1
|
Chen Y, Wang R, Li X, Wang Z, Cao B, Du J, Deng T, Han J, Yang M. Progress of research on the treatment of depression by traditional Chinese medicine prescriptions. Heliyon 2024; 10:e34970. [PMID: 39157399 PMCID: PMC11328063 DOI: 10.1016/j.heliyon.2024.e34970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Depression is a common psychiatric disorder that belongs to the category of "Depression Syndrome" in traditional Chinese medicine (TCM), and its etiology and pathogenesis are complex and unclear. It is characterized by high prevalence, high disability rate, and high recurrence rate, which seriously affect human health, and its treatment has become a research hotspot worldwide. At present, the antidepressants commonly used in the clinic are mainly Western medicine (WM), but there are problems such as frequent side effects and poor efficacy. Studies have found that the use of TCM prescriptions in the treatment of depression can achieve the same effect as WM; and when TCM prescriptions are combined with WM, the efficacy can be enhanced while the adverse effects of WM can be reduced. Pharmacological studies related to the treatment of depression with traditional Chinese medicine prescriptions (TCMPs) have focused on the neurobiochemical system, gut microbes, and energy metabolism in mitochondria. No one has yet reviewed the pharmacological mechanism of TCMPs for depression. So, this paper reviews the pharmacological mechanism of TCMPs for depression from the perspective of TCMPs, introduces the progress of research on classical TCMPs for depression and their antidepressant mechanism. This article aims to promote the application of TCMPs in the clinic and provide a new therapeutic idea for the clinical treatment of depression.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Ruyu Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiying Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Baorui Cao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxiang Han
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Villa RF, Ferrari F, Gorini A. Effects of Chronic Hypertension on the Energy Metabolism of Cerebral Cortex Mitochondria in Normotensive and in Spontaneously Hypertensive Rats During Aging. Neuromolecular Med 2024; 26:2. [PMID: 38393429 DOI: 10.1007/s12017-023-08772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
Abstract
In this study the subcellular modifications undergone by cerebral cortex mitochondrial metabolism in chronic hypertension during aging were evaluated. The catalytic properties of regulatory energy-linked enzymes of Tricarboxylic Acid Cycle (TCA), Electron Transport Chain (ETC) and glutamate metabolism were assayed on non-synaptic mitochondria (FM, located in post-synaptic compartment) and on intra-synaptic mitochondria of pre-synaptic compartment, furtherly divided in "light" (LM) and "heavy" (HM) mitochondria, purified form cerebral cortex of normotensive Wistar Kyoto Rats (WKY) versus Spontaneously Hypertensive Rats (SHR) at 6, 12 and 18 months. During physiological aging, the metabolic machinery was differently expressed in pre- and post-synaptic compartments: LM and above all HM were more affected by aging, displaying lower ETC activities. In SHR at 6 months, FM and LM showed an uncoupling between TCA and ETC, likely as initial adaptive response to hypertension. During pathological aging, HM were particularly affected at 12 months in SHR, as if the adaptive modifications in FM and LM at 6 months granted a mitochondrial functional balance, while at 18 months all the neuronal mitochondria displayed decreased metabolic fluxes versus WKY. This study describes the effects of chronic hypertension on cerebral mitochondrial energy metabolism during aging through functional proteomics of enzymes at subcellular levels, i.e. in neuronal soma and synapses. In addition, this represents the starting point to envisage an experimental physiopathological model which could be useful also for pharmacological studies, to assess drug actions during the development of age-related pathologies that could coexist and/or are provoked by chronic hypertension.
Collapse
Affiliation(s)
- Roberto Federico Villa
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| | - Federica Ferrari
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy
- School of Neurology, Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi. 21, 27100, Pavia, Italy
| | - Antonella Gorini
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| |
Collapse
|
3
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
4
|
Pan X, Giustarini D, Lang F, Rossi R, Wieder T, Köberle M, Ghashghaeinia M. Desipramine induces eryptosis in human erythrocytes, an effect blunted by nitric oxide donor sodium nitroprusside and N-acetyl-L-cysteine but enhanced by Calcium depletion. Cell Cycle 2023; 22:1827-1853. [PMID: 37522842 PMCID: PMC10599211 DOI: 10.1080/15384101.2023.2234177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniela Giustarini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Florian Lang
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ranieri Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Thomas Wieder
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Karnecki K, Świerczyński J, Steiner J, Krzyżanowska M, Kaliszan M, Gos T. The left-lateralisation of citrate synthase activity in the anterior cingulate cortex of male violent suicide victims. Eur Arch Psychiatry Clin Neurosci 2023; 273:1225-1232. [PMID: 36350374 PMCID: PMC10449962 DOI: 10.1007/s00406-022-01509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
The anterior cingulate cortex (AC) as a part of prefrontal cortex plays a crucial role in behavioural regulation, which is profoundly disturbed in suicide. Citrate synthase (CS) is a key enzyme of tricarboxylic acid cycle fundamental for brain energetics and neurotransmitter synthesis, which are deteriorated in suicidal behaviour. However, CS activity has not been yet studied in brain structures of suicide victims. CS activity assay was performed bilaterally on frozen samples of the rostral part of the AC of 24 violent suicide completers (21 males and 3 females) with unknown psychiatric diagnosis and 24 non-suicidal controls (20 males and 4 females). Compared to controls, suicide victims revealed decreased CS activity in the right AC, however, insignificant. Further statistical analysis of laterality index revealed the left-lateralisation of CS activity in the AC in male suicides compared to male controls (U-test P = 0.0003, corrected for multiple comparisons). The results were not confounded by postmortem interval, blood alcohol concentration, age, and brain weight. Our findings suggest that disturbed CS activity in the AC plays a role in suicide pathogenesis and correspond with our previous morphological and molecular studies of prefrontal regions in suicide.
