1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
3
|
Wang Y, Zhai Y, Wang J. Insight into the early pathogenesis and therapeutic strategies of spinocerebellar ataxia type 3/machado-joseph disease from mouse models. Parkinsonism Relat Disord 2024; 126:106991. [PMID: 38749872 DOI: 10.1016/j.parkreldis.2024.106991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 09/05/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is the most common subtype of hereditary ataxia (HA), which is characterized by motor deficits and a lack of effective treatments, and imposes a huge physical, mental, and financial burden on patients and their families. Therefore, it is important to study the early pathogenesis of spinal cerebellar ataxia type 3 based on a mouse model for subsequent preventive treatment and seeking new therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - YuYun Zhai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ju Wang
- Department of Rehabilitation, Traditional Chinese Hospital Medicine of Qing Yang District of Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Ranjbar H, Soti M, Kohlmeier KA, Janahmadi M, Shabani M. Pharmacologic antagonism of CB1 receptors improves electrophysiological alterations in Purkinje cells exposed to 3-AP. BMC Neurosci 2023; 24:18. [PMID: 36869289 PMCID: PMC9985293 DOI: 10.1186/s12868-023-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
INTRODUCTION Although ataxia is associated with cerebellar dysfunction, little is known about the effects of 3-AP exposure on Purkinje cell electrophysiological properties. Here, we evaluated these parameters in cerebellar vermis brain slices. METHODS Purkinje cells were exposed to artificial cerebrospinal fluid (aCSF) (control) or to 1 mM 3-acetylpyridine (3-AP) in the recording chamber. The effects of a cannabinoid agonist (WIN; 7.5 nmol) and a cannabinoid antagonist (AM; 20 nmol) were evaluated under both conditions. RESULTS Exposure to 3-AP induced dramatic changes in cellular excitability that likely would affect Purkinje cell output. In whole-cell current clamp recordings, 3-AP-exposed Purkinje cells demonstrated a significantly higher frequency of action potentials, a larger afterhyperpolarization (AHP), and a larger rebound of action potentials. In addition, 3-AP caused a significant decrease in the interspike interval (ISI), half-width, and first spike latency. Remarkably, the action potential frequency, AHP amplitude, rebound, ISI, action potential halfwidth, and first spike latency were no longer different from controls in 3-AP cells treated with AM. Sag percentage, on the other hand, showed no significant difference under any treatment condition, indicating that cannabinoids' actions on 3-AP-mediated Purkinje cell changes may not include effects on neuronal excitability through changes of Ih. CONCLUSIONS These data show that cannabinoid antagonists reduce the excitability of Purkinje cells following exposure to 3-AP and suggest their potential as therapeutics in cerebellar dysfunctions.
Collapse
Affiliation(s)
- Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran.
| |
Collapse
|
5
|
Li S, Huang Y, Yu L, Ji X, Wu J. Impact of the Cannabinoid System in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:715-726. [PMID: 35105293 PMCID: PMC10207907 DOI: 10.2174/1570159x20666220201091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Cannabinoids are compounds isolated from cannabis and are also widely present in both nervous and immune systems of animals. In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease. Alzheimer's disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today. In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer's disease. How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer's disease and the roles of the endocannabinoid system in Alzheimer's disease are outlined, and the underlying mechanisms are discussed. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer's disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Shuangtao Li
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Yuanbing Huang
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Lijun Yu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Xiaoyu Ji
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Jie Wu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| |
Collapse
|
6
|
Saumell-Esnaola M, Elejaga-Jimeno A, Echeazarra L, Borrega-Román L, Barrondo S, López de Jesús M, González-Burguera I, Gómez-Caballero A, Goicolea MA, Sallés J, García del Caño G. Design and validation of recombinant protein standards for quantitative Western blot analysis of cannabinoid CB1 receptor density in cell membranes: an alternative to radioligand binding methods. Microb Cell Fact 2022; 21:192. [PMID: 36109736 PMCID: PMC9479267 DOI: 10.1186/s12934-022-01914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Replacement of radioligand binding assays with antibody-antigen interaction-based approaches for quantitative analysis of G protein-coupled receptor (GPCR) levels requires the use of purified protein standards containing the antigen. GPCRs in general and cannabinoid CB1 receptor in particular show a progressive tendency to aggregate and precipitate in aqueous solution outside of their biological context due to the low solubility that the hydrophobic nature imprinted by their seven transmembrane domains. This renders full-length recombinant GPCRs useless for analytical purposes, a problem that can be overcome by engineering soluble recombinant fragments of the receptor containing the antigen. Results Here we generated highly soluble and stable recombinant protein constructs GST-CB1414–472 and GST-CB1414-442 containing much of the human CB1 receptor C-terminal tail for use as standard and negative control, respectively, in quantitative Western blot analysis of CB1 receptor expression on crude synaptosomes of the adult rat brain cortex. To this end we used three different antibodies, all raised against a peptide comprising the C-terminal residues 443–473 of the mouse CB1 receptor that corresponds to residues 442–472 in the human homolog. Estimated values of CB1 receptor density obtained by quantitative Western blot were of the same order of magnitude but slightly higher than values obtained by the radioligand saturation binding assay. Conclusions Collectively, here we provide a suitable Western blot-based design as a simple, cost-effective and radioactivity-free alternative for the quantitative analysis of CB1 receptor expression, and potentially of any GPCR, in a variety of biological samples. The discrepancies between the results obtained by quantitative Western blot and radioligand saturation binding techniques are discussed in the context of their particular theoretical bases and methodological constraints. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01914-1.
