1
|
Haakana P, Nätkynmäki A, Kirveskari E, Mäkelä JP, Kilgard MP, Tarvainen MP, Shulga A. Effects of auricular vagus nerve stimulation and electrical earlobe stimulation on motor-evoked potential changes induced by paired associative stimulation. Eur J Neurosci 2024; 60:5949-5965. [PMID: 39258329 DOI: 10.1111/ejn.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Paired associative stimulation (PAS) is a combination of transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS). PAS can induce long-term potentiation (LTP)-like plasticity in humans, manifested as motor-evoked potential (MEP) enhancement. We have developed a variant of PAS ("high-PAS"), which consists of high-frequency PNS and high-intensity TMS and targets spinal plasticity and promotes rehabilitation after spinal cord injury (SCI). Vagus nerve stimulation (VNS) promotes LTP-like plasticity and enhances recovery in SCI and stroke in humans and animals when combined with repetitive motor training. We combined high-PAS with simultaneous noninvasive transcutaneous auricular VNS (aVNS) to determine if aVNS enhances the extent of PAS-induced MEP amplitude increase. Sixteen healthy participants were stimulated for 20 min in four different sessions (PAS, PAS + aVNS, PAS + shamVNS, and aVNS) in a randomized single-blind setup. MEPs were measured before, immediately after, and at 30, 60, and 90 min post-stimulation. Stimulation protocols with PAS significantly potentiated MEPs (p = 0.005) when compared with aVNS (p = 0.642). Although not significant, MEP enhancement observed after PAS (43.5%) is further increased by aVNS (49.7%) and electrical earlobe stimulation (63.9%). Our aVNS setup failed to significantly enhance the effect of PAS, but sham VNS revealed a trend towards enhanced plasticity. Optimization of auricular VNS stimulation setup is required for possible tests of patients with SCI.
Collapse
Affiliation(s)
- Piia Haakana
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Motion Analysis Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - Anna Nätkynmäki
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Erika Kirveskari
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- HUS Medical Imaging Center, Clinical Neurophysiology; Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Michael P Kilgard
- Texas Biomedical Device Center, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Mika P Tarvainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Anastasia Shulga
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Epperson JD, Meyers EC, Pruitt DT, Wright JM, Hudson RA, Adehunoluwa EA, Nguyen-Duong YN, Rennaker RL, Hays SA, Kilgard MP. Characterization of an Algorithm for Autonomous, Closed-Loop Neuromodulation During Motor Rehabilitation. Neurorehabil Neural Repair 2024; 38:493-505. [PMID: 38712875 PMCID: PMC11179975 DOI: 10.1177/15459683241252599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
BACKGROUND Recent evidence demonstrates that manually triggered vagus nerve stimulation (VNS) combined with rehabilitation leads to increased recovery of upper limb motor function after stroke. This approach is premised on studies demonstrating that the timing of stimulation relative to movements is a key determinant in the effectiveness of this approach. OBJECTIVE The overall goal of the study was to identify an algorithm that could be used to automatically trigger VNS on the best movements during rehabilitative exercises while maintaining a desired interval between stimulations to reduce the burden of manual stimulation triggering. METHODS To develop the algorithm, we analyzed movement data collected from patients with a history of neurological injury. We applied 3 different algorithms to the signal, analyzed their triggering choices, and then validated the best algorithm by comparing triggering choices to those selected by a therapist delivering VNS therapy. RESULTS The dynamic algorithm triggered above the 95th percentile of maximum movement at a rate of 5.09 (interquartile range [IQR] = 0.74) triggers per minute. The periodic algorithm produces stimulation at set intervals but low movement selectivity (34.05%, IQR = 7.47), while the static threshold algorithm produces long interstimulus intervals (27.16 ± 2.01 seconds) with selectivity of 64.49% (IQR = 25.38). On average, the dynamic algorithm selects movements that are 54 ± 3% larger than therapist-selected movements. CONCLUSIONS This study shows that a dynamic algorithm is an effective strategy to trigger VNS during the best movements at a reliable triggering rate.
Collapse
Affiliation(s)
- Joseph D. Epperson
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Eric C. Meyers
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - David T. Pruitt
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Joel M. Wright
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Rachael A. Hudson
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Emmanuel A. Adehunoluwa
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Y-Nhy Nguyen-Duong
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Robert L. Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Seth A. Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael P. Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
3
|
Driskill CM, Childs JE, Phensy AJ, Rodriguez SR, O'Brien JT, Lindquist KL, Naderi A, Bordieanu B, McGinty JF, Kroener S. Vagus Nerve Stimulation (VNS) Modulates Synaptic Plasticity in the Infralimbic Cortex via Trk-B Receptor Activation to Reduce Drug-Seeking in Male Rats. J Neurosci 2024; 44:e0107242024. [PMID: 38719446 PMCID: PMC11154660 DOI: 10.1523/jneurosci.0107-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in male rats trained to self-administer cocaine. Pairing 10 d of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay. Systemic blockade of tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in Layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates the extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.
Collapse
Affiliation(s)
- Christopher M Driskill
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Jessica E Childs
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Aarron J Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Sierra R Rodriguez
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - John T O'Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Kathy L Lindquist
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Aurian Naderi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Bogdan Bordieanu
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jacqueline F McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
4
|
Reed F, Foldi CJ. Do the therapeutic effects of psilocybin involve actions in the gut? Trends Pharmacol Sci 2024; 45:107-117. [PMID: 38216431 DOI: 10.1016/j.tips.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
The psychedelic compound psilocybin has recently emerged as a therapeutic intervention for various mental health conditions. Psilocybin is a potent agonist of serotonin (5-HT) receptors (5-HTRs), which are expressed in the brain and throughout peripheral tissues, with particularly high expression in the gastrointestinal (GI) tract. However, no studies have investigated the possibility that peripheral actions of psilocybin may contribute to improvements in mental health outcomes. This is despite strong evidence for disturbed gut-brain signalling in conditions in which psilocybin is being tested clinically. In this Opinion, we highlight the likely actions of psychedelics in the gut and provide initial support for the premise that peripheral actions may be involved in rapid and long-term therapeutic effects. A greater understanding of all sites and modes of action will guide more targeted approaches to drug development.
Collapse
Affiliation(s)
- Felicia Reed
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC 3800, Australia; Australian Eating Disorders Research & Translation Centre (AEDRTC), Sydney, NSW 2006, Australia.
| | - Claire J Foldi
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC 3800, Australia.
| |
Collapse
|
5
|
Driskill CM, Childs JE, Phensy AJ, Rodriguez SR, O’Brien JT, Lindquist KL, Naderi A, Bordieanu B, McGinty JF, Kroener S. Vagus nerve stimulation (VNS) modulates synaptic plasticity in the rat infralimbic cortex via Trk-B receptor activation to reduce drug-seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577293. [PMID: 38328140 PMCID: PMC10849650 DOI: 10.1101/2024.01.25.577293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in rats trained to self-administer cocaine. Pairing 10 days of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay (ELISA). Systemic blockade of Tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.