Collapse
Affiliation(s)
- Karol Karnecki
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | | | - Johann Steiner
- Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | - Michał Kaliszan
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland.
| |
Collapse
|
6
|
Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci 2022; 16:1042442. [PMID: 36458039 PMCID: PMC9707801 DOI: 10.3389/fnins.2022.1042442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and one of the leading indications for liver transplantation. It is one of the many manifestations of insulin resistance and metabolic syndrome as well as an independent risk factor for cardiovascular disease. There is growing evidence linking the incidence of NAFLD with psychiatric illnesses such as schizophrenia, bipolar disorder and depression mechanistically via genetic, metabolic, inflammatory and environmental factors including smoking and psychiatric medications. Indeed, patients prescribed antipsychotic medications, regardless of diagnosis, have higher incidence of NAFLD than population norms. The mechanistic pharmacology of antipsychotic-associated NAFLD is beginning to emerge. In this review, we aim to discuss the pathophysiology of NAFLD including its risk factors, insulin resistance and systemic inflammation as well as its intersection with psychiatric illnesses.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
7
|
Brain Bioenergetics in Chronic Hypertension: Risk Factor for Acute Ischemic Stroke. Biochem Pharmacol 2022; 205:115260. [PMID: 36179931 DOI: 10.1016/j.bcp.2022.115260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
Chronic hypertension is one of the key modifiable risk factors for acute ischemic stroke, also contributing to determine greater neurological deficits and worse functional outcome when an acute cerebrovascular event would occur. A tight relationship exists between cerebrovascular autoregulation, neuronal activity and brain bioenergetics. In chronic hypertension, progressive adaptations of these processes occur as an attempt to cope with the demanding necessity of brain functions, creating a new steady-state homeostatic condition. However, these adaptive modifications are insufficient to grant an adequate response to possible pathological perturbations of the established fragile hemodynamic and metabolic homeostasis. In this narrative review, we will discuss the main mechanisms by which alterations in brain bioenergetics and mitochondrial function in chronic hypertension could lead to increased risk of acute ischemic stroke, stressing the interconnections between hemodynamic factors (i.e. cerebral autoregulation and neurovascular coupling) and metabolic processes. Both experimental and clinical pieces of evidence will be discussed. Moreover, the potential role of mitochondrial dysfunction in determining, or at least sustaining, the pathogenesis and progression of chronic neurogenic hypertension will be considered. In the perspective of novel therapeutic strategies aiming at improving brain bioenergetics, we propose some determinant factors to consider in future studies focused on the cause-effect relationships between chronic hypertension and brain bioenergetic abnormalities (and vice versa), so to help translational research in this so-far unfilled gap.
Collapse
|
8
|
Filipović D, Novak B, Xiao J, Yan Y, Yeoh K, Turck CW. Chronic Fluoxetine Treatment of Socially Isolated Rats Modulates Prefrontal Cortex Proteome. Neuroscience 2022; 501:52-71. [PMID: 35963583 DOI: 10.1016/j.neuroscience.2022.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Fluoxetine (Flx) is the most commonly used antidepressant to treat major depressive disorder. However, its molecular mechanisms of action are not defined as yet. A comparative proteomic approach was used to identify proteome changes in the prefrontal cortex (PFC) cytosolic and non-synaptic mitochondria (NSM)-enriched fractions of adult male Wistar rats following chronic social isolation (CSIS), a rat model of depression, and Flx treatment in CSIS and control rats, using liquid chromatography online tandem mass spectrometry. Flx reversed CSIS-induced depressive - like behavior according to preference for sucrose and immobility in the forced swim test, indicating its antidepressant effect. Flx treatment in controls led to an increase of the expression of cytosolic proteins involved in the microtubule cytoskeleton and intracellular calcium homeostasis and of enzymes involved in bioenergetic and transmembrane transport in NSM. CSIS downregulated the cytosolic proteins involved in proteasome pathway, and glutathione antioxidative system, and upregulated the expression of enzymes participating in mitochondrial-energy metabolism and transport. The presence of cytochrome c in the cytosol may suggest compromised mitochondrial membrane integrity. Flx treatment in CSIS rats downregulated protein involved in oxidative phosphorylation, such as complex III and manganese superoxide dismutase, and upregulated vesicle-mediated transport and synaptic signaling proteins in the cytosol, and neuronal calcium-binding protein 1 in NSM. Our study identified PFC modulated proteins and affected biochemical pathways that may represent potential markers/targets underlying CSIS-induced depression and effective Flx treatment, and highlights the role of protein systems involved in NSM and various metabolic pathways potentially involved in neuronal plasticity.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yu Yan
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Karin Yeoh
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
9
|
Kennedy MD, Connaughton VP. Differential effects of fluoxetine on the phototactic behavior of 3 amphipod species (Crustacea; Amphipoda). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103889. [PMID: 35605929 DOI: 10.1016/j.etap.2022.103889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
We document phototactic responses in different amphipod populations of Gammarus minus, Stygobromus tenuis, and Crangonyx shoemakeri, each collected at 2-3 sites within the Washington DC area. We then assessed how baseline phototaxis was altered following either short-term (3-week) or long-term (6-week) exposure to 0.05 µg/L or 0.5 µg/L fluoxetine. Our results classify all species as significantly photonegative, a response that depended solely on the presence, not quality, of light. Short-term fluoxetine exposure caused some animals to become photoneutral, regardless of concentration, while others remained photonegative. Long-term exposure to 0.5 µg/L fluoxetine caused photoneutral behaviors in all surviving populations; exposure to 0.05 µg/L had variable effects. These differential effects were due to a significant effect of population/sampling location on photobehavior. Overall, these results identify species-specific effects of chronic fluoxetine exposure and underscore how the response to light in 7 geographically distinct populations is uniquely tuned to requirements for survival.
Collapse
|
10
|
Krivosova M, Gondas E, Murin R, Dohal M, Ondrejka I, Tonhajzerova I, Hutka P, Ferencova N, Visnovcova Z, Hrtanek I, Mokry J. The Plasma Levels of 3-Hydroxybutyrate, Dityrosine, and Other Markers of Oxidative Stress and Energy Metabolism in Major Depressive Disorder. Diagnostics (Basel) 2022; 12:diagnostics12040813. [PMID: 35453861 PMCID: PMC9025710 DOI: 10.3390/diagnostics12040813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental disease with a pathophysiology that is not yet fully clarified. An increasing number of studies show an association of MDD with energy metabolism alteration and the presence of oxidative stress. We aimed to evaluate plasma levels of 3-hydroxybutyrate (3HB), NADH, myeloperoxidase, and dityrosine (di-Tyr) in adolescent and adult patients with MDD, compare them with healthy age-matched controls, and assess the effect of antidepressant treatment during hospitalisation on these levels. In our study, plasmatic levels of 3HB were elevated in both adolescents (by 55%; p = 0.0004) and adults (by 88%; p < 0.0001) with MDD compared to controls. Levels of dityrosine were increased in MDD adults (by 19%; p = 0.0092) but not adolescents. We have not found any significant effect of antidepressants on the selected parameters during the short observation period. Our study supports the findings suggesting altered energy metabolism in MDD and demonstrates its presence independently of the age of the patients.
