Metab 2020; 40:S67-S80. [PMID: 31987008 PMCID: PMC7687034 DOI: 10.1177/0271678x19900097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selective elimination of microglia from the brain was shown to dysregulate neuronal Ca2+ signaling and to reduce the incidence of spreading depolarization (SD) during cerebral ischemia. However, the mechanisms through which microglia interfere with SD remained unexplored. Here, we identify microglia as essential modulators of the induction and evolution of SD in the physiologically intact brain in vivo. Confocal- and super-resolution microscopy revealed that a series of SDs induced rapid morphological changes in microglia, facilitated microglial process recruitment to neurons and increased the density of P2Y12 receptors (P2Y12R) on recruited microglial processes. In line with this, depolarization and hyperpolarization during SD were microglia- and P2Y12R-dependent. An absence of microglia was associated with altered potassium uptake after SD and increased the number of c-fos-positive neurons, independently of P2Y12R. Thus, the presence of microglia is likely to be essential to maintain the electrical elicitation threshold and to support the full evolution of SD, conceivably by interfering with the extracellular potassium homeostasis of the brain through sustaining [K+]e re-uptake mechanisms.
Collapse
Affiliation(s)
- Dániel P Varga
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Balázs Pósfai
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Császár
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Barbara Orsolits
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bernadett Martinecz
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tamás Szlepák
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ádám Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
32
|
Barinov EF, Statinova EA, Sokhina VS, Faber TI. [Risks of progression of cerebrovascular pathology associated with the activity of the brain purinergic system]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:118-124. [PMID: 33244967 DOI: 10.17116/jnevro2020120101118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Until now, there is no understanding of the relationship between risk factors and the progression of cerebrovascular pathology. The review presents facts that confirm the involvement of various subtypes of purine P2 receptors in neuron activation, growth and myelination of axons, migration and microglia phagocytosis, astrogliosis, regulation of vascular tone, thrombosis and angiogenesis, neuroinflammation and immune responses. The data suggest the possibility of the activation of purinergic system of the brain during the development of main risk factors for cerebrovascular pathology (age, arterial hypertension, diabetes), as a stereotypical mechanism that can affect the homeostasis of the ensemble "neuron-glia-capillary". Purinergic P2 receptors may be a potential target for the development of pharmacological methods to limit the progression of cerebrovascular pathology.
Collapse
Affiliation(s)
- E F Barinov
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| | - E A Statinova
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| | - V S Sokhina
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| | - T I Faber
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| |
Collapse
|
33
|
Whitelaw BS, Matei EK, Majewska AK. Phosphoinositide-3-Kinase γ Is Not a Predominant Regulator of ATP-Dependent Directed Microglial Process Motility or Experience-Dependent Ocular Dominance Plasticity. eNeuro 2020; 7:ENEURO.0311-20.2020. [PMID: 33067365 PMCID: PMC7769883 DOI: 10.1523/eneuro.0311-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia are dynamic cells whose extensive interactions with neurons and glia during development allow them to regulate neuronal development and function. The microglial P2Y12 receptor is crucial for microglial responsiveness to extracellular ATP and mediates numerous microglial functions, including ATP-dependent directional motility, microglia-neuron interactions, and experience-dependent synaptic plasticity. However, little is known about the downstream signaling effectors that mediate these diverse actions of P2Y12. Phosphoinositide-3-kinase γ (PI3Kγ), a lipid kinase activated downstream of Gi-protein-coupled receptors such as P2Y12, could translate localized extracellular ATP signals into directed microglial action and serve as a broad effector of P2Y12-dependent signaling. Here, we used pharmacological and genetic methods to manipulate P2Y12 and PI3Kγ signaling to determine whether inhibiting PI3Kγ phenocopied the loss of P2Y12 signaling in mouse microglia. While pan-inhibition of all PI3K activity substantially affected P2Y12-dependent microglial responses, our results suggest that PI3Kγ specifically is only a minor part of the P2Y12 signaling pathway. PI3Kγ was not required to maintain homeostatic microglial morphology or their dynamic surveillance in vivo Further, PI3Kγ was not strictly required for P2Y12-dependent microglial responses ex vivo or in vivo, although we did observe subtle deficits in the recruitment of microglial process toward sources of ATP. Finally, PI3Kγ was not required for ocular dominance plasticity, a P2Y12-dependent form of experience-dependent synaptic plasticity that occurs in the developing visual cortex. Overall, our results demonstrate that PI3Kγ is not the major mediator of P2Y12 function in microglia, but may have a role in amplifying or fine-tuning the chemotactic response.
