1
|
Hirao A, Hojo Y, Murakami G, Ito R, Hashizume M, Murakoshi T, Uozumi N. Effects of systemic inflammation on the network oscillation in the anterior cingulate cortex and cognitive behavior. PLoS One 2024; 19:e0302470. [PMID: 38701101 PMCID: PMC11068183 DOI: 10.1371/journal.pone.0302470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Network oscillation in the anterior cingulate cortex (ACC) plays a key role in attention, novelty detection and anxiety; however, its involvement in cognitive impairment caused by acute systemic inflammation is unclear. To investigate the acute effects of systemic inflammation on ACC network oscillation and cognitive function, we analyzed cytokine level and cognitive performance as well as network oscillation in the mouse ACC Cg1 region, within 4 hours after lipopolysaccharide (LPS, 30 μg/kg) administration. While the interleukin-6 concentration in the serum was evidently higher in LPS-treated mice, the increases in the cerebral cortex interleukin-6 did not reach statistical significance. The power of kainic acid (KA)-induced network oscillation in the ACC Cg1 region slice preparation increased in LPS-treated mice. Notably, histamine, which was added in vitro, increased the oscillation power in the brain slices from LPS-untreated mice; for the LPS-treated mice, however, the effect of histamine was suppressive. In the open field test, frequency of entries into the center area showed a negative correlation with the power of network oscillation (0.3 μM of KA, theta band (3-8 Hz); 3.0 μM of KA, high-gamma band (50-80 Hz)). These results suggest that LPS-induced systemic inflammation results in increased network oscillation and a drastic change in histamine sensitivity in the ACC, accompanied by the robust production of systemic pro-inflammatory cytokines in the periphery, and that these alterations in the network oscillation and animal behavior as an acute phase reaction relate with each other. We suggest that our experimental setting has a distinct advantage in obtaining mechanistic insights into inflammatory cognitive impairment through comprehensive analyses of hormonal molecules and neuronal functions.
Collapse
Affiliation(s)
- Ayumi Hirao
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Yasushi Hojo
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Gen Murakami
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Rina Ito
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Miki Hashizume
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| | - Naonori Uozumi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama, Iruma, Saitama, Japan
| |
Collapse
|
2
|
Chronic Restraint Stress Affects Network Oscillations in the Anterior Cingulate Cortex in Mice. Neuroscience 2020; 437:172-183. [PMID: 32335214 DOI: 10.1016/j.neuroscience.2020.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022]
Abstract
The anterior cingulate cortex (ACC) is vulnerable to stress. Its dysfunction is observed in psychiatric disorders manifested as alterations in network oscillations. Mechanisms linking stress load to disturbed emotional-cognitive behaviors are of essential importance to further elucidate therapeutic strategies for psychiatric diseases. Here, we analyzed the effects of chronic restraint stress (CRS) load in juvenile mice on kainic acid (KA)-induced network oscillations in ACC slice preparations and on the forced swim test (FST). The immobility time (IT) was shortened at the beginning of the FST in CRS mice. Power spectral density (PSD) obtained from KA-induced oscillations in field potentials in the superficial layers of the ACC were altered in slices from the CRS mice. The PSD was decreased in CRS mice at the alpha (8-12 Hz), beta (13-30 Hz), low gamma (30-50 Hz), and high gamma (50-80 Hz) components. Noradrenaline increased the PSD of the theta (3-8 Hz) components in both the control and CRS groups, and also in alpha components only in the CRS group. Dopamine did not modulate the PSD of any frequency components in the control mice, whereas it enhanced the PSD of theta and alpha components in CRS mice. It was suggested that chronic stress load affects the dynamics of the network oscillations in the ACC with enhanced cathecolaminergic modulation.
