1
|
Mohammed OA, Elballal MS, El-Husseiny AA, Khidr EG, El Tabaa MM, Elazazy O, Abd-Elmawla MA, Elesawy AE, Ibrahim HM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Nomier Y, Abdel-Reheim MA, El-Husseiny HM, Mahmoud AMA, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease. Pathol Res Pract 2024; 253:155023. [PMID: 38081104 DOI: 10.1016/j.prp.2023.155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Henwa M Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
2
|
Ke J, Zhao P, Li J, Fu Q. Visualization of HOCl in the brains of Alzheimer's disease models using an easily available two-photon fluorogenic probe. J Mater Chem B 2022; 10:8744-8749. [PMID: 36254770 DOI: 10.1039/d2tb01502a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As an inflammatory signaling molecule, hypochlorous acid (HOCl), which is generated by myeloperoxidase (MPO) catalysis, is associated with neuronal cell death during neuroinflammation and the etiology of Alzheimer's disease (AD). Thus, it is significant to employ effective tools for the in vivo mapping of HOCl during the early pathology of AD. In this study, we propose the use of an easily available two-photon fluorogenic probe, named Q-HOCl, for the specific and sensitive detection of HOCl in AD brains. The Q-HOCl probe displayed favorable selectivity and rapid response (20 s) to HOCl with a limit of detection of 12.5 nM. In addition, the Q-HOCl probe manifested splendid ability to penetrate the blood-brain barrier. Subsequently, it was utilized to visualize HOCl fluctuation induced by LPS in PC12 cells via two-photon imaging. Importantly, we monitored the elevated level of HOCl in AD brains compared to normal brains. Ultimately, based on the two-photon imaging of the hippocampus of brain slices and Morris water maze test, the cognitive ability of the AD model mice was effectually ameliorated by treatment with an MPO inhibitor. Thus, we expect that the Q-HOCl probe can be applied to reveal the capacity of HOCl in AD pathology and develop efficacious MPO inhibitor drugs for the treatment of AD.
Collapse
Affiliation(s)
- Jia Ke
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jianfeng Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Sun Z, Meikle S, Calamante F. CONN-NLM: A Novel CONNectome-Based Non-local Means Filter for PET-MRI Denoising. Front Neurosci 2022; 16:824431. [PMID: 35712456 PMCID: PMC9197079 DOI: 10.3389/fnins.2022.824431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Advancements in hybrid positron emission tomography-magnetic resonance (PET-MR) systems allow for combining the advantages of each modality. Integrating information from MRI and PET can be valuable for diagnosing and treating neurological disorders. However, combining diffusion MRI (dMRI) and PET data, which provide highly complementary information, has rarely been exploited in image post-processing. dMRI has the ability to investigate the white matter pathways of the brain through fibre tractography, which enables comprehensive mapping of the brain connection networks (the "connectome"). Novel methods are required to combine information present in the connectome and PET to increase the full potential of PET-MRI. Methods We developed a CONNectome-based Non-Local Means (CONN-NLM) filter to exploit synergies between dMRI-derived structural connectivity and PET intensity information to denoise PET images. PET-MR data are parcelled into a number of regions based on a brain atlas, and the inter-regional structural connectivity is calculated based on dMRI fibre-tracking. The CONN-NLM filter is then implemented as a post-reconstruction filter by combining the nonlocal means filter and a connectivity-based cortical smoothing. The effect of this approach is to weight voxels with similar PET intensity and highly connected voxels higher when computing the weighted-average to perform more informative denoising. The proposed method was first evaluated using a novel computer phantom framework to simulate realistic hybrid PET-MR images with different lesion scenarios. CONN-NLM was further assessed with clinical dMRI and tau PET examples. Results The results showed that CONN-NLM has the capacity to improve the overall PET image quality by reducing noise while preserving lesion contrasts, and it outperformed a range of filters that did not use dMRI information. The simulations demonstrate that CONN-NLM can handle various lesion contrasts consistently, as well as lesions with different levels of inter-connectivity. Conclusion CONN-NLM has unique advantages of providing more informative and accurate PET smoothing by adding complementary structural connectivity information from dMRI, representing a new avenue to exploit synergies between MRI and PET.