Collapse
Affiliation(s)
- Michaela Krivosova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (N.F.); (Z.V.)
| | - Eduard Gondas
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (R.M.)
| | - Radovan Murin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (R.M.)
| | - Matus Dohal
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (I.O.); (P.H.); (I.H.)
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Hutka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (I.O.); (P.H.); (I.H.)
| | - Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (N.F.); (Z.V.)
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (N.F.); (Z.V.)
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (I.O.); (P.H.); (I.H.)
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Correspondence:
| |
Collapse
|
11
|
Villa RF, Gorini A, Ferrari F. Clonidine and Brain Mitochondrial Energy Metabolism: Pharmacodynamic Insights Beyond Receptorial Effects. Neurochem Res 2022; 47:1429-1441. [DOI: 10.1007/s11064-022-03541-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022]
|
12
|
Caruso G, Grasso M, Fidilio A, Torrisi SA, Musso N, Geraci F, Tropea MR, Privitera A, Tascedda F, Puzzo D, Salomone S, Drago F, Leggio GM, Caraci F. Antioxidant Activity of Fluoxetine and Vortioxetine in a Non-Transgenic Animal Model of Alzheimer's Disease. Front Pharmacol 2022; 12:809541. [PMID: 35002742 PMCID: PMC8740153 DOI: 10.3389/fphar.2021.809541] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Depression is a risk factor for the development of Alzheimer’s disease (AD). A neurobiological and clinical continuum exists between AD and depression, with neuroinflammation and oxidative stress being involved in both diseases. Second-generation antidepressants, in particular selective serotonin reuptake inhibitors (SSRIs), are currently investigated as neuroprotective drugs in AD. By employing a non-transgenic AD model, obtained by intracerebroventricular (i.c.v.) injection of amyloid-β (Aβ) oligomers in 2-month-old C57BL/6 mice, we recently demonstrated that the SSRI fluoxetine (FLX) and the multimodal antidepressant vortioxetine (VTX) reversed the depressive-like phenotype and memory deficits induced by Aβ oligomers rescuing the levels of transforming growth factor-β1 (TGF-β1). Aim of our study was to test FLX and VTX for their ability to prevent oxidative stress in the hippocampus of Aβ-injected mice, a brain area strongly affected in both depression and AD. The long-term intraperitoneal (i.p.) administration of FLX (10 mg/kg) or VTX (5 and 10 mg/kg) for 24 days, starting 7 days before Aβ injection, was able to prevent the over-expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase 2 (Nox2) induced by Aβ oligomers. Antidepressant pre-treatment was also able to rescue the mRNA expression of glutathione peroxidase 1 (Gpx1) antioxidant enzyme. FLX and VTX also prevented Aβ-induced neurodegeneration in mixed neuronal cultures treated with Aβ oligomers. Our data represent the first evidence that the long-term treatment with the antidepressants FLX or VTX can prevent the oxidative stress phenomena related to the cognitive deficits and depressive-like phenotype observed in a non-transgenic animal model of AD.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Margherita Grasso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Annamaria Fidilio
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Fabio Tascedda
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Puzzo
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
13
|
Ramos-da-Silva L, Carlson PT, Silva-Costa LC, Martins-de-Souza D, de Almeida V. Molecular Mechanisms Associated with Antidepressant Treatment on Major Depression. Complex Psychiatry 2021; 7:49-59. [PMID: 35813936 PMCID: PMC8739385 DOI: 10.1159/000518098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/23/2021] [Indexed: 11/25/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and multifactorial psychiatric disorder that causes serious health, social, and economic concerns worldwide. The main treatment of the symptoms is through antidepressant (AD) drugs. However, not all patients respond properly to these drugs. Omic sciences are widely used to analyze not only biomarkers for the AD response but also their molecular mechanism. In this review, we aimed to focus on omics data to better understand the molecular mechanisms involving AD effects on MDD. We consistently found, from preclinical to clinical data, that glutamatergic transmission, immune/inflammatory processes, energy metabolism, oxidative stress, and lipid metabolism were associated with traditional and potential new ADs. Despite efforts of studies investigating biomarkers of response to ADs, which could contribute to personalized treatment, there is no biomarker panel available for clinical application. From clinical genomic studies, we found that the main findings contribute to the development of pharmacogenomic tests for AD efficacy for each patient. Several studies pointed at DRD2, PXDNL, CACNA1E, and CACNA2D1 genes as potential targets for MDD treatment and the efficacy and rapid-antidepressant effect of ketamine. Finally, more in-depth studies of the molecular targets pointed here are needed to determine the clinical relevance and provide further evidence for precision MDD treatment.