Collapse
Affiliation(s)
- Brendan S Whitelaw
- Department of Neuroscience
- Medical Scientist Training Program and Neuroscience Graduate Program
| | - Evelyn K Matei
- Department of Neuroscience
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642
| | - Ania K Majewska
- Department of Neuroscience
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
34
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
35
|
Das R, Chinnathambi S. Actin-mediated Microglial Chemotaxis via G-Protein Coupled Purinergic Receptor in Alzheimer's Disease. Neuroscience 2020; 448:325-336. [PMID: 32941933 DOI: 10.1016/j.neuroscience.2020.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly associated with aging, oxidative stress and genetic mutations. There are two pathological proteins involved in AD; Amyloid-β peptide and microtubule-associated protein Tau (MAPT). The β- and γ-secretase enzyme cleaves the Amyloid precursor protein, which results in the formation of extracellular plaques in brain. While, Tau undergoes hyperphosphorylation and other post-translational modifications (PTMs), which eventually generates Tau oligomers, and intracellular neurofibrillary tangles (NFTs) in neurons. Moreover, the brain-resident glia and infiltrated macrophages elevate the level of CNS inflammation, which trigger the oxidative damage of neuronal circuits by reactive oxygen species (ROS) and Nitric oxide (NO). Microglia is the primary immune cell in the CNS, which is continuously surveilling the neuronal synapses and pathogen invasion. Microglia in the resting state is called 'Ramified', which possess long surveilling extensions with a small cell body. But, upon activation, microglia retracts the cellular extensions and transform into round migratory cells, called as 'Amoeboid' state. Activated microglia undergoes actin remodeling by forming lamellipodia and filopodia, which directs the migratory axis while podosomes formed are involved in extracellular matrix degradation for invasion. Protein-aggregates in malfunctioning synapses and in CNS milieu can be detected by microglia, which results in its activation and migration. Subsequently, the phagocytosis of synapses leads to the inflammatory burst and memory loss. The extracellular nucleotides released from damaged neurons and the cytokine-chemokine gradients allow the neighboring microglia and macrophages to migrate-infiltrate at the site of neuronal-damage. The ionotropic (P2XR) and metabotropic (P2YR) purinergic receptor recognize extracellular ATP/ADP, which propagates through the intracellular calcium signaling, chemotaxis, phagocytosis and inflammation. The P2Y receptors give 'find me' or 'eat me' signals to microglia to either migrate or phagocytose cellular debris. Further, the actin cytoskeleton helps microglia to mediate directed chemotaxis and neuronal repair during neurodegeneration. Hence, we aim to emphasize the connection between purinergic signaling and actin-driven mechanical movements of microglia for migration and inflammation in AD.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| |
Collapse
|
36
|
Umpierre AD, Bystrom LL, Ying Y, Liu YU, Worrell G, Wu LJ. Microglial calcium signaling is attuned to neuronal activity in awake mice. eLife 2020; 9:56502. [PMID: 32716294 PMCID: PMC7402678 DOI: 10.7554/elife.56502] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Microglial calcium signaling underlies a number of key physiological and pathological processes in situ, but has not been studied in vivo in awake mice. Using multiple GCaMP6 variants targeted to microglia, we assessed how microglial calcium signaling responds to alterations in neuronal activity across a wide range. We find that only a small subset of microglial somata and processes exhibited spontaneous calcium transients in a chronic window preparation. However, hyperactive shifts in neuronal activity (kainate status epilepticus and CaMKIIa Gq DREADD activation) triggered increased microglial process calcium signaling, often concomitant with process extension. Additionally, hypoactive shifts in neuronal activity (isoflurane anesthesia and CaMKIIa Gi DREADD activation) also increased microglial process calcium signaling. Under hypoactive neuronal conditions, microglia also exhibited process extension and outgrowth with greater calcium signaling. Our work reveals that microglia have highly distinct microdomain signaling, and that processes specifically respond to bi-directional shifts in neuronal activity through increased calcium signaling.