Collapse
Affiliation(s)
- Zhuopin Sun
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Steven Meikle
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Imaging, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Orzyłowska A, Oakden W. Saturation Transfer MRI for Detection of Metabolic and Microstructural Impairments Underlying Neurodegeneration in Alzheimer's Disease. Brain Sci 2021; 12:53. [PMID: 35053797 PMCID: PMC8773856 DOI: 10.3390/brainsci12010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia and difficult to study as the pool of subjects is highly heterogeneous. Saturation transfer (ST) magnetic resonance imaging (MRI) methods are quantitative modalities with potential for non-invasive identification and tracking of various aspects of AD pathology. In this review we cover ST-MRI studies in both humans and animal models of AD over the past 20 years. A number of magnetization transfer (MT) studies have shown promising results in human brain. Increased computing power enables more quantitative MT studies, while access to higher magnetic fields improves the specificity of chemical exchange saturation transfer (CEST) techniques. While much work remains to be done, results so far are very encouraging. MT is sensitive to patterns of AD-related pathological changes, improving differential diagnosis, and CEST is sensitive to particular pathological processes which could greatly assist in the development and monitoring of therapeutic treatments of this currently incurable disease.
Collapse
Affiliation(s)
- Anna Orzyłowska
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8 (SPSK 4), 20-090 Lublin, Poland
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada;
| |
Collapse
|
5
|
Aiello M, Esposito G, Pagliari G, Borrelli P, Brancato V, Salvatore M. How does DICOM support big data management? Investigating its use in medical imaging community. Insights Imaging 2021; 12:164. [PMID: 34748101 PMCID: PMC8574146 DOI: 10.1186/s13244-021-01081-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The diagnostic imaging field is experiencing considerable growth, followed by increasing production of massive amounts of data. The lack of standardization and privacy concerns are considered the main barriers to big data capitalization. This work aims to verify whether the advanced features of the DICOM standard, beyond imaging data storage, are effectively used in research practice. This issue will be analyzed by investigating the publicly shared medical imaging databases and assessing how much the most common medical imaging software tools support DICOM in all its potential. Therefore, 100 public databases and ten medical imaging software tools were selected and examined using a systematic approach. In particular, the DICOM fields related to privacy, segmentation and reporting have been assessed in the selected database; software tools have been evaluated for reading and writing the same DICOM fields. From our analysis, less than a third of the databases examined use the DICOM format to record meaningful information to manage the images. Regarding software, the vast majority does not allow the management, reading and writing of some or all the DICOM fields. Surprisingly, if we observe chest computed tomography data sharing to address the COVID-19 emergency, there are only two datasets out of 12 released in DICOM format. Our work shows how the DICOM can potentially fully support big data management; however, further efforts are still needed from the scientific and technological community to promote the use of the existing standard, encouraging data sharing and interoperability for a concrete development of big data analytics.
Collapse
Affiliation(s)
- Marco Aiello
- IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Hemonnot-Girard AL, Ben Haim L, Escartin C, Hirbec H. [New technologies to unveil the role of brain glial cells]. Med Sci (Paris) 2021; 37:59-67. [PMID: 33492220 DOI: 10.1051/medsci/2020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brain function relies on complex interactions between neurons and different types of glial cells, such as astrocytes, microglia and oligodendrocytes. The relatively young field of "gliobiology" is thriving. Thanks to various technical innovations, it is now possible to address challenging biological questions on glial cells and unravel their multiple roles in brain function and dysfunction.