Collapse
|
7
|
Lin GY, Ma CY, Kuo LC, Hsieh BY, Wang H, Liu CS, Hsieh M. Altered glucose metabolism and its association with carbonic anhydrase 8 in Machado-Joseph Disease. Metab Brain Dis 2022; 37:2103-2120. [PMID: 35488942 DOI: 10.1007/s11011-022-00994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant neurodegenerative disease. This disorder is caused by polyglutamine (polyQ)-containing mutant ataxin-3, which tends to misfold and aggregate in neuron cells. We previously demonstrated a protective function of carbonic anhydrase 8 (CA8) in MJD disease models and a decreased glycolytic activity associated with down-regulated CA8 in a human osteosarcoma (OS) cell model. Given that a reduction in body weight accompanied by gait and balance instability was observed in MJD patients and transgenic (Tg) mice, in this study, we aimed to examine whether metabolic defects are associated with MJD and whether CA8 expression is involved in metabolic dysfunction in MJD. Our data first showed that glucose uptake ability decreases in cells harboring mutant ataxin-3, but increases in cells overexpressing CA8. In addition, the expressions of glucose transporter 3 (GLUT3) and phosphofructokinase-1 (PFK1) were significantly decreased in the presence of mutant ataxin-3. Consistently, immunohistochemistry (IHC) showed that GLUT3 was less expressed in cerebella of aged MJD Tg mice, indicating that the dysfunction of GLUT3 may be associated with late-stage disease. On the other hand, transient down-regulation of CA8 revealed decreased expressions of GLUT3 and PFK1 in HEK293 cells harboring wild-type (WT) ataxin-3, but no further reduction of GLUT3 and PFK1 expressions were observed in HEK293 cells harboring mutant ataxin-3. Moreover, immunoprecipitation (IP) and immunofluorescence (IF) demonstrated that interactions exist between ataxin-3, CA8 and GLUT3 in MJD cellular and Tg models. These lines of evidence suggest that CA8 plays an important role in glucose metabolism and has different impacts on cells with or without mutant ataxin-3. Interestingly, the decreased relative abundance of Firmicutes/Bacteroidetes (F/B) ratio in the feces of aged MJD Tg mice coincided with weight loss and metabolic dysfunction in MJD. Taken together, our results are the first to demonstrate the effects of CA8 on glucose metabolism and its involvement in the metabolic defects in MJD disease. Further investigations will be required to clarify the underlying mechanisms for the metabolic defects associated with MJD.
Collapse
Affiliation(s)
- Guan-Yu Lin
- Department of Life Science, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China
| | - Chung-Yung Ma
- Department of Life Science, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China
| | - Li-Chung Kuo
- Department of Life Science, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China
| | - Benjamin Y Hsieh
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| | - Hanbing Wang
- Department of Life Science, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan, Republic of China
| | - Mingli Hsieh
- Department of Life Science, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China.
