1
|
Lu LP, Chang WH, Mao YW, Cheng MC, Zhuang XY, Kuo CS, Lai YA, Shih TM, Chou TY, Tsai GE. The Development of a Regulator of Human Serine Racemase for N-Methyl-D-aspartate Function. Biomedicines 2024; 12:853. [PMID: 38672207 PMCID: PMC11048566 DOI: 10.3390/biomedicines12040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
It is crucial to regulate N-methyl-D-aspartate (NMDA) function bivalently depending on the central nervous system (CNS) conditions. CNS disorders with NMDA hyperfunction are involved in the pathogenesis of neurotoxic and/or neurodegenerative disorders with elevated D-serine, one of the NMDA receptor co-agonists. On the contrary, NMDA-enhancing agents have been demonstrated to improve psychotic symptoms and cognition in CNS disorders with NMDA hypofunction. Serine racemase (SR), the enzyme regulating both D- and L-serine levels through both racemization (catalysis from L-serine to D-serine) and β-elimination (degradation of both D- and L-serine), emerges as a promising target for bidirectional regulation of NMDA function. In this study, we explored using dimethyl malonate (DMM), a pro-drug of the SR inhibitor malonate, to modulate NMDA activity in C57BL/6J male mice via intravenous administration. Unexpectedly, 400 mg/kg DMM significantly elevated, rather than decreased (as a racemization inhibitor), D-serine levels in the cerebral cortex and plasma. This outcome prompted us to investigate the regulatory effects of dodecagalloyl-α-D-xylose (α12G), a synthesized tannic acid analog, on SR activity. Our findings showed that α12G enhanced the racemization activity of human SR by about 8-fold. The simulated and fluorescent assay of binding affinity suggested a noncooperative binding close to the catalytic residues, Lys56 and Ser84. Moreover, α12G treatment can improve behaviors associated with major CNS disorders with NMDA hypofunction including hyperactivity, prepulse inhibition deficit, and memory impairment in animal models of positive symptoms and cognitive impairment of psychosis. In sum, our findings suggested α12G is a potential therapeutic for treating CNS disorders with NMDA hypofunction.
Collapse
Affiliation(s)
- Lu-Ping Lu
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wei-Hua Chang
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Yi-Wen Mao
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Min-Chi Cheng
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Xiao-Yi Zhuang
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Chi-Sheng Kuo
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Yi-An Lai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Tsai-Miao Shih
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Teh-Ying Chou
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 112304, Taiwan
| | - Guochuan Emil Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Psychiatry and Biobehavioral Science, UCLA School of Medicine, Los Angeles, CA 90024, USA
| |
Collapse
|
2
|
Asano T, Xuan M, Iwata N, Takayama J, Hayashi K, Kato Y, Aoyama T, Sugo H, Matsuzaki H, Yuan B, Kamiuchi S, Hibino Y, Sakamoto T, Okazaki M. Involvement of the Restoration of Cerebral Blood Flow and Maintenance of eNOS Expression in the Prophylactic Protective Effect of the Novel Ferulic Acid Derivative FAD012 against Ischemia/Reperfusion Injuries in Rats. Int J Mol Sci 2023; 24:9663. [PMID: 37298615 PMCID: PMC10253792 DOI: 10.3390/ijms24119663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Tissue plasminogen activator, aiming to restore cerebral blood flow (CBF), has been used for acute ischemic strokes in clinics; however, its narrow therapeutic time window remains a serious concern. To develop novel prophylactic drugs to alleviate cerebral ischemia/reperfusion injuries, ferulic acid derivative 012 (FAD012) was synthesized and showed comparable antioxidant properties to ferulic acid (FA) and probably possesses the potent ability to cross the blood-brain barrier. A more potent cytoprotective effect of FAD012 against H2O2-induced cytotoxicity in PC12 cells was also observed. In vivo toxicity was not observed in rats given a long-term oral administration of FAD012, indicating its good tolerability. A one-week-course oral administration of FAD012 significantly alleviated middle cerebral artery occlusion (MCAO)-induced cerebral ischemia/reperfusion injuries in rats, accompanied by the restoration of CBF and endothelial nitrogen oxide synthetase (eNOS) expression. Treatment with FAD012 significantly restored the cell viability and eNOS expression damaged by H2O2, used to mimic MCAO-triggered oxidative stress, in rat brain microvascular endothelial cells. Our findings suggested that FAD012 protected the viability of vascular endothelium and maintained eNOS expression, ultimately contributing to the restoration of CBF, and may provide a rationale for the development of FAD012 into an effective prophylactic drug for patients at high risk of stroke.