Collapse
Affiliation(s)
| | - Lucile Ben Haim
- Université Paris-Saclay, CEA, CNRS, MIRCen (Molecular Imaging Research Center), Laboratoire des maladies neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen (Molecular Imaging Research Center), Laboratoire des maladies neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Hélène Hirbec
- IGF, Univ Montpellier, CNRS, Inserm, Montpellier, France
| |
Collapse
|
7
|
Abstract
Cerebrovascular disease is a significant cause of cognitive impairment leading to a reduction or loss of functioning, including social and occupational. The connection cause-effect between cerebrovascular disease and cerebral infarction was originally theorized by the studies from Newcastle-Upon-Tyne, England, in the 1960s, where vascular dementia (VaD) was defined as a disease originated from several infarctions that overcome a determined threshold. It differs from Alzheimer's disease (AD), although there are various overlaps in risk factors, symptomatology, the similarity of vascular lesions, and treatment benefits. Nevertheless, AD is one-half of all cases of dementia. Cognitive impairment and dementia (VCID) has recently been proposed to include different entities such as VaD, Vascular cognitive impairment, subcortical (ischemic) VaD, and vascular cognitive disorders. VaD is the most common cause of dementia after AD. Neuroimaging is an essential part of the workup of patients with cognitive decline and in those with suspected VCID it should be used to assess the extent, location, and type of vascular lesions. Computed tomography (CT) or structural magnetic resonance imaging (MRI) are usually used for the diagnosis of vascular diseases of the brain. However, images obtained from new hybrid devices could help the neurologist in the differential diagnosis between various neuropathological entities related to VCID. Single-photon emission computed tomography (SPECT) combined with CT or MRI and positron emission tomography (PET) combined with CT or MRI represent the future of neuroimaging tools as morphological and functional data can be provided simultaneously. New prospects have been developed such as hybrid PET/SPECT/CT, a high-performance prototype able to produce high-quality images but for now suitable only for small animals. Nowadays, PET/CT and PET/MRI are good performance and high-quality instruments, even if the magnetic field of MRI represents a limitation that affects the PET electronics and positron detection ability. SPECT/MRI delineates as a potential and tempting device. It could give us both functional and anatomical details, with the advantage of lack of extra ionizing radiation and high soft-tissue contrast, important features, and considerable auxiliary for differential diagnosis in the variegate word of vascular cognitive impairment. The aim of this review is to summarize the newest viewpoints in hybrid imaging in the diagnosis of VaD and to highlight pros and cons of each methodic.
Collapse
Affiliation(s)
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
[ 18F]FDG uptake of the normal spinal cord in PET/MR imaging: comparison with PET/CT imaging. EJNMMI Res 2020; 10:91. [PMID: 32761394 PMCID: PMC7410944 DOI: 10.1186/s13550-020-00680-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lack of visualization of the spinal cord hinders the evaluation of [18F]Fluoro-deoxy-glucose (FDG) uptake of the spinal cord in PET/CT. By exploiting the capability of MRI to precisely outline the spinal cord, we performed a retrospective study aimed to define normal pattern of spinal cord [18F]FDG uptake in PET/MRI. METHODS Forty-one patients with lymphoma without clinical or MRI signs of spinal cord or bone marrow involvement underwent simultaneous PET and MRI acquisition using Siemens Biograph mMR after injection of 3.5 MBq/kg body weight of [18F]FDG for staging purposes. Using a custom-made software, we placed ROIs of 3 and 9 mm in diameter in the spinal cord, lumbar CSF, and vertebral marrow that were identified on MRI at 5 levels (C2, C5, T6, T12, and L3). The SUVmax, SUVmean, and the SUVmax and SUVmean normalized (NSUVmax and NSUVmean) to the liver were measured. For comparison, the same ROIs were placed in PET-CT images obtained immediately before the PET-MRI acquisition following the same tracer injection. RESULTS On PET/MRI using the 3 mm ROI, the following average (all level excluding L3) spinal cord median (1st and 3rd quartile) values were measured: SUVmean, 1.68 (1.39 and 1.83); SUVmax, 1.92 (1.60 and 2.14); NSUVmean, 1.18 (0.93 and 1.36); and NSUVmax, 1.27 (1.01 and 1.33). Using the 9 mm ROI, the corresponding values were SUVmean, 1.41 (1.25-1.55); SUVmax, 2.41 (2.08 and 2.61); NSUVmean, 0.93 (0.79 and 1.04); and NSUVmax, 1.28 (1.02 and 1.39). Using the 3 mm ROI, the highest values of PET-MRI SUVmax, SUVmean, NSUVmax, and NSUVmean were consistently observed at C5 and the lowest at T6. Using a 9 mm ROI, the highest values were consistently observed at C5 and the lowest at T12 or T6. The spinal cord [18F]FDG-uptake values correlated with the bone marrow uptake at the same level, especially in case of NSUVmax. Comparison with PET-CT data revealed that the average SUVmax and SUVmean of the spinal cord were similar in PET-MRI and PET-CT. However, the average NSUVmax and NSUVmean of the spinal cord were higher (range 21-47%) in PET-MRI than in PET-CT. CONCLUSIONS Using a whole-body protocol, we defined the maximum and mean [18F]FDG uptake of the normal spinal cord in PET/MRI. While the observed values show the expected longitudinal distribution, they appear to be higher than those measured in PET/CT. Normalization of the SUVmax and SUVmean of the spinal cord to the liver radiotracer uptake could help in multi-institutional comparisons and studies.