Collapse
Affiliation(s)
| | | | - Yanlu Ying
- Department of Neurology, Mayo Clinic, Rochester, United States
| | - Yong U Liu
- Department of Neurology, Mayo Clinic, Rochester, United States
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, United States
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, United States.,Department of Immunology, Mayo Clinic, Rochester, United States
| |
Collapse
|
37
|
Abstract
Microglia dynamically interact with neurons influencing the development, structure, and function of neuronal networks. Recent studies suggest microglia may also influence neuronal activity by physically interacting with axonal domains responsible for action potential initiation and propagation. However, the nature of these microglial process interactions is not well understood. Microglial-axonal contacts are present early in development and persist through adulthood, implicating microglial interactions in the regulation of axonal integrity in both the developing and mature central nervous system. Moreover, changes in microglial-axonal contact have been described in disease states such as multiple sclerosis (MS) and traumatic brain injury (TBI). Depending on the disease state, there are increased associations with specific axonal segments. In MS, there is enhanced contact with the axon initial segment and node of Ranvier, while, in TBI, microglia alter interactions with axons at the site of injury, as well as at the axon initial segment. In this article, we review the interactions of microglial processes with axonal segments, analyzing their associations with various axonal domains and how these interactions may differ between MS and TBI. Furthermore, we discuss potential functional consequences and molecular mechanisms of these interactions and how these may differ among various types of microglial-axonal interactions.
Collapse
Affiliation(s)
- Savannah D Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
38
|
Cranial irradiation acutely and persistently impairs injury-induced microglial proliferation. Brain Behav Immun Health 2020; 4:100057. [PMID: 34589843 PMCID: PMC8474291 DOI: 10.1016/j.bbih.2020.100057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play multiple roles in maintaining CNS homeostasis and mediating tissue repair, including proliferating in response to brain injury and disease. Cranial irradiation (CI), used for the treatment of brain tumors, has a long-lasting anti-proliferative effect on a number of cell types in the brain, including oligodendrocyte progenitor and neural progenitor cells; however, the effect of CI on CNS-resident microglial proliferation is not well characterized. Using a sterile cortical needle stab injury model in mice, we found that the ability of CNS-resident microglia to proliferate in response to injury was impaired by prior CI, in a dose-dependent manner, and was nearly abolished by a 20 Gy dose. Similarly, in a metastatic tumor model, prior CI (20 Gy) reduced microglial proliferation in response to tumor growth. The effect of irradiation was long-lasting; 20 Gy CI 6 months prior to stab injury significantly impaired microglial proliferation. We also investigated how stab and/or irradiation impacted levels of P2Y12R, CD68, CSF1, IL-34 and CSF1R, factors involved in the brain’s normal response to injury. P2Y12R, CD68, CSF1, and IL-34 expression were altered by stab similarly in irradiated mice and controls; however, CSF1R was differentially affected. qRT-PCR and flow cytometry analyses demonstrated that CI reduced overall Csf1r mRNA levels and microglial specific CSF1R protein expression, respectively. Interestingly, Csf1r mRNA levels increased after injury in unirradiated controls; however, Csf1r levels were persistently decreased in irradiated mice, and did not increase in response to stab. Together, our data demonstrate that CI leads to a significant and lasting impairment of microglial proliferation, possibly through a CSF1R-mediated mechanism. Irradiation leads to a long-term deficit in injury-induced microglial proliferation. Irradiation reduces microglial proliferation associated with tumor growth. Irradiation decreases microglial CSF1R and prevents its upregulation after injury.
Collapse
|
39
|
Kluge MG, Abdolhoseini M, Zalewska K, Ong LK, Johnson SJ, Nilsson M, Walker FR. Spatiotemporal analysis of impaired microglia process movement at sites of secondary neurodegeneration post-stroke. J Cereb Blood Flow Metab 2019; 39:2456-2470. [PMID: 30204044 PMCID: PMC6893987 DOI: 10.1177/0271678x18797346] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has recently been identified that after motor cortex stroke, the ability of microglia processes to respond to local damage cues is lost from the thalamus, a major site of secondary neurodegeneration (SND). In this study, we combine a photothrombotic stroke model in mice, acute slice and fluorescent imaging to analyse the loss of microglia process responsiveness. The peri-infarct territories and thalamic areas of SND were investigated at time-points 3, 7, 14, 28 and 56 days after stroke. We confirmed the highly specific nature of non-responsive microglia processes to sites of SND. Non-responsiveness was at no time observed at the peri-infarct but started in the thalamus seven days post-stroke and persisted for 56 days. Loss of directed process extension is not a reflection of general functional paralysis as phagocytic function continued to increase over time. Additionally, we identified that somal P2Y12 was present on non-responsive microglia in the first two weeks after stroke but not at later time points. Finally, both classical microglia activation and loss of process extension are highly correlated with neuronal damage. Our findings highlight the importance of microglia, specifically microglia dynamic functions, to the progression of SND post-stroke, and their potential relevance as modulators or therapeutic targets during stroke recovery.