Collapse
Affiliation(s)
- Takashi Asano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (T.A.); (H.S.); (H.M.)
| | - Meiyan Xuan
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (M.X.); (J.T.); (K.H.); (Y.K.); (T.S.)
| | - Naohiro Iwata
- Laboratory of Immunobiochemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (N.I.); (S.K.); (Y.H.)
| | - Jun Takayama
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (M.X.); (J.T.); (K.H.); (Y.K.); (T.S.)
| | - Kousuke Hayashi
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (M.X.); (J.T.); (K.H.); (Y.K.); (T.S.)
| | - Yosuke Kato
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (M.X.); (J.T.); (K.H.); (Y.K.); (T.S.)
| | - Toshiya Aoyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (T.A.); (H.S.); (H.M.)
| | - Hiroshi Sugo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (T.A.); (H.S.); (H.M.)
| | - Hirokazu Matsuzaki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (T.A.); (H.S.); (H.M.)
| | - Bo Yuan
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (T.A.); (H.S.); (H.M.)
| | - Shinya Kamiuchi
- Laboratory of Immunobiochemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (N.I.); (S.K.); (Y.H.)
| | - Yasuhide Hibino
- Laboratory of Immunobiochemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (N.I.); (S.K.); (Y.H.)
| | - Takeshi Sakamoto
- Laboratory of Organic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (M.X.); (J.T.); (K.H.); (Y.K.); (T.S.)
| | - Mari Okazaki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan; (T.A.); (H.S.); (H.M.)
| |
Collapse
|
3
|
Sugiyama S, Sasaki T, Tanaka H, Yan H, Ikegami T, Kanki H, Nishiyama K, Beck G, Gon Y, Okazaki S, Todo K, Tamura A, Tsukita S, Mochizuki H. The tight junction protein occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice. Sci Rep 2023; 13:2892. [PMID: 36806348 PMCID: PMC9938878 DOI: 10.1038/s41598-023-29894-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
Blood-brain barrier (BBB) disruption contributes to brain injury and neurological impairment. Tight junctions (TJs) and cell-cell adhesion complexes develop between endothelial cells in the brain to establish and maintain the BBB. Occludin, the first transmembrane protein identified in TJs, has received intense research interest because numerous in vitro studies have suggested its importance in maintaining BBB integrity. However, its role in maintaining BBB integrity after ischemic stroke is less clear owing to the lack of in vivo evidence. This study aimed to investigate the dynamics and function of occludin across the acute and chronic phases after stroke using occludin-deficient mice. By photochemically induced thrombosis model, the expression of occludin was decreased in brain endothelial cells from ischemic lesions. The neurological function of occludin-deficient mice was continuously impaired compared to that of wild-type mice. BBB integrity evaluated by Evans blue and 0.5-kDa fluorescein in the acute phase and by 10-kDa fluorescein isothiocyanate-labeled dextran in the chronic phase was decreased to a greater extent after stroke in occludin-deficient mice. Furthermore, occludin-deficient mice showed decreased claudin-5 and neovascularization after stroke. Our study reveals that occludin plays an important role from the acute to the chronic phase after ischemic stroke in vivo.