Collapse
|
9
|
Chen Y, Gu X, Ou R, Zhang L, Hou Y, Liu K, Cao B, Wei Q, Li C, Song W, Zhao B, Wu Y, Cheng J, Shang H. Evaluating the Role of
SNCA
,
LRRK2
, and
GBA
in Chinese Patients With
Early‐Onset
Parkinson's Disease. Mov Disord 2020; 35:2046-2055. [PMID: 32677286 DOI: 10.1002/mds.28191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yongping Chen
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Gu
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Hybrid PET- MRI is a technique that has the ability to improve diagnostic accuracy in many applications, whereas PET and MRI performed separately often fail to provide accurate responses to clinical questions. Here, we review recent studies and current developments in PET-MRI, focusing on clinical applications. RECENT FINDINGS The combination of PET and MRI imaging methods aims at increasing the potential of each individual modality. Combined methods of image reconstruction and correction of PET-MRI attenuation are being developed, and a number of applications are being introduced into clinical practice. To date, the value of PET-MRI has been demonstrated for the evaluation of brain tumours in epilepsy and neurodegenerative diseases. Continued advances in data analysis regularly improve the efficiency and the potential application of multimodal biomarkers. SUMMARY PET-MRI provides simultaneous of anatomical, functional, biochemical and metabolic information for the personalized characterization and monitoring of neurological diseases. In this review, we show the advantage of the complementarity of different biomarkers obtained using PET-MRI data. We also present the recent advances made in this hybrid imaging modality and its advantages in clinical practice compared with MRI and PET separately.
Collapse
|
11
|
Huang Y, Li Q, Yang Q, Huang Z, Gao H, Xu Y, Liao L. WITHDRAWN: Analysis of Risk Factors for Prognosis and Infection of Child with Refractory Epilepsy Via Artificial Intelligence Neural Network Image Information. Neurosci Lett 2020:S0304-3940(20)30468-7. [PMID: 32585258 DOI: 10.1016/j.neulet.2020.135198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023]
Abstract
This article has been withdrawn at the request of the Editor-in-Chief. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Yueyan Huang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China
| | - Qingfeng Li
- Department of Radiology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China.