Collapse
Affiliation(s)
- Christopher M. Driskill
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Jessica E. Childs
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Aarron J. Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Sierra R. Rodriguez
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - John T. O’Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Kathy L. Lindquist
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Aurian Naderi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Bogdan Bordieanu
- Dept. of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Jacqueline F. McGinty
- Dept. of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| |
Collapse
|
6
|
Ruiz AD, Malley KM, Danaphongse TT, Ahmad FN, Beltran CM, White ML, Baghdadi S, Pruitt DT, Rennaker RL, Kilgard MP, Hays SA. Vagus Nerve Stimulation Must Occur During Tactile Rehabilitation to Enhance Somatosensory Recovery. Neuroscience 2023; 532:79-86. [PMID: 37778688 DOI: 10.1016/j.neuroscience.2023.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Chronic sensory loss is a common and undertreated consequence of many forms of neurological injury. Emerging evidence indicates that vagus nerve stimulation (VNS) delivered during tactile rehabilitation promotes recovery of somatosensation. Here, we systematically varied the timing of VNS relative to tactile rehabilitation to determine the paradigm that yields the greatest degree of somatosensory recovery after peripheral nerve injury (PNI). The medial and ulnar nerves in rats were transected, causing chronic sensory loss. Eight weeks after injury, rats were given a VNS implant followed by four weeks of tactile rehabilitation sessions consisting of repeated mechanical stimuli to the previously denervated forepaw. Rats received VNS before, during, or after tactile rehabilitation. Delivery of VNS during rehabilitative training generates robust, significant recovery compared to rehabilitative training without stimulation (56 ± 14% improvement over sham stimulation). A matched amount of VNS before training, immediately after training, or two hours after training is significantly less effective than VNS during rehabilitative training and fails to improve recovery compared to rehabilitative training alone (5 ± 10%, 4 ± 11%, and -7 ± 22% improvement over sham stimulation, respectively). These findings indicate that concurrent delivery of VNS during rehabilitative training is most effective and illustrate the importance of considering stimulation timing for clinical implementation of VNS therapy.
Collapse
Affiliation(s)
- Andrea D Ruiz
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA.
| | - Kaitlyn M Malley
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tanya T Danaphongse
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Fatima N Ahmad
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Clareth Mota Beltran
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Megan L White
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sahba Baghdadi
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - David T Pruitt
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
7
|
Borland MS, Buell EP, Riley JR, Carroll AM, Moreno NA, Sharma P, Grasse KM, Buell JM, Kilgard MP, Engineer CT. Precise sound characteristics drive plasticity in the primary auditory cortex with VNS-sound pairing. Front Neurosci 2023; 17:1248936. [PMID: 37732302 PMCID: PMC10508341 DOI: 10.3389/fnins.2023.1248936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Repeatedly pairing a tone with vagus nerve stimulation (VNS) alters frequency tuning across the auditory pathway. Pairing VNS with speech sounds selectively enhances the primary auditory cortex response to the paired sounds. It is not yet known how altering the speech sounds paired with VNS alters responses. In this study, we test the hypothesis that the sounds that are presented and paired with VNS will influence the neural plasticity observed following VNS-sound pairing. Methods To explore the relationship between acoustic experience and neural plasticity, responses were recorded from primary auditory cortex (A1) after VNS was repeatedly paired with the speech sounds 'rad' and 'lad' or paired with only the speech sound 'rad' while 'lad' was an unpaired background sound. Results Pairing both sounds with VNS increased the response strength and neural discriminability of the paired sounds in the primary auditory cortex. Surprisingly, pairing only 'rad' with VNS did not alter A1 responses. Discussion These results suggest that the specific acoustic contrasts associated with VNS can powerfully shape neural activity in the auditory pathway. Methods to promote plasticity in the central auditory system represent a new therapeutic avenue to treat auditory processing disorders. Understanding how different sound contrasts and neural activity patterns shape plasticity could have important clinical implications.
Collapse
Affiliation(s)
- Michael S. Borland
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Elizabeth P. Buell
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Jonathan R. Riley
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Alan M. Carroll
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Nicole A. Moreno
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Pryanka Sharma
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Katelyn M. Grasse
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, United States
| | - John M. Buell
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Michael P. Kilgard
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Crystal T. Engineer
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
8
|
Ruiz AD, Malley KM, Danaphongse TT, Ahmad FN, Mota Beltran C, Rennaker RL, Kilgard MP, Hays SA. Effective Delivery of Vagus Nerve Stimulation Requires Many Stimulations Per Session and Many Sessions Per Week Over Many Weeks to Improve Recovery of Somatosensation. Neurorehabil Neural Repair 2023; 37:652-661. [PMID: 37694568 PMCID: PMC10523825 DOI: 10.1177/15459683231197412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND Chronic sensory loss is a common and undertreated consequence of many forms of neurological injury. Emerging evidence indicates that vagus nerve stimulation (VNS) delivered during tactile rehabilitation promotes recovery of somatosensation. OBJECTIVE Here, we characterize the amount, intensity, frequency, and duration of VNS therapy paradigms to determine the optimal dosage for VNS-dependent enhancement of recovery in a model of peripheral nerve injury (PNI). METHODS Rats underwent transection of the medial and ulnar nerves in the forelimb, resulting in chronic sensory loss in the paw. Eight weeks after injury, rats were implanted with a VNS cuff and received tactile rehabilitation sessions consisting of repeated mechanical stimulation of the previously denervated forepaw paired with short bursts of VNS. Rats received VNS therapy in 1 of 6 systematically varied dosing schedules to identify a paradigm that balanced therapy effectiveness with a shorter regimen. RESULTS Delivering 200 VNS pairings a day 4 days a week for 4 weeks produced the greatest percent improvement in somatosensory function compared to any of the 6 other groups (One Way analysis of variance at the end of therapy, F[4 70] P = .005). CONCLUSIONS Our findings demonstrate that an effective VNS therapy dosage delivers many stimulations per session, with many sessions per week, over many weeks. These results provide a framework to inform the development of VNS-based therapies for sensory restoration.
Collapse
Affiliation(s)
- Andrea D. Ruiz
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Kaitlyn M. Malley
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tanya T. Danaphongse
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
| | - Fatima N. Ahmad
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Clareth Mota Beltran
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Robert L. Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael P. Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Seth A. Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
9
|
Rufener KS, Wienke C, Salanje A, Haghikia A, Zaehle T. Effects of transcutaneous auricular vagus nerve stimulation paired with tones on electrophysiological markers of auditory perception. Brain Stimul 2023; 16:982-989. [PMID: 37336282 DOI: 10.1016/j.brs.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) has been introduced as a non-invasive alternative to invasive vagus nerve stimulation (iVNS). While iVNS paired with tones has been highlighted as a potential effective therapy for the treatment of auditory disorders such as tinnitus, there is still scarce data available confirming the efficacy of non-invasive taVNS. Here, we assessed the effect of taVNS paired with acoustic stimuli on sensory-related electrophysiological responses. METHODS A total of 22 healthy participants were investigated with a taVNS tone-pairing paradigm using a within-subjects design. In a single session pure tones paired with either active taVNS or sham taVNS were repeatedly presented. Novel tones without electrical stimulation served as control condition. Auditory event related potentials and auditory cortex oscillations were compared before and after the tone pairing procedure between stimulation conditions. RESULTS From pre to post pairing, we observed a decrease in the N1 amplitude and in theta power to tones paired with sham taVNS while these electrophysiological measures remained stable for tones paired with active taVNS a pattern mirroring auditory sensory processing of novel, unpaired control tones. CONCLUSION Our results demonstrate the efficacy of a short-term application of non-invasive taVNS to modulate auditory processing in healthy individuals and, thereby, have potential implications for interventions in auditory processing deficits.
