1
|
Floris G, Zanda MT, Dabrowski KR, Daws SE. Neuroinflammatory history results in overlapping transcriptional signatures with heroin exposure in the nucleus accumbens and alters responsiveness to heroin in male rats. Transl Psychiatry 2024; 14:500. [PMID: 39702361 DOI: 10.1038/s41398-024-03203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Recent progress in psychiatric research has highlighted neuroinflammation in the pathophysiology of opioid use disorder (OUD), suggesting that heightened immune responses in the brain may exacerbate opioid-related mechanisms. However, the molecular mechanisms resulting from neuroinflammation that impact opioid-induced behaviors and transcriptional pathways remain poorly understood. In this study, we have begun to address this critical knowledge gap by exploring the intersection between neuroinflammation and exposure to the opioid heroin, utilizing lipopolysaccharide (LPS)-induced neuroinflammation, to investigate transcriptional changes in the nucleus accumbens (NAc), an essential region in the mesolimbic dopamine system that mediates opioid reward. By integrating RNA sequencing with bioinformatic and statistical analyses, we observed significant transcriptional overlaps between neuroinflammation and experimenter-administered heroin exposure in the NAc. Furthermore, we identified a subset of NAc genes synergistically regulated by LPS and heroin, suggesting that LPS history may exacerbate some heroin-induced molecular neuroadaptations. We extended our findings to examine the impact of neuroinflammatory history on responsiveness to heroin in a locomotor sensitization assay and observed LPS-induced exacerbation of heroin sensitization, indicating that neuroinflammation may increase sensitivity to opioids' behavioral effects. Lastly, we performed comparative analysis of the NAc transcriptional profiles of LPS-heroin rats with those obtained from voluntary heroin intake in a rat model of heroin self-administration (SA) and published human OUD datasets. We observed significant convergence of the three datasets and identified transcriptional patterns in the preclinical models that recapitulated human OUD neuropathology, highlighting the utility of preclinical models to further investigate molecular mechanisms of OUD pathology. Overall, our study elucidates transcriptional interconnections between neuroinflammation and heroin exposure, and also provides evidence of the behavioral ramifications of such interactions. By bridging the gap between neuroinflammation and heroin exposure at the transcriptional level, our work provides valuable insights for future research aimed at mitigating the influence of inflammatory pathways in OUD.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Dotinga BM, Bao M, Solberg R, Saugstad OD, Hulscher JBF, Bos AF, Plösch T, Kooi EMW. Gene expression in the intestine of newborn piglets after hypoxia-reoxygenation. Pediatr Res 2023; 94:1365-1372. [PMID: 37208432 DOI: 10.1038/s41390-023-02657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND In preterm infants, intestinal hypoxia may partly contribute to the pathophysiology of necrotizing enterocolitis through changes in gene expression. Splanchnic hypoxia can be detected with monitoring of regional splanchnic oxygen saturation (rsSO2). Using a piglet model of asphyxia, we aimed to correlate changes in rsSO2 to gene expression. METHODS Forty-two newborn piglets were randomized to control or intervention groups. Intervention groups were subjected to hypoxia until they were acidotic and hypotensive. Next, they were reoxygenated for 30 min according to randomization, i.e., 21% O2, 100% O2, or 100% O2 for 3 min followed by 21% O2, and observed for 9 h. We continuously measured rsSO2 and calculated mean rsSO2 and variability of rsSO2 (rsCoVar = SD/mean). Samples of terminal ileum were analyzed for mRNA expression of selected genes related to inflammation, erythropoiesis, fatty acid metabolism, and apoptosis. RESULTS The expression of selected genes was not significantly different between control and intervention groups. No associations between mean rsSO2 and gene expression were observed. However, lower rsCoVar was associated with the upregulation of apoptotic genes and the downregulation of inflammatory genes (P < 0.05). CONCLUSION Our study suggests that hypoxia and reoxygenation cause reduced vascular adaptability, which seems to be associated with the upregulation of apoptosis and downregulation of inflammation. IMPACT Our results provide important insight into the (patho)physiological significance of changes in the variability of rsSO2. Our findings may advance future research and clinical practice regarding resuscitation strategies of preterm infants.