Collapse
Affiliation(s)
- Lívia Ramos-da-Silva
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Pamela T. Carlson
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Licia C. Silva-Costa
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Valéria de Almeida
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
14
|
Ling-Hu T, Liu SB, Gao Y, Han YM, Tian JS, Qin XM. Stable Isotope-Resolved Metabolomics Reveals the Abnormal Brain Glucose Catabolism in Depression Based on Chronic Unpredictable Mild Stress Rats. J Proteome Res 2021; 20:3549-3558. [PMID: 34077228 DOI: 10.1021/acs.jproteome.1c00155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The severe harm of depression to human life has attracted great attention to neurologists, but its pathogenesis is extremely complicated and has not yet been fully elaborated. Here, we provided a new strategy for revealing the specific pathways of abnormal brain glucose catabolism in depression, based on the supply of energy substrates and the evaluation of the mitochondrial structure and function. By using stable isotope-resolved metabolomics, we discovered that the tricarboxylic acid cycle (TCA cycle) is blocked and gluconeogenesis is abnormally activated in chronic unpredictable mild stress (CUMS) rats. In addition, our results showed an interesting phenomenon that the brain attempted to activate all possible metabolic enzymes in energy-producing pathways, but CUMS rats still exhibited a low TCA cycle activity due to impaired mitochondria. Depression caused the mitochondrial structure and function to be impaired and then led to abnormal brain glucose catabolism. The combination of the stable isotope-resolved metabolomics and mitochondrial structure and function analysis can accurately clarify the mechanism of depression. The mitochondrial pyruvate carrier and acetyl-CoA may be the key targets for depression treatment. The strategy provides a unique insight for exploring the mechanism of depression, the discovery of new targets, and the development of ideal novel antidepressants. Data are available via ProteomeXchange with identifier PXD025548.
Collapse
Affiliation(s)
- Ting Ling-Hu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Shao-Bo Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yu-Mei Han
- School of Physical Education, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China.,The Institute for Biomedicine and Health, Shanxi University, Taiyuan 030006, Shanxi, China
| |
Collapse
|
15
|
Emmerzaal TL, Nijkamp G, Veldic M, Rahman S, Andreazza AC, Morava E, Rodenburg RJ, Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci Biobehav Rev 2021; 127:555-571. [PMID: 34000348 DOI: 10.1016/j.neubiorev.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023]
Abstract
Individuals with mitochondrial disease often present with psychopathological comorbidity, and mitochondrial dysfunction has been proposed as the underlying pathobiology in various psychiatric disorders. Several studies have suggested that medications used to treat neuropsychiatric disorders could directly influence mitochondrial function. This review provides a comprehensive overview of the effect of these medications on mitochondrial function. We collected preclinical information on six major groups of antidepressants and other neuropsychiatric medications and found that the majority of these medications either positively influenced mitochondrial function or showed mixed effects. Only amitriptyline, escitalopram, and haloperidol were identified as having exclusively adverse effects on mitochondrial function. In the absence of formal clinical trials, and until such trials are completed, the data from preclinical studies reported and discussed here could inform medication prescribing practices for individuals with psychopathology and impaired mitochondrial function in the underlying pathology.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | - Gerben Nijkamp
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands
| | - Marin Veldic
- Mayo Clinic, Department of Psychiatry, Rochester, MN, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ana Cristina Andreazza
- University of Toronto, Temerty Faculty of Medicine, Department of Pharmacology & Toxicology and Psychiatry, Toronto, Canada
| | - Eva Morava
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Biochemistry and Molecular Biology, Rochester, MN, USA.
| |
Collapse
|
16
|
Głombik K, Budziszewska B, Basta-Kaim A. Mitochondria-targeting therapeutic strategies in the treatment of depression. Mitochondrion 2021; 58:169-178. [PMID: 33766747 DOI: 10.1016/j.mito.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Depression is an affective disease with a complex clinical picture that is characterized by mood and emotional disturbances. It is known that several factors contribute to the risk of developing depression. The concept that mitochondrial dysfunction is one of the causes of depression is supported by a wide range of studies on cell cultures, animal models, and clinical research. An understanding the relationship between mitochondrial processes and central nervous system abnormalities that occur in the course of depression can guide the development of novel mitochondrial targeted therapeutic strategies as well as the usage of currently available antidepressants in a new context. This brief review aims to summarize recent findings on mitochondria dysfunction in depression, provide insight into therapeutic strategies targeting mitochondrial pathways, allude to future promising therapies, and discuss factors that can be used to improve treatment outcomes. The main focus is on new aspects (the effects of nutraceuticals and physical activity on brain metabolism), which can be combined with the available treatment options [monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs) and atypical drugs] to enhance their therapeutic effects.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland.
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| |
Collapse
|
17
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Tianeptine Enhances Energy-related Processes in the Hippocampal Non-synaptic Mitochondria in a Rat Model of Depression. Neuroscience 2020; 451:111-125. [DOI: 10.1016/j.neuroscience.2020.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
|
19
|
Rappeneau V, Wilmes L, Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol Cell Neurosci 2020; 109:103555. [PMID: 32979495 DOI: 10.1016/j.mcn.2020.103555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent stress-related mental disorders worldwide. Several biological mechanisms underlying the pathophysiology of MDD have been proposed, including endocrine disturbances, neurotransmitter deficits, impaired neuronal plasticity, and more recently, mitochondrial dysfunctions. In this review, we provide an overview of relevant molecular correlates of mitochondrial dysfunction in MDD, based on findings from clinical studies and stress-induced rodent models. We also compare differences and similarities between the phenotypes of MDD patients and animal models. Our analysis of the literature reveals that both MDD and stress are associated, in humans and animals, with changes in mitochondrial biogenesis, redox imbalance, increased oxidative damages of cellular macromolecules, and apoptosis. Yet, a considerable amount of conflicting data exist and therefore, the translation of findings from clinical and preclinical research to novel therapies for MDD remains complex. Further studies are needed to advance our understanding of the molecular networks and biological mechanisms involving mitochondria in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany.
