1
|
Lakshmanan Y, Wong FSY, So KF, Chan HHL. Lycium barbarum glycopeptide promotes neuroprotection in ET-1 mediated retinal ganglion cell degeneration. J Transl Med 2024; 22:727. [PMID: 39103918 PMCID: PMC11302070 DOI: 10.1186/s12967-024-05526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Vascular dysregulation is one of the major risk factors of glaucoma, and endothelin-1 (ET-1) may have a role in the pathogenesis of vascular-related glaucoma. Fruit extract from Lycium Barbarum (LB) exhibits anti-ageing and multitarget mechanisms in protecting retinal ganglion cells (RGC) in various animal models. To investigate the therapeutic efficacy of LB glycoproteins (LbGP) in ET-1 induced RGC degeneration, LbGP was applied under pre- and posttreatment conditions to an ET-1 mouse model. Retina structural and functional outcomes were characterised using clinical-based techniques. METHODS Adult C57BL/6 mice were randomly allocated into four experimental groups, namely vehicle control (n = 9), LbGP-Pretreatment (n = 8), LbGP-Posttreatment (day 1) (n = 8) and LbGP-Posttreatment (day 5) (n = 7). Oral administration of LbGP 1 mg/Kg or PBS for vehicle control was given once daily. Pre- and posttreatment (day 1 or 5) were commenced at 1 week before and 1 or 5 days after intravitreal injections, respectively, and were continued until postinjection day 28. Effects of treatment on retinal structure and functions were evaluated using optical coherence tomography (OCT), doppler OCT and electroretinogram measurements at baseline, post-injection days 10 and 28. RGC survival was evaluated by using RBPMS immunostaining on retinal wholemounts. RESULTS ET-1 injection in vehicle control induced transient reductions in arterial flow and retinal functions, leading to significant RNFL thinning and RGC loss at day 28. Although ET-1 induced a transient loss in blood flow or retinal functions in all LbGP groups, LbGP treatments facilitated better restoration of retinal flow and retinal functions as compared with the vehicle control. Also, all three LbGP treatment groups (i.e. pre- and posttreatments from days 1 or 5) significantly preserved thRNFL thickness and RGC densities. No significant difference in protective effects was observed among the three LbGP treatment groups. CONCLUSION LbGP demonstrated neuroprotective effects in a mouse model of ET-1 induced RGC degeneration, with treatment applied either as a pretreatment, immediate or delayed posttreatment. LbGP treatment promoted a better restoration of retinal blood flow, and protected the RNFL, RGC density and retinal functions. This study showed the translational potential of LB as complementary treatment for glaucoma management.
Collapse
Affiliation(s)
- Yamunadevi Lakshmanan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Francisca Siu Yin Wong
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau (GHM) Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Henry Ho-Lung Chan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China.
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
2
|
Ravi M, Karthikeyan PD, Tewari N, Morankar R, Gupta AK, Nehta H, Raghuthaman S. Dentofacial manifestations in a child with Jalili syndrome. SPECIAL CARE IN DENTISTRY 2024; 44:1026-1035. [PMID: 38151709 DOI: 10.1111/scd.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Jalili syndrome (JS) (MIM#217080) is a rare autosomal recessive disorder with oculo-dental malformations. The clinical phenotype is characterized by the presence of Cone-Rod Dystrophy (CRD) and Amelogenesis Imperfecta (AI). Genetic mechanism entails a mutation in the CNNM4, a metal transporter gene located on Chromosome 2q11.2. A high fluoride concentration in groundwater has also been identified as an epigenetic factor in this syndrome. JS draws the attention of dentists due to its distinct oral manifestations. To the best of our knowledge, this is the first genetically confirmed pediatric case report from the Indian subcontinent emphasizing the clinical and radiographic features of this condition and its management in a 6-year-old child.
Collapse
Affiliation(s)
- Mugilan Ravi
- Division of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Pavithra Devi Karthikeyan
- Division of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Nitesh Tewari
- Division of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Morankar
- Division of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar Gupta
- Department of Pediatrics (Genetics), ABVIMS DR RML Hopsital, BKS Marg, New Delhi, India
| | - Hemlata Nehta
- Division of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Sruthila Raghuthaman
- Division of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Kumar A, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS, Samant R. Magnesium (Mg 2+): Essential Mineral for Neuronal Health: From Cellular Biochemistry to Cognitive Health and Behavior Regulation. Curr Pharm Des 2024; 30:3074-3107. [PMID: 39253923 DOI: 10.2174/0113816128321466240816075041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 09/11/2024]
Abstract
Magnesium (Mg2+) is a crucial mineral involved in numerous cellular processes critical for neuronal health and function. This review explores the multifaceted roles of Mg2+, from its biochemical interactions at the cellular level to its impact on cognitive health and behavioral regulation. Mg2+ acts as a cofactor for over 300 enzymatic reactions, including those involved in ATP synthesis, nucleic acid stability, and neurotransmitter release. It regulates ion channels, modulates synaptic plasticity, and maintains the structural integrity of cell membranes, which are essential for proper neuronal signaling and synaptic transmission. Recent studies have highlighted the significance of Mg2+ in neuroprotection, showing its ability to attenuate oxidative stress, reduce inflammation, and mitigate excitotoxicity, thereby safeguarding neuronal health. Furthermore, Mg2+ deficiency has been linked to a range of neuropsychiatric disorders, including depression, anxiety, and cognitive decline. Supplementation with Mg2+, particularly in the form of bioavailable compounds such as Magnesium-L-Threonate (MgLT), Magnesium-Acetyl-Taurate (MgAT), and other Magnesium salts, has shown some promising results in enhancing synaptic density, improving memory function, and alleviating symptoms of mental health disorders. This review highlights significant current findings on the cellular mechanisms by which Mg2+ exerts its neuroprotective effects and evaluates clinical and preclinical evidence supporting its therapeutic potential. By elucidating the comprehensive role of Mg2+ in neuronal health, this review aims to underscore the importance of maintaining optimal Mg2+ levels for cognitive function and behavioral regulation, advocating for further research into Mg2+ supplementation as a viable intervention for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Aakash Kumar
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Sidharth Mehan
- 1Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Aarti Tiwari
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Zuber Khan
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Rajaram Samant
- Department of Research and Development, Celagenex Research, Thane, Maharashtra, India
| |
Collapse
|
4
|
Liu Q, Liu C, Lei B. siRNA Mediated Downregulation of RhoA Expression Reduces Oxidative Induced Apoptosis in Retinal Ganglion Cells. Curr Mol Med 2024; 24:630-636. [PMID: 37171014 DOI: 10.2174/1566524023666230511095628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUNDS Glaucoma is the second leading cause of blindness. Apoptosis of retinal ganglion cells (RGCs) is an important mechanism of glaucomatous optic injury. Rho kinase expression is significantly increased in apoptotic RGCs. This study aimed to investigate the role of RhoA, a Rho GTPase, on the survival of RGCs and further to explore its potential therapeutic applications. METHODS RGCs were treated with siRhoA for 24 hours in vitro. Knockdown of RhoA was confirmed with quantitative RT-PCR. Oxidative stress was induced by treating the RGCs with 200 μM of H2O2 for 1 hour, and apoptosis of RGCs was quantified with TUNEL assay in situ, and with flow cytometry. The mRNA expression levels of RhoA, Nogo receptor, caspase 3 and Bcl-2 were evaluated by quantitative RT-PCR, and the protein levels of RhoA, ROCK1, ROCK2, Nogo receptor, caspase 3 and Bcl-2 were evaluated by Western blot. We found siRhoA treatment efficiently downregulated the expression of RhoA in RGCs and protected against H2O2-induced injury in RGCs in vitro. Apoptosis of RGC cells under oxidative stress was quantified in situ using TUNEL assay and confirmed with flow cytometry (FCM). RESULTS With the knockdown of RhoA, the expression of ROCK1, ROCK2, Nogo Receptor, Casepase-3 were decreased, while the expression of Bcl-2 was increased in both mRNA and protein level. Our data indicated that siRhoA prevented H2O2-induced apoptosis in RGC cells by modulating the RhoA/ROCK pathway. CONCLUSION The results suggested that siRhoA may exert potentially effective neuroprotection for RGCs by reducing injury.