Collapse
Affiliation(s)
- Murielle G Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| |
Collapse
|
40
|
Suzuki T, Kohyama K, Moriyama K, Ozaki M, Hasegawa S, Ueno T, Saitoe M, Morio T, Hayashi M, Sakuma H. Extracellular ADP augments microglial inflammasome and NF-κB activation via the P2Y12 receptor. Eur J Immunol 2019; 50:205-219. [PMID: 31549730 DOI: 10.1002/eji.201848013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The NLRP3 inflammasome is a molecular complex that translates signals from pathogens and tissue damage into inflammatory responses, and plays crucial roles in numerous neurological diseases. Activation of the NLRP3 inflammasome leads to caspase-1 dependent cleavage of pro-IL-1β to form mature IL-1β. By acting on the P2X7 purinergic receptor, extracellular ATP is one of the major stimuli that activates the NLRP3 inflammasome. Although microglia express multiple purinergic receptors, their roles in inflammasome-mediated inflammation are largely unknown. We studied the role of the P2Y12 receptor, a metabotropic P2Y receptor enriched in microglia, on inflammation in vitro. Inhibition of the microglial P2Y12 receptor by PSB0739 or siRNA knockdown suppressed IL-1β release. P2Y12 receptor-deficient microglia displayed markedly attenuated IL-1β mRNA expression and release. P2Y12 receptor blockade also suppressed IL-6 production. Both IL-1β and IL-6 responses were augmented by extracellular ADP or ADP-βS and were abrogated by PSB0739. Mechanistically, ADP-βS potentiated NF-κB activation. In addition, ADP altered mitochondrial membrane potential in combination with ATP and increased the number of caspase-1 positive cells through the P2Y12 receptor. These results elucidate a novel inflammatory mechanism by which extracellular ADP acts on the P2Y12 receptor to activate NF-κB and the NLRP3 inflammasome to enhance microglial inflammation.
Collapse
Affiliation(s)
- Tomonori Suzuki
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Pediatrics and Developmental Biology, Bio-Environmental Response Division, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kuniko Kohyama
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kengo Moriyama
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mariko Ozaki
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Setsuko Hasegawa
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Taro Ueno
- Learning and Memory Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Minoru Saitoe
- Learning and Memory Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Bio-Environmental Response Division, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaharu Hayashi
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Sakuma
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
41
|
Szöllősi D, Hegedűs N, Veres DS, Futó I, Horváth I, Kovács N, Martinecz B, Dénes Á, Seifert D, Bergmann R, Lebeda O, Varga Z, Kaleta Z, Szigeti K, Máthé D. Evaluation of Brain Nuclear Medicine Imaging Tracers in a Murine Model of Sepsis-Associated Encephalopathy. Mol Imaging Biol 2019; 20:952-962. [PMID: 29736562 PMCID: PMC6244542 DOI: 10.1007/s11307-018-1201-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose The purpose of this study was to evaluate a set of widely used nuclear medicine imaging agents as possible methods to study the early effects of systemic inflammation on the living brain in a mouse model of sepsis-associated encephalopathy (SAE). The lipopolysaccharide (LPS)-induced murine systemic inflammation model was selected as a model of SAE. Procedures C57BL/6 mice were used. A multimodal imaging protocol was carried out on each animal 4 h following the intravenous administration of LPS using the following tracers: [99mTc][2,2-dimethyl-3-[(3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(3E)-3-hydroxyiminobutan-2-yl]azanide ([99mTc]HMPAO) and ethyl-7-[125I]iodo-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate ([125I]iomazenil) to measure brain perfusion and neuronal damage, respectively; 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) to measure cerebral glucose uptake. We assessed microglia activity on another group of mice using 2-[6-chloro-2-(4-[125I]iodophenyl)-imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-methyl-acetamide ([125I]CLINME). Radiotracer uptakes were measured in different brain regions and correlated. Microglia activity was also assessed using immunohistochemistry. Brain glutathione levels were measured to investigate oxidative