| | - Lars Wilmes
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Chadi Touma
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
20
|
Filipović D, Perić I, Costina V, Stanisavljević A, Gass P, Findeisen P. Social isolation stress-resilient rats reveal energy shift from glycolysis to oxidative phosphorylation in hippocampal nonsynaptic mitochondria. Life Sci 2020; 254:117790. [DOI: 10.1016/j.lfs.2020.117790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 11/28/2022]
|
21
|
Emmerzaal TL, Jacobs L, Geenen B, Verweij V, Morava E, Rodenburg RJ, Kozicz T. Chronic fluoxetine or ketamine treatment differentially affects brain energy homeostasis which is not exacerbated in mice with trait suboptimal mitochondrial function. Eur J Neurosci 2020; 53:2986-3001. [PMID: 32644274 DOI: 10.1111/ejn.14901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
Antidepressants have been shown to influence mitochondrial function directly, and suboptimal mitochondrial function (SMF) has been implicated in complex psychiatric disorders. In the current study, we used a mouse model for trait SMF to test the hypothesis that chronic fluoxetine treatment in mice subjected to chronic stress would negatively impact brain bioenergetics, a response that would be more pronounced in mice with trait SMF. In contrast, we hypothesized that chronic ketamine treatment would positively impact mitochondrial function in both WT and mice with SMF. We used an animal model for trait SMF, the Ndufs4GT/GT mice, which exhibit 25% lower mitochondrial complex I activity. In addition to antidepressant treatment, mice were subjected to chronic unpredictable stress (CUS). This paradigm is widely used to model complex behaviours expressed in various psychiatric disorders. We assayed several physiological indices as proxies for the impact of chronic stress and antidepressant treatment. Furthermore, we measured brain mitochondrial complex activities using clinically validated assays as well as established metabolic signatures using targeted metabolomics. As hypothesized, we found evidence that chronic fluoxetine treatment negatively impacted brain bioenergetics. This phenotype was, however, not further exacerbated in mice with trait SMF. Ketamine did not have a significant influence on brain mitochondrial function in either genotype. Here we report that trait SMF could be a moderator for an individual's response to antidepressant treatment. Based on these results, we propose that in individuals with SMF and comorbid psychopathology, fluoxetine should be avoided, whereas ketamine could be a safer choice of treatment.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Leah Jacobs
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bram Geenen
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Effects of resveratrol on the levels of ATP, 5-HT and GAP-43 in the hippocampus of mice exposed to chronic unpredictable mild stress. Neurosci Lett 2020; 735:135232. [PMID: 32621948 DOI: 10.1016/j.neulet.2020.135232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence suggested that energy deficiency might be involved in the pathophysiological mechanism of depression. Energy deficiency, mainly results from mitochondrial damage, can lead to the dysfunction of synaptic neurotransmission, and further cause depressive-like behavior. The antidepressant effect of resveratrol had been widely demonstrated in previous studies; however, the underlying mechanism remains poorly understood. The present study aimed to investigate whether the antidepressant effects of resveratrol involved in the energy levels and neurotransmission in the hippocampus. We found that resveratrol and fluoxetine significantly attenuated depressive-like behaviors induced by chronic unpredictable mild stress (CUMS), which evidenced by the increased sucrose preference and the reduced immobility time in a forced swimming test. In addition, resveratrol increased hippocampal ATP levels, decreased Na+-K+-ATPase and pyruvate levels, and upregulated the levels of mitochondrial DNA (mtDNA), mRNA expression of sirtuin (SIRT)1 and peroxisome proliferator-activated receptor γ coactivator (PGC)1α. Furthermore, resveratrol and fluoxetine increased serotonin (5-HT) levels and downregulated the mRNA expression of 5-HT transporter (SERT) in the hippocampus. The decreased protein expression of growth-associated protein (GAP)-43 induced by CUMS was also ameliorated by resveratrol and fluoxetine. These findings demonstrated the antidepressant effects of resveratrol and suggested that resveratrol was able to promote mitochondrial biogenesis, enhance ATP and 5-HT levels, as well as upregulate GAP-43 expression in the hippocampus.
Collapse
|
23
|
Riquin E, Duverger P, Cariou C, Barth M, Prouteau C, Van Bogaert P, Bonneau D, Roy A. Neuropsychological and Psychiatric Features of Children and Adolescents Affected With Mitochondrial Diseases: A Systematic Review. Front Psychiatry 2020; 11:747. [PMID: 32848925 PMCID: PMC7399331 DOI: 10.3389/fpsyt.2020.00747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Mitochondrial diseases (MDs) are a group of clinically heterogeneous genetic disorders that arise as the result of dysfunctional mitochondria. Only few medical articles deal with neuropsychological or psychiatric aspects of MDs. AIM The present article aims to provide a systematic review of neuropsychological and psychiatric aspects of MDs. METHODS In order to identify all studies dealing with psychiatric and neuropsychological aspects of MDs in children and adolescents, we performed a search in the medical literature between April 2009 and April 2019 using PubMed, Cochrane, and Web of Science and we defined inclusion and exclusion criteria. RESULTS We found only seven studies that satisfy the inclusion requirements and criteria. The main psychiatric aspects reported in MDs were depressive and behavioral disorders. With regard to the neuropsychological aspects of MDs, developmental analyses showed an overall deterioration and developmental delay. INTERPRETATION Children and adolescents with MDs may present psychiatric symptoms and neuropsychological impairment. A more systematic investigation of psychiatric and neuropsychological features of MDs is needed to foster a better understanding of the phenotype of these diseases and their links with the genotype, which may have significant implications for the developmental trajectories of patients.
Collapse
Affiliation(s)
- Elise Riquin
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France.,Mitovasc Unit, UMR CNRS 6015-INSERM 1083, Angers, France.,Laboratory of Psychology, LPPL EA4638, University of Angers, Angers, France
| | - Philippe Duverger
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France.,Laboratory of Psychology, LPPL EA4638, University of Angers, Angers, France
| | - Cindy Cariou
- Department of Child and Adolescent Psychiatry, University Hospital of Angers, Angers, France
| | - Magalie Barth
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Clément Prouteau
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Patrick Van Bogaert
- Department of Pediatric Neurology, Angers University Hospital, Angers, France
| | - Dominique Bonneau
- Mitovasc Unit, UMR CNRS 6015-INSERM 1083, Angers, France.,Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Arnaud Roy
- Laboratory of Psychology, LPPL EA4638, University of Angers, Angers, France.,Reference Center for Learning Disabilities, Nantes University Hospital, Nantes, France
| |
Collapse
|
24
|
Askalsky P, Iosifescu DV. Transcranial Photobiomodulation For The Management Of Depression: Current Perspectives. Neuropsychiatr Dis Treat 2019; 15:3255-3272. [PMID: 31819453 PMCID: PMC6878920 DOI: 10.2147/ndt.s188906] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent condition associated with high rates of disability, as well as suicidal ideation and behavior. Current treatments for MDD have significant limitations in efficacy and side effect burden. FDA-approved devices for MDD are burdensome (due to repeated in-office procedures) and are most suitable for severely ill subjects. There is a critical need for device-based treatments in MDD that are efficacious, well-tolerated, and easy to use. In this paper, we review a novel neuromodulation strategy, transcranial photobiomodulation (t-PBM) with near-infrared light (NIR). The scope of our review includes the known biological mechanisms of t-PBM, as well as its efficacy in animal models of depression and in patients with MDD. Theoretically, t-PBM penetrates into the cerebral cortex, stimulating the mitochondrial respiratory chain, and also significantly increases cerebral blood flow. Animal and human studies, using a variety of t-PBM settings and experimental models, suggest that t-PBM may have significant efficacy and good tolerability in MDD. In aggregate, these data support the need for large confirmatory studies for t-PBM as a novel, likely safe, and easy-to-administer antidepressant treatment.