| | - Qian Yang
- Center for Diagnosis and Research of Pathological Diseases, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China
| | - Zhijing Huang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China
| | - Hongbo Gao
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China
| | - Yunan Xu
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China
| | - Lianghua Liao
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, 533000, Guangxi, China
| |
Collapse
|
12
|
Cavaliere C, Tramontano L, Fiorenza D, Alfano V, Aiello M, Salvatore M. Gliosis and Neurodegenerative Diseases: The Role of PET and MR Imaging. Front Cell Neurosci 2020; 14:75. [PMID: 32327973 PMCID: PMC7161920 DOI: 10.3389/fncel.2020.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glial activation characterizes most neurodegenerative and psychiatric diseases, often anticipating clinical manifestations and macroscopical brain alterations. Although imaging techniques have improved diagnostic accuracy in many neurological conditions, often supporting diagnosis, prognosis prediction and treatment outcome, very few molecular imaging probes, specifically focused on microglial and astrocytic activation, have been translated to a clinical setting. In this context, hybrid positron emission tomography (PET)/magnetic resonance (MR) scanners represent the most advanced tool for molecular imaging, combining the functional specificity of PET radiotracers (e.g., targeting metabolism, hypoxia, and inflammation) to both high-resolution and multiparametric information derived by MR in a single imaging acquisition session. This simultaneity of findings achievable by PET/MR, if useful for reciprocal technical adjustments regarding temporal and spatial cross-modal alignment/synchronization, opens still debated issues about its clinical value in neurological patients, possibly incompliant and highly variable from a clinical point of view. While several preclinical and clinical studies have investigated the sensitivity of PET tracers to track microglial (mainly TSPO ligands) and astrocytic (mainly MAOB ligands) activation, less studies have focused on MR specificity to this topic (e.g., through the assessment of diffusion properties and T2 relaxometry), and only few exploiting the integration of simultaneous hybrid acquisition. This review aims at summarizing and critically review the current state about PET and MR imaging for glial targets, as well as the potential added value of hybrid scanners for characterizing microglial and astrocytic activation.
Collapse
|
13
|
Zhang M, Zuo M, Wang C, Li Z, Cheng Q, Huang J, Wang Z, Liu Z. Monitoring Neuroinflammation with an HOCl-Activatable and Blood-Brain Barrier Permeable Upconversion Nanoprobe. Anal Chem 2020; 92:5569-5576. [PMID: 32189497 DOI: 10.1021/acs.analchem.0c00526] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A reliable tool for real-time tracking the neuroinflammatory progress is highly desired for interpretation and treatment of neurological disorders. Herein, a blood-brain barrier (BBB) permeable and HOCl-activatable upconversion (UC) nanoprobe with NIR emission was designed for visual study on neuroinflammation (NI) in vivo. This UC probe consists of three parts: upconversion nanoparticles (UCNPs) as signal reporter, the Cy-HOCl dye acting as energy acceptor of UCNPs as well as the recognition unit of HOCl, and amphiphilic polymers endowing the probe with biocompatibility and BBB permeability. Upon intravenous injection into mice, the probe crossed the BBB via low-density lipoprotein receptor related protein (LRP) mediated transcytosis and was then lightened up by overproduced HOCl in an NI process. This probe was able to differentiate inflammation and the normal state of the brain in LPS-induced NI and monitor the progress of NI occurring in mice with cerebral stroke, providing a practical tool for noninvasive and visual assessment of NI.
Collapse
Affiliation(s)
- Meng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Miaomiao Zuo
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Caixia Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhen Li
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qingyuan Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ju Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zijun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
14
|
Kaneta T. PET and SPECT imaging of the brain: a review on the current status of nuclear medicine in Japan. Jpn J Radiol 2020; 38:343-357. [DOI: 10.1007/s11604-019-00901-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/31/2019] [Indexed: 01/07/2023]
|
15
|
Hirbec H, Déglon N, Foo LC, Goshen I, Grutzendler J, Hangen E, Kreisel T, Linck N, Muffat J, Regio S, Rion S, Escartin C. Emerging technologies to study glial cells. Glia 2020; 68:1692-1728. [PMID: 31958188 DOI: 10.1002/glia.23780] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing "glio-scientists" to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high-content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting-edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)-derived human glial cells, viral vectors, in situ glia imaging, opto- and chemogenetic approaches, and high-content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific "gliobiological" questions can now be tackled.