Collapse
Affiliation(s)
- Katharina S Rufener
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany.
| | - Christian Wienke
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany
| | - Alena Salanje
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Germany
| |
Collapse
|
10
|
Wang X, Ding Q, Li T, Li W, Yin J, Li Y, Li Y, Zhuang W. Application of vagus nerve stimulation on the rehabilitation of upper limb dysfunction after stroke: a systematic review and meta-analysis. Front Neurol 2023; 14:1189034. [PMID: 37416314 PMCID: PMC10321132 DOI: 10.3389/fneur.2023.1189034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023] Open
Abstract
Objective This study aimed to elucidate the efficacy, safety, and long-term implications of vagus nerve stimulation (VNS) as a viable therapeutic option for patients with upper limb dysfunction following a stroke. Methods Data from the following libraries were searched from inception to December 2022: PubMed, Wanfang, Scopus, China Science and Technology Journal Database, Embase, Web of Science, China Biology Medicine Disc, Cochrane Library, and China National Knowledge Infrastructure. Outcomes included indicators of upper limb motor function, indicators of prognosis, and indicators of safety (incidence of adverse events [AEs] and serious AEs [SAEs]). Two of the authors extracted the data independently. A third researcher arbitrated when disputes occurred. The quality of each eligible study was evaluated using the Cochrane Risk of Bias tool. Meta-analysis and bias analysis were performed using Stata (version 16.0) and RevMan (version 5.3). Results Ten trials (VNS combined with rehabilitation group vs. no or sham VNS combined with rehabilitation group) with 335 patients were included in the meta-analysis. Regarding upper extremity motor function, based on Fugl-Meyer assessment scores, VNS combined with other treatment options had immediate (mean difference [MD] = 2.82, 95% confidence interval [CI] = 1.78-3.91, I2 = 62%, p < 0.00001) and long-term (day-30 MD = 4.20, 95% CI = 2.90-5.50, p < 0.00001; day-90 MD = 3.27, 95% CI = 1.67-4.87, p < 0.00001) beneficial effects compared with that of the control treatment. Subgroup analyses showed that transcutaneous VNS (MD = 2.87, 95% CI = 1.78-3.91, I2 = 62%, p < 0.00001) may be superior to invasive VNS (MD = 3.56, 95% CI = 1.99-5.13, I2 = 77%, p < 0.0001) and that VNS combined with integrated treatment (MD = 2.87, 95% CI = 1.78-3.91, I2 = 62%, p < 0.00001) is superior to VNS combined with upper extremity training alone (MD = 2.24, 95% CI = 0.55-3.93, I2 = 48%, p = 0.009). Moreover, lower frequency VNS (20 Hz) (MD = 3.39, 95% CI = 2.06-4.73, I2 = 65%, p < 0.00001) may be superior to higher frequency VNS (25 Hz or 30 Hz) (MD = 2.29, 95% CI = 0.27-4.32, I2 = 58%, p = 0,03). Regarding prognosis, the VNS group outperformed the control group in the activities of daily living (standardized MD = 1.50, 95% CI = 1.10-1.90, I2 = 0%, p < 0.00001) and depression reduction. In contrast, quality of life did not improve (p = 0.51). Safety was not significantly different between the experimental and control groups (AE p = 0.25; SAE p = 0.26). Conclusion VNS is an effective and safe treatment for upper extremity motor dysfunction after a stroke. For the functional restoration of the upper extremities, noninvasive integrated therapy and lower-frequency VNS may be more effective. In the future, further high-quality studies with larger study populations, more comprehensive indicators, and thorough data are required to advance the clinical application of VNS. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42023399820.
Collapse
Affiliation(s)
- Xu Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qixin Ding
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tianshu Li
- School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Wanyue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jialin Yin
- Department of Rehabilitation, Henan Provincial People's Hospital, School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yakun Li
- Department of Rehabilitation, Henan Provincial People's Hospital, School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuefang Li
- School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Weisheng Zhuang
- Department of Rehabilitation, Henan Provincial People's Hospital, School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
11
|
Morrison RA, Abe ST, Danaphongse T, Ezhil V, Somaney A, Adcock KS, Rennaker RL, Kilgard MP, Hays SA. Common Cholinergic, Noradrenergic, and Serotonergic Drugs Do Not Block VNS-Mediated Plasticity. Front Neurosci 2022; 16:849291. [PMID: 35281514 PMCID: PMC8904722 DOI: 10.3389/fnins.2022.849291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vagus nerve stimulation (VNS) delivered during motor rehabilitation enhances recovery from a wide array of neurological injuries and was recently approved by the U.S. FDA for chronic stroke. The benefits of VNS result from precisely timed engagement of neuromodulatory networks during rehabilitative training, which promotes synaptic plasticity in networks activated by rehabilitation. Previous studies demonstrate that lesions that deplete these neuromodulatory networks block VNS-mediated plasticity and accompanying enhancement of recovery. There is a great deal of interest in determining whether commonly prescribed pharmacological interventions that influence these neuromodulatory networks would similarly impair VNS effects. Here, we sought to directly test the effects of three common pharmaceuticals at clinically relevant doses that target neuromodulatory pathways on VNS-mediated plasticity in rats. To do so, rats were trained on a behavioral task in which jaw movement during chewing was paired with VNS and received daily injections of either oxybutynin, a cholinergic antagonist, prazosin, an adrenergic antagonist, duloxetine, a serotonin-norepinephrine reuptake inhibitor, or saline. After the final behavioral session, intracortical microstimulation (ICMS) was used to evaluate reorganization of motor cortex representations, with area of cortex eliciting jaw movement as the primary outcome. In animals that received control saline injections, VNS paired with training significantly increased the movement representation of the jaw compared to naïve animals, consistent with previous studies. Similarly, none of the drugs tested blocked this VNS-dependent reorganization of motor cortex. The present results provide direct evidence that these common pharmaceuticals, when used at clinically relevant doses, are unlikely to adversely impact the efficacy of VNS therapy.
Collapse
Affiliation(s)
- Robert A. Morrison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
- *Correspondence: Robert A. Morrison,
| | - Stephanie T. Abe
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Tanya Danaphongse
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Vikram Ezhil
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Armaan Somaney
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Katherine S. Adcock
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Robert L. Rennaker
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Michael P. Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Seth A. Hays
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
- Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
12
|
Liu TT, Morais A, Takizawa T, Mulder I, Simon BJ, Chen SP, Wang SJ, Ayata C, Yen JC. Efficacy profile of noninvasive vagus nerve stimulation on cortical spreading depression susceptibility and the tissue response in a rat model. J Headache Pain 2022; 23:12. [PMID: 35062860 PMCID: PMC8903561 DOI: 10.1186/s10194-022-01384-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Noninvasive vagus nerve stimulation (nVNS) has recently emerged as a promising therapy for migraine. We previously demonstrated that vagus nerve stimulation inhibits cortical spreading depression (CSD), the electrophysiological event underlying migraine aura and triggering headache; however, the optimal nVNS paradigm has not been defined. Methods Various intensities and doses of nVNS were tested to improve efficacy on KCl-evoked CSD frequency and electrical threshold of CSD in a validated rat model. Chronic efficacy was evaluated by daily nVNS delivery for four weeks. We also examined the effects of nVNS on neuroinflammation and trigeminovascular activation by western blot and immunohistochemistry. Results nVNS suppressed susceptibility to CSD in an intensity-dependent manner. Two 2-minute nVNS 5 min apart afforded the highest efficacy on electrical CSD threshold and frequency of KCl-evoked CSD. Daily nVNS for four weeks did not further enhance efficacy over a single nVNS 20 min prior to CSD. The optimal nVNS also attenuated CSD-induced upregulation of cortical cyclooxygenase-2, calcitonin gene-related peptide in trigeminal ganglia, and c-Fos expression in trigeminal nucleus caudalis. Conclusions Our study provides insight on optimal nVNS parameters to suppress CSD and suggests its benefit on CSD-induced neuroinflammation and trigeminovascular activation in migraine treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01384-1.