stress. Results Significantly reduced perfusion values and significantly enhanced [18F]FDG and [125I]CLINME uptake was measured in the LPS-treated group. Following perfusion compensation, enhanced [125I]iomazenil uptake was measured in the LPS-treated group’s hippocampus and cerebellum. In this group, both [18F]FDG and [125I]iomazenil uptake showed highly negative correlation to perfusion measured with ([99mTc]HMPAO uptake in all brain regions. No significant differences were detected in brain glutathione levels between the groups. The CD45 and P2Y12 double-labeling immunohistochemistry showed widespread microglia activation in the LPS-treated group. Conclusions Our results suggest that [125I]CLINME and [99mTc]HMPAO SPECT can be used to detect microglia activation and brain hypoperfusion, respectively, in the early phase (4 h post injection) of systemic inflammation. We suspect that the enhancement of [18F]FDG and [125I]iomazenil uptake in the LPS-treated group does not necessarily reflect neural hypermetabolism and the lack of neuronal damage. They are most likely caused by processes emerging during neuroinflammation, e.g., microglia activation and/or immune cell infiltration. Electronic supplementary material The online version of this article (10.1007/s11307-018-1201-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dávid Szöllősi
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
| | - Nikolett Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
| | - Dániel S Veres
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
| | - Ildikó Futó
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary
| | - Noémi Kovács
- CROmed Translational Research Centers, Budapest, H-1047, Hungary
| | - Bernadett Martinecz
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Daniel Seifert
- Nuclear Physics Institute of the CAS, CZ 250 68, Rez, Czech Republic
| | - Ralf Bergmann
- Helmholz-Zentrum Dresden-Rossendorf, Radiopharmazie Radiopharmaceutische Biologie, Dresden, Germany
| | - Ondřej Lebeda
- Nuclear Physics Institute of the CAS, CZ 250 68, Rez, Czech Republic
| | - Zoltán Varga
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary.,Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Kaleta
- Progressio Fine Chemical Engineering Ltd, Székesfehérvár, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis Univ, Budapest, H-1094, Hungary.
| | - Domokos Máthé
- CROmed Translational Research Centers, Budapest, H-1047, Hungary
| |
Collapse
|
42
|
Smolders SMT, Kessels S, Vangansewinkel T, Rigo JM, Legendre P, Brône B. Microglia: Brain cells on the move. Prog Neurobiol 2019; 178:101612. [PMID: 30954517 DOI: 10.1016/j.pneurobio.2019.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
In the last decade, tremendous progress has been made in understanding the biology of microglia - i.e. the fascinating immigrated resident immune cell population of the central nervous system (CNS). Recent literature reviews have largely dealt with the plentiful functions of microglia in CNS homeostasis, development and pathology, and the influences of sex and the microbiome. In this review, the intriguing aspect of their physical plasticity during CNS development will get specific attention. Microglia move around (mobility) and reshape their processes (motility). Microglial migration into and inside the CNS is most prominent throughout development and consequently most of the data described in this review concern mobility and motility in the changing environment of the developing brain. Here, we first define microglia based on their highly specialized age- and region-dependent gene expression signature and associated functional heterogeneity. Next, we describe their origin, the migration route of immature microglial cells towards the CNS, the mechanisms underlying their invasion of the CNS, and their spatiotemporal localization and surveying behaviour inside the developing CNS. These processes are dependent on microglial mobility and motility which are determined by the microenvironment of the CNS. Therefore, we further zoom in on the changing environment during CNS development. We elaborate on the extracellular matrix and the respective integrin receptors on microglia and we discuss the purinergic and molecular signalling in microglial mobility. In the last section, we discuss the physiological and pathological functions of microglia in which mobility and motility are involved to stress the importance of microglial 'movement'.