Collapse
Affiliation(s)
- Qian Liu
- Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Changgeng Liu
- Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Bo Lei
- Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
5
|
Lakshmanan Y, Wong FSY, Chan HHL. Long-Term Effects on Retinal Structure and Function in a Mouse Endothelin-1 Model of Retinal Ganglion Cell Degeneration. Invest Ophthalmol Vis Sci 2023; 64:15. [PMID: 37561449 PMCID: PMC10424801 DOI: 10.1167/iovs.64.11.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Purpose To study the long-term effects of endothelin-1 (ET-1)-induced retinal pathologies in mouse, using clinically relevant tools. Methods Adult C57BL/6 mice (7-9 weeks old) were intravitreally injected with PBS (n = 10) or 0.25 (n = 8), 0.5 (n = 8), or 1 nmol ET-1 (n = 9) and examined using electroretinogram, optical coherence tomography (OCT), and Doppler OCT at baseline and postinjection days 10, 28, and 56. Retinal ganglion cell (RGC) survival in retinal whole mount was quantified at days 28 and 56. Results ET-1 induced immediate retinal arterial constriction. The significantly reduced total blood flow and positive scotopic threshold response in the 0.5- and 1-nmol ET-1 groups at day 10 were recovered at day 28. A-wave magnitude was also significantly reduced at days 10 and 28. While a comparable and significant reduction in retinal nerve fiber layer thickness was detected in all ET-1 groups at day 56, the 1-nmol group was the earliest to develop such change at day 28. All ET-1 groups showed a transient inner retinal layer thinning at days 10 and 28 and a plateaued outer layer thickness at days 10 to 56. The 1-nmol group showed a significant RGC loss over all retinal locations examined at day 28 as compared with PBS control. As for the lower-dosage groups, significant RGC density loss at central and midperipheral retina was detected at day 56 when compared with day 28. Conclusions ET-1 injection in mice resulted in a transient vascular constriction and reduction in retinal functions, as well as a gradual loss of retinal nerve fiber layer and RGC in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | - Henry Ho-Lung Chan
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
- University Research Facilities in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
6
|
Agarwal R, Agarwal P, Iezhitsa I. Exploring the current use of animal models in glaucoma drug discovery: where are we in 2023? Expert Opin Drug Discov 2023; 18:1287-1300. [PMID: 37608634 DOI: 10.1080/17460441.2023.2246892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Animal models are widely used in glaucoma-related research. Since the elevated intraocular pressure (IOP) is a major risk factor underlying the disease pathogenesis, animal models with high IOP are commonly used. However, models are also used to represent the clinical context of glaucomatous changes developing despite a normal IOP. AREAS COVERED Herein, the authors discuss the various factors that contribute to the quality of studies using animal models based on the evaluation of studies published in 2022. The factors affecting the quality of studies using animal models, such as the animal species, age, and sex, are discussed, along with various methods and outcomes of studies involving different animal models of glaucoma. EXPERT OPINION Translating animal research data to clinical applications remains challenging. Our observations in this review clearly indicate that many studies lack scientific robustness not only in their experiment conduct but also in data analysis, interpretation, and presentation. In this context, ensuring the internal validity of animal studies is the first step in quality assurance. External validity, however, is more challenging, and steps should be taken to satisfy external validity at least to some extent.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| | - Puneet Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| |
Collapse
|
7
|
Hann Yih T, Abd Ghapor AA, Agarwal R, Razali N, Iezhitsa I, Mohd Ismail N. Effect of trans-resveratrol on glutamate clearance and visual behaviour in rats with glutamate induced retinal injury. Exp Eye Res 2022; 220:109104. [DOI: 10.1016/j.exer.2022.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022]
|
8
|
Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, Peresypkina A, Pobeda A, Ismail NM. Magnesium acetyltaurate prevents retinal damage and visual impairment in rats through suppression of NMDA-induced upregulation of NF-κB, p53 and AP-1 (c-Jun/c-Fos). Neural Regen Res 2021; 16:2330-2344. [PMID: 33818520 PMCID: PMC8354133 DOI: 10.4103/1673-5374.310691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022] Open
Abstract
Magnesium acetyltaurate (MgAT) has been shown to have a protective effect against N-methyl-D-aspartate (NMDA)-induced retinal cell apoptosis. The current study investigated the involvement of nuclear factor kappa-B (NF-κB), p53 and AP-1 family members (c-Jun/c-Fos) in neuroprotection by MgAT against NMDA-induced retinal damage. In this study, Sprague-Dawley rats were randomized to undergo intravitreal injection of vehicle, NMDA or MgAT as pre-treatment to NMDA. Seven days after injections, retinal ganglion cells survival was detected using retrograde labelling with fluorogold and BRN3A immunostaining. Functional outcome of retinal damage was assessed using electroretinography, and the mechanisms underlying antiapoptotic effect of MgAT were investigated through assessment of retinal gene expression of NF-κB, p53 and AP-1 family members (c-Jun/c-Fos) using reverse transcription-polymerase chain reaction. Retinal phospho-NF-κB, phospho-p53 and AP-1 levels were evaluated using western blot assay. Rat visual functions were evaluated using visual object recognition tests. Both retrograde labelling and BRN3A immunostaining revealed a significant increase in the number of retinal ganglion cells in rats receiving intravitreal injection of MgAT compared with the rats receiving intravitreal injection of NMDA. Electroretinography indicated that pre-treatment with MgAT partially preserved the functional activity of NMDA-exposed retinas. MgAT abolished NMDA-induced increase of retinal phospho-NF-κB, phospho-p53 and AP-1 expression and suppressed NMDA-induced transcriptional activity of NF-κB, p53 and AP-1 family members (c-Jun/c-Fos). Visual object recognition tests showed that MgAT reduced difficulties in recognizing the visual cues (i.e. objects with different shapes) after NMDA exposure, suggesting that visual functions of rats were relatively preserved by pre-treatment with MgAT. In conclusion, pre-treatment with MgAT prevents NMDA induced retinal injury by inhibiting NMDA-induced neuronal apoptosis via downregulation of transcriptional activity of NF-κB, p53 and AP-1-mediated c-Jun/c-Fos. The experiments were approved by the Animal Ethics Committee of Universiti Teknologi MARA (UiTM), Malaysia, UiTM CARE No 118/2015 on December 4, 2015 and UiTM CARE No 220/7/2017 on December 8, 2017 and Ethics Committee of Belgorod State National Research University, Russia, No 02/20 on January 10, 2020.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Peresypkina