Collapse
|
13
|
Thompson SL, O'Leary GH, Austelle CW, Gruber E, Kahn AT, Manett AJ, Short B, Badran BW. A Review of Parameter Settings for Invasive and Non-invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Front Neurosci 2021; 15:709436. [PMID: 34326720 PMCID: PMC8313807 DOI: 10.3389/fnins.2021.709436] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Vagus nerve stimulation (VNS) is an established form of neuromodulation with a long history of promising applications. Earliest reports of VNS in the literature date to the late 1800’s in experiments conducted by Dr. James Corning. Over the past century, both invasive and non-invasive VNS have demonstrated promise in treating a variety of disorders, including epilepsy, depression, and post-stroke motor rehabilitation. As VNS continues to rapidly grow in popularity and application, the field generally lacks a consensus on optimum stimulation parameters. Stimulation parameters have a significant impact on the efficacy of neuromodulation, and here we will describe the longitudinal evolution of VNS parameters in the following categorical progression: (1) animal models, (2) epilepsy, (3) treatment resistant depression, (4) neuroplasticity and rehabilitation, and (5) transcutaneous auricular VNS (taVNS). We additionally offer a historical perspective of the various applications and summarize the range and most commonly used parameters in over 130 implanted and non-invasive VNS studies over five applications.
Collapse
Affiliation(s)
- Sean L Thompson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Georgia H O'Leary
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Christopher W Austelle
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Elise Gruber
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Alex T Kahn
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Andrew J Manett
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Baron Short
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
14
|
Shulga A, Lioumis P, Kirveskari E, Savolainen S, Mäkelä JP. A novel paired associative stimulation protocol with a high-frequency peripheral component: A review on results in spinal cord injury rehabilitation. Eur J Neurosci 2021; 53:3242-3257. [PMID: 33738876 DOI: 10.1111/ejn.15191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
In recent decades, a multitude of therapeutic approaches has been developed for spinal cord injury (SCI), but few have progressed to regular clinical practice. Novel non-invasive, cost-effective, and feasible approaches to treat this challenging condition are needed. A novel variant of paired associative stimulation (PAS), high-PAS, consists of non-invasive high-intensity transcranial magnetic stimulation (TMS) and non-invasive high-frequency electrical peripheral nerve stimulation (PNS). We observed a therapeutic effect of high-PAS in 20 patients with incomplete SCI with wide range of injury severity, age, and time since injury. Tetraplegic and paraplegic, traumatic, and neurological SCI patients benefited from upper- or lower-limb high-PAS. We observed increases in manual motor scores (MMT) of upper and lower limbs, functional hand tests, walking tests, and measures of functional independence. We also optimized PAS settings in several studies in healthy subjects and began elucidating the mechanisms of therapeutic action. The scope of this review is to describe the clinical experience gained with this novel PAS approach. This review is focused on the summary of our results and observations and the methodological considerations for researchers and clinicians interested in adopting and further developing this new method.
Collapse
Affiliation(s)
- Anastasia Shulga
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.,Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pantelis Lioumis
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Erika Kirveskari
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.,HUS Medical Imaging Center, Clinical Neurophysiology; Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sarianna Savolainen
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.,Validia Rehabilitation Center, Helsinki, Finland
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
15
|
Darrow MJ, Mian TM, Torres M, Haider Z, Danaphongse T, Seyedahmadi A, Rennaker RL, Hays SA, Kilgard MP. The tactile experience paired with vagus nerve stimulation determines the degree of sensory recovery after chronic nerve damage. Behav Brain Res 2021; 396:112910. [PMID: 32971197 PMCID: PMC7572822 DOI: 10.1016/j.bbr.2020.112910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
Loss of sensory function is a common consequence of neurological injury. Recent clinical and preclinical evidence indicates vagus nerve stimulation (VNS) paired with tactile rehabilitation, consisting of delivery of a variety of mechanical stimuli to the hyposensitive skin surface, yields substantial and long-lasting recovery of somatosensory function after median and ulnar nerve transection and repair. Here, we tested the hypothesis that a specific component of the tactile rehabilitation paired with VNS is necessary for recovery of somatosensory function. In a second experiment in a separate cohort, we investigated whether VNS paired with tactile rehabilitation could improve skilled forelimb motor function. Elements of the study design, including planned sample size, assessments, and statistical comparisons, were preregistered prior to beginning data collection (https://osf.io/3tm8u/). Animals received a peripheral nerve injury (PNI) causing chronic sensory loss. Eight weeks after injury, animals were given a VNS implant followed by six weeks of tactile rehabilitation sessions consisting of repeated application of one of two distinct mechanical stimuli, a filament or a paintbrush, to the previously denervated forepaw. VNS paired with either filament indentation or brushing of the paw significantly improved recovery of forelimb withdrawal thresholds after PNI compared to tactile rehabilitation without VNS. The effect size was twice as large when VNS was paired with brushing compared to VNS paired with point indentation. An independent replication in a second cohort confirmed that VNS paired with brush restored forelimb withdrawal thresholds to normal. These rats displayed significant improvements in performance on a skilled forelimb task compared to rats that did not receive VNS. These findings support the utility of pairing VNS with tactile rehabilitation to improve recovery of somatosensory and motor function after neurological injury. Additionally, this study demonstrates that the sensory characteristics of the rehabilitation paired with VNS determine the degree of recovery.
Collapse
Affiliation(s)
- Michael J Darrow
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Tabarak M Mian
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Miranda Torres
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Zainab Haider
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Tanya Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Armin Seyedahmadi
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Robert L Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States.
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States
| |
Collapse
|
16
|
De Ridder D, Langguth B, Vanneste S. Vagus nerve stimulation for tinnitus: A review and perspective. PROGRESS IN BRAIN RESEARCH 2020; 262:451-467. [PMID: 33931191 DOI: 10.1016/bs.pbr.2020.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vagus nerve stimulation is a promising new tool in the treatment of chronic tinnitus. Current protocols involve pairing sounds, which exclude the tinnitus frequency, with simultaneous vagus nerve stimulation (VNS). This is based on extensive preclinical animal studies that demonstrate that pairing non-tinnitus sounds with VNS results in a tonotopic map plasticity. It is thought that by expanding the non-tinnitus sound representation, it is possible to overturn the expanded tonotopic map associated with the tinnitus frequency in these animal models. These findings have been translated into a clinical approach, where a clinically significant, but moderate improvement, in tinnitus distress and a modest benefit in tinnitus loudness perception has been shown. Yet, pairing tinnitus matched sound to VNS may produce tinnitus improvement by Pavlovian conditioning, in which the distressful tinnitus sound becomes associated with a relaxing "rest and digest" response from activation of the vagus nerve. If this hypothesis is correct, beneficial effects should be achieved with paired sounds that resemble the tinnitus sounds as much as possible. In conclusion, although the potential to use VNS to drive neural plasticity to reduce or eliminate the neural drivers of ongoing tinnitus is exciting, much work is needed to more completely understand the neural basis of tinnitus and to develop tailored therapies to address the suffering caused by this heterogeneous condition. Whether pairing of the vagus stimulation with non-tinnitus or tinnitus-matched sounds is essential is still to be determined.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Adcock KS, Chandler C, Buell EP, Solorzano BR, Loerwald KW, Borland MS, Engineer CT. Vagus nerve stimulation paired with tones restores auditory processing in a rat model of Rett syndrome. Brain Stimul 2020; 13:1494-1503. [PMID: 32800964 DOI: 10.1016/j.brs.2020.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Rett syndrome is a rare neurological disorder associated with a mutation in the X-linked gene MECP2. This disorder mainly affects females, who typically have seemingly normal early development followed by a regression of acquired skills. The rodent Mecp2 model exhibits many of the classic neural abnormalities and behavioral deficits observed in individuals with Rett syndrome. Similar to individuals with Rett syndrome, both auditory discrimination ability and auditory cortical responses are impaired in heterozygous Mecp2 rats. The development of therapies that can enhance plasticity in auditory networks and improve auditory processing has the potential to impact the lives of individuals with Rett syndrome. Evidence suggests that precisely timed vagus nerve stimulation (VNS) paired with sound presentation can drive robust neuroplasticity in auditory networks and enhance the benefits of auditory therapy. OBJECTIVE The aim of this study was to investigate the ability of VNS paired with tones to restore auditory processing in Mecp2 transgenic rats. METHODS Seventeen female heterozygous Mecp2 rats and 8 female wild-type (WT) littermates were used in this study. The rats were exposed to multiple tone frequencies paired with VNS 300 times per day for 20 days. Auditory cortex responses were then examined following VNS-tone pairing therapy or no therapy. RESULTS Our results indicate that Mecp2 mutation alters auditory cortex responses to sounds compared to WT controls. VNS-tone pairing in Mecp2 rats improves the cortical response strength to both tones and speech sounds compared to untreated Mecp2 rats. Additionally, VNS-tone pairing increased the information contained in the neural response that can be used to discriminate between different consonant sounds. CONCLUSION These results demonstrate that VNS-sound pairing may represent a strategy to enhance auditory function in individuals with Rett syndrome.