- Life Science Research Center, Tunghai University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
8
|
Modulation of the CB1 cannabinoid receptor has potential therapeutic utility in the 3-acetylpyridine cerebellar ataxia rat model. Exp Brain Res 2022; 240:2339-2348. [PMID: 35859208 DOI: 10.1007/s00221-022-06415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
Cerebellar ataxia is a neurodegenerative disorder leading to severe motor incoordination. Recently, it has been suggested that cannabinoids play a role in modulating ataxic symptoms. To understand the possible therapeutic effect of cannabinoids for the management of cerebellar ataxia, we used cannabinoid agonist/antagonists to target the cannabinoid type 1 receptor (CB1R) in the 3 acetyl pyridine (3AP) rat model of ataxia. The role of the CB1R was examined using three different doses of the CB1R agonist, WIN-55,212-2 (WIN; 0.1, 0.5, 1 mg/kg) administrated 30 min prior to 3AP (55 mg/kg, i.p.) which leads to motor impairment through destruction of the inferior olive. In some groups, the CB1R antagonist AM251 (1 mg/kg) was given in combination with WIN. Locomotor activity and motor coordination were impaired by 3AP, and the application of WIN did not ameliorate this effect. However, the abnormal gait, rearing and grooming caused by 3AP were prevented by co-administration of AM251 with WIN. While the addition of the CB1R antagonist improved some ataxic symptoms, there was no effect of AM251 on balance or locomotor activity when co-administrated with WIN. Behavioral testing indicated that not only did WIN fail to exert any protective effect on ataxic symptoms; it exacerbated ataxic symptoms, suggesting that CB1R agonists may not be the ideal therapeutic drug in this disorder. When taken together, the findings from the present study indicate that cannabinoid modulation of ataxia symptoms may not act solely through CB1Rs and other cannabinoid receptors should be considered in future studies.
Collapse
|
9
|
Mayoral-Palarz K, Neves-Carvalho A, Duarte-Silva S, Monteiro-Fernandes D, Maciel P, Khodakhah K. Cerebellar neuronal dysfunction accompanies early motor symptoms in spinocerebellar ataxia type 3. Dis Model Mech 2022; 15:275597. [PMID: 35660856 PMCID: PMC9367011 DOI: 10.1242/dmm.049514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an adult-onset, progressive ataxia. SCA3 presents with ataxia before any gross neuropathology. A feature of many cerebellar ataxias is aberrant cerebellar output that contributes to motor dysfunction. We examined whether abnormal cerebellar output was present in the CMVMJD135 SCA3 mouse model and, if so, whether it correlated with the disease onset and progression. In vivo recordings showed that the activity of deep cerebellar nuclei neurons, the main output of the cerebellum, was altered. The aberrant activity correlated with the onset of ataxia. However, although the severity of ataxia increased with age, the severity of the aberrant cerebellar output was not progressive. The abnormal cerebellar output, however, was accompanied by non-progressive abnormal activity of their upstream synaptic inputs, the Purkinje cells. In vitro recordings indicated that alterations in intrinsic Purkinje cell pacemaking and in their synaptic inputs contributed to abnormal Purkinje cell activity. These findings implicate abnormal cerebellar physiology as an early, consistent contributor to pathophysiology in SCA3, and suggest that the aberrant cerebellar output could be an appropriate therapeutic target in SCA3. Summary: In a mouse model of spinocerebellar ataxia type 3 (SCA3), aberrant cerebellar physiology is apparent early in disease, prior to cerebellar neuronal pathology. Aberrant cerebellar output could be a therapeutic target in SCA3.
Collapse
Affiliation(s)
- Kristin Mayoral-Palarz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andreia Neves-Carvalho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Preclinical Assessment of Mesenchymal-Stem-Cell-Based Therapies in Spinocerebellar Ataxia Type 3. Biomedicines 2021; 9:biomedicines9121754. [PMID: 34944570 PMCID: PMC8698556 DOI: 10.3390/biomedicines9121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies for neurodegenerative diseases, including spinocerebellar ataxias. Spinocerebellar ataxia type 3 (SCA3)—or Machado–Joseph disease (MJD)—is the most common dominant ataxia, being mainly characterized by motor deficits; however, SCA3/MJD has a complex and heterogeneous pathophysiology, involving many CNS brain regions, contributing to the lack of effective therapies. Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for CNS disorders. Beyond their differentiation potential, MSCs secrete a broad range of neuroregulatory factors that can promote relevant neuroprotective and immunomodulatory actions in different pathophysiological contexts. The objective of this work was to study the effects of (1) human MSC transplantation and (2) human MSC secretome (CM) administration on disease progression in vivo, using the CMVMJD135 mouse model of SCA3/MJD. Our results showed that a single CM administration was more beneficial than MSC transplantation—particularly in the cerebellum and basal ganglia—while no motor improvement was observed when these cell-based therapeutic approaches were applied in the spinal cord. However, the effects observed were mild and transient, suggesting that continuous or repeated administration would be needed, which should be further tested.