Collapse
|
3
|
Han YL, Dai ZP, Ridwan MC, Lin PH, Zhou HL, Wang HF, Yao ZJ, Lu Q. Connectivity of the Frontal Cortical Oscillatory Dynamics Underlying Inhibitory Control During a Go/No-Go Task as a Predictive Biomarker in Major Depression. Front Psychiatry 2020; 11:707. [PMID: 32848905 PMCID: PMC7416643 DOI: 10.3389/fpsyt.2020.00707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by core functional deficits in cognitive inhibition, which is crucial for emotion regulation. To assess the response to ruminative and negative mood states, it was hypothesized that MDD patients have prolonged disparities in the oscillatory dynamics of the frontal cortical regions across the life course of the disease. METHOD A "go/no-go" response inhibition paradigm was tested in 31 MDD patients and 19 age-matched healthy controls after magnetoencephalography (MEG) scanning. The use of minimum norm estimates (MNE) examined the changes of inhibitory control network which included the right inferior frontal gyrus (rIFG), pre-supplementary motor area (preSMA), and left primary motor cortex (lM1). The power spectrum (PS) within each node and the functional connectivity (FC) between nodes were compared between two groups. Furthermore, Pearson correlation was calculated to estimate the relationship between altered FC and clinical features. RESULT PS was significantly reduced in left motor and preSMA of MDD patients in both beta (13-30 Hz) and low gamma (30-50 Hz) bands. Compared to the HC group, the MDD group demonstrated higher connectivity between lM1 and preSMA in the beta band (t = 3.214, p = 0.002, FDR corrected) and showed reduced connectivity between preSMA and rIFG in the low gamma band (t = -2.612, p = 0.012, FDR corrected). The FC between lM1 and preSMA in the beta band was positively correlated with illness duration (r = 0.475, p = 0.005, FDR corrected), while the FC between preSMA and rIFG in the low gamma band was negatively correlated with illness duration (r = -0.509, p = 0.002, FDR corrected) and retardation factor scores (r = -0.288, p = 0.022, uncorrected). CONCLUSION In this study, a clinical neurophysiological signature of cognitive inhibition leading to sustained negative affect as well as functional non-recovery in MDD patients is highlighted. Duration of illness (DI) plays a key role in negative emotional processing, heighten rumination, impulsivity, and disinhibition.
Collapse
Affiliation(s)
- Ying-Lin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhong-Peng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| | - Mohammad Chattun Ridwan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pin-Hua Lin
- Medical School of Nanjing University, Nanjing Brain Hospital, Nanjing, China
| | - Hong-Liang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao-Fei Wang
- Department of Psychology, Jiangsu Province Hospital Affiliated to Nanjing Medical University , Nanjing, China
| | - Zhi-Jian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Medical School of Nanjing University, Nanjing Brain Hospital, Nanjing, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Liu LY, Zhang RL, Chen L, Zhao HY, Cai J, Wang JK, Guo DQ, Cui YJ, Xing GG. Chronic stress increases pain sensitivity via activation of the rACC-BLA pathway in rats. Exp Neurol 2018; 313:109-123. [PMID: 30586593 DOI: 10.1016/j.expneurol.2018.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023]
Abstract
Exposure to chronic stress can produce maladaptive neurobiological changes in pathways associated with pain processing, which may cause stress-induced hyperalgesia (SIH). However, the underlying mechanisms still remain largely unknown. In previous studies, we have reported that the amygdala is involved in chronic forced swim (FS) stress-induced depressive-like behaviors and the exacerbation of neuropathic pain in rats, of which, the basolateral amygdala (BLA) and the central nucleus of the amygdala (CeA) are shown to play important roles in the integration of affective and sensory information including nociception. Here, using in vivo multichannel recording from rostal anterior cingulate cortex (rACC) and BLA, we found that chronic FS stress (CFSS) could increase the pain sensitivity of rats in response to low intensity innoxious stimuli (LIS) and high intensity noxious stimuli (HNS) imposed upon the hindpaw, validating the occurrence of SIH in stressed rats. Moreover, we discovered that CFSS not only induced an increased activity of rACC neuronal population but also produced an augmented field potential power (FPP) of rACC local field potential (LFP), especially in low frequency theta band as well as in high frequency low gamma band ranges, both at the baseline state and under LIS and HNS conditions. In addition, by using a cross-correlation method and a partial directed coherence (PDC) algorithm to analyze the LFP oscillating activity in rACC and BLA, we demonstrated that CFSS could substantially promote the synchronization between rACC and BLA regions, and also enhanced the neural information flow from rACC to BLA. We conclude that exposure of chronic FS stress to rats could result in an increased activity of rACC neuronal population and promote the functional connectivity and the synchronization between rACC and BLA regions, and also enhance the pain-related neural information flow from rACC to BLA, which likely underlie the pathogenesis of SIH.
Collapse
Affiliation(s)
- Ling-Yu Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Rui-Ling Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan, Xinxiang 453002, China
| | - Lin Chen
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Hong-Yan Zhao
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Beijing 100083, China
| | - Jia-Kang Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Da-Qing Guo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan-Jun Cui
- Department of Internal Medicine, Peking University Hospital, Beijing 100871, China.