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod, Russia
| | - Anna Pobeda
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod, Russia
| | - Nafeeza Mohd Ismail
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Fazel MF, Abu IF, Mohamad MHN, Agarwal R, Iezhitsa I, Bakar NS, Juliana N, Mellor IR, Franzyk H. Philanthotoxin-343 attenuates retinal and optic nerve injury, and protects visual function in rats with N-methyl-D-aspartate-induced excitotoxicity. PLoS One 2020; 15:e0236450. [PMID: 32706792 PMCID: PMC7380593 DOI: 10.1371/journal.pone.0236450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/06/2020] [Indexed: 10/26/2022] Open
Abstract
Retinal ganglion cell (RGC) loss and optic neuropathy, both hallmarks of glaucoma, have been shown to involve N-methyl-D-aspartate receptor (NMDAR)-mediated excitotoxicity. This study investigated the neuroprotective effects of Philanthotoxin (PhTX)-343 in NMDA-induced retinal injury to alleviate ensuing visual impairments. Sprague-Dawley rats were divided into three; Group I was intravitreally injected with phosphate buffer saline as the control, Group II was injected with NMDA (160 nM) to induce retinal excitotoxic injury, while Group III was injected with PhTX-343 (160 nM) 24 h prior to excitotoxicity induction with NMDA. Rats were subjected to visual behaviour tests seven days post-treatment and subsequently euthanized. Rat retinas and optic nerves were subjected to H&E and toluidine blue staining, respectively. Histological assessments showed that NMDA exposure resulted in significant loss of retinal cell nuclei and thinning of ganglion cell layer (GCL). PhTX-343 pre-treatment prevented NMDA-induced changes where the RGC layer morphology is similar to the control. The numbers of nuclei in the NMDA group were markedly lower compared to the control (p<0.05). PhTX-343 group had significantly higher numbers of nuclei within 100 μm length and 100 μm2 area of GCL (2.9- and 1.7-fold, respectively) compared to NMDA group (p<0.05). PhTX-343 group also displayed lesser optic nerve fibres degeneration compared to NMDA group which showed vacuolation in all sections. In the visual behaviour test, the NMDA group recorded higher total distance travelled, and lower total immobile time and episodes compared to the control and PhTX-343 groups (p<0.05). Object recognition tests showed that the rats in PhTX-343 group could recognize objects better, whereas the same objects were identified as novel by NMDA rats despite multiple exposures (p<0.05). Visual performances in the PhTX-343 group were all comparable with the control (p>0.05). These findings suggested that PhTX-343 inhibit retinal cell loss, optic nerve damage, and visual impairments in NMDA-induced rats.
Collapse
Affiliation(s)
- Muhammad Fattah Fazel
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
- * E-mail:
| | | | - Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Nor Salmah Bakar
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Norsham Juliana
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, Indah, Kuala Lumpur, Malaysia
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Feng J, Wang H, Jing Z, Wang Y, Cheng Y, Wang W, Sun W. Role of Magnesium in Type 2 Diabetes Mellitus. Biol Trace Elem Res 2020; 196:74-85. [PMID: 31713111 DOI: 10.1007/s12011-019-01922-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Magnesium (in its ionized and biologically active form, Mg2+) is an essential trace element that participates in numerous physiologic processes. Abnormal Mg2+ homeostasis can lead to many metabolic disorders, including diabetes mellitus (DM) and its complications. Mg2+ participates in energy generation and is required for DNA and RNA synthesis, reproduction, and protein synthesis. Additionally, Mg2+ acts as a calcium antagonist and protects vascular endothelial cells from oxidative stress. Imbalances in Mg2+ status, more frequently hypomagnesemia, inhibit glucose transporter type 4 translocation, increase insulin resistance, affect lipid metabolism, induce oxidative stress, and impair the antioxidant system of endothelial cells, In these ways, hypomagnesemia contributes to the initiation and progression of DM and its macrovascular and microvascular complications. In this review, we summarize recent advances in knowledge of the mechanisms whereby Mg2+ regulates insulin secretion and sensitivity. In addition, we discuss the future prospects for research regarding the mechanisms whereby Mg2+ status impacts DM and its complications.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China
| | - Heyuan Wang
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Zhe Jing
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yue Wang
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China.
| |
Collapse
|
11
|
Sadikan MZ, Abdul Nasir NA, Agarwal R, Mohd Ismail N. Protective Effect of Palm Oil-Derived Tocotrienol-Rich Fraction Against Retinal Neurodegenerative Changes in Rats with Streptozotocin-Induced Diabetic Retinopathy. Biomolecules 2020; 10:biom10040556. [PMID: 32260544 PMCID: PMC7226502 DOI: 10.3390/biom10040556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress plays an important role in retinal neurodegeneration and angiogenesis associated with diabetes. In this study, we investigated the effect of the tocotrienol-rich fraction (TRF), a potent antioxidant, against diabetes-induced changes in retinal layer thickness (RLT), retinal cell count (RCC), retinal cell apoptosis, and retinal expression of vascular endothelial growth factor (VEGF) in rats. Additionally, the efficacy of TRF after administration by two different routes was compared. The diabetes was induced in Sprague-Dawley rats by intraperitoneal injection of streptozotocin. Subsequently, diabetic rats received either oral or topical treatment with vehicle or TRF. Additionally, a group of non-diabetic rats was included with either oral or topical treatment with a vehicle. After 12 weeks of the treatment period, rats were euthanized, and retinas were collected for measurement of RLT, RCC, retinal cell apoptosis, and VEGF expression. RLT and RCC in the ganglion cell layer were reduced in all diabetic groups compared to control groups (p < 0.01). However, at the end of the experimental period, oral TRF-treated rats showed a significantly greater RLT compared to topical TRF-treated rats. A similar observation was made for retinal cell apoptosis and VEGF expression. In conclusion, oral TRF supplementation protects against retinal degenerative changes and an increase in VEGF expression in rats with streptozotocin-induced diabetic retinopathy. Similar effects were not observed after topical administration of TRF.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor 47000, Malaysia;
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor 47000, Malaysia;
- Correspondence: ; Tel.: +603-61267230
| | - Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (R.A.); (N.M.I.)