Collapse
|
11
|
Subsynaptic Distribution, Lipid Raft Targeting and G Protein-Dependent Signalling of the Type 1 Cannabinoid Receptor in Synaptosomes from the Mouse Hippocampus and Frontal Cortex. Molecules 2021; 26:molecules26226897. [PMID: 34833992 PMCID: PMC8621520 DOI: 10.3390/molecules26226897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous studies have investigated the roles of the type 1 cannabinoid receptor (CB1) in glutamatergic and GABAergic neurons. Here, we used the cell-type-specific CB1 rescue model in mice to gain insight into the organizational principles of plasma membrane targeting and Gαi/o protein signalling of the CB1 receptor at excitatory and inhibitory terminals of the frontal cortex and hippocampus. By applying biochemical fractionation techniques and Western blot analyses to synaptosomal membranes, we explored the subsynaptic distribution (pre-, post-, and extra-synaptic) and CB1 receptor compartmentalization into lipid and non-lipid raft plasma membrane microdomains and the signalling properties. These data infer that the plasma membrane partitioning of the CB1 receptor and its functional coupling to Gαi/o proteins are not biased towards the cell type of CB1 receptor rescue. The extent of the canonical Gαi/o protein-dependent CB1 receptor signalling correlated with the abundance of CB1 receptor in the respective cell type (glutamatergic versus GABAergic neurons) both in frontal cortical and hippocampal synaptosomes. In summary, our results provide an updated view of the functional coupling of the CB1 receptor to Gαi/o proteins at excitatory and inhibitory terminals and substantiate the utility of the CB1 rescue model in studying endocannabinoid physiology at the subcellular level.
Collapse
|
12
|
Echeazarra L, García Del Caño G, Barrondo S, González-Burguera I, Saumell-Esnaola M, Aretxabala X, López de Jesús M, Borrega-Román L, Mato S, Ledent C, Matute C, Goicolea MA, Sallés J. Fit-for-purpose based testing and validation of antibodies to amino- and carboxy-terminal domains of cannabinoid receptor 1. Histochem Cell Biol 2021; 156:479-502. [PMID: 34453219 PMCID: PMC8604870 DOI: 10.1007/s00418-021-02025-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Specific and selective anti-CB1 antibodies are among the most powerful research tools to unravel the complex biological processes mediated by the CB1 receptor in both physiological and pathological conditions. However, low performance of antibodies remains a major source of inconsistency between results from different laboratories. Using a variety of techniques, including some of the most commonly accepted ones for antibody specificity testing, we identified three of five commercial antibodies against different regions of CB1 receptor as the best choice for specific end-use purposes. Specifically, an antibody against a long fragment of the extracellular amino tail of CB1 receptor (but not one against a short sequence of the extreme amino-terminus) detected strong surface staining when applied to live cells, whereas two different antibodies against an identical fragment of the extreme carboxy-terminus of CB1 receptor (but not one against an upstream peptide) showed acceptable performance on all platforms, although they behaved differently in immunohistochemical assays depending on the tissue fixation procedure used and showed different specificity in Western blot assays, which made each of them particularly suitable for one of those techniques. Our results provide a framework to interpret past and future results derived from the use of different anti-CB1 antibodies in the context of current knowledge about the CB1 receptor at the molecular level, and highlight the need for an adequate validation for specific purposes, not only before antibodies are placed on the market, but also before the decision to discontinue them is made.
Collapse
Affiliation(s)
- Leyre Echeazarra
- Departament of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Dispositivos Móviles para el Control de Enfermedades Crónicas, 01008, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain. .,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain.
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Imanol González-Burguera
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Xabier Aretxabala
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Leire Borrega-Román
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Susana Mato
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Multiple Sclerosis and Other Demyelinating Diseases Unit, Biocruces Bizkaia, Barakaldo, Spain
| | | | - Carlos Matute
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - María Aranzazu Goicolea
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain. .,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain.
| |
Collapse
|
13
|
Lee JH, Lin SY, Liu JW, Lin SZ, Harn HJ, Chiou TW. n-Butylidenephthalide Modulates Autophagy to Ameliorate Neuropathological Progress of Spinocerebellar Ataxia Type 3 through mTOR Pathway. Int J Mol Sci 2021; 22:6339. [PMID: 34199295 PMCID: PMC8231882 DOI: 10.3390/ijms22126339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), a hereditary and lethal neurodegenerative disease, is attributed to the abnormal accumulation of undegradable polyglutamine (polyQ), which is encoded by mutated ataxin-3 gene (ATXN3). The toxic fragments processed from mutant ATXN3 can induce neuronal death, leading to the muscular incoordination of the human body. Some treatment strategies of SCA3 are preferentially focused on depleting the abnormal aggregates, which led to the discovery of small molecule n-butylidenephthalide (n-BP). n-BP-promoted autophagy protected the loss of Purkinje cell in the cerebellum that regulates the network associated with motor functions. We report that the n-BP treatment may be effective in treating SCA3 disease. n-BP treatment led to the depletion of mutant ATXN3 with the expanded polyQ chain and the toxic fragments resulting in increased metabolic activity and alleviated atrophy of SCA3 murine cerebellum. Furthermore, n-BP treated animal and HEK-293GFP-ATXN3-84Q cell models could consistently show the depletion of aggregates through mTOR inhibition. With its unique mechanism, the two autophagic inhibitors Bafilomycin A1 and wortmannin could halt the n-BP-induced elimination of aggregates. Collectively, n-BP shows promising results for the treatment of SCA3.