Collapse
Affiliation(s)
- Katherine S Adcock
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Collin Chandler
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Elizabeth P Buell
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Bleyda R Solorzano
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Kristofer W Loerwald
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Michael S Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA.
| |
Collapse
|
18
|
Pruitt DT, Danaphongse TT, Lutchman M, Patel N, Reddy P, Wang V, Parashar A, Rennaker RL, Kilgard MP, Hays SA. Optimizing Dosing of Vagus Nerve Stimulation for Stroke Recovery. Transl Stroke Res 2020; 12:65-71. [PMID: 32583333 DOI: 10.1007/s12975-020-00829-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/27/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
Vagus nerve stimulation (VNS) paired with rehabilitative training enhances recovery of function in models of stroke and is currently under investigation for use in chronic stroke patients. Dosing is critical in translation of pharmacological therapies, but electrical stimulation therapies often fail to comprehensively explore dosing parameters in preclinical studies. Varying VNS parameters has non-monotonic effects on plasticity in the central nervous system, which may directly impact efficacy for stroke. We sought to optimize stimulation intensity to maximize recovery of motor function in a model of ischemic stroke. The study design was preregistered prior to beginning data collection (DOI: https://doi.org/10.17605/OSF.IO/BMJEK ). After training on an automated assessment of forelimb function and receiving an ischemic lesion in motor cortex, rats were separated into groups that received rehabilitative training paired with VNS at distinct stimulation intensities (sham, 0.4 mA, 0.8 mA, or 1.6 mA). Moderate-intensity VNS at 0.8 mA enhanced recovery of function compared with all other groups. Neither 0.4 mA nor 1.6 mA VNS was sufficient to improve functional recovery compared with equivalent rehabilitation without VNS. These results demonstrate that moderate-intensity VNS delivered during rehabilitation improves recovery and defines an optimized intensity paradigm for clinical implementation of VNS therapy.
Collapse
Affiliation(s)
- David T Pruitt
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA.
| | - Tanya T Danaphongse
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Megan Lutchman
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Nishi Patel
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Priyanka Reddy
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Vanesse Wang
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Anjana Parashar
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA.,Erik Jonsson School of Engineering and Computer Science, Richardson, TX, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Seth A Hays
- Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA.,Erik Jonsson School of Engineering and Computer Science, Richardson, TX, USA
| |
Collapse
|
19
|
Mezes M, Havu R, Tolmacheva A, Lioumis P, Mäkelä JP, Shulga A. The impact of TMS and PNS frequencies on MEP potentiation in PAS with high-frequency peripheral component. PLoS One 2020; 15:e0233999. [PMID: 32470028 PMCID: PMC7259644 DOI: 10.1371/journal.pone.0233999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/15/2020] [Indexed: 11/18/2022] Open
Abstract
Paired associative stimulation (PAS) combines transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS) to induce plastic changes in the corticospinal tract. PAS employing single 0.2-Hz TMS pulses synchronized with the first pulse of 50–100 Hz PNS trains potentiates motor-evoked potentials (MEPs) in a stable manner in healthy participants and enhances voluntary motor output in spinal cord injury (SCI) patients. We further investigated the impact of settings of this PAS variant on MEP potentiation in healthy subjects. In experiment 1, we compared 0.2-Hz vs 0.4-Hz PAS. In experiment 2, PNS frequencies of 100 Hz, 200 Hz, and 400 Hz were compared. In experiment 3, we added a second TMS pulse. When compared with 0.4-Hz PAS, 0.2-Hz PAS was significantly more effective after 30 minutes (p = 0.05) and 60 minutes (p = 0.014). MEP potentiation by PAS with 100-Hz and 200-Hz PNS did not differ. PAS with 400-Hz PNS was less effective than 100-Hz (p = 0.023) and 200-Hz (p = 0.013) PNS. Adding an extra TMS pulse rendered PAS strongly inhibitory. These negative findings demonstrate that the 0.2-Hz PAS with 100-Hz PNS previously used in clinical studies is optimal and the modifications employed here do not enhance its efficacy.
Collapse
Affiliation(s)
- Magdolna Mezes
- Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University and Centre for Cognitive Neuroscience, Salzburg, Austria
| | - Roope Havu
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aleksandra Tolmacheva
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pantelis Lioumis
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Helsinki, Finland
| | - Jyrki P. Mäkelä
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anastasia Shulga
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| |
Collapse
|
20
|
Meyers EC, Kasliwal N, Solorzano BR, Lai E, Bendale G, Berry A, Ganzer PD, Romero-Ortega M, Rennaker RL, Kilgard MP, Hays SA. Enhancing plasticity in central networks improves motor and sensory recovery after nerve damage. Nat Commun 2019; 10:5782. [PMID: 31857587 PMCID: PMC6923364 DOI: 10.1038/s41467-019-13695-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Nerve damage can cause chronic, debilitating problems including loss of motor control and paresthesia, and generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. However, it remains unclear if this is a critical feature responsible for the expression of symptoms. Here, we use brief bursts of closed-loop vagus nerve stimulation (CL-VNS) delivered during rehabilitation to reverse the aberrant central plasticity resulting from forelimb nerve transection. CL-VNS therapy drives extensive synaptic reorganization in central networks paralleled by improved sensorimotor recovery without any observable changes in the nerve or muscle. Depleting cortical acetylcholine blocks the plasticity-enhancing effects of CL-VNS and consequently eliminates recovery, indicating a critical role for brain circuits in recovery. These findings demonstrate that manipulations to enhance central plasticity can improve sensorimotor recovery and define CL-VNS as a readily translatable therapy to restore function after nerve damage. Peripheral nerve damage generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. Here, the authors reverse the aberrant plasticity via vagus nerve stimulation to elicit synaptic reorganization and to improve sensorimotor recovery.