| | - Nafeeza Mohd Ismail
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (R.A.); (N.M.I.)
| |
Collapse
|
12
|
Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM. Magnesium acetyltaurate protects against endothelin-1 induced RGC loss by reducing neuroinflammation in Sprague dawley rats. Exp Eye Res 2020; 194:107996. [PMID: 32156652 DOI: 10.1016/j.exer.2020.107996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
Abstract
Endothelin-1 (ET-1), a potent vasoconstrictor, plays a significant role in the pathophysiology of ocular conditions like glaucoma. Glaucoma is characterized by apoptotic loss of retinal ganglion cells (RGCs) and loss of visual fields and is a leading cause of irreversible blindness. In glaucomatous eyes, retinal ischemia causes release of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α and promotes activation of transcription factors such as nuclear factor kappa B (NFKB) and c-Jun. Magnesium acetyltaurate (MgAT) has previously been shown to protect against ET-1 induced retinal and optic nerve damage. Current study investigated the mechanisms underlying these effects of MgAT, which so far remain unknown. Sprague dawley rats were intravitreally injected with ET-1 with or without pretreatment with MgAT. Seven days post-injection, retinal expression of IL-1β, IL-6, TNF-α, NFKB and c-Jun protein and genes was determined using multiplex assay, Western blot and PCR. Animals were subjected to retrograde labeling of RGCs to determine the extent of RGC survival. RGC survival was also examined using Brn3A staining. Furthermore, visual functions of rats were determined using Morris water maze. It was observed that pre-treatment with MgAT protects against ET-1 induced increase in the retinal expression of IL-1β, IL-6 and TNF-α proteins and genes. It also protected against ET-1 induced activation of NFKB and c-Jun. These effects of MgAT were associated with greater RGC survival and preservation of visual functions in rats. In conclusion, MgAT prevents ET-1 induced RGC loss and loss of visual functions by suppressing neuroinflammatory reaction in rat retinas.
Collapse
Affiliation(s)
- Natasha Najwa Nor Arfuzir
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Selangor, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | - Igor Iezhitsa
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Selangor, Malaysia; Volgograd State Medical University, Research Centre for Innovative Medicines, Volgograd, Russian Federation; Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Nafeeza Mohd Ismail
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Peresypkina A, Pazhinsky A, Danilenko L, Lugovskoy S, Pokrovskii M, Beskhmelnitsyna E, Solovev N, Pobeda A, Korokin M, Levkova E, Gubareva V, Korokina L, Martynova O, Soldatov V, Pokrovskii V. Retinoprotective Effect of 2-Ethyl-3-hydroxy-6-methylpyridine Nicotinate. BIOLOGY 2020; 9:biology9030045. [PMID: 32121045 PMCID: PMC7150877 DOI: 10.3390/biology9030045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
An important task of pharmacology is to find effective agents to improve retinal microcirculation and resistance to ischemia. The purpose of the study is to pharmacologically evaluate the retinoprotective effect of 2-ethyl-3-hydroxy-6-methylpyridine nicotinate in a rat model of retinal ischemia–reperfusion. A retinal ischemia–reperfusion model was used, in which an increase in intraocular pressure (IOP) to 110 mmHg was carried out within 30 min. The retinoprotective effect of 2-ethyl-3-hydroxy-6-methylpyridine nicotinate at a dose of 3.8 mg/kg, in comparison with nicotinic acid at a dose of 2 mg/kg and emoxipine at a dose of 2 mg/kg, was estimated by the changes in the eye fundus during ophthalmoscopy, the retinal microcirculation level with laser Doppler flowmetry (LDF), and electroretinography (ERG) after 72 h of reperfusion. The use of 2-ethyl-3-hydroxy-6-methylpyridine nicotinate prevented the development of ischemic injuries in the fundus and led to an increase in the retinal microcirculation level to 747 (median) (lower and upper quartiles: 693;760) perfusion units (p = 0.0002) in comparison with the group that underwent no treatment. In the group with the studied substance, the b-wave amplitude increased significantly (p = 0.0022), and the b/a coefficient increased reliably (p = 0.0002) in comparison with the group with no treatment. Thus, 2-ethyl-3-hydroxy-6-methylpyridine nicotinate has established itself as a potential retinoprotector.
Collapse
Affiliation(s)
- Anna Peresypkina
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
- Correspondence: ; Tel.: +7-903-885-86-19
| | - Anton Pazhinsky
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Lyudmila Danilenko
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Sergey Lugovskoy
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Mikhail Pokrovskii
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
| | - Evgeniya Beskhmelnitsyna
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Nikolai Solovev
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Anna Pobeda
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Mikhail Korokin
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
| | - Elena Levkova
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Victoria Gubareva
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Liliya Korokina
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod 308015, Russia; (A.P.); (L.D.); (S.L.); (M.P.); (E.B.); (N.S.); (M.K.); (E.L.); (V.G.); (L.K.)
| | - Olga Martynova
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
| | - Vladislav Soldatov
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
| | - Vladimir Pokrovskii
- Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, Belgorod 308015, Russia; (O.M.); (V.S.); (V.P.)
| |
Collapse
|
14
|
Mohd Lazaldin MA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Mohd Ismail N. Neuroprotective effects of brain-derived neurotrophic factor against amyloid beta 1-40-induced retinal and optic nerve damage. Eur J Neurosci 2020; 51:2394-2411. [PMID: 31883161 DOI: 10.1111/ejn.14662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) could be considered a potential neuroprotective therapy in amyloid beta (Aβ)-associated retinal and optic nerve degeneration. Hence, in this study we investigated the neuroprotective effect of BDNF against Aβ1-40-induced retinal and optic nerve injury. In this study, exposure to Aβ1-40 was associated with retinal and optic nerve injury. TUNEL staining showed significant reduction in the apoptotic cell count in the BDNF-treated group compared with Aβ1-40 group. H&E-stained retinal sections also showed a striking reduction in neuronal cells in the ganglion cell layer (GCL) of retinas fourteen days after Aβ1-40 exposure. By contrast, number of retinal cells was preserved in the retinas of BDNF-treated animals. After Aβ1-40 exposure, visible axonal swelling was observed in optic nerve sections. However, the BDNF-treated group showed fewer changes in optic nerve; axonal swelling was less frequent and less marked. In the present study, exposure to Aβ was associated with oxidative stress, whereas levels of retinal glutathione (GSH), superoxide dismutase (SOD) and catalase were significantly increased in BDNF-treated than in Aβ1-40-treated rats. Both visual object recognition tests using an open-field arena and a Morris water maze showed that BDNF improved rats' ability to recognise visual cues (objects with different shapes) after Aβ1-40 exposure, thus demonstrating that the visual performance of rats was relatively preserved following BDNF treatment. In conclusion, intravitreal treatment with BDNF prevents Aβ1-40-induced retinal cell apoptosis and axon loss in the optic nerve of rats by reducing retinal oxidative stress and restoring retinal BDNF levels.