Collapse
Affiliation(s)
- Baukje M Dotinga
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mian Bao
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Rønnaug Solberg
- Division of Pediatric and Adolescent Medicine, Department of Pediatric Research, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Ola D Saugstad
- Division of Pediatric and Adolescent Medicine, Department of Pediatric Research, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Jan B F Hulscher
- Division of Pediatric Surgery, Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Arend F Bos
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Elisabeth M W Kooi
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Shishkina GT, Kalinina TS, Lanshakov DA, Bulygina VV, Komysheva NP, Bannova AV, Drozd US, Dygalo NN. Genes Involved by Dexamethasone in Prevention of Long-Term Memory Impairment Caused by Lipopolysaccharide-Induced Neuroinflammation. Biomedicines 2023; 11:2595. [PMID: 37892969 PMCID: PMC10604440 DOI: 10.3390/biomedicines11102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammatory activation within the brain is linked to a decrease in cognitive abilities; however, the molecular mechanisms implicated in the development of inflammatory-related cognitive dysfunction and its prevention are poorly understood. This study compared the responses of hippocampal transcriptomes 3 months after the striatal infusion of lipopolysaccharide (LPS; 30 µg), resulting in memory loss, or with dexamethasone (DEX; 5 mg/kg intraperitoneal) pretreatment, which abolished the long-term LPS-induced memory impairment. After LPS treatment, a significant elevation in the expression of immunity/inflammatory-linked genes, including chemokines (Cxcl13), cytokines (Il1b and Tnfsf13b), and major histocompatibility complex (MHC) class II members (Cd74, RT1-Ba, RT1-Bb, RT1-Da, and RT1-Db1) was observed. DEX pretreatment did not change the expression of these genes, but significantly affected the expression of genes encoding ion channels, primarily calcium and potassium channels, regulators of glutamate (Slc1a2, Grm5, Grin2a), and GABA (Gabrr2, Gabrb2) neurotransmission, which enriched in such GO biological processes as "Regulation of transmembrane transport", "Cognition", "Learning", "Neurogenesis", and "Nervous system development". Taken together, these data suggest that (1) pretreatment with DEX did not markedly affect LPS-induced prolonged inflammatory response; (2) DEX pretreatment can affect processes associated with glutamatergic signaling and nervous system development, possibly involved in the recovery of memory impairment induced by LPS.
Collapse
Affiliation(s)
- Galina T. Shishkina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; (T.S.K.); (D.A.L.); (V.V.B.); (N.P.K.); (A.V.B.); (U.S.D.); (N.N.D.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Polcz VE, Barrios EL, Chapin B, Price C, Nagpal R, Chakrabarty P, Casadesus G, Foster T, Moldawer L, Efron PA. Sex, sepsis and the brain: defining the role of sexual dimorphism on neurocognitive outcomes after infection. Clin Sci (Lond) 2023; 137:963-978. [PMID: 37337946 PMCID: PMC10285043 DOI: 10.1042/cs20220555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual dimorphisms exist in multiple domains, from learning and memory to neurocognitive disease, and even in the immune system. Male sex has been associated with increased susceptibility to infection, as well as increased risk of adverse outcomes. Sepsis remains a major source of morbidity and mortality globally, and over half of septic patients admitted to intensive care are believed to suffer some degree of sepsis-associated encephalopathy (SAE). In the short term, SAE is associated with an increased risk of in-hospital mortality, and in the long term, has the potential for significant impairment of cognition, memory, and acceleration of neurocognitive disease. Despite increasing information regarding sexual dimorphism in neurologic and immunologic systems, research into these dimorphisms in sepsis-associated encephalopathy remains critically understudied. In this narrative review, we discuss how sex has been associated with brain morphology, chemistry, and disease, sexual dimorphism in immunity, and existing research into the effects of sex on SAE.