Collapse
Affiliation(s)
- Hélène Hirbec
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lynette C Foo
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Grutzendler
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emilie Hangen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathalie Linck
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, and Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | - Sara Regio
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sybille Rion
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
16
|
González-Gómez MA, Belderbos S, Yañez-Vilar S, Piñeiro Y, Cleeren F, Bormans G, Deroose CM, Gsell W, Himmelreich U, Rivas J. Development of Superparamagnetic Nanoparticles Coated with Polyacrylic Acid and Aluminum Hydroxide as an Efficient Contrast Agent for Multimodal Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1626. [PMID: 31731823 PMCID: PMC6915788 DOI: 10.3390/nano9111626] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Early diagnosis of disease and follow-up of therapy is of vital importance for appropriate patient management since it allows rapid treatment, thereby reducing mortality and improving health and quality of life with lower expenditure for health care systems. New approaches include nanomedicine-based diagnosis combined with therapy. Nanoparticles (NPs), as contrast agents for in vivo diagnosis, have the advantage of combining several imaging agents that are visible using different modalities, thereby achieving high spatial resolution, high sensitivity, high specificity, morphological, and functional information. In this work, we present the development of aluminum hydroxide nanostructures embedded with polyacrylic acid (PAA) coated iron oxide superparamagnetic nanoparticles, Fe3O4@Al(OH)3, synthesized by a two-step co-precipitation and forced hydrolysis method, their physicochemical characterization and first biomedical studies as dual magnetic resonance imaging (MRI)/positron emission tomography (PET) contrast agents for cell imaging. The so-prepared NPs are size-controlled, with diameters below 250 nm, completely and homogeneously coated with an Al(OH)3 phase over the magnetite cores, superparamagnetic with high saturation magnetization value (Ms = 63 emu/g-Fe3O4), and porous at the surface with a chemical affinity for fluoride ion adsorption. The suitability as MRI and PET contrast agents was tested showing high transversal relaxivity (r2) (83.6 mM-1 s-1) and rapid uptake of 18F-labeled fluoride ions as a PET tracer. The loading stability with 18F-fluoride was tested in longitudinal experiments using water, buffer, and cell culture media. Even though the stability of the 18F-label varied, it remained stable under all conditions. A first in vivo experiment indicates the suitability of Fe3O4@Al(OH)3 nanoparticles as a dual contrast agent for sensitive short-term (PET) and high-resolution long-term imaging (MRI).
Collapse
Affiliation(s)
- Manuel Antonio González-Gómez
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| | - Sarah Belderbos
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium; (W.G.); (U.H.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
| | - Susana Yañez-Vilar
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| | - Yolanda Piñeiro
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&NII Herestraat 49—Box 821, 3000 Leuven, Belgium; (F.C.); (G.B.)
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&NII Herestraat 49—Box 821, 3000 Leuven, Belgium; (F.C.); (G.B.)
| | - Christophe M. Deroose
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven/UZ Leuven, Herestraat 49—Box 7003 59, 3000 Leuven, Belgium;
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium; (W.G.); (U.H.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium; (W.G.); (U.H.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
| | - José Rivas
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| |
Collapse
|
17
|
Nuzziello N, Liguori M. The MicroRNA Centrism in the Orchestration of Neuroinflammation in Neurodegenerative Diseases. Cells 2019; 8:cells8101193. [PMID: 31581723 PMCID: PMC6829202 DOI: 10.3390/cells8101193] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a unique ability to regulate the transcriptomic profile by binding to complementary regulatory RNA sequences. The ability of miRNAs to enhance (proinflammatory miRNAs) or restrict (anti-inflammatory miRNAs) inflammatory signalling within the central nervous system is an area of ongoing research, particularly in the context of disorders that feature neuroinflammation, including neurodegenerative diseases (NDDs). Furthermore, the discovery of competing endogenous RNAs (ceRNAs) has led to an increase in the complexity of miRNA-mediated gene regulation, with a paradigm shift from a unidirectional to a bidirectional regulation, where miRNA acts as both a regulator and is regulated by ceRNAs. Increasing evidence has revealed that ceRNAs, including long non-coding RNAs, circular RNAs, and pseudogenes, can act as miRNA sponges to regulate neuroinflammation in NDDs within complex cross-talk regulatory machinery, which is referred to as ceRNA network (ceRNET). In this review, we discuss the role of miRNAs in neuroinflammatory regulation and the manner in which cellular and vesicular ceRNETs could influence neuroinflammatory dynamics in complex multifactorial diseases, such as NDDs.