Collapse
Affiliation(s)
- Mohd Aizuddin Mohd Lazaldin
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Igor Iezhitsa
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Malaysia.,Research Centre for Innovative Medicines, Volgograd State Medical University, Volgograd, Russia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Nor Salmah Bakar
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Nafeeza Mohd Ismail
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Lambuk L, Jafri AJA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Abdullah A, Ismail NM. Dose-dependent effects of NMDA on retinal and optic nerve morphology in rats. Int J Ophthalmol 2019; 12:746-753. [PMID: 31131232 DOI: 10.18240/ijo.2019.05.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/06/2019] [Indexed: 01/12/2023] Open
Abstract
AIM To investigate dose-dependent effects of N-methyl-D-aspartate (NMDA) on retinal and optic nerve morphology in rats. METHODS Sprague Dawley rats, 180-250 g in weight were divided into four groups. Groups 1, 2, 3 and 4 were intravitreally administered with vehicle and NMDA at the doses 80, 160 and 320 nmol respectively. Seven days after injection, rats were euthanized, and their eyes were taken for optic nerve toluidine blue and retinal hematoxylin and eosin stainings. The TUNEL assay was done for detecting apoptotic cells. RESULTS All groups treated with NMDA showed significantly reduced ganglion cell layer (GCL) thickness within inner retina, as compared to control group. Group NMDA 160 nmol showed a significantly greater GCL thickness than the group NMDA 320 nmol. Administration of NMDA also resulted in a dose-dependent decrease in the number of nuclei both per 100 µm GCL length and per 100 µm2 of GCL. Intravitreal NMDA injection caused dose-dependent damage to the optic nerve. The degeneration of nerve fibres with increased clearing of cytoplasm was observed more prominently as the NMDA dose increased. In accordance with the results of retinal morphometry analysis and optic nerve grading, TUNEL staining demonstrated NMDA-induced excitotoxic retinal injury in a dose-dependent manner. CONCLUSION Our results demonstrate dose-dependent effects of NMDA on retinal and optic nerve morphology in rats that may be attributed to differences in the severity of excitotoxicity and oxidative stress. Our results also suggest that care should be taken while making dose selections experimentally so that the choice might best uphold study objectives.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia
| | - Azliana Jusnida Ahmad Jafri
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia
| | - Igor Iezhitsa
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia.,Research Institute of Pharmacology, Volgograd State Medical University, Volgograd 400131, Russian Federation
| | - Renu Agarwal
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia
| | - Nor Salmah Bakar
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia
| | - Puneet Agarwal
- IMU Clinical School, International Medical University (IMU), Seremban 70300, Negeri Sembilan, Malaysia
| | - Aimy Abdullah
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Selangor Darul Ehsan, Malaysia
| | - Nafeeza Mohd Ismail
- IMU Clinical School, International Medical University (IMU), Seremban 70300, Negeri Sembilan, Malaysia
| |
Collapse
|
16
|
Arfuzir NNN, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM. Dose-Dependent Effects of Endothelin-1 on Retinal and Optic Nerve Morphology in Sprague Dawley Rats. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhao W, Wang S, Qin T, Wang W. RETRACTED: Arbutin attenuates hydrogen peroxide-induced oxidative injury through regulation of microRNA-29a in retinal ganglion cells. Biomed Pharmacother 2019; 112:108729. [DOI: 10.1016/j.biopha.2019.108729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023] Open
|
18
|
Daneshmandpour Y, Darvish H, Pashazadeh F, Emamalizadeh B. Features, genetics and their correlation in Jalili syndrome: a systematic review. J Med Genet 2019; 56:358-369. [DOI: 10.1136/jmedgenet-2018-105716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 11/03/2022]
Abstract
Jalili syndrome is a rare genetic disorder first identified by Jalili in Gaza. Amelogenesis imperfecta and cone-rode dystrophy are simultaneously seen in Jalili syndrome patients as the main and primary manifestations. Molecular analysis has revealed that theCNNM4gene is responsible for this rare syndrome. Jalili syndrome has been observed in many countries around the world, especially in the Middle East and North Africa. In the current scoping systematic review we searched electronic databases to find studies related to Jalili syndrome. In this review we summarise the reported clinical symptoms,CNNM4gene and protein structure,CNNM4mutations, attempts to reach a genotype-phenotype correlation, the functional role ofCNNM4mutations, and epidemiological aspects of Jalili syndrome. In addition, we have analysed the reported mutations in mutation effect prediction databases in order to gain a better understanding of the mutation’s outcomes.
Collapse
|
19
|
Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM. Taurine protects against NMDA-induced retinal damage by reducing retinal oxidative stress. Amino Acids 2019; 51:641-646. [PMID: 30656415 DOI: 10.1007/s00726-019-02696-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022]
Abstract
This study aimed to evaluate effect of TAU on NMDA-induced changes in retinal redox status, retinal cell apoptosis and retinal morphology in Sprague-Dawley rats. Taurine was injected intravitreally as pre-, co- or post-treatment with NMDA and 7 days post-treatment retinae were processed for estimation of oxidative stress, retinal morphology using H&E staining and retinal cell apoptosis using TUNEL staining. Treatment with TAU, particularly pre-treatment, significantly increased retinal glutathione, superoxide dismutase and catalase levels compared to NMDA-treated rats; whereas, the levels of malondialdehyde reduced significantly. Reduction in retinal oxidative stress in TAU pre-treated group was associated with significantly greater fractional thickness of ganglion cell layer within inner retina and retinal cell density in inner retina. TUNEL staining showed significantly reduced apoptotic cell count in TAU pre-treated group compared to NMDA group. It could be concluded that TAU protects against NMDA-induced retinal injury in rats by reducing retinal oxidative stress.
Collapse
Affiliation(s)
- Azliana Jusnida Ahmad Jafri
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Renu Agarwal
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia.
- I-PPerForM, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia.
| | - Igor Iezhitsa
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
- Research Institute of Pharmacology, Volgograd State Medical University, Volgograd, Russia
| | - Puneet Agarwal
- Faculty of Medicine, International Medical University, IMU Clinical School, Seremban, Malaysia
| | - Nafeeza Mohd Ismail
- Faculty of Medicine, International Medical University, IMU Clinical School, Seremban, Malaysia
| |
Collapse
|
20
|
Qin Y, Ji M, Deng T, Luo D, Zi Y, Pan L, Wang Z, Jin M. Functional and morphologic study of retinal hypoperfusion injury induced by bilateral common carotid artery occlusion in rats. Sci Rep 2019; 9:80. [PMID: 30643163 PMCID: PMC6331588 DOI: 10.1038/s41598-018-36400-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Retinal hypoperfusion injury is the pathophysiologic basis of ocular ischemic syndrome (OIS) which often leads to severe visual loss. In this study, we aimed to establish a rat model of retinal chronic hypoperfusion by bilateral common carotid artery occlusion (BCCAO) and observe changes in the retinal function and morphology. We found that model rats showed retinal arteriosclerosis, slight dilated retinal vein, small hemangiomas, hemorrhages, vascular segmental filling, and nonperfused areas after 2 weeks of BCCAO. In the model rats, the retinal circulation time was significantly prolonged by fluorescein fundus angiography (FFA), the latency of a and b waves was delayed and the amplitude was decreased significantly at each time point by electroretinogram (ERG), and the perfusion of the eyes continued to reduced. Morphologic and ultrastructural changes covered that the retinal ganglion cells (RGCs) presented obvious apoptosis and the thickness in the retinal layers were significantly thinner. Collectively, these findings suggested that BCCAO induced retinal hypoperfusion injury in the model rats, thus providing an ideal animal model for the study of OIS.