Collapse
Affiliation(s)
- Valerie E. Polcz
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Evan L. Barrios
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Benjamin Chapin
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Catherine C. Price
- Department of Clinical and Health Psychology, University of Florida College of Public Health and Health Professions, Gainesville, Florida, U.S.A
| | - Ravinder Nagpal
- Florida State University College of Health and Human Sciences, Tallahassee, Florida, U.S.A
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Thomas Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Lyle L. Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
5
|
Hyer MM, Wegener AJ, Targett I, Dyer SK, Neigh GN. Chronic stress beginning in adolescence decreases spatial memory following an acute inflammatory challenge in adulthood. Behav Brain Res 2023; 442:114323. [PMID: 36731657 PMCID: PMC10870254 DOI: 10.1016/j.bbr.2023.114323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
Prolonged stress beginning in adolescence can contribute to the dysregulation of the neuroendocrine system in adulthood. As the neuroendocrine and neuroimmune systems participate in bi-directional regulatory control, adolescent stress can prime the neuroimmune system to future inflammatory insults. Previous work from our group demonstrates that stress exaggerates the hippocampal response to inflammation, which can lead to deficits in learning and memory. In the current study, we sought to interrogate the interaction between an acute peripheral challenge of lipopolysaccharide (LPS) in male and female Wistar rats with a history of stress beginning in adolescence (CAS). Males from the CAS group were more vulnerable to the peripheral effects of LPS compared to non-stressed males including porphyrin staining and ruffled fur. In contrast, LPS generated similar peripheral effects in females regardless of adolescent stress history. Learning and memory were differentially impacted by LPS as a function of stress history and effects manifested differently when stratified by sex. Males with a history of adolescent stress exhibited deficits in initial learning. Females from the CAS group performed similar to controls during acquisition but exhibited a slight impairment during reversal learning. Males and females with a history of stress displayed memory impairment during the probe assessments as compared to their same-sex control group. We conclude that while stress beginning in adolescence enhanced the vulnerability of learning and memory to an inflammatory challenge, the phenotype of this effect manifested differently in males and females. These data demonstrate a sustained impact of adolescent stress on the neuroimmune system which is sufficient to influence cognitive performance in both sexes.
Collapse
Affiliation(s)
- M M Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - A J Wegener
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - I Targett
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - S K Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - G N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
6
|
McNaughton KA, Williamson LL. Effects of sex and pro-inflammatory cytokines on context discrimination memory. Behav Brain Res 2023; 442:114320. [PMID: 36720350 PMCID: PMC9930642 DOI: 10.1016/j.bbr.2023.114320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In learning and memory tasks, immune overactivation is associated with impaired performance, while normal immune activation is associated with optimal performance. In one specific domain of memory, context discrimination memory, peripheral immune stimulation has been shown to impair performance on the context-object discrimination memory task in male rats. In order to evaluate potential sex differences in this task, as well as potential mechanisms for the memory impairment, we evaluated the ability of peripheral immune stimulation to impair task performance in both males and females. Next, we examined whether treatment with interleukin-1 receptor antagonist (IL-1ra), a receptor antagonist for the pro-inflammatory cytokine interleukin (IL)-1β, was able to rescue the memory deficit. We examined microglial morphology in the hippocampus and cytokine mRNA and protein expression in the hippocampus and the periphery. Male rats displayed memory impairment in response to LPS, and this impairment was not rescued by IL-1ra. Female rats did not have significant memory impairments and IL-1ra administration improved memory following inflammation. A subset of cytokines and chemokines were increased only in LPS-treated males. Inflammation alone did not alter microglia morphology, but IL-1ra did in certain sub-regions of the hippocampus. Together, these results indicate that sex differences exist in the ability of a peripheral immune stimulus to influence context discrimination memory and specific cytokine signals may be altered in impaired males. This study highlights the importance of sex differences in response to inflammatory challenges, especially related to memory impairments in context discrimination memory.
Collapse
Affiliation(s)
- Kathryn A McNaughton
- University of Maryland (UMD), 0112 Biology-Psychology Building, Department of Psychology, College Park, MD 20742, United States.
| | - Lauren L Williamson
- Northern Kentucky University, 100 Nunn Dr, FH 359F, Highland Heights, KY 41099, United States.