Collapse
Affiliation(s)
- Eric C Meyers
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| | - Nimit Kasliwal
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Bleyda R Solorzano
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Elaine Lai
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Geetanjali Bendale
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Abigail Berry
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Patrick D Ganzer
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Mario Romero-Ortega
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
21
|
Childs JE, Kim S, Driskill CM, Hsiu E, Kroener S. Vagus nerve stimulation during extinction learning reduces conditioned place preference and context-induced reinstatement of cocaine seeking. Brain Stimul 2019; 12:1448-1455. [PMID: 31289015 PMCID: PMC10766375 DOI: 10.1016/j.brs.2019.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Drug use causes the formation of strong cue/reward associations which persist long after cessation of drug-taking and contribute to the long-term risk of relapse. Extinguishing these associations may reduce cue-induced craving and relapse. Previously, we found that pairing vagus nerve stimulation (VNS) with extinction of cocaine self-administration reduces cue-induced reinstatement; however, it remains unclear whether this was primarily caused by extinguishing the context, the instrumental response, or both. OBJECTIVE Hypothesis: We hypothesized that VNS can facilitate the extinction of both contextual cues and instrumental responding. METHODS Extinction of context was first tested using Pavlovian conditioned place preference (CPP). Next, the impact of VNS on the extinction of instrumental responding was assessed under ABA and AAA context conditions. In each extinction context separate groups of rats were either provided the opportunity to perform the instrumental response, or the levers were retracted for the duration of extinction training. Reinstatement was induced by reintroduction of the conditioned stimuli and/or the drug-paired context. Data were analyzed using one-way or two-way repeated measures ANOVAs. RESULTS VNS during extinction reduced reinstatement of CPP. VNS also reduced cue- and context-induced reinstatement of the instrumental response under both AAA and ABA conditions. The subjects' ability to engage with the lever during extinction was crucial for this effect. P values < 0.05 were considered significant. CONCLUSIONS Craving occurs in response to a range of conditioned stimuli and contexts; VNS may improve outcomes of behavioral therapy by facilitating extinction of both an instrumental response and/or contextual cues.
Collapse
Affiliation(s)
- Jessica E Childs
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080, USA
| | - Suhyeong Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080, USA
| | - Christopher M Driskill
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080, USA
| | - Emily Hsiu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080, USA.
| |
Collapse
|
22
|
Borland MS, Vrana WA, Moreno NA, Fogarty EA, Buell EP, Vanneste S, Kilgard MP, Engineer CT. Pairing vagus nerve stimulation with tones drives plasticity across the auditory pathway. J Neurophysiol 2019; 122:659-671. [PMID: 31215351 DOI: 10.1152/jn.00832.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with sounds can enhance the primary auditory cortex (A1) response to the paired sound. The neural response to sounds following VNS-sound pairing in other subcortical and cortical auditory fields has not been documented. We predicted that VNS-tone pairing would increase neural responses to the paired tone frequency across the auditory pathway. In this study, we paired VNS with the presentation of a 9-kHz tone 300 times a day for 20 days. We recorded neural responses to tones from 2,950 sites in the inferior colliculus (IC), A1, anterior auditory field (AAF), and posterior auditory field (PAF) 24 h after the last pairing session in anesthetized rats. We found that VNS-tone pairing increased the percentage of IC, A1, AAF, and PAF that responds to the paired tone frequency. Across all tested auditory fields, the response strength to tones was strengthened in VNS-tone paired rats compared with control rats. VNS-tone pairing reduced spontaneous activity, frequency selectivity, and response threshold across the auditory pathway. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing. Our findings suggest that VNS paired with sound presentation is an effective method to enhance auditory processing.NEW & NOTEWORTHY Previous studies have reported primary auditory cortex plasticity following vagus nerve stimulation (VNS) paired with a sound. This study extends previous findings by documenting that fields across the auditory pathway are altered by VNS-tone pairing. VNS-tone pairing increases the percentage of each field that responds to the paired tone frequency. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing.
Collapse
Affiliation(s)
- Michael S Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Will A Vrana
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Nicole A Moreno
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Elizabeth A Fogarty
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Elizabeth P Buell
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Sven Vanneste
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.,The University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas
| |
Collapse
|
23
|
Hulsey DR, Shedd CM, Sarker SF, Kilgard MP, Hays SA. Norepinephrine and serotonin are required for vagus nerve stimulation directed cortical plasticity. Exp Neurol 2019; 320:112975. [PMID: 31181199 DOI: 10.1016/j.expneurol.2019.112975] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 11/18/2022]
Abstract
Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. This effect is hypothesized to be mediated by VNS-dependent engagement of neuromodulatory networks. VNS influences activity in the locus coeruleus (LC) and dorsal raphe nucleus (DRN), but the involvement of these neuromodulatory networks in VNS-directed plasticity is unknown. We tested the hypothesis that cortical norepinephrine and serotonin are required for VNS-dependent enhancement of motor cortex plasticity. Rats were trained on a lever pressing task emphasizing proximal forelimb use. Once proficient, all rats received a surgically implanted vagus nerve cuff and cortical injections of either immunotoxins to deplete serotonin or norepinephrine, or vehicle control. Following surgical recovery, rats received half second bursts of 0.8 mA or sham VNS after successful trials. After five days of pairing intracortical microstimulation (ICMS) was performed in the motor cortex contralateral to the trained limb. VNS paired with training more than doubled cortical representations of proximal forelimb movements. Depletion of either cortical norepinephrine or serotonin prevented this effect. The requirement of multiple neuromodulators is consistent with earlier studies showing that these neuromodulators regulate synaptic plasticity in a complimentary fashion.
Collapse
Affiliation(s)
- Daniel R Hulsey
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America.
| | - Christine M Shedd
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080-3021, United States of America
| | - Sadmaan F Sarker
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080-3021, United States of America
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America
| |
Collapse
|
24
|
The effect of transcutaneous vagus nerve stimulation on fear generalization and subsequent fear extinction. Neurobiol Learn Mem 2019; 161:192-201. [DOI: 10.1016/j.nlm.2019.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
|
25
|
Engineer ND, Kimberley TJ, Prudente CN, Dawson J, Tarver WB, Hays SA. Targeted Vagus Nerve Stimulation for Rehabilitation After Stroke. Front Neurosci 2019; 13:280. [PMID: 30983963 PMCID: PMC6449801 DOI: 10.3389/fnins.2019.00280] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 01/14/2023] Open
Abstract
Stroke is a leading cause of disability worldwide, and in approximately 60% of individuals, upper limb deficits persist 6 months after stroke. These deficits adversely affect the functional use of the upper limb and restrict participation in day to day activities. An important goal of stroke rehabilitation is to improve the quality of life by enhancing functional independence and participation in activities. Since upper limb deficits are one of the best predictors of quality of life after stroke, effective interventions targeting these deficits may represent a means to improve quality of life. An increased understanding of the neurobiological processes underlying stroke recovery has led to the development of targeted approaches to improve motor deficits. One such targeted strategy uses brief bursts of Vagus Nerve Stimulation (VNS) paired with rehabilitation to enhance plasticity and support recovery of upper limb function after chronic stroke. Stimulation of the vagus nerve triggers release of plasticity promoting neuromodulators, such as acetylcholine and norepinephrine, throughout the cortex. Timed engagement of neuromodulators concurrent with motor training drives task-specific plasticity in the motor cortex to improve function and provides the basis for paired VNS therapy. A number of studies in preclinical models of ischemic stroke demonstrated that VNS paired with rehabilitative training significantly improved the recovery of forelimb motor function compared to rehabilitative training without VNS. The improvements were associated with synaptic reorganization of cortical motor networks and recruitment of residual motor neurons controlling the impaired forelimb, demonstrating the putative neurobiological mechanisms underlying recovery of motor function. These preclinical studies provided the basis for conducting two multi-site, randomized controlled pilot trials in individuals with moderate to severe upper limb weakness after chronic ischemic stroke. In both studies, VNS paired with rehabilitation improved motor deficits compared to rehabilitation alone. The trials provided support for a 120-patient pivotal study designed to evaluate the efficacy of paired VNS therapy in individuals with chronic ischemic stroke. This manuscript will discuss the neurobiological rationale for VNS therapy, provide an in-depth discussion of both animal and human studies of VNS therapy for stroke, and outline the challenges and opportunities for the future use of VNS therapy.