Collapse
Affiliation(s)
- Yali Qin
- Beijing University of Chinese Medicine, Beijing, 100029, China.,Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Meiqi Ji
- Beijing University of Chinese Medicine, Beijing, 100029, China.,Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Tingting Deng
- Clinical Medical Research Institute, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Dan Luo
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yingxin Zi
- Beijing University of Chinese Medicine, Beijing, 100029, China.,Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lin Pan
- Clinical Medical Research Institute, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhijun Wang
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ming Jin
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
21
|
Zhang Q, Ji L, Zheng H, Li Q, Xiong Q, Sun W, Zhu X, Li Y, Lu B, Liu X, Zhang S. Low serum phosphate and magnesium levels are associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2018; 146:1-7. [PMID: 30273706 DOI: 10.1016/j.diabres.2018.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 01/19/2023]
Abstract
AIMS To determine the relationship of serum phosphate, serum magnesium and peripheral nerve function in patients with type 2 diabetes mellitus (T2DM). METHODS A total of 254 patients diagnosed with T2DM were included. Peripheral nerve function was evaluated by nerve conduction study with the use of electromyography. Composite z scores of conduction velocity, latency, and amplitude were constructed, respectively. Demographic, medical and laboratory data including serum phosphate and magnesium were collected. RESULTS Serum phosphate and serum magnesium levels were significantly lower in patients with diabetic peripheral neuropathy (DPN) (P < 0.01). And the percentages of DPN patients were lower in high tertile of serum phosphate and serum magnesium (P < 0.05). Furthermore, composite z score of conduction velocity (CV) (P = 0.012) were positively associated with serum phosphate levels and the composite z score of amplitude (P < 0.001) and CV (P = 0.041) were positively associated with serum magnesium levels. After adjusting potential related factors (age, gender, smoking, diabetes duration, body mass index, systolic blood pressure, glycated hemoglobin, total cholesterol, estimated glomerular filtration rate), serum levels of phosphate and magnesium were still related to status of DPN in logistic regression (P < 0.05). CONCLUSION Lower serum phosphate and magnesium significantly correlated with parameters of nerve conduction in T2DM patients. Serum phosphate and magnesium might underlie the pathophysiologic features of DPN.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lijin Ji
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hangping Zheng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qingchun Li
- Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai 200040, China
| | - Qian Xiong
- Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai 200040, China
| | - Wanwan Sun
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoming Zhu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoxia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Shuo Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
22
|
Lambuk L, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Ismail NM. Antiapoptotic effect of taurine against NMDA-induced retinal excitotoxicity in rats. Neurotoxicology 2018; 70:62-71. [PMID: 30385388 DOI: 10.1016/j.neuro.2018.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE N-methyl-D-aspartate (NMDA) excitotoxicity has been proposed to mediate apoptosis of retinal ganglion cells (RGCs) in glaucoma. Taurine (TAU) has been shown to have neuroprotective properties, thus we examined anti-apoptotic effect of TAU against retinal damage after NMDA exposure. METHODOLOGY Sprague-Dawley rats were divided into 5 groups of 33 each. Group 1 was administered intravitreally with PBS and group 2 was similarly injected with NMDA (160 nmol). Groups 3, 4 and 5 were injected with TAU (320 nmol) 24 hours before (pre-treatment), in combination (co-treatment) and 24 hours after (post-treatment) NMDA exposure respectively. Seven days after injection, rats were sacrificed; eyes were enucleated, fixed and processed for morphometric analysis, TUNEL and caspase-3 staining. Optic nerve morphology assessment was done using toluidine blue staining. The estimation of BDNF, pro/anti-apoptotic factors (Bax/Bcl-2) and caspase-3 activity in retina was done using ELISA technique. RESULTS Severe degenerative changes were observed in retinae after intravitreal NMDA exposure. The retinal morphology in the TAU pre-treated group appeared more similar to the control retinae and demonstrated a higher number of nuclei than the NMDA group both per 100 μm length (by 1.5-fold, p < 0.001) and per 100 μm2 area (by 1.41-fold, p < 0.05) of the GCL. After NMDA exposure, visible axonal swelling was observed in optic nerve sections. In comparison with the changes observed in the NMDA treated group, the TAU treated group showed fewer prominent changes; axonal swelling was less frequent and less marked. Additionally, no marked glial cell changes were observed in the TAU-pretreated group. All TAU treated groups, particularly the pre-treated group, showed a significant decrease in the NMDA-induced optic nerve damage, with a 50% reduction (p < 0.001) in the mean grading compared to NMDA group. For the same, there was 25% decrease in co- and post-treatment groups, as compared with the NMDA group. Pre-treatment with TAU abolished apoptotic response to NMDA as indicated by decrease in the number of TUNEL- and caspase-3-positive cells. TAU pre-treatment also increased the Bcl-2 level (by 2.80-fold, p < 0.001) and decreased the level of Bax (by 34%, p < 0.01), and activity of caspase-3 (by 36%, p < 0.001) compared to NMDA group. IN CONCLUSION our study revealed that pre-treatment with TAU prevents NMDA-induced retinal cell apoptosis more effectively than co- and post-treatment with TAU.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Igor Iezhitsa
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia; Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia
| | - Renu Agarwal
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia; I-PPerForM, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Nor Salmah Bakar
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Puneet Agarwal
- International Medical University, IMU Clinical School, Seremban, Malaysia
| | | |
Collapse
|
23
|
Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Spasov A, Ozerov A, Mohd Ismail N. Effect of Magnesium Acetyltaurate and Taurine on Endothelin1-Induced Retinal Nitrosative Stress in Rats. Curr Eye Res 2018; 43:1032-1040. [PMID: 29676937 DOI: 10.1080/02713683.2018.1467933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Retinal ganglion cell apoptosis in glaucoma is associated with elevated levels of endothelin-1 (ET1), a potent vasoconstrictor. ET1-induced retinal ischemia leads to altered expression of nitric oxide synthase (NOS) isoforms leading to increased formation of nitric oxide (NO) and retinal nitrosative stress. Since magnesium (Mg) is known to improve endothelial functions and reduce oxidative stress and taurine (TAU) possesses potent antioxidant properties, we investigated the protective effects of magnesium acetyltaurate (MgAT) against ET1-induced nitrosative stress and retinal damage in rats. We also compared the effects of MgAT with that of TAU alone. METHODS Sprague Dawley rats were intravitreally injected with ET1. MgAT and TAU were administered as pre-, co-, or posttreatment. Subsequently, the expression of NOS isoforms was detected in retina by immunohistochemistry, retinal nitrotyrosine level was estimated using ELISA, and retinal cell apoptosis was detected by TUNEL staining. RESULTS Intravitreal ET1 caused a significant increase in the expressions of nNOS and iNOS while eNOS expression was significantly reduced compared to vehicle treated group. Administration of both MgAT and TAU restored the altered levels of NOS isoform expression, reduced retinal nitrosative stress and retinal cell apoptosis. The effect of MgAT, however, was greater than that of TAU alone. CONCLUSIONS MgAT and TAU prevent ET1-induced retinal cell apoptosis by reducing retinal nitrosative stress in Sprague Dawley rats. Addition of TAU to Mg seems to enhance the efficacy of TAU compared to when given alone. Moreover, the pretreatment with MgAT/TAU showed higher efficacy compared to co- or posttreatment.