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China; The Second Affiliated Hospital of Xinxiang Medical University, Henan, Xinxiang 453002, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Beijing 100083, China.
| |
Collapse
|
5
|
Miller AMP, Frick BJ, Smith DM, Radulovic J, Corcoran KA. Network oscillatory activity driven by context memory processing is differently regulated by glutamatergic and cholinergic neurotransmission. Neurobiol Learn Mem 2017; 145:59-66. [PMID: 28864239 PMCID: PMC5698163 DOI: 10.1016/j.nlm.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/03/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022]
Abstract
Memory retrieval requires coordinated intra- and inter-regional activity in networks of brain structures. Dysfunction of these networks and memory impairment are seen in many psychiatric disorders, but relatively little is known about how memory retrieval and memory failure are represented at the level of local and regional oscillatory activity. To address this question, we measured local field potentials (LFPs) from mice as they explored a novel context, retrieved memories for contextual fear conditioning, and after administration of two amnestic agents: the NMDA receptor antagonist MK-801 and muscarinic acetylcholine receptor antagonist scopolamine (SCOP). LFPs were simultaneously recorded from retrosplenial cortex (RSC), dorsal hippocampus (DH), and anterior cingulate cortex (ACC), which are involved in processing contextual memories, and analyzed for changes in intra-regional power and inter-regional peak coherence of oscillations across multiple frequency bands. Context encoding and memory retrieval sessions yielded similar patterns of changes across all three structures, including decreased delta power and increased theta peak coherence. Baseline effects of MK-801 and SCOP were primarily targeted to gamma oscillations, but in opposite directions. Both drugs also blocked memory retrieval, as indicated by reduced freezing when mice were returned to the conditioning context, but this common behavioral impairment was only associated with power and peak coherence disruptions after MK-801 treatment. These findings point to neural signatures for memory impairment, whose underlying mechanisms may serve as therapeutic targets for related psychiatric disorders.
Collapse
Affiliation(s)
- Adam M P Miller
- Department of Psychology, Cornell University, Ithaca, NY 14853, United States
| | - Brendan J Frick
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - David M Smith
- Department of Psychology, Cornell University, Ithaca, NY 14853, United States
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Kevin A Corcoran
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
6
|
Kotani N, Nakano T, Ida Y, Ito R, Hashizume M, Yamaguchi A, Seo M, Araki T, Hojo Y, Honke K, Murakoshi T. Analysis of lipid raft molecules in the living brain slices. Neurochem Int 2017; 119:140-150. [PMID: 28844489 DOI: 10.1016/j.neuint.2017.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022]
Abstract
Neuronal plasma membrane has been thought to retain a lot of lipid raft components which play important roles in the neural function. Although the biochemical analyses of lipid raft using brain tissues have been extensively carried out in the past 20 years, many of their experimental conditions do not coincide with those of standard neuroscience researches such as neurophysiology and neuropharmacology. Hence, the physiological methods for lipid raft analysis that can be compatible with general neuroscience have been required. Herein, we developed a system to physiologically analyze ganglioside GM1-enriched lipid rafts in brain tissues using the "Enzyme-Mediated Activation of Radical Sources (EMARS)" method that we reported (Kotani N. et al. Proc. Natl. Acad. Sci. U S A 105, 7405-7409 (2008)). The EMARS method was applied to acute brain slices prepared from mouse brains in aCSF solution using the EMARS probe, HRP-conjugated cholera toxin subunit B, which recognizes ganglioside GM1. The membrane molecules present in the GM1-enriched lipid rafts were then labeled with fluorescein under the physiological condition. The fluorescein-tagged lipid raft molecules called "EMARS products" distributed differentially among various parts of the brain. On the other hand, appreciable differences were not detected among segments along the longitudinal axis of the hippocampus. We further developed a device to label the lipid raft molecules in acute hippocampal slices under two different physiological conditions to detect dynamics of the lipid raft molecules during neural excitation. Using this device, several cell membrane molecules including Thy1, known as a lipid raft resident molecule in neurons, were confirmed by the EMARS method in living hippocampal slices.
Collapse
Affiliation(s)
- Norihiro Kotani
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| | - Takanari Nakano
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Yui Ida
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Rina Ito
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Miki Hashizume
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Arisa Yamaguchi
- Department of Biochemistry, Kochi University Medical School, Kohasu, Nankoku, Kochi 783-8505, Japan
| | - Makoto Seo
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Tomoyuki Araki
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Yasushi Hojo
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Kohasu, Nankoku, Kochi 783-8505, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| |
Collapse
|