Collapse
Affiliation(s)
- Jui-Hao Lee
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Si-Yin Lin
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Jen-Wei Liu
- Everfront Biotech Inc., New Taipei City 22180, Taiwan; (J.-H.L.); (S.-Y.L.); (J.-W.L.)
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97002, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
- Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97002, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, Graduate Institute of Biotechnology, National Dong-Hwa University, Hualien 97447, Taiwan
| |
Collapse
|
14
|
Yang Y, Kreko-Pierce T, Howell R, Pugh JR. Long-term depression of presynaptic cannabinoid receptor function at parallel fibre synapses. J Physiol 2019; 597:3167-3181. [PMID: 31020998 DOI: 10.1113/jp277727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Inhibition of synaptic responses by activation of presynaptic cannabinoid type-1 (Cb1) receptors is reduced at parallel fibre synapses in the cerebellum following 4 Hz stimulation. Activation of adenylyl cyclase is necessary and sufficient for down-regulation of Cb1 receptors induced by 4 Hz stimulation. 4 Hz stimulation reduces Cb1 receptor function by (i) increasing the rate of endocannabinoid clearance from the synapse and (ii) decreasing expression of Cb1 receptors. ABSTRACT Cannabinoid type-1 receptors (Cb1R) are expressed in the presynaptic membrane of many synapses, including parallel fibre-Purkinje cell synapses in the cerebellum, where they are involved in short- and long-term plasticity of synaptic responses. We show that Cb1R expression itself is a plastic property of the synapse regulated by physiological activity patterns. We made patch clamp recordings from Purkinje cells in cerebellar slices and assessed Cb1R activity by measuring depolarization-induced suppression of excitation (DSE). We find that DSE is normally stable at parallel fibre synapses but, following 4 Hz stimulation, DSE is persistently reduced and recovers more rapidly. Using a combination of electrophysiology, pharmacology and biochemistry, we show that changes in DSE are a result of the reduced expression of Cb1Rs and increased degradation of endocannabinoids by monoacylglycerol lipase. Long-term changes in presynaptic Cb1R expression may alter other forms of Cb1R-dependent plasticity at parallel fibre synapses, priming or inhibiting the circuit for associative learning.
Collapse
Affiliation(s)
- Ying Yang
- University of Texas Health Science Center at San Antonio, Department of Cellular and Integrative Physiology, San Antonio, TX, USA.,Xiangya School of Medicine, Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, Hunan Province, China
| | - Tabita Kreko-Pierce
- University of Texas Health Science Center at San Antonio, Department of Cellular and Integrative Physiology, San Antonio, TX, USA
| | - Rebecca Howell
- University of Texas Health Science Center at San Antonio, Department of Cellular and Integrative Physiology, San Antonio, TX, USA.,Present address: Oklahoma Medical Research Foundation & University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jason R Pugh
- University of Texas Health Science Center at San Antonio, Department of Cellular and Integrative Physiology, San Antonio, TX, USA.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
15
|
Gómez-Ruiz M, Rodríguez-Cueto C, Luna-Piñel E, Hernández-Gálvez M, Fernández-Ruiz J. Endocannabinoid System in Spinocerebellar Ataxia Type-3 and Other Autosomal-Dominant Cerebellar Ataxias: Potential Role in Pathogenesis and Expected Relevance as Neuroprotective Targets. Front Mol Neurosci 2019; 12:94. [PMID: 31068788 PMCID: PMC6491810 DOI: 10.3389/fnmol.2019.00094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of hereditary and progressive neurological disorders characterized by a loss of balance and motor coordination typically associated with cerebellar atrophy. The most prevalent SCA types are all polyQ disorders like Huntington’s disease, sharing the most relevant events in pathogenesis with this basal ganglia disorder, but with most of the damage concentrated in cerebellar neurons, and in their afferent and efferent connections (e.g., brainstem nuclei). SCAs have no cure and effective symptom-alleviating and disease-modifying therapies are not currently available. However, based on results obtained in studies conducted in murine models and information derived from analyses in post-mortem tissue samples from patients, which show notably higher levels of CB1 receptors found in different cerebellar neuronal subpopulations, the blockade of these receptors has been proposed for acutely modulating motor incoordination in cerebellar ataxias, whereas their chronic activation has been proposed for preserving specific neuronal losses. Additional studies in post-mortem tissues from SCA patients have also demonstrated elevated levels of CB2 receptors in Purkinje neurons as well as in glial elements in the granular layer and in the cerebellar white matter, with a similar profile found for endocannabinoid hydrolyzing enzymes, then suggesting that activating CB2 receptors and/or inhibiting these enzymes may also serve to develop cannabinoid-based neuroprotective therapies. The present review will address both aspects. On one hand, the endocannabinoid system becomes dysregulated in the cerebellum and also in other CNS structures (e.g., brainstem, basal ganglia) in SCAs, which may contribute to the progression of pathogenic events in these diseases. On the other hand, these endocannabinoid alterations may be pharmacologically corrected or enhanced, and this may have therapeutic consequences, either alleviating specific symptoms or eliciting neuroprotective effects, an objective presently under investigation.