Collapse
Affiliation(s)
- Shintaro Sugiyama
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Hiroo Tanaka
- grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Itabashiku, Tokyo 173-0003 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871 Japan ,grid.264706.10000 0000 9239 9995Department of Pharmacology, Teikyo University School of Medicine, Itabashi-Ku, Tokyo, 173-8605 Japan
| | - Haomin Yan
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Takeshi Ikegami
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Hideaki Kanki
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Kumiko Nishiyama
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Goichi Beck
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Yasufumi Gon
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Shuhei Okazaki
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Kenichi Todo
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| | - Atsushi Tamura
- grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Itabashiku, Tokyo 173-0003 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871 Japan ,grid.264706.10000 0000 9239 9995Department of Pharmacology, Teikyo University School of Medicine, Itabashi-Ku, Tokyo, 173-8605 Japan
| | - Sachiko Tsukita
- grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Itabashiku, Tokyo 173-0003 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Hideki Mochizuki
- grid.136593.b0000 0004 0373 3971Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871 Japan
| |
Collapse
|
4
|
MDMX elevation by a novel Mdmx-p53 interaction inhibitor mitigates neuronal damage after ischemic stroke. Sci Rep 2022; 12:21110. [PMID: 36473920 PMCID: PMC9726886 DOI: 10.1038/s41598-022-25427-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mdmx and Mdm2 are two major suppressor factors for the tumor suppressor gene p53. In central nervous system, Mdmx suppresses the transcriptional activity of p53 and enhances the binding of Mdm2 to p53 for degradation. But Mdmx dynamics in cerebral infarction remained obscure. Here we investigated the role of Mdmx under ischemic conditions and evaluated the effects of our developed small-molecule Protein-Protein Interaction (PPI) inhibitors, K-181, on Mdmx-p53 interactions in vivo and in vitro. We found ischemic stroke decreased Mdmx expression with increased phosphorylation of Mdmx Serine 367, while Mdmx overexpression by AAV-Mdmx showed a neuroprotective effect on neurons. The PPI inhibitor, K-181 attenuated the neurological deficits by increasing Mdmx expression in post-stroke mice brain. Additionally, K-181 selectively inhibited HDAC6 activity and enhanced tubulin acetylation. Our findings clarified the dynamics of Mdmx in cerebral ischemia and provide a clue for the future pharmaceutic development of ischemic stroke.
Collapse
|
5
|
Yan H, Kanki H, Matsumura S, Kawano T, Nishiyama K, Sugiyama S, Takemori H, Mochizuki H, Sasaki T. MiRNA-132/212 regulates tight junction stabilization in blood-brain barrier after stroke. Cell Death Discov 2021; 7:380. [PMID: 34880207 PMCID: PMC8654926 DOI: 10.1038/s41420-021-00773-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNA-132/212 has been supposed as a critical gene related to the blood–brain barrier (BBB) protection after stroke, but its regulation pathway including the upstream regulator and downstream targets is still unclear. Herein, we demonstrated the cAMP response element-binding protein (CREB)-regulated transcription coactivator-1 (CRTC1) to be the upstream regulator of miRNA-132/212 using CRTC1 knockout and wild-type mice. CRTC1 deletion led to the reduction of miRNA-132/212 expression in mice brain after ischemic stroke, significantly increased infarct volume, and aggravated BBB permeability with worsening neurological deficits. Furthermore, we identified that miRNA-132 repressed Claudin-1, tight junction-associated protein-1 (TJAP-1), and RNA-binding Fox-1 (RBFox-1) by directly binding to their respective 3′-untranslated regions, which alleviated the ischemic damage by enhancing neuronal survival and BBB integrity. Moreover, the co-culture of endothelial cells with CRTC1-deficient neurons aggravated the cell vulnerability to hypoxia, also supporting the idea that miRNA-132/212 cluster is regulated by CRTC1 and acts as a crucial role in the mitigation of ischemic damage. This work is a step forward for understanding the role of miRNA-132/212 in neurovascular interaction and may be helpful for potential gene therapy of ischemic stroke.