Collapse
Affiliation(s)
- Natasha Najwa Nor Arfuzir
- a Center for Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA Sungai Buloh Campus , Selangor , Malaysia
| | - Renu Agarwal
- a Center for Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA Sungai Buloh Campus , Selangor , Malaysia
| | - Igor Iezhitsa
- a Center for Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA Sungai Buloh Campus , Selangor , Malaysia.,b Volgograd State Medical University, Research Institute of Pharmacology , Volgograd , Russia
| | - Puneet Agarwal
- c Faculty of Medicine, International Medical University , IMU Clinical School , Seremban , Malaysia
| | - Sabrilhakim Sidek
- a Center for Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA Sungai Buloh Campus , Selangor , Malaysia
| | - Alexander Spasov
- b Volgograd State Medical University, Research Institute of Pharmacology , Volgograd , Russia
| | - Alexander Ozerov
- b Volgograd State Medical University, Research Institute of Pharmacology , Volgograd , Russia
| | - Nafeeza Mohd Ismail
- a Center for Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA Sungai Buloh Campus , Selangor , Malaysia
| |
Collapse
|
24
|
Iezhitsa I, Agarwal R. Magnesium acethyltaurate as a potential agent for retinal and optic nerve protection in glaucoma. Neural Regen Res 2018; 13:807-808. [PMID: 29863006 PMCID: PMC5998624 DOI: 10.4103/1673-5374.232470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Igor Iezhitsa
- Centre for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia
| | - Renu Agarwal
- Centre for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
25
|
Mohd Lazaldin MA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Mohd Ismail N. Time- and dose-related effects of amyloid beta1-40 on retina and optic nerve morphology in rats. Int J Neurosci 2018; 128:952-965. [PMID: 29488424 DOI: 10.1080/00207454.2018.1446953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Amyloid beta (Aβ) is known to contribute to the pathophysiology of retinal neurodegenerative diseases such as glaucoma. Effects of intravitreal Aβ(1-42) on retinal and optic nerve morphology in animal models have widely been studied but not those of Aβ(1-40). Hence, we evaluated the time- and dose-related effects of intravitreal Aβ(1-40) on retinal and optic nerve morphology. Since oxidative stress and brain derived neurotrophic factor (BDNF) are associated with Aβ-induced neuronal damage, we also studied dose and time-related effects of Aβ(1-40) on retinal oxidative stress and BDNF levels. MATERIALS AND METHODS Five groups of rats were intravitreally administered with vehicle or Aβ(1-40) in doses of 1.0, 2.5, 5 and 10 nmol. Animals were sacrificed and eyes were enucleated at weeks 1, 2 and 4 post-injection. The retinae were subjected to morphometric analysis and TUNEL staining. Optic nerve sections were stained with toluidine blue and were graded for neurodegenerative effects. The estimation of BDNF and markers of oxidative stress in retina were done using ELISA technique. RESULTS AND CONCLUSIONS It was observed that intravitreal Aβ(1-40) causes significant retinal and optic nerve damage up to day 14 post-injection and there was increasing damage with increase in dose. However, on day 30 post-injection both the retinal and optic nerve morphology showed a trend towards normalization. The observations made for retinal cell apoptosis, retinal glutathione, superoxide dismutase activity and BDNF were in accordance with those of morphological changes with deterioration till day 14 and recovery by day 30 post-injection. The findings of this study may provide a guide for selection of appropriate experimental conditions for future studies.
Collapse
Affiliation(s)
- Mohd Aizuddin Mohd Lazaldin
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| | - Igor Iezhitsa
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia.,b Research Institute of Pharmacology, Volgograd State Medical University , Volgograd , Russia
| | - Renu Agarwal
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| | - Nor Salmah Bakar
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| | - Puneet Agarwal
- c IMU Clinical School, International Medical University , Seremban , Malaysia
| | - Nafeeza Mohd Ismail
- a Centre For Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA, Sungai Buloh Campus, Selangor , Malaysia
| |
Collapse
|
26
|
Li S, Xi Q, Zhang X, Yu D, Li L, Jiang Z, Chen Q, Wang QK, Traboulsi EI. Identification of a mutation in CNNM4 by whole exome sequencing in an Amish family and functional link between CNNM4 and IQCB1. Mol Genet Genomics 2018; 293:699-710. [PMID: 29322253 DOI: 10.1007/s00438-018-1417-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/06/2018] [Indexed: 12/15/2022]
Abstract
We investigated an Amish family in which three siblings presented with an early-onset childhood retinal dystrophy inherited in an autosomal recessive fashion. Genome-wide linkage analysis identified significant linkage to marker D2S2216 on 2q11 with a two-point LOD score of 1.95 and a multi-point LOD score of 3.76. Whole exome sequencing was then performed for the three affected individuals and identified a homozygous nonsense mutation (c.C1813T, p.R605X) in the cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene located within the 2p14-2q14 Jalili syndrome locus. The initial assessment and collection of the family were performed before the clinical delineation of Jalili syndrome. Another assessment was made after the discovery of the responsible gene and the dental abnormalities characteristic of Jalili syndrome were retrospectively identified. The p.R605X mutation represents the first probable founder mutation of Jalili syndrome identified in the Amish community. The molecular mechanism underlying Jalili syndrome is unknown. Here we show that CNNM4 interacts with IQCB1, which causes Leber congenital amaurosis (LCA) when mutated. A truncated CNNM4 protein starting at R605 significantly increased the rate of apoptosis, and significantly increased the interaction between CNNM4 and IQCB1. Mutation p.R605X may cause Jalili syndrome by a nonsense-mediated decay mechanism, affecting the function of IQCB1 and apoptosis, or both. Our data, for the first time, functionally link Jalili syndrome gene CNNM4 to LCA gene IQCB1, providing important insights into the molecular pathogenic mechanism of retinal dystrophy in Jalili syndrome.