Collapse
Affiliation(s)
- María Gómez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eva Luna-Piñel
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Mariluz Hernández-Gálvez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
16
|
Role of endocannabinoids in the hippocampus and amygdala in emotional memory and plasticity. Neuropsychopharmacology 2018; 43:2017-2027. [PMID: 29977073 PMCID: PMC6098035 DOI: 10.1038/s41386-018-0135-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
Abstract
Posttraumatic stress disorder (PTSD) is characterized by the reexperiencing of a traumatic event and is associated with slower extinction of fear responses. Impaired extinction of fearful associations to trauma-related cues may interfere with treatment response, and extinction deficits may be premorbid risk factors for the development of PTSD. We examined the effects of exposure to a severe footshock followed by situational reminders (SRs) on extinction, plasticity, and endocannabinoid (eCB) content and activity in the hippocampal CA1 area and basolateral amygdala (BLA). We also examined whether enhancing eCB signaling before extinction, using the fatty acid amide hydrolase (FAAH) inhibitor URB597, could prevent the shock/SRs-induced effects on fear response and plasticity. URB597 administered systemically (0.3 mg/kg) or locally into the CA1 or BLA (0.1 µg/side) prior to extinction decreased fear retrieval and this effect persisted throughout extinction training and did not recuperate during spontaneous recovery. A low dose of the CB1 receptor antagonist AM251 (0.3 mg/kg i.p. or 0.01 µg/0.5 µl intra-CA1 or intra-BLA) blocked these effects suggesting that the effects of URB597 were CB1 receptor-dependent. Exposure to shock and reminders induced behavioral metaplasticity with opposite effects on long-term potentiation (LTP) in the hippocampus (impairment) and the BLA (enhancement). URB597 was found to prevent the opposite shock/SR-induced metaplasticity in hippocampal and BLA-LTP. Exposure to shock and reminders might cause variation in endogenous cannabinoid levels that could affect fear-circuit function. Indeed, exposure to shock and SRs affected eCB content: increased 2-arachidonoyl-glycerol (2-AG) and N-arachidonylethanolamine (AEA) levels in the CA1, decreased serum and BLA AEA levels while shock exposure increased FAAH activity in the CA1 and BLA. FAAH inhibition before extinction abolished fear and modulated LTP in the hippocampus and amygdala, brain regions pertinent to emotional memory. The findings suggest that targeting the eCB system before extinction may be beneficial in fear memory attenuation and these effects may involve metaplasticity in the CA1 and BLA.