Collapse
Affiliation(s)
- Haomin Yan
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shigenobu Matsumura
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomohiro Kawano
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shintaro Sugiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Rivera-Villaseñor A, Higinio-Rodríguez F, Nava-Gómez L, Vázquez-Prieto B, Calero-Vargas I, Olivares-Moreno R, López-Hidalgo M. NMDA Receptor Hypofunction in the Aging-Associated Malfunction of Peripheral Tissue. Front Physiol 2021; 12:687121. [PMID: 34248675 PMCID: PMC8264581 DOI: 10.3389/fphys.2021.687121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Glutamatergic transmission through NMDA receptors (NMDARs) is important for the function of peripheral tissues. In the bone, NMDARs and its co-agonist, D-serine participate in all the phases of the remodeling. In the vasculature, NMDARs exerts a tonic vasodilation decreasing blood perfusion in the corpus cavernosum and the filtration rate in the renal glomerulus. NMDARs are relevant for the skin turnover regulating the proliferation and differentiation of keratinocytes and the formation of the cornified envelope (CE). The interference with NMDAR function in the skin leads to a slow turnover and repair. As occurs with the brain and cognitive functions, the manifestations of a hypofunction of NMDARs resembles those observed during aging. This raises the question if the deterioration of the glomerular vasculature, the bone remodeling and the skin turnover associated with age could be related with a hypofunction of NMDARs. Furthermore, the interference of D-serine and the effects of its supplementation on these tissues, suggest that a decrease of D-serine could account for this hypofunction pointing out D-serine as a potential therapeutic target to reduce or even prevent the detriment of the peripheral tissue associated with aging.
Collapse
Affiliation(s)
- Angélica Rivera-Villaseñor
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Frida Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Nava-Gómez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Bárbara Vázquez-Prieto
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isnarhazni Calero-Vargas
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Huang L, Wan Y, Dang Z, Yang P, Yang Q, Wu S. Hypoxic preconditioning ameliorated neuronal injury after middle cerebral artery occlusion by promoting neurogenesis. Brain Behav 2020; 10:e01804. [PMID: 32841552 PMCID: PMC7559635 DOI: 10.1002/brb3.1804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Sequelae of stroke were mainly caused by neuronal injury. Oxygen is a key factor affecting the microenvironment of neural stem cells (NSCs), and oxygen levels are used to promote NSC neurogenesis. In this study, effects of intermittent hypoxic preconditioning (HPC) on neurogenesis were investigated in a rat model of middle cerebral artery occlusion (MCAO). METHODS SD rats were used to establish the MCAO model. Nissl staining and Golgi staining were used to confirm the neuronal injury status in the MCAO model. Immunofluorescence, transmission electron microscopy, Western blot, and qPCR were used to observe the effects of HPC on neurogenesis. At the same time, the hypothesis that HPC could affect proliferation, apoptosis, differentiation, and migration of NSC was verified in vitro. RESULTS Hypoxic preconditioning significantly ameliorated the neuronal injury induced by MCAO. Compared with MCAO group, the dendrites, Edu+ /SOX2+ , Edu+ /DCX+ , Edu+ /NeuN+ , Edu+ /GFAP+ , and Edu+ /Tubulin+ positive cells in the HPC + MCAO group exhibited significantly difference. Similarly, axonal and other neuronal injuries in the HPC + MCAO group were also ameliorated. In the in vitro experiments, mild HPC significantly enhanced the viability of NSCs, promoted the migration of differentiated cells, and reduced apoptosis. CONCLUSIONS Our results showed that HPC significantly promotes neurogenesis after MCAO and ameliorates neuronal injury.
Collapse
Affiliation(s)
- Lu Huang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Yaqi Wan
- Qinghai Provincial People's Hospital, Xining, China
| | - Zhancui Dang
- Qinghai University Medical College, Xining, China
| | - Peng Yang
- Qinghai Provincial People's Hospital, Xining, China
| | - Quanyu Yang
- Qinghai University Medical College, Xining, China
| | - Shizheng Wu
- Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
8
|
Accelerated identification of serine racemase inhibitor from Centella asiatica. Sci Rep 2020; 10:4640. [PMID: 32170206 PMCID: PMC7070078 DOI: 10.1038/s41598-020-61494-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
Serine racemase (SR) converts the free form of L-serine into D-serine (DS) in the mammalian brain. The DS functions as a co-agonist of N-methyl D-aspartate (NMDA) receptor. The over- activation of NMDA receptor leads to many neurological disorders like stroke, amyotrophic lateral sclerosis, Alzheimer’s disease and an effective inhibitor of SR could be a corrective method for the receptor over-activation. We report for the first time here a rapid way of purifying and identifying an inhibitor from medicinal plants known to have the neuro-protective effect. We have purified SR inhibitor from the methanolic extract of Centella asiatica by affinity method. High resolution mass spectrometry and infrared spectroscopy were used to identify the ligand to be madecassoside. We have shown the madecassoside binding in silico and its inhibition of recombinant human serine racemase in vitro and ex vivo.