Collapse
Affiliation(s)
- Paula Askalsky
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
| | - Dan V Iosifescu
- Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA
- Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
25
|
Caruso G, Benatti C, Blom JMC, Caraci F, Tascedda F. The Many Faces of Mitochondrial Dysfunction in Depression: From Pathology to Treatment. Front Pharmacol 2019; 10:995. [PMID: 31551791 PMCID: PMC6746908 DOI: 10.3389/fphar.2019.00995] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Joan M C Blom
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Caraci
- Oasi Research Institute, IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
26
|
Caruso G, Fresta CG, Fidilio A, O'Donnell F, Musso N, Lazzarino G, Grasso M, Amorini AM, Tascedda F, Bucolo C, Drago F, Tavazzi B, Lazzarino G, Lunte SM, Caraci F. Carnosine Decreases PMA-Induced Oxidative Stress and Inflammation in Murine Macrophages. Antioxidants (Basel) 2019; 8:E281. [PMID: 31390749 PMCID: PMC6720685 DOI: 10.3390/antiox8080281] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine. This naturally occurring molecule is present at high concentrations in several mammalian excitable tissues such as muscles and brain, while it can be found at low concentrations in a few invertebrates. Carnosine has been shown to be involved in different cellular defense mechanisms including the inhibition of protein cross-linking, reactive oxygen and nitrogen species detoxification as well as the counteraction of inflammation. As a part of the immune response, macrophages are the primary cell type that is activated. These cells play a crucial role in many diseases associated with oxidative stress and inflammation, including atherosclerosis, diabetes, and neurodegenerative diseases. In the present study, carnosine was first tested for its ability to counteract oxidative stress. In our experimental model, represented by RAW 264.7 macrophages challenged with phorbol 12-myristate 13-acetate (PMA) and superoxide dismutase (SOD) inhibitors, carnosine was able to decrease the intracellular concentration of superoxide anions (O2-•) as well as the expression of Nox1 and Nox2 enzyme genes. This carnosine antioxidant activity was accompanied by the attenuation of the PMA-induced Akt phosphorylation, the down-regulation of TNF-α and IL-6 mRNAs, and the up-regulation of the expression of the anti-inflammatory mediators IL-4, IL-10, and TGF-β1. Additionally, when carnosine was used at the highest dose (20 mM), there was a generalized amelioration of the macrophage energy state, evaluated through the increase both in the total nucleoside triphosphate concentrations and the sum of the pool of intracellular nicotinic coenzymes. Finally, carnosine was able to decrease the oxidized (NADP+)/reduced (NADPH) ratio of nicotinamide adenine dinucleotide phosphate in a concentration dependent manner, indicating a strong inhibitory effect of this molecule towards the main source of reactive oxygen species in macrophages. Our data suggest a multimodal mechanism of action of carnosine underlying its beneficial effects on macrophage cells under oxidative stress and inflammation conditions.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy.
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Annamaria Fidilio
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Fergal O'Donnell
- School of Biotechnology, Dublin City University, D09W6Y4 Dublin, Ireland
| | - Nicolò Musso
- Bio-Nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Margherita Grasso
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Angela M Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Department of Laboratories, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
27
|
Torrisi SA, Geraci F, Tropea MR, Grasso M, Caruso G, Fidilio A, Musso N, Sanfilippo G, Tascedda F, Palmeri A, Salomone S, Drago F, Puzzo D, Leggio GM, Caraci F. Fluoxetine and Vortioxetine Reverse Depressive-Like Phenotype and Memory Deficits Induced by Aβ 1-42 Oligomers in Mice: A Key Role of Transforming Growth Factor-β1. Front Pharmacol 2019; 10:693. [PMID: 31293421 PMCID: PMC6598642 DOI: 10.3389/fphar.2019.00693] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Depression is a risk factor for the development of Alzheimer’s disease (AD), and the presence of depressive symptoms significantly increases the conversion of mild cognitive impairment (MCI) into AD. A long-term treatment with antidepressants reduces the risk to develop AD, and different second-generation antidepressants such as selective serotonin reuptake inhibitors (SSRIs) are currently being studied for their neuroprotective properties in AD. In the present work, the SSRI fluoxetine and the new multimodal antidepressant vortioxetine were tested for their ability to prevent memory deficits and depressive-like phenotype induced by intracerebroventricular injection of amyloid-β (1-42) (Aβ1-42) oligomers in 2-month-old C57BL/6 mice. Starting from 7 days before Aβ injection, fluoxetine (10 mg/kg) and vortioxetine (5 and 10 mg/kg) were intraperitoneally injected daily for 24 days. Chronic treatment with fluoxetine and vortioxetine (both at the dose of 10 mg/kg) was able to rescue the loss of memory assessed 14 days after Aβ injection by the passive avoidance task and the object recognition test. Both antidepressants reversed the increase in immobility time detected 19 days after Aβ injection by forced swim test. Vortioxetine exerted significant antidepressant effects also at the dose of 5 mg/kg. A significant deficit of transforming growth factor-β1 (TGF-β1), paralleling memory deficits and depressive-like phenotype, was found in the hippocampus of Aβ-injected mice in combination with a significant reduction of the synaptic proteins synaptophysin and PSD-95. Fluoxetine and vortioxetine completely rescued hippocampal TGF-β1 levels in Aβ-injected mice as well as synaptophysin and PSD-95 levels. This is the first evidence that a chronic treatment with fluoxetine or vortioxetine can prevent both cognitive deficits and depressive-like phenotype in a non-transgenic animal model of AD with a key contribution of TGF-β1.