Collapse
|
17
|
Fernández-Ruiz J. The biomedical challenge of neurodegenerative disorders: an opportunity for cannabinoid-based therapies to improve on the poor current therapeutic outcomes. Br J Pharmacol 2018; 176:1370-1383. [PMID: 29856067 DOI: 10.1111/bph.14382] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
At the beginning of the 21st century, the therapeutic management of neurodegenerative disorders remains a major biomedical challenge, particularly given the worldwide ageing of the population over the past 50 years that is expected to continue in the forthcoming years. This review will focus on the promise of cannabinoid-based therapies to address this challenge. This promise is based on the broad neuroprotective profile of cannabinoids, which may cooperate to combat excitotoxicity, oxidative stress, glia-driven inflammation and protein aggregation. Such effects may be produced by the activity of cannabinoids through their canonical targets (e.g. cannabinoid receptors and endocannabinoid enzymes) and also via non-canonical elements and activities in distinct cell types critical for cell survival or neuronal replacement (e.g. neurons, glia and neural precursor cells). Ultimately, the therapeutic events driven by endocannabinoid signalling reflect the activity of an endogenous system that regulates the preservation, rescue, repair and replacement of neurons and glia. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
18
|
Fidelman S, Mizrachi Zer-Aviv T, Lange R, Hillard CJ, Akirav I. Chronic treatment with URB597 ameliorates post-stress symptoms in a rat model of PTSD. Eur Neuropsychopharmacol 2018. [PMID: 29519609 DOI: 10.1016/j.euroneuro.2018.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activating the endocannabinoid system has become a major focus in the search for novel therapeutics for anxiety and deficits in fear extinction, two defining features of PTSD. We examined whether chronic treatment with the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.2, 0.3, 0.4 mg/kg, i.p.) or the CB1/2 receptor agonist WIN55,212-2 (0.25, 0.5 mg/kg, i.p.) injected for 3 weeks to rats exposed to the shock and reminders model of PTSD would attenuate post-stress symptoms and affect basolateral amygdala (BLA) and CA1 CB1 receptors. Exposure to shock and reminders enhanced acoustic startle response and impaired extinction. Rats exposed to shock and reminders and chronically treated with URB597 demonstrated normalized startle response and intact extinction kinetics. WIN55,212-2 only affected the startle response. The therapeutic effects of URB597 and WIN55,212-2 were found to be CB1 receptor dependent, as these effects were blocked when a low dose of the CB1 receptor antagonist AM251 (0.3 mg/kg, i.p. for 3 weeks) was co-administered. Moreover, URB597, but not WIN55,212-2, normalized the shock/reminders-induced upregulation in CB1 receptor levels in the BLA and CA1. One hour after the shock, N-arachidonoylethanolamine (AEA) was increased in the BLA and decreased in the CA1. Circulating 2-arachidonoylglycerol (2-AG) concentrations were decreased in shocked rats, with no significant effect in the BLA or CA1. FAAH activity was increased in the CA1 of shocked rats. Chronic cannabinoid treatment with URB597 can ameliorate PTSD-like symptoms suggesting FAAH inhibitors as a potentially effective therapeutic strategy for the treatment of disorders associated with inefficient fear coping.
Collapse
MESH Headings
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Arachidonic Acids/blood
- Basolateral Nuclear Complex/metabolism
- Benzamides/administration & dosage
- Benzamides/pharmacology
- Benzoxazines/administration & dosage
- Benzoxazines/pharmacology
- CA1 Region, Hippocampal/metabolism
- Cannabinoid Receptor Antagonists/pharmacology
- Carbamates/administration & dosage
- Carbamates/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation
- Endocannabinoids/blood
- Endocannabinoids/metabolism
- Extinction, Psychological/drug effects
- Glycerides/blood
- Male
- Morpholines/administration & dosage
- Morpholines/pharmacology
- Naphthalenes/administration & dosage
- Naphthalenes/pharmacology
- Piperidines/pharmacology
- Polyunsaturated Alkamides
- Pyrazoles/pharmacology
- Rats
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Stress Disorders, Post-Traumatic/drug therapy
Collapse
Affiliation(s)
- Sharon Fidelman
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | | | - Rachel Lange
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, USA
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
19
|
Duarte-Silva S, Neves-Carvalho A, Soares-Cunha C, Silva JM, Teixeira-Castro A, Vieira R, Silva-Fernandes A, Maciel P. Neuroprotective Effects of Creatine in the CMVMJD135 Mouse Model of Spinocerebellar Ataxia Type 3. Mov Disord 2018; 33:815-826. [PMID: 29570846 DOI: 10.1002/mds.27292] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Mitochondrial dysfunction has been implicated in several neurodegenerative diseases. Creatine administration increases concentration of the energy buffer phosphocreatine, exerting protective effects in the brain. We evaluate whether a creatine-enriched diet would be beneficial for a mouse model of spinocerebellar ataxia type 3, a genetically defined neurodegenerative disease for which no treatment is available. METHODS We performed 2 independent preclinical trials using the CMVMJD135 mouse model (treating 2 groups of animals with different disease severity) and wild-type mice, to which 2% creatine was provided for 19 (preclinical trial 1) or 29 (preclinical trial 2) weeks, starting at a presymptomatic age. Motor behavior was evaluated at several time points from 5 to 34 weeks of age, and neuropathological studies were performed at the end of each trial. RESULTS Creatine supplementation led to an overall