| |
Collapse
|
7
|
Solarz A, Majcher-Maślanka I, Kryst J, Chocyk A. Early-life stress affects peripheral, blood-brain barrier, and brain responses to immune challenge in juvenile and adult rats. Brain Behav Immun 2023; 108:1-15. [PMID: 36400335 DOI: 10.1016/j.bbi.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/21/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Early-life stress (ELS) may affect brain maturation and neuroimmune interactions and, consequently, the inflammatory response to subsequent environmental factors later in life. Recently, the coexistence of blood-brain barrier (BBB) dysfunction and inflammation has been implicated in the etiology and progression of mental and/or neurodegenerative diseases. There are sex differences in the prevalence and outcomes of these disorders. The number of studies reporting the effects of ELS and sex on BBB functioning and neuroinflammatory processes in response to immune challenge is very limited, and the data are inconsistent. In the present study, we examined whether ELS, based on the maternal separation (MS) paradigm in rats, can condition male and female subjects to subsequent lipopolysaccharide (LPS)-induced immune challenge in juvenility or adulthood. Twenty-four hours after acute LPS injection, serum proinflammatory cytokines were measured, and BBB permeability in the medial prefrontal cortex (mPFC) and hippocampus (HP) was evaluated. Additionally, the mRNA expression of neuroinflammatory markers and BBB-related genes was also studied. We found that a single LPS challenge induced a proinflammatory response both in the periphery and in the mPFC and HP and increased BBB permeability in a sex-dependent fashion. Moreover, MS enhanced the neuroinflammatory response to LPS challenge in males (especially juveniles), whereas MS females showed no difference or a blunted central response to LPS compared with control females, mainly during adulthood. These results suggest that ELS may precondition individuals to subsequent environmental factors later in life in a sex-specific manner and potentially determine their susceptibility or resilience to mental and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Solarz
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland
| | - Joanna Kryst
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland; Department of Chemistry and Biochemistry, Institute for Basics Sciences, Faculty of Physiotherapy, University of Physical Education, Jana Pawła II Av. 78, 31-571 Kraków, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Smętna Street 12, Poland.
| |
Collapse
|
8
|
Rodriguez-Zas SL, Southey BR, Rymut HE, Rund LA, Johnson RW. Hippocampal Changes Elicited by Metabolic and Inflammatory Stressors following Prenatal Maternal Infection. Genes (Basel) 2022; 14:77. [PMID: 36672818 PMCID: PMC9859158 DOI: 10.3390/genes14010077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The hippocampus participates in spatial navigation and behavioral processes, displays molecular plasticity in response to environmental challenges, and can play a role in neuropsychiatric diseases. The combined effects of inflammatory prenatal and postnatal challenges can disrupt the hippocampal gene networks and regulatory mechanisms. Using a proven pig model of viral maternal immune activation (MIA) matched to controls and an RNA-sequencing approach, the hippocampal transcriptome was profiled on two-month-old female and male offspring assigned to fasting, mimetic viral, or saline treatments. More than 2600 genes presented single or combined effects (FDR-adjusted p-value < 0.05) of MIA, postnatal stress, or sex. Biological processes and pathways encompassing messenger cyclic adenosine 3',5'-monophosphate (cAMP) signaling were enriched with genes including gastric inhibitory polypeptide receptor (GIPR) predominantly over-expressed in the MIA-exposed fasting males relative to groups that differed in sex, prenatal or postnatal challenge. While this pattern was amplified in fasting offspring, the postnatal inflammatory challenge appeared to cancel out the effects of the prenatal challenge. The transcription factors C-terminal binding protein 2 (CTBP2), RE1 silencing transcription factor (REST), signal transducer and activator of transcription 1 (STAT1), and SUZ12 polycomb repressive complex 2 subunit were over-represented among the genes impacted by the prenatal and postnatal factors studied. Our results indicate that one environmental challenge can influence the effect of another challenge on the hippocampal transcriptome. These findings can assist in the identification of molecular targets to ameliorate the effects of pre-and post-natal stressors on hippocampal-associated physiology and behavior.