Collapse
Affiliation(s)
- Nicoletta Nuzziello
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy.
| | - Maria Liguori
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy.
| |
Collapse
|
18
|
Escartin C, Guillemaud O, Carrillo-de Sauvage MA. Questions and (some) answers on reactive astrocytes. Glia 2019; 67:2221-2247. [PMID: 31429127 DOI: 10.1002/glia.23687] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Astrocytes are key cellular partners for neurons in the central nervous system. Astrocytes react to virtually all types of pathological alterations in brain homeostasis by significant morphological and molecular changes. This response was classically viewed as stereotypical and is called astrogliosis or astrocyte reactivity. It was long considered as a nonspecific, secondary reaction to pathological conditions, offering no clues on disease-causing mechanisms and with little therapeutic value. However, many studies over the last 30 years have underlined the crucial and active roles played by astrocytes in physiology, ranging from metabolic support, synapse maturation, and pruning to fine regulation of synaptic transmission. This prompted researchers to explore how these new astrocyte functions were changed in disease, and they reported alterations in many of them (sometimes beneficial, mostly deleterious). More recently, cell-specific transcriptomics revealed that astrocytes undergo massive changes in gene expression when they become reactive. This observation further stressed that reactive astrocytes may be very different from normal, nonreactive astrocytes and could influence disease outcomes. To make the picture even more complex, both normal and reactive astrocytes were shown to be molecularly and functionally heterogeneous. Very little is known about the specific roles that each subtype of reactive astrocytes may play in different disease contexts. In this review, we have interrogated researchers in the field to identify and discuss points of consensus and controversies about reactive astrocytes, starting with their very name. We then present the emerging knowledge on these cells and future challenges in this field.
Collapse
Affiliation(s)
- Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| | - Océane Guillemaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| |
Collapse
|
19
|
Schillaci O, Scimeca M, Toschi N, Bonfiglio R, Urbano N, Bonanno E. Combining Diagnostic Imaging and Pathology for Improving Diagnosis and Prognosis of Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9429761. [PMID: 31354394 PMCID: PMC6636452 DOI: 10.1155/2019/9429761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
In the era of personalized medicine, the management of oncological patients requires a translational and multidisciplinary approach. During early phases of cancer development, biochemical alterations of cell metabolism occur much before the formation of detectable tumour masses. Current molecular imaging techniques, targeted to the study of molecular kinetics, employ molecular tracers capable of detecting cancer lesions with both high sensitivity and specificity while also providing essential information for both prognosis and therapy. On the contrary, complementary and crucial information is provided by histopathological examination and ancillary techniques such as immunohistochemistry. Thus, the successful collaboration between diagnostic imaging and anatomic pathology can represent a fundamental step in the "tortuous" but decisive path towards personalized medicine.
Collapse
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- Martinos Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
| | | | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed Lab, “Diagnostica Medica”, “Villa dei Platani”, Avellino, Italy
| |
Collapse
|
20
|
Affiliation(s)
- Silvia De Santis
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
21
|
Aiello M, Cavaliere C, Marchitelli R, d'Albore A, De Vita E, Salvatore M. Hybrid PET/MRI Methodology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:97-128. [PMID: 30314608 DOI: 10.1016/bs.irn.2018.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The hybrid PET/MR scanner represents the first implementation of the effective integration of two modalities allowing truly synchronous/simultaneous acquisition of their imaging signals. This integration, resulting from the innovation and development of specific hardware components has paved the way for new approaches in the study of neurodegenerative diseases. This chapter will describe the hardware development that has led to the availability of different clinical solutions for PET/MR imaging as well as the still-open technological challenges and opportunities related to the processing and exploitation of the simultaneous acquisition in neurological studies.
Collapse
Affiliation(s)
| | | | | | | | - Enrico De Vita
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | | |
Collapse
|