improvement in the motor phenotype of CMVMJD135 mice in both trials, rescuing motor balance and coordination and also restored brain weight, mitigated astrogliosis, and preserved Calbindin-positive cells in the cerebellum. Moreover, a reduction of mutant ataxin-3 aggregates occurred despite maintained steady-state levels of the protein and the absence of autophagy activation. Creatine treatment also restored the expression of the mitochondrial mass marker Porin and reduced the expression of antioxidant enzymes Heme oxygenase 1 (HO1) and NAD(P)H Quinone Dehydrogenase 1 (NQO1), suggesting a beneficial effect at the level of mitochondria and oxidative stress. CONCLUSIONS Creatine slows disease progression and improves motor dysfunction as well as ameliorates neuropathology of the CMVMJD135 animals, supporting this as a useful strategy to slow the progression of spinocerebellar ataxia type 3. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sara Duarte-Silva
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Neves-Carvalho
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana M Silva
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Vieira
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Anabela Silva-Fernandes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Role of beta-catenin and endocannabinoids in the nucleus accumbens in extinction in rats exposed to shock and reminders. Neuroscience 2017. [DOI: 10.1016/j.neuroscience.2017.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Fernández-Ruiz J, Gómez-Ruiz M, García C, Hernández M, Ramos JA. Modeling Neurodegenerative Disorders for Developing Cannabinoid-Based Neuroprotective Therapies. Methods Enzymol 2017; 593:175-198. [PMID: 28750802 DOI: 10.1016/bs.mie.2017.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increase in lifespan during the last 50 years, mainly in developed countries, has originated a progressive elevation in the incidence of chronic neurodegenerative disorders, for which aging is the key risk factor. This fact will definitively become the major biomedical challenge during the present century, in part because the expectation of a persisting elevation in the population older than 65 years over the whole population and, on the other hand, because the current lack of efficacious therapies to control these disorders despite years of intense research. This chapter will address this question and will stress the urgency of developing better neuroprotective and neurorepair strategies that may delay/arrest the progression of these disorders, reviewing the major needs to solve the causes proposed for the permanent failures experienced in recent years, e.g., to develop multitarget strategies, to use more predictive experimental models, and to identify early disease biomarkers. This chapter will propose the cannabinoids and their classic (e.g., endocannabinoid receptors and enzymes) and nonclassic (e.g., peroxisome proliferator-activated receptors, transcription factors) targets as a useful strategy for developing novel therapies for these disorders, based on their broad-spectrum neuroprotective profile, their activity as an endogenous protective system, the location of the endocannabinoid targets in cell substrates critical for neuronal survival, and their ability to serve for preservation and rescue, but also for repair and/or replacement, of neurons and glial cells against cytotoxic insults.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - María Gómez-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - Concepción García
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mariluz Hernández
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - José A Ramos
- Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
22
|
Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3. PLoS One 2017; 12:e0176521. [PMID: 28448548 PMCID: PMC5407801 DOI: 10.1371/journal.pone.0176521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type-3 (SCA-3) is the most prevalent autosomal dominant inherited ataxia. We recently found that the endocannabinoid system is altered in the post-mortem cerebellum of SCA-3 patients, and similar results were also found in the cerebellar and brainstem nuclei of a SCA-3 transgenic mouse model. Given that the neuropathology of SCA-3 is not restricted to these two brain regions but rather, it is also evident in other structures (e.g., the basal ganglia), we studied the possible changes to endocannabinoid signaling in the striatum of these transgenic mice. SCA-3 mutant mice suffer defects in motor coordination, balance and they have an abnormal gait, reflecting a cerebellar/brainstem neuropathology. However, they also show dystonia-like behavior (limb clasping) that may be related to the malfunction/deterioration of specific neurons in the striatum. Indeed, we found a loss of striatal projecting neurons in SCA-3 mutant mice, accompanied by a reduction in glial glutamate transporters that could potentially aggravate excitotoxic damage. In terms of endocannabinoid signaling, no changes in CB2 receptors were evident, yet an important reduction in CB1 receptors was detected by qPCR and immunostaining. The reduction in CB1 receptors was presumed to occur in striatal afferent and efferent neurons, also potentially aggravating excitotoxicity. We also measured the endocannabinoid lipids in the striatum and despite a marked increase in the FAAH enzyme in this area, no overall changes in these lipids were found. Collectively, these studies confirm that the striatal endocannabinoid system is altered in SCA-3 mutant mice, adding to the equivalent changes found in other strongly affected CNS structures in this type of ataxia (i.e.: the cerebellum and brainstem). These data open the way to search for drugs that might correct these changes.
Collapse
|