Collapse
Affiliation(s)
- Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haley E. Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Posillico CK, Garcia-Hernandez RE, Tronson NC. Sex differences and similarities in the neuroimmune response to central administration of poly I:C. J Neuroinflammation 2021; 18:193. [PMID: 34488804 PMCID: PMC8418962 DOI: 10.1186/s12974-021-02235-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neuroimmune system is required for normal neural processes, including modulation of cognition, emotion, and adaptive behaviors. Aberrant neuroimmune activation is associated with dysregulation of memory and emotion, though the precise mechanisms at play are complex and highly context dependent. Sex differences in neuroimmune activation and function further complicate our understanding of its roles in cognitive and affective regulation. METHODS Here, we characterized the physiological sickness and inflammatory response of the hippocampus following intracerebroventricular (ICV) administration of a synthetic viral mimic, polyinosinic:polycytidylic acid (poly I:C), in both male and female C57Bl/6N mice. RESULTS We observed that poly I:C induced weight loss, fever, and elevations of cytokine and chemokines in the hippocampus of both sexes. Specifically, we found transient increases in gene expression and protein levels of IL-1α, IL-1β, IL-4, IL-6, TNFα, CCL2, and CXCL10, where males showed a greater magnitude of response compared with females. Only males showed increased IFNα and IFNγ in response to poly I:C, whereas both males and females exhibited elevations of IFNβ, demonstrating a specific sex difference in the anti-viral response in the hippocampus. CONCLUSION Our data suggest that type I interferons are one potential node mediating sex-specific cytokine responses and neuroimmune effects on cognition. Together, these findings highlight the importance of using both males and females and analyzing a broad set of inflammatory markers in order to identify the precise, sex-specific roles for neuroimmune dysregulation in neurological diseases and disorders.
Collapse
Affiliation(s)
- Caitlin K Posillico
- Psychology Department, University of Michigan, 530 Church St., Ann Arbor, MI 48109, USA
| | | | - Natalie C Tronson
- Psychology Department, University of Michigan, 530 Church St., Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Shishkina GT, Kalinina TS, Gulyaeva NV, Lanshakov DA, Dygalo NN. Changes in Gene Expression and Neuroinflammation in the Hippocampus after Focal Brain Ischemia: Involvement in the Long-Term Cognitive and Mental Disorders. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:657-666. [PMID: 34225589 DOI: 10.1134/s0006297921060043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemic brain injuries are accompanied by the long-term changes in gene expression in the hippocampus, the limbic system structure, involved in the regulation of key aspects of the higher nervous activity, such as cognitive functions and emotions. The altered expression of genes and proteins encoded by them may be related to the development of post-ischemic psycho-emotional and cognitive disturbances. Activation of neuroinflammation following stroke in the hippocampus has been suggested to play an essential role in induction of long-lasting consequences. Identification of changes in the gene expression patterns after ischemia and investigation of the dynamics of these changes in the hippocampus are the necessary first steps toward understanding molecular pathways responsible for the development of post-stroke cognitive impairments and mental pathologies.
Collapse
Affiliation(s)
- Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Tatiana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Dmitry A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
11
|
McCormick CM, Smith K, Baumbach JL, de Lima APN, Shaver M, Hodges TE, Marcolin ML, Ismail N. Adolescent social instability stress leads to immediate and lasting sex-specific changes in the neuroendocrine-immune-gut axis in rats. Horm Behav 2020; 126:104845. [PMID: 32846188 DOI: 10.1016/j.yhbeh.2020.104845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
Social instability stress (SS; daily 1 h isolation and change of cage partner from postnatal day (P) 30-45) in adolescence produces elevations in corticosterone during the procedure in male and female rats, but no lasting changes in hypothalamic-pituitary-adrenal (HPA) responses to psychological stressors, although deficits in social and cognitive function are evident in adulthood. Here we investigated the effects of SS in corticosterone response to an immune challenge (lipopolysaccharide, LPS, 0.1 mg/kg), on gene expression in the hippocampus, and on gut microbiota, when tested soon- (P46) or long- (P70) after SS. The temporal pattern of corticosterone release after LPS differed between SS and control rats irrespective of the time since SS exposure in females, whereas in males, SS did not alter corticosterone release after LPS. Expression of genes in the hippocampus relevant to immune and HPA function differed between saline-treated SS and control rats depending on sex and time tested, but with lasting consequences of SS in both sexes. LPS-treatment altered hippocampal gene expression, with bigger effects of LPS evident in control than in SS female rats, and the opposite in male rats. Further, effects sometimes depended on the age at time of LPS treatment. SS and control rats differed in both fecal and colon microbiome composition in all but P46 males, and stress history, sex, and age influenced the effects of an immune challenge on the gut microbiome. In sum, adolescent stress history has consequences for immune function into adulthood that may involve effects on the gut microbiome.
Collapse
Affiliation(s)
- Cheryl M McCormick
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Kevin Smith
- Department of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | | | - Madeleine Shaver
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Travis E Hodges
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Marina L Marcolin
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Nafissa Ismail
- Department of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|