Collapse
|
9
|
Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, Gu L. Targeting Oxidative Stress and Inflammation to Prevent Ischemia-Reperfusion Injury. Front Mol Neurosci 2020; 13:28. [PMID: 32194375 PMCID: PMC7066113 DOI: 10.3389/fnmol.2020.00028] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
The cerebral ischemia injury can result in neuronal death and/or functional impairment, which leads to further damage and dysfunction after recovery of blood supply. Cerebral ischemia/reperfusion injury (CIRI) often causes irreversible brain damage and neuronal injury and death, which involves many complex pathological processes including oxidative stress, amino acid toxicity, the release of endogenous substances, inflammation and apoptosis. Oxidative stress and inflammation are interactive and play critical roles in ischemia/reperfusion injury in the brain. Oxidative stress is important in the pathological process of ischemic stroke and is critical for the cascade development of ischemic injury. Oxidative stress is caused by reactive oxygen species (ROS) during cerebral ischemia and is more likely to lead to cell death and ultimately brain death after reperfusion. During reperfusion especially, superoxide anion free radicals, hydroxyl free radicals, and nitric oxide (NO) are produced, which can cause lipid peroxidation, inflammation and cell apoptosis. Inflammation alters the balance between pro-inflammatory and anti-inflammatory factors in cerebral ischemic injury. Inflammatory factors can therefore stimulate or exacerbate inflammation and aggravate ischemic injury. Neuroprotective therapies for various stages of the cerebral ischemia cascade response have received widespread attention. At present, neuroprotective drugs mainly include free radical scavengers, anti-inflammatory agents, and anti-apoptotic agents. However, the molecular mechanisms of the interaction between oxidative stress and inflammation, and their interplay with different types of programmed cell death in ischemia/reperfusion injury are unclear. The development of a suitable method for combination therapy has become a hot topic.
Collapse
Affiliation(s)
- Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Wu
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zeng Zhi
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Koulouris CR, Bax BD, Atack JR, Roe SM. Conformational flexibility within the small domain of human serine racemase. Acta Crystallogr F Struct Biol Commun 2020; 76:65-73. [PMID: 32039887 PMCID: PMC7010357 DOI: 10.1107/s2053230x20001193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/28/2020] [Indexed: 01/28/2023] Open
Abstract
Serine racemase (SR) is a pyridoxal 5'-phosphate (PLP)-containing enzyme that converts L-serine to D-serine, an endogenous co-agonist for the N-methyl-D-aspartate receptor (NMDAR) subtype of glutamate ion channels. SR regulates D-serine levels by the reversible racemization of L-serine to D-serine, as well as the catabolism of serine by α,β-elimination to produce pyruvate. The modulation of SR activity is therefore an attractive therapeutic approach to disorders associated with abnormal glutamatergic signalling since it allows an indirect modulation of NMDAR function. In the present study, a 1.89 Å resolution crystal structure of the human SR holoenzyme (including the PLP cofactor) with four subunits in the asymmetric unit is described. Comparison of this new structure with the crystal structure of human SR with malonate (PDB entry 3l6b) shows an interdomain cleft that is open in the holo structure but which disappears when the inhibitor malonate binds and is enclosed. This is owing to a shift of the small domain (residues 78-155) in human SR similar to that previously described for the rat enzyme. This domain movement is accompanied by changes within the twist of the central four-stranded β-sheet of the small domain, including changes in the φ-ψ angles of all three residues in the C-terminal β-strand (residues 149-151). In the malonate-bound structure, Ser84 (a catalytic residue) points its side chain at the malonate and is preceded by a six-residue β-strand (residues 78-83), but in the holoenzyme the β-strand is only four residues (78-81) and His82 has φ-ψ values in the α-helical region of the Ramachandran plot. These data therefore represent a crystallographic platform that enables the structure-guided design of small-molecule modulators for this important but to date undrugged target.