Collapse
Affiliation(s)
| | - Teresa J. Kimberley
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, United States
| | | | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Queen Elizabeth University Hospital, University of Glasgow, Glasgow, United Kingdom
| | | | - Seth A. Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
26
|
Buell EP, Borland MS, Loerwald KW, Chandler C, Hays SA, Engineer CT, Kilgard MP. Vagus Nerve Stimulation Rate and Duration Determine whether Sensory Pairing Produces Neural Plasticity. Neuroscience 2019; 406:290-299. [PMID: 30904665 DOI: 10.1016/j.neuroscience.2019.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 01/28/2023]
Abstract
Repeatedly pairing a brief train of vagus nerve stimulation (VNS) with an auditory stimulus drives reorganization of primary auditory cortex (A1), and the magnitude of this VNS-dependent plasticity is dependent on the stimulation parameters, including intensity and pulse rate. However, there is currently little data to guide the selection of VNS train durations, an easily adjusted parameter that could influence the effect of VNS-based therapies. Here, we tested the effect of varying the duration of the VNS train on the extent of VNS-dependent cortical plasticity. Rats were exposed to a 9 kHz tone 300 times per day for 20 days. Coincident with tone presentation, groups received trains of 4, 16, or 64 pulses of VNS delivered at 30 Hz, corresponding to train durations of 0.125 s, 0.5 s, and 2.0 s, respectively. High-density microelectrode mapping of A1 revealed that 0.5 s duration VNS trains significantly increased the number of neurons in A1 that responded to tones near the paired tone frequency. Trains lasting 0.125 or 2.0 s failed to alter A1 responses, indicating that both shorter and longer stimulation durations are less effective at enhancing plasticity. A second set of experiments evaluating the effect of delivering 4 or 64 pulses in a fixed 0.5 s VNS train duration paired with tone presentation reveal that both slower and faster stimulation rates are less effective at enhancing plasticity. We incorporated these results with previous findings describing the effect of stimulation parameters on VNS-dependent plasticity and activation of neuromodulatory networks to generate a model of synaptic activation by VNS.
Collapse
Affiliation(s)
- Elizabeth P Buell
- Texas Biomedical Device Center, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, USA.
| | - Michael S Borland
- Texas Biomedical Device Center, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, USA
| | - Kristofer W Loerwald
- Texas Biomedical Device Center, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, USA
| | - Collin Chandler
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, USA
| | - Seth A Hays
- Texas Biomedical Device Center, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, BSB 11; Richardson, TX 75080, USA
| | - Crystal T Engineer
- Texas Biomedical Device Center, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, USA
| |
Collapse
|
27
|
Rios MU, Bucksot JE, Rahebi KC, Engineer CT, Kilgard MP, Hays SA. Protocol for Construction of Rat Nerve Stimulation Cuff Electrodes. Methods Protoc 2019; 2. [PMID: 30957053 PMCID: PMC6448795 DOI: 10.3390/mps2010019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve stimulation has emerged as a platform therapy to treat a wide range of disorders. Continued development and translation of these strategies requires that researchers have access to reliable, customizable electrodes for nerve stimulation. Here, we detail procedures to build three different configurations of cuff electrodes with varying numbers and orientations of contacts for nerve stimulation in rats. These designs are built with simple, widely available materials, using platinum-iridium electrodes assembled into polyurethane tubing. Moreover, the designs can easily be customized to increase versatility and individualize for specific stimulation applications. This protocol provides a resource to facilitate the construction and customization of stimulation cuffs to support preclinical nerve stimulation research.
Collapse
Affiliation(s)
- Manolo U Rios
- School of Brain and Behavioral Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021, USA; (M.U.R.); (M.P.K.), (S.A.H.)
| | - Jesse E Bucksot
- School of Biomedical Engineering, The University of Texas at Dallas, Richardson, TX 75080-3021, USA;
| | - Kimiya C Rahebi
- Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, Richardson, TX 75080-3021, USA;
| | - Crystal T Engineer
- School of Brain and Behavioral Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021, USA; (M.U.R.); (M.P.K.), (S.A.H.)
- School of Biomedical Engineering, The University of Texas at Dallas, Richardson, TX 75080-3021, USA;
- Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, Richardson, TX 75080-3021, USA;
| | - Michael P Kilgard
- School of Brain and Behavioral Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021, USA; (M.U.R.); (M.P.K.), (S.A.H.)
- Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, Richardson, TX 75080-3021, USA;
| | - Seth A Hays
- School of Brain and Behavioral Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021, USA; (M.U.R.); (M.P.K.), (S.A.H.)
- School of Biomedical Engineering, The University of Texas at Dallas, Richardson, TX 75080-3021, USA;
- Texas Biomedical Device Center (TxBDC), The University of Texas at Dallas, Richardson, TX 75080-3021, USA;
| |
Collapse
|
28
|
Morrison RA, Hulsey DR, Adcock KS, Rennaker RL, Kilgard MP, Hays SA. Vagus nerve stimulation intensity influences motor cortex plasticity. Brain Stimul 2018; 12:256-262. [PMID: 30409712 DOI: 10.1016/j.brs.2018.10.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) paired with forelimb motor training enhances reorganization of movement representations in the motor cortex. Previous studies have shown an inverted-U relationship between VNS intensity and plasticity in other brain areas, such that moderate intensity VNS yields greater cortical plasticity than low or high intensity VNS. However, the relationship between VNS intensity and plasticity in the motor cortex is unknown. OBJECTIVE In this study we sought to test the hypothesis that VNS intensity exhibits an inverted-U relationship with the degree of motor cortex plasticity in rats. METHODS Rats were taught to perform a lever pressing task emphasizing use of the proximal forelimb musculature. Once proficient, rats underwent five additional days of behavioral training in which low intensity VNS (0.4 mA), moderate intensity VNS (0.8 mA), high intensity VNS (1.6 mA), or sham stimulation was paired with forelimb movement. 24 h after the completion of behavioral training, intracortical microstimulation (ICMS) was used to document movement representations in the motor cortex. RESULTS VNS delivered at 0.8 mA caused a significant increase in motor cortex proximal forelimb representation compared to training alone. VNS delivered at 0.4 mA and 1.6 mA failed to cause a significant expansion of proximal forelimb representation. CONCLUSION Moderate intensity 0.8 mA VNS optimally enhances motor cortex plasticity while low intensity 0.4 mA and high intensity 1.6 mA VNS fail to enhance plasticity. Plasticity in the motor cortex exhibits an inverted-U function of VNS intensity similar to previous findings in auditory cortex.
Collapse
Affiliation(s)
- Robert A Morrison
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA.
| | - Daniel R Hulsey
- The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA
| | - Katherine S Adcock
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA
| | - Robert L Rennaker
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, USA
| | - Michael P Kilgard
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, USA
| | - Seth A Hays
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, USA
| |
Collapse
|
29
|
Buell EP, Loerwald KW, Engineer CT, Borland MS, Buell JM, Kelly CA, Khan II, Hays SA, Kilgard MP. Cortical map plasticity as a function of vagus nerve stimulation rate. Brain Stimul 2018; 11:1218-1224. [PMID: 30037658 PMCID: PMC6487479 DOI: 10.1016/j.brs.2018.07.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/04/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Repeatedly pairing a brief train of vagus nerve stimulation (VNS) with an external event can reorganize the sensory or motor cortex. A 30 Hz train of sixteen VNS pulses paired with a tone significantly increases the number of neurons in primary auditory cortex (A1) that respond to tones near the paired tone frequency. The effective range of VNS pulse rates for driving cortical map plasticity has not been defined. OBJECTIVE/HYPOTHESIS This project investigated the effects of VNS rate on cortical plasticity. We expected that VNS pulse rate would affect the degree of plasticity caused by VNS-tone pairing. METHODS Rats received sixteen pulses of VNS delivered at a low (7.5 Hz), moderate (30 Hz), or high (120 Hz) rate paired with 9 kHz tones 300 times per day over a 20 day period. RESULTS More A1 neurons responded to the paired tone frequency in rats from the moderate rate VNS group compared to naïve controls. The response strength was also increased in these rats. In contrast, rats that received high or low rate VNS failed to exhibit a significant increase in the number of neurons tuned to sounds near 9 kHz. CONCLUSION Our results demonstrate that the degree of cortical plasticity caused by VNS-tone pairing is an inverted-U function of VNS pulse rate. The apparent high temporal precision of VNS-tone pairing helps identify optimal VNS parameters to achieve the beneficial effects from restoration of sensory or motor function.