Collapse
Affiliation(s)
- Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quansheng Xi
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Li
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Zhenyang Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA.
| | - Elias I Traboulsi
- Center for Genetic Eye Diseases, Cleveland Clinic Cole Eye Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
27
|
Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Ismail NM. Taurine protects against retinal and optic nerve damage induced by endothelin-1 in rats via antioxidant effects. Neural Regen Res 2018; 13:2014-2021. [PMID: 30233077 PMCID: PMC6183037 DOI: 10.4103/1673-5374.239450] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Endothelin-1 (ET-1), a potent vasoconstrictor, is involved in retinal vascular dysregulation and oxidative stress in glaucomatous eyes. Taurine (TAU), a naturally occurring free amino acid, is known for its neuroprotective and antioxidant properties. Hence, we evaluated its neuroprotective properties against ET-1 induced retinal and optic nerve damage. ET-1 was administered intravitreally to Sprague-Dawley rats and TAU was injected as pre-, co- or post-treatment. Animals were euthanized seven days post TAU injection. Retinae and optic nerve were examined for morphology, and were also processed for caspase-3 immunostaining. Retinal redox status was estimated by measuring retinal superoxide dismutase, catalase, glutathione, and malondialdehyde levels using enzyme-linked immuosorbent assay. Histopathological examination showed significantly improved retinal and optic nerve morphology in TAU-treated groups. Morphometric examination showed that TAU pre-treatment provided marked protection against ET-1 induced damage to retina and optic nerve. In accordance with the morphological observations, immunostaining for caspase showed a significantly lesser number of apoptotic retinal cells in the TAU pre-treatment group. The retinal oxidative stress was reduced in all TAU-treated groups, and particularly in the pre-treatment group. The findings suggest that treatment with TAU, particularly pre-treatment, prevents apoptosis of retinal cells induced by ET-1 and hence prevents the changes in the morphology of retina and optic nerve. The protective effect of TAU against ET-1 induced retinal and optic nerve damage is associated with reduced retinal oxidative stress.
Collapse
Affiliation(s)
- Natasha Najwa Nor Arfuzir
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Selangor, Malaysia
| | - Renu Agarwal
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Selangor, Malaysia
| | - Igor Iezhitsa
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Selangor, Malaysia; Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia
| | - Puneet Agarwal
- Faculty of Medicine, International Medical University, IMU Clinical School, Seremban, Malaysia
| | - Sabrilhakim Sidek
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Selangor, Malaysia
| | - Nafeeza Mohd Ismail
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Selangor, Malaysia
| |
Collapse
|
28
|
Agarwal R, Agarwal P. Rodent models of glaucoma and their applicability for drug discovery. Expert Opin Drug Discov 2017; 12:261-270. [DOI: 10.1080/17460441.2017.1281244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Renu Agarwal
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Puneet Agarwal
- Faculty of Medicine, International Medical University, IMU Clinical Campus, Seremban, Malaysia
| |
Collapse
|
29
|
Jafri AJA, Arfuzir NNN, Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, Razali N, Krasilnikova A, Kharitonova M, Demidov V, Serebryansky E, Skalny A, Spasov A, Yusof APM, Ismail NM. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis. J Trace Elem Med Biol 2017; 39:147-154. [PMID: 27908408 DOI: 10.1016/j.jtemb.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023]
Abstract
Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL-1). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL-1) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity.
Collapse
Affiliation(s)
- Azliana Jusnida Ahmad Jafri
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Natasha Najwa Nor Arfuzir
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Lidawani Lambuk
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Igor Iezhitsa
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia.
| | - Renu Agarwal
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Puneet Agarwal
- International Medical University, IMU Clinical School, Seremban, Malaysia
| | - Norhafiza Razali
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Anna Krasilnikova
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Maria Kharitonova
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia; Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80 - 82/III, A-6020, Innsbruck, Austria
| | - Vasily Demidov
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia
| | - Evgeny Serebryansky
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia
| | - Anatoly Skalny
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia; Peoples' Friendship University of Russia, Moscow, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Alexander Spasov
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia
| | - Ahmad Pauzi Md Yusof
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Nafeeza Mohd Ismail
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| |
Collapse
|
30
|
Neuroprotective Effect of Magnesium Acetyltaurate Against NMDA-Induced Excitotoxicity in Rat Retina. Neurotox Res 2016; 31:31-45. [PMID: 27568334 DOI: 10.1007/s12640-016-9658-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/31/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022]
Abstract
Glutamate excitotoxicity plays a major role in the loss of retinal ganglion cells (RGCs) in glaucoma. The toxic effects of glutamate on RGCs are mediated by the overstimulation of N-methyl-D-aspartate (NMDA) receptors. Accordingly, NMDA receptor antagonists have been suggested to inhibit excitotoxicity in RGCs and delay the progression and visual loss in glaucoma patients. The purpose of the present study was to examine the potential neuroprotective effect of Mg acetyltaurate (MgAT) on RGC death induced by NMDA. MgAT was proposed mainly due to the combination of magnesium (Mg) and taurine which may provide neuroprotection by dual mechanisms of action, i.e., inhibition of NMDA receptors and antioxidant effects. Rats were divided into 5 groups and were given intravitreal injections. Group 1 (PBS group) was injected with vehicle; group 2 (NMDA group) was injected with NMDA while groups 3 (pre-), 4 (co-), and 5 (post-) treatments were injected with MgAT, 24 h before, in combination or 24 h after NMDA injection respectively. NMDA and MgAT were injected in PBS at doses 160 and 320 nmol, respectively. Seven days after intravitreal injection, the histological changes in the retina were evaluated using hematoxylin & eosin (H&E) staining. Optic nerves were dissected and stained in Toluidine blue for grading on morphological neurodegenerative changes. The extent of apoptosis in retinal tissue was assessed by TUNEL assay and caspase-3 immunohistochemistry staining. The estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors and caspase-3 activity in retina was done using enzyme-linked immunosorbent assay (ELISA) technique. The retinal morphometry showed reduced thickness of ganglion cell layer (GCL) and reduction in the number of retinal cells in GCL in NMDA group compared to the MgAT-treated groups. TUNEL and caspase-3 staining showed increased number of apoptotic cells in inner retina. The results were further corroborated by the estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors, and caspase-3 activity in retina. In conclusion, current study revealed that intravitreal MgAT prevents retinal and optic nerve damage induced by NMDA. Overall, our data demonstrated that the pretreatment with MgAT was more effective than co- and posttreatment. This protective effect of MgAT against NMDA-induced retinal cell apoptosis could be attributed to the reduction of retinal oxidative stress and activation of BDNF-related neuroprotective mechanisms.
Collapse
|