Collapse
Affiliation(s)
- Chloe R. Koulouris
- Sussex Drug Discovery Centre, University of Sussex, Falmer, Brighton BN1 9QG, England
| | - Benjamin D. Bax
- Medicines Discovery Institute, School of Biosciences, University of Cardiff, Park Place, Cardiff CF10 3AT, Wales
| | - John R. Atack
- Medicines Discovery Institute, School of Biosciences, University of Cardiff, Park Place, Cardiff CF10 3AT, Wales
| | - S. Mark Roe
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, England
| |
Collapse
|
11
|
Ohshima K, Nojima S, Tahara S, Kurashige M, Kawasaki K, Hori Y, Taniguchi M, Umakoshi Y, Okuzaki D, Wada N, Ikeda JI, Fukusaki E, Morii E. Serine racemase enhances growth of colorectal cancer by producing pyruvate from serine. Nat Metab 2020; 2:81-96. [PMID: 32694681 DOI: 10.1038/s42255-019-0156-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/29/2019] [Indexed: 11/09/2022]
Abstract
Serine racemase (SRR) catalyses not only the racemization but also the dehydration of L-serine and D-serine, resulting in the formation of pyruvate and ammonia. Although SRR activity is important in the central nervous system, SRR has not been linked to cancer metabolism before. Here we show that SRR supports proliferation of colorectal-cancer cells. We find that SRR expression is upregulated in colorectal adenoma and adenocarcinoma lesions compared with non-neoplastic mucosa in human colorectal-cancer specimens. SRR-mediated dehydration of serine contributes to the pyruvate pool in colon-cancer cells, enhances proliferation, maintains mitochondrial mass and increases basal reactive oxygen species production, which has anti-apoptotic effects. Moreover, SRR promotes acetylation of histone H3 by maintaining intracellular acetyl-CoA levels. Inhibition of SRR suppresses growth of colorectal tumours in mice and augments the efficacy of 5-fluorouracil treatment. Our findings highlight a previously unknown mechanism through which a racemase supports cancer-cell growth and suggest that SRR might be a molecular target for colorectal-cancer therapy.
Collapse
Affiliation(s)
- Kenji Ohshima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masako Kurashige
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keisuke Kawasaki
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Moyu Taniguchi
- Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Osaka, Japan
| | - Yutaka Umakoshi
- Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Naoki Wada
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Diagnostic Pathology, Osaka City University, Osaka, Osaka, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
12
|
Wu M, Liu Y, Zhang H, Lian M, Chen J, Jiang H, Xu Y, Shan G, Wu S. Intravenous injection of l-aspartic acid β-hydroxamate attenuates choroidal neovascularization via anti-VEGF and anti-inflammation. Exp Eye Res 2019; 182:93-100. [DOI: 10.1016/j.exer.2019.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
13
|
Wu SP, Li D, Wang N, Hou JC, Zhao L. YiQi Tongluo Granule against Cerebral Ischemia/Reperfusion Injury in Rats by Freezing GluN2B and CaMK II through NMDAR/ERK1/2 Signaling. Chem Pharm Bull (Tokyo) 2019; 67:244-252. [DOI: 10.1248/cpb.c18-00806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Si-peng Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Dan Li
- Jing-Jin-Ji Joint Innovation Pharmaceutical (Beijing) Co., Ltd
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Jin-cai Hou
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Li Zhao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| |
Collapse
|
14
|
β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke. Cell Death Dis 2019; 10:100. [PMID: 30718498 PMCID: PMC6361911 DOI: 10.1038/s41419-019-1375-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022]
Abstract
Thrombin aggravates ischemic stroke and activated protein C (APC) has a neuroprotective effect. Both proteases interact with protease-activated receptor 1, which exhibits functional selectivity and leads to G-protein- and β-arrestin-mediated-biased signal transduction. We focused on the effect of β-arrestin in PAR-1-biased signaling on endothelial function after stroke or high-fat diet (HFD). Thrombin had a rapid disruptive effect on endothelial function, but APC had a slow protective effect. Paralleled by prolonged MAPK 42/44 signaling activation by APC via β-arrestin-2, a lower cleavage rate of PAR-1 for APC than thrombin was quantitatively visualized by bioluminescence video imaging. HFD-fed mice showed lower β-arrestin-2 levels and more severe ischemic injury. The expression of β-arrestin-2 in capillaries and PDGF-β secretion in HFD-fed mice were reduced in penumbra lesions. These results suggested that β-arrestin-2-MAPK-PDGF-β signaling enhanced protection of endothelial function and barrier integrity after stroke.