Collapse
Affiliation(s)
- E P Buell
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA.
| | - K W Loerwald
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| | - C T Engineer
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| | - M S Borland
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| | - J M Buell
- Texas Biomedical Device Center, Richardson, TX, 75080, USA
| | - C A Kelly
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| | - I I Khan
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| | - S A Hays
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, BSB 11, Richardson, TX, 75080, USA
| | - M P Kilgard
- Texas Biomedical Device Center, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX, 75080-3021, USA
| |
Collapse
|
30
|
Loerwald KW, Buell EP, Borland MS, Rennaker RL, Hays SA, Kilgard MP. Varying Stimulation Parameters to Improve Cortical Plasticity Generated by VNS-tone Pairing. Neuroscience 2018; 388:239-247. [PMID: 30063940 DOI: 10.1016/j.neuroscience.2018.07.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022]
Abstract
Pairing vagus nerve stimulation (VNS) with movements or sounds can direct robust plasticity in motor or auditory cortex, respectively. The degree of map plasticity is influenced by the intensity and pulse width of VNS, number of VNS-event pairings, and the interval between each pairing. It is likely that these parameters interact, influencing optimal implementation of VNS pairing protocols. We varied VNS intensity, number of stimulations, and inter-stimulation interval (ISI) to test for interactions among these parameters. Rats were implanted with a vagus nerve stimulating cuff and randomly assigned to one of three treatment groups to receive 20 days of VNS paired with a 9-kHz tone: (1) Fast VNS: 50 daily pairings of 400-µA VNS with a 30-s ISI; (2) Dispersed VNS: 50 daily pairings of 400-µA VNS with a 180-s ISI; and (3) Standard VNS: 300 daily pairings of 800-µA VNS with a 30-s ISI. Following 20 days of VNS-tone pairing, multi-unit recordings were conducted in primary auditory cortex (A1) and receptive field properties were analyzed. Increasing ISI (Dispersed VNS) did not lead to an enhancement of cortical plasticity. Reducing the current intensity and number of stimulations (Fast VNS) resulted in robust cortical plasticity, using 6 times fewer VNS pairings than the Standard protocol. These findings reveal an interaction between current intensity, stimulation number, and ISI and identify a novel VNS paradigm that is substantially more efficient than the previous standard paradigm.
Collapse
Affiliation(s)
| | - Elizabeth P Buell
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, United States
| | - Michael S Borland
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, United States
| | - Robert L Rennaker
- Texas Biomedical Device Center, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, BSB 11, Richardson, TX 75080, United States
| | - Seth A Hays
- Texas Biomedical Device Center, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, BSB 11, Richardson, TX 75080, United States.
| | - Michael P Kilgard
- Texas Biomedical Device Center, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, United States
| |
Collapse
|
31
|
Ganzer PD, Darrow MJ, Meyers EC, Solorzano BR, Ruiz AD, Robertson NM, Adcock KS, James JT, Jeong HS, Becker AM, Goldberg MP, Pruitt DT, Hays SA, Kilgard MP, Rennaker RL. Closed-loop neuromodulation restores network connectivity and motor control after spinal cord injury. eLife 2018. [PMID: 29533186 PMCID: PMC5849415 DOI: 10.7554/elife.32058] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recovery from serious neurological injury requires substantial rewiring of neural circuits. Precisely-timed electrical stimulation could be used to restore corrective feedback mechanisms and promote adaptive plasticity after neurological insult, such as spinal cord injury (SCI) or stroke. This study provides the first evidence that closed-loop vagus nerve stimulation (CLV) based on the synaptic eligibility trace leads to dramatic recovery from the most common forms of SCI. The addition of CLV to rehabilitation promoted substantially more recovery of forelimb function compared to rehabilitation alone following chronic unilateral or bilateral cervical SCI in a rat model. Triggering stimulation on the most successful movements is critical to maximize recovery. CLV enhances recovery by strengthening synaptic connectivity from remaining motor networks to the grasping muscles in the forelimb. The benefits of CLV persist long after the end of stimulation because connectivity in critical neural circuits has been restored. The spine houses a network of neurons that relays electric signals from the brain cells to the muscles. When the spine is injured, some of these neurons may be damaged and their connections to the muscles broken. As a result, the muscles they command become weak, and movement is impaired. It is possible to strengthen the remaining neural connections with physical rehabilitation, but the results are limited. Vagus nerve stimulation, VNS for short, is a new technique that could help people recuperate better after their spine is injured. The vagus nerve controls the heart, lungs and guts, and it reports the state of the body to the brain. When this nerve is electrically stimulated, it releases chemicals that can strengthen the neural connections between brain, spine and muscles, and even create new ones. This rewiring process is essential to repair or bypass the broken neural connections caused by a spine injury. However, it is still not clear how best to use VNS to optimize recovery. Here, Ganzer et al. study how VNS helps rats whose forelimbs are weakened after a spine injury. Three groups of rats go through physical rehabilitation, using their affected front paws to pull a handle and feed themselves. Two of these groups also receive VNS: their vagus nerve is stimulated either after the best trials (strongest pulls) or worst trials (weakest pulls). Compared to the rehab-only and the worst trials-VNS animals, the rats that receive VNS on the best trials while using their affected paw have many more neuronal connections between their brain and the muscles in this limb. These muscles also become much stronger. VNS during the movement improves recovery whether the rodents have one or two front limbs injured, and the benefits are long lasting. As the rats pull the handle, the neurons involved in the movement get activated: they then carry a molecular ‘signature’ that lasts for a short time. When VNS is applied during that window, it appears to help these neurons form new connections with each other, as well as strengthen existing ones. These improved connections mean the brain can communicate better with the muscles: movement is enhanced, which results in greater functional recovery compared to rehabilitation alone. VNS is already trialed in stroke patients, who have weakened muscles because their brain neurons are damaged. The work by Ganzer et al. provides crucial information on how VNS could ultimately improve the recovery and quality of life of people with spine injuries.
Collapse
Affiliation(s)
- Patrick D Ganzer
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, United States.,Texas Biomedical Device Center, Richardson, United States
| | - Michael J Darrow
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, United States
| | - Eric C Meyers
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, United States.,Texas Biomedical Device Center, Richardson, United States
| | | | - Andrea D Ruiz
- Texas Biomedical Device Center, Richardson, United States
| | | | - Katherine S Adcock
- School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, United States
| | - Justin T James
- Texas Biomedical Device Center, Richardson, United States
| | - Han S Jeong
- Texas Biomedical Device Center, Richardson, United States
| | - April M Becker
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mark P Goldberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, United States
| | - David T Pruitt
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, United States.,Texas Biomedical Device Center, Richardson, United States
| | - Seth A Hays
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, United States.,Texas Biomedical Device Center, Richardson, United States.,School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, United States
| | - Michael P Kilgard
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, United States.,Texas Biomedical Device Center, Richardson, United States.,School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, United States
| | - Robert L Rennaker
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, United States.,Texas Biomedical Device Center, Richardson, United States.,School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, United States
| |
Collapse
|