Collapse
Affiliation(s)
- Sophie Marie-Thérèse Smolders
- UHasselt, BIOMED, Diepenbeek, Belgium; INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | | | | | | - Pascal Legendre
- INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | |
Collapse
|
43
|
Cohen EM, Mohammed S, Kavurma M, Nedoboy PE, Cartland S, Farnham MM, Pilowsky PM. Microglia in the RVLM of SHR have reduced P2Y12R and CX3CR1 expression, shorter processes, and lower cell density. Auton Neurosci 2019; 216:9-16. [DOI: 10.1016/j.autneu.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023]
|
44
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [PMID: 30554385 DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
45
|
von Kügelgen I. Structure, Pharmacology and Roles in Physiology of the P2Y 12 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:123-138. [PMID: 28921447 DOI: 10.1007/5584_2017_98] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. The platelet ADP-receptor which has been denominated P2Y12 receptor is an important target in pharmacotherapy. The receptor couples to Gαi2 mediating an inhibition of cyclic AMP accumulation and additional downstream events including the activation of phosphatidylinositol-3-kinase and Rap1b proteins. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel block P2Y12 receptors and, thereby, inhibit ADP-induced platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events such as acute coronary syndromes or stroke. The recently published three-dimensional crystal structures of the human P2Y12 receptor in complex with agonists and antagonists will facilitate the development of novel therapeutic agents with reduced adverse effects. P2Y12 receptors are also expressed on vascular smooth muscle cells and may be involved in the pathophysiology of atherogenesis. P2Y12 receptors on microglial cells operate as sensors for adenine nucleotides released during brain injury. A recent study indicated the involvement of microglial P2Y12 receptors in the activity-dependent neuronal plasticity. Interestingly, there is evidence for changes in P2Y12 receptor expression in CNS pathologies including Alzheimer's diseases and multiple sclerosis. P2Y12 receptors may also be involved in systemic immune modulating responses and the susceptibility to develop bronchial asthma.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
46
|
Distinguishing features of microglia- and monocyte-derived macrophages after stroke. Acta Neuropathol 2018; 135:551-568. [PMID: 29249001 DOI: 10.1007/s00401-017-1795-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023]
Abstract
After stroke, macrophages in the ischemic brain may be derived from either resident microglia or infiltrating monocytes. Using bone marrow (BM)-chimerism and dual-reporter transgenic fate mapping, we here set out to delimit the responses of either cell type to mild brain ischemia in a mouse model of 30 min transient middle cerebral artery occlusion (MCAo). A discriminatory analysis of gene expression at 7 days post-event yielded 472 transcripts predominantly or exclusively expressed in blood-derived macrophages as well as 970 transcripts for microglia. The differentially regulated genes were further collated with oligodendrocyte, astrocyte, and neuron transcriptomes, resulting in a dataset of microglia- and monocyte-specific genes in the ischemic brain. Functional categories significantly enriched in monocytes included migration, proliferation, and calcium signaling, indicative of strong activation. Whole-cell patch-clamp analysis further confirmed this highly activated state by demonstrating delayed outward K+ currents selectively in invading cells. Although both cell types displayed a mixture of known phenotypes pointing to the significance of 'intermediate states' in vivo, blood-derived macrophages were generally more skewed toward an M2 neuroprotective phenotype. Finally, we found that decreased engraftment of blood-borne cells in the ischemic brain of chimeras reconstituted with BM from Selplg-/- mice resulted in increased lesions at 7 days and worse post-stroke sensorimotor performance. In aggregate, our study establishes crucial differences in activation state between resident microglia and invading macrophages after stroke and identifies unique genomic signatures for either cell type.
Collapse
|
47
|
Ballerini P, Dovizio M, Bruno A, Tacconelli S, Patrignani P. P2Y 12 Receptors in Tumorigenesis and Metastasis. Front Pharmacol 2018; 9:66. [PMID: 29456511 PMCID: PMC5801576 DOI: 10.3389/fphar.2018.00066] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets, beyond their role in hemostasis and thrombosis, may sustain tumorigenesis and metastasis. These effects may occur via direct interaction of platelets with cancer and stromal cells and by the release of several platelet products. Platelets and tumor cells release several bioactive molecules among which a great amount of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). ADP is also formed extracellularly from ATP breakdown by the ecto-nucleoside-triphosphate-diphosphohydrolases. Under ATP and ADP stimulation the purinergic P2Y1 receptor (R) initiates platelet activation followed by the ADP-P2Y12R-mediated amplification. P2Y12R stimulation amplifies also platelet response to several platelet agonists and to flow conditions, acting as a key positive feed-forward signal in intensifying platelet responses. P2Y12R represents a potential target for an anticancer therapy due to its involvement in platelet-cancer cell crosstalk. Thus, P2Y12R antagonists, including clopidogrel, ticagrelor, and prasugrel, might represent potential anti-cancer agents, in addition to their role as effective antithrombotic drugs. However, further studies, in experimental animals and patients, are required before the recommendation of the use of P2Y12R antagonists in cancer prevention and progression can be made.