Collapse
Affiliation(s)
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Margherita Grasso
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | | | | | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, Catania, Italy
| | - Giulia Sanfilippo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabio Tascedda
- Department of Life Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
28
|
Benatti C, Radighieri G, Alboni S, Blom JMC, Brunello N, Tascedda F. Modulation of neuroplasticity-related targets following stress-induced acute escape deficit. Behav Brain Res 2019; 364:140-148. [PMID: 30771367 DOI: 10.1016/j.bbr.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Understanding resilience is a major challenge to improve current pharmacological therapies aimed at complementing psychological-based approaches of stress-related disorders. In particular, resilience is a multi-factorial construct where the complex network of molecular events that drive the process still needs to be resolved. Here, we exploit the acute escape deficit model, an animal model based on exposure to acute unavoidable stress followed by an escape test, to define vulnerable and resilient phenotypes in rats. Hippocampus and prefrontal cortex (PFC), two of the brain areas most involved in the stress response, were analysed for gene expression at two different time points (3 and 24 h) after the escape test. Total Brain-Derived Neurotrophic Factor (BDNF) was highly responsive in the PFC at 24-h after the escape test, while expression of BDNF transcript IV increased in the hippocampus of resistant animals 3 h post-test. Expression of memory enhancers like Neuronal PAS Domain Protein 4 (Npas4) and Activity-regulated cytoskeleton-associated protein (Arc) decreased in a time- and region-dependent fashion in both behavioural phenotypes. Also, the memory inhibitor Protein Phosphatase 1 (Ppp1ca) was increased in the hippocampus of resilient rats at 3 h post-test. Given the importance of neurotrophic factors and synaptic plasticity-related genes for the development of appropriate coping strategies, our data contribute to an additional step forward in the comprehension of the psychobiology of stress and resiliency.
Collapse
Affiliation(s)
- C Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - S Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - J M C Blom
- Department of Education and Human Sciences, University of Modena and Reggio Emilia, viale Antonio Allegri 9, 42121, Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
29
|
Ferrari F, Viscardi P, Gorini A, Villa RF. Synaptic ATPases system of rat frontal cerebral cortex during aging. Neurosci Lett 2019; 694:74-79. [DOI: 10.1016/j.neulet.2018.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 01/28/2023]
|
30
|
The onset of treatment with the antidepressant desipramine is critical for the emotional consequences of neuropathic pain. Pain 2018; 159:2606-2619. [DOI: 10.1097/j.pain.0000000000001372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Ferrari F, Gorini A, Hoyer S, Villa RF. Glutamate metabolism in cerebral mitochondria after ischemia and post-ischemic recovery during aging: relationships with brain energy metabolism. J Neurochem 2018; 146:416-428. [PMID: 29779216 DOI: 10.1111/jnc.14464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
Glutamate is involved in cerebral ischemic injury, but its role has not been completely clarified and studies are required to understand how to minimize its detrimental effects, contemporarily boosting the positive ones. In fact, glutamate is not only a neurotransmitter, but primarily a key metabolite for brain bioenergetics. Thus, we investigated the relationships between glutamate and brain energy metabolism in an in vivo model of complete cerebral ischemia of 15 min and during post-ischemic recovery after 1, 24, 48, 72, and 96 h in 1-year-old adult and 2-year-old aged rats. The maximum rates (Vmax ) of glutamate dehydrogenase (GlDH), glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase were assayed in somatic mitochondria (FM) and in intra-synaptic 'Light' mitochondria and intra-synaptic 'Heavy' mitochondria ones purified from cerebral cortex, distinguishing post- and pre-synaptic compartments. During ischemia, none of the enzymes were modified in adult animals. In aged ones, glutamate-oxaloacetate transaminase was increased in FM and GlDH in intra-synaptic 'Heavy' mitochondria, stimulating glutamate catabolism. During post-ischemic recovery, FM did not show modifications at both ages while, in intra-synaptic mitochondria of adult animals, glutamate catabolism was increased after 1 h of recirculation and decreased after 48 and 72 h, whereas it remained decreased up to 96 h in aged rats. These results, with those previously published about Krebs' cycle and Electron Transport Chain (Villa et al., [2013] Neurochem. Int. 63, 765-781), demonstrate that: (i) Vmax of energy-linked enzymes are different in the various cerebral mitochondria, which (ii) respond differently to ischemia and post-ischemic recovery, also (iii) with respect to aging.
Collapse
Affiliation(s)
- Federica Ferrari
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Antonella Gorini
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Siegfried Hoyer
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.,Department of Pathology, University Clinic, University of Heidelberg, Heidelberg, Germany
| | - Roberto Federico Villa
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
32
|
Perić I, Costina V, Stanisavljević A, Findeisen P, Filipović D. Proteomic characterization of hippocampus of chronically socially isolated rats treated with fluoxetine: Depression-like behaviour and fluoxetine mechanism of action. Neuropharmacology 2018; 135:268-283. [DOI: 10.1016/j.neuropharm.2018.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
|
33
|
Silva TLA, Braz GRF, Silva SCDA, Pedroza AADS, Freitas CDM, Ferreira DJS, da Silva AI, Lagranha CJ. Serotonin transporter inhibition during neonatal period induces sex-dependent effects on mitochondrial bioenergetics in the rat brainstem. Eur J Neurosci 2018; 48:1620-1634. [PMID: 29802653 DOI: 10.1111/ejn.13971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022]
Abstract
The serotonin reuptake is mainly regulated by the serotonin transporters (SERTs), which are abundantly found in the raphe nuclei, located in the brainstem. Previous studies have shown that dysfunction in the SERT has been associated with several disorders, including depression and cardiovascular diseases. In this manuscript, we aimed to investigate how gender and the treatment with a serotonin selective reuptake inhibitor (SSRI) could affect mitochondrial bioenergetics and oxidative stress in the brainstem of male and female rats. Fluoxetine, our chosen SSRI, was used during the neonatal period (i.e., from postnatal Day 1 to postnatal Day 21-PND1 to PND21) in both male and female animals. Thereafter, experiments were conducted in adult rats (60 days old). Our results demonstrate that, during lactation, fluoxetine treatment modulates the mitochondrial bioenergetics in a sex-dependent manner, such as improving male mitochondrial function and female antioxidant capacity.