Collapse
|
15
|
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 2018; 98:641-665. [PMID: 29412048 PMCID: PMC5966718 DOI: 10.1152/physrev.00037.2016] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.
Collapse
Affiliation(s)
- R William Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Paulo C Rodriguez
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - S Priya Narayanan
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Ruth B Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| |
Collapse
|
16
|
Gu J, Su S, Guo J, Zhu Y, Zhao M, Duan JA. Anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae against focal cerebral ischaemia via TLR4/MyD88/MAPK/NF-κB signalling pathway in MCAO rats. J Pharm Pharmacol 2017; 70:268-277. [DOI: 10.1111/jphp.12841] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/26/2017] [Indexed: 01/09/2023]
Abstract
Abstract
Objective
This study was performed to assess the anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae (XS) on focal cerebral ischaemic stroke.
Methods
MCAO rats were used to evaluate the effect of XS on stroke. Cerebral water content was measured, and the levels of IFN-γ, IL-1β, IL-6 and IL-12 in serum and brain were assessed by ELISA kits. Protein expressions including p-p38, p-38, TLR-4, p-ERK, ERK, TLR-5, NF-κBp65, Myd88, Caspase-3 and Caspase-12 were examined by WB and IHC. Q-PCR was applied to examine IL-1β and IL-6 mRNA levels in the rat brain of each group.
Key findings
XS treatment remarkedly decreased the levels of IFN-γ, IL-1β, IL-6 and IL-12 in serum and brain tissues of MCAO rats. In the ischaemic brain, the expressions of TLR-4, TLR-5, p-p38, p-ERK, Myd88, NF-κBp65, Caspase-3 and Caspase-12 were increased significantly, while the treatment attenuated the activated expressions by MCAO. XS also downregulated Caspase-3 and Caspase-12 expressions. IL-1β and IL-6 mRNA levels in MCAO brain tissue were decreased by XS treatment.
Conclusions
XS could protect MCAO rats by anti-inflammation and anti-apoptosis through TLR4/MyD88/MAPK/NF-κB signalling pathway. Furthermore, the combination has a more meaningful improvement on focal cerebral ischaemic stroke.
Collapse
Affiliation(s)
- Junfei Gu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Abstract
Stroke is considered to be an acute cerebrovascular disease, including ischemic stroke and hemorrhagic stroke. The high incidence and poor prognosis of stroke suggest that it is a highly disabling and highly lethal disease which can pose a serious threat to human health. Nitric oxide (NO), a common gas in nature, which is often thought as a toxic gas, because of its intimate relationship with the pathological processes of many diseases, especially in the regulation of blood flow and cell inflammation. However, recent years have witnessed an increased interest that NO plays a significant and positive role in stroke as an essential gas signal molecule. In view of the fact that the neuroprotective effect of NO is closely related to its concentration, cell type and time, only in the appropriate circumstances can NO play a protective effect. The purpose of this review is to summarize the roles of NO in ischemic stroke and hemorrhagic stroke.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ru-Tao Mou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott & White Clinic-Temple, Temple, TX, USA
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|