Collapse
Affiliation(s)
- Patrizia Ballerini
- Department of Psychological, Health and Territorial Sciences, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Melania Dovizio
- Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Science, Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Annalisa Bruno
- Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Science, Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Stefania Tacconelli
- Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Science, Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Paola Patrignani
- Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Science, Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
48
|
Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM, Attwell D. Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K + Channel THIK-1. Neuron 2017; 97:299-312.e6. [PMID: 29290552 PMCID: PMC5783715 DOI: 10.1016/j.neuron.2017.12.002] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/06/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
Microglia exhibit two modes of motility: they constantly extend and retract their processes to survey the brain, but they also send out targeted processes to envelop sites of tissue damage. We now show that these motility modes differ mechanistically. We identify the two-pore domain channel THIK-1 as the main K+ channel expressed in microglia in situ. THIK-1 is tonically active, and its activity is potentiated by P2Y12 receptors. Inhibiting THIK-1 function pharmacologically or by gene knockout depolarizes microglia, which decreases microglial ramification and thus reduces surveillance, whereas blocking P2Y12 receptors does not affect membrane potential, ramification, or surveillance. In contrast, process outgrowth to damaged tissue requires P2Y12 receptor activation but is unaffected by blocking THIK-1. Block of THIK-1 function also inhibits release of the pro-inflammatory cytokine interleukin-1β from activated microglia, consistent with K+ loss being needed for inflammasome assembly. Thus, microglial immune surveillance and cytokine release require THIK-1 channel activity. The two-pore domain channel THIK-1 is the main K+ channel in “resting” microglia Tonic activity of THIK-1 maintains the microglial resting potential Blocking THIK-1 reduces microglial ramification, surveillance, and IL-1β release Surveillance depends on THIK-1, not P2Y12; chemotaxis depends on P2Y12, not THIK-1
Collapse
Affiliation(s)
- Christian Madry
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; Institute of Neurophysiology, Charité - Universitätsmedizin, 10117 Berlin, Germany.
| | - Vasiliki Kyrargyri
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - I Lorena Arancibia-Cárcamo
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Renaud Jolivet
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; CERN and Département de physique nucléaire et corpusculaire, University of Geneva, 1211 Geneva 4, Switzerland
| | - Shinichi Kohsaka
- National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, 434D Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - David Attwell
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
49
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
50
|
Kluge MG, Kracht L, Abdolhoseini M, Ong LK, Johnson SJ, Nilsson M, Walker FR. Impaired microglia process dynamics post-stroke are specific to sites of secondary neurodegeneration. Glia 2017; 65:1885-1899. [PMID: 28836304 DOI: 10.1002/glia.23201] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/06/2017] [Accepted: 07/23/2017] [Indexed: 01/28/2023]
Abstract
Stroke induces tissue death both at the site of infarction and at secondary sites connected to the primary infarction. This latter process has been referred to as secondary neurodegeneration (SND). Using predominantly fixed tissue analyses, microglia have been implicated in regulating the initial response at both damage sites post-stroke. In this study, we used acute slice based multiphoton imaging, to investigate microglia dynamic process movement in mice 14 days after a photothrombotic stroke. We evaluated the baseline motility and process responses to locally induced laser damage in both the peri-infarct (PI) territory and the ipsilateral thalamus, a major site of post-stroke SND. Our findings show that microglia process extension toward laser damage within the thalamus is lost, yet remains robustly intact within the PI territory. However, microglia at both sites displayed an activated morphology and elevated levels of commonly used activation markers (CD68, CD11b), indicating that the standardly used fixed tissue metrics of microglial "activity" are not necessarily predictive of microglia function. Analysis of the purinergic P2 Y12 receptor, a key regulator of microglia process extension, revealed an increased somal localization on nonresponsive microglia in the thalamus. To our knowledge, this is the first study to identify a non-responsive microglia phenotype specific to areas of SND post-stroke, which cannot be identified by the classical assessment of microglia activation but rather the localization of P2 Y12 to the soma.
Collapse
Affiliation(s)
- Murielle G Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Laura Kracht
- Department of Neuroscience, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, Victoria, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, Victoria, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, Victoria, Australia
| |
Collapse
|