Collapse
Affiliation(s)
- Tercya Lucidi Araujo Silva
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Glauber Rudá Feitoza Braz
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | - Aline Isabel da Silva
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Claudia Jacques Lagranha
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
- Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
34
|
Villa RF, Ferrari F, Moretti A. Post-stroke depression: Mechanisms and pharmacological treatment. Pharmacol Ther 2018; 184:131-144. [DOI: 10.1016/j.pharmthera.2017.11.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Rosebush PI, Anglin RE, Rasmussen S, Mazurek MF. Mental illness in patients with inherited mitochondrial disorders. Schizophr Res 2017; 187:33-37. [PMID: 28545943 DOI: 10.1016/j.schres.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Affiliation(s)
- P I Rosebush
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Canada; MiNDS Graduate Programme, McMaster University, Canada; Biomedical Sciences Graduate Programme, McMaster University, Canada.
| | - R E Anglin
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Canada; Department of Medicine, Division of Neurology, McMaster University, Canada; MiNDS Graduate Programme, McMaster University, Canada; Biomedical Sciences Graduate Programme, McMaster University, Canada
| | - S Rasmussen
- MiNDS Graduate Programme, McMaster University, Canada
| | - M F Mazurek
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Canada; Department of Medicine, Division of Neurology, McMaster University, Canada; MiNDS Graduate Programme, McMaster University, Canada; Biomedical Sciences Graduate Programme, McMaster University, Canada
| |
Collapse
|
36
|
Adzic M, Mitic M, Radojcic M. Mitochondrial estrogen receptors as a vulnerability factor of chronic stress and mediator of fluoxetine treatment in female and male rat hippocampus. Brain Res 2017; 1671:77-84. [DOI: 10.1016/j.brainres.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/12/2017] [Accepted: 07/11/2017] [Indexed: 01/22/2023]
|
37
|
Głombik K, Stachowicz A, Trojan E, Olszanecki R, Ślusarczyk J, Suski M, Chamera K, Budziszewska B, Lasoń W, Basta-Kaim A. Evaluation of the effectiveness of chronic antidepressant drug treatments in the hippocampal mitochondria - A proteomic study in an animal model of depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:51-60. [PMID: 28526399 DOI: 10.1016/j.pnpbp.2017.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022]
Abstract
Several lines of evidence indicate that adverse experience in early life may be a triggering factor for disturbances in the brain mitochondrial proteins and lead to the development of depression in adulthood. On the other hand, little is known about the impact of chronic administration of various antidepressant drugs on the brain mitochondria, as a target for the pharmacotherapy of depression. The purpose of our study was to compare the impact of chronic treatment with two antidepressant drugs with different mechanisms of action, a tricyclic antidepressant (TCA), imipramine, and an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class, fluoxetine, on the mitochondria-enriched subproteome profile in the hippocampus of 3-month-old male rats following a prenatal stress procedure (an animal model of depression). We clearly confirmed that chronic imipramine and fluoxetine administration not only normalized depression-like disturbances evoked by the prenatal stress procedure but also modulated the mitochondria-enriched subproteome profile in the hippocampus of adult offspring rats. In line with this, two-dimensional electrophoresis coupled with mass spectrometry showed a statistically significant down-regulation of 14-3-3 and cytochrome bc1 proteins and an up-regulation of COP9 signalosome expression after chronic imipramine treatment in the hippocampus of prenatally stressed offspring. Fluoxetine administration strongly up-regulated the expression of cathepsin D, one of the key proteins involved in the prevention of the development of neurodegenerative processes. Furthermore, this antidepressant treatment enhanced expression of proteins engaged in the improvement of learning and memory processes (STMN1, Dnm-1) as well as in mitochondrial biogenesis and defense against oxidative stress (DJ-1). These findings provide new evidence that chronic administration of antidepressants exerts a varied impact on the mitochondria-enriched subproteome in the hippocampus of adult rats following a prenatal stress procedure. In particular, the effect of fluoxetine requires additional experiments to elucidate the possible beneficial biological consequences underlying the effects mediated by this antidepressant.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Kraków, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Kraków, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Joanna Ślusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Kraków, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Katarzyna Chamera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Kraków, Poland
| | - Bogusława Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343 Kraków, Poland.
| |
Collapse
|
38
|
Villa RF, Ferrari F, Bagini L, Gorini A, Brunello N, Tascedda F. Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine. Neuropharmacology 2017; 121:30-38. [DOI: 10.1016/j.neuropharm.2017.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 01/26/2023]
|
39
|
Filipović D, Costina V, Perić I, Stanisavljević A, Findeisen P. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria. Brain Res 2017; 1659:41-54. [DOI: 10.1016/j.brainres.2017.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
|
40
|
Adzic M, Brkic Z, Bulajic S, Mitic M, Radojcic MB. Antidepressant Action on Mitochondrial Dysfunction in Psychiatric Disorders. Drug Dev Res 2016; 77:400-406. [DOI: 10.1002/ddr.21332] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Miroslav Adzic
- Laboratory of Molecular Biology and Endocrinology; VINCA Institute of Nuclear Sciences, University of Belgrade; Serbia
| | - Zeljka Brkic
- Laboratory of Molecular Biology and Endocrinology; VINCA Institute of Nuclear Sciences, University of Belgrade; Serbia
| | - Sonja Bulajic
- School of Medicine; University of Pristina; Kosovska Mitrovica Serbia
| | - Milos Mitic
- Laboratory of Molecular Biology and Endocrinology; VINCA Institute of Nuclear Sciences, University of Belgrade; Serbia
| | - Marija B. Radojcic
- Laboratory of Molecular Biology and Endocrinology; VINCA Institute of Nuclear Sciences, University of Belgrade; Serbia
| |
Collapse
|
41
|
Ferrari F, Villa RF. The Neurobiology of Depression: an Integrated Overview from Biological Theories to Clinical Evidence. Mol Neurobiol 2016; 54:4847-4865. [DOI: 10.1007/s12